bcachefs: Factor out btree_key_can_insert()
[linux-block.git] / fs / bcachefs / bset.c
CommitLineData
1c6fdbd8
KO
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
5 *
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcachefs.h"
10#include "btree_cache.h"
11#include "bset.h"
12#include "eytzinger.h"
13#include "trace.h"
14#include "util.h"
15
16#include <asm/unaligned.h>
17#include <linux/console.h>
18#include <linux/random.h>
19#include <linux/prefetch.h>
20
21struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
22{
23 struct bset_tree *t;
24
25 for_each_bset(b, t)
26 if (k >= btree_bkey_first(b, t) &&
27 k < btree_bkey_last(b, t))
28 return t;
29
30 BUG();
31}
32
33/*
34 * There are never duplicate live keys in the btree - but including keys that
35 * have been flagged as deleted (and will be cleaned up later) we _will_ see
36 * duplicates.
37 *
38 * Thus the sort order is: usual key comparison first, but for keys that compare
39 * equal the deleted key(s) come first, and the (at most one) live version comes
40 * last.
41 *
42 * The main reason for this is insertion: to handle overwrites, we first iterate
43 * over keys that compare equal to our insert key, and then insert immediately
44 * prior to the first key greater than the key we're inserting - our insert
45 * position will be after all keys that compare equal to our insert key, which
46 * by the time we actually do the insert will all be deleted.
47 */
48
49void bch2_dump_bset(struct btree *b, struct bset *i, unsigned set)
50{
51 struct bkey_packed *_k, *_n;
52 struct bkey k, n;
53 char buf[120];
54
55 if (!i->u64s)
56 return;
57
58 for (_k = i->start, k = bkey_unpack_key(b, _k);
59 _k < vstruct_last(i);
60 _k = _n, k = n) {
61 _n = bkey_next(_k);
62
63 bch2_bkey_to_text(buf, sizeof(buf), &k);
64 printk(KERN_ERR "block %u key %zi/%u: %s\n", set,
65 _k->_data - i->_data, i->u64s, buf);
66
67 if (_n == vstruct_last(i))
68 continue;
69
70 n = bkey_unpack_key(b, _n);
71
72 if (bkey_cmp(bkey_start_pos(&n), k.p) < 0) {
73 printk(KERN_ERR "Key skipped backwards\n");
74 continue;
75 }
76
77 /*
78 * Weird check for duplicate non extent keys: extents are
79 * deleted iff they have 0 size, so if it has zero size and it's
80 * not deleted these aren't extents:
81 */
82 if (((!k.size && !bkey_deleted(&k)) ||
83 (!n.size && !bkey_deleted(&n))) &&
84 !bkey_deleted(&k) &&
85 !bkey_cmp(n.p, k.p))
86 printk(KERN_ERR "Duplicate keys\n");
87 }
88}
89
90void bch2_dump_btree_node(struct btree *b)
91{
92 struct bset_tree *t;
93
94 console_lock();
95 for_each_bset(b, t)
96 bch2_dump_bset(b, bset(b, t), t - b->set);
97 console_unlock();
98}
99
100void bch2_dump_btree_node_iter(struct btree *b,
101 struct btree_node_iter *iter)
102{
103 struct btree_node_iter_set *set;
104
105 printk(KERN_ERR "btree node iter with %u sets:\n", b->nsets);
106
107 btree_node_iter_for_each(iter, set) {
108 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
109 struct bset_tree *t = bch2_bkey_to_bset(b, k);
110 struct bkey uk = bkey_unpack_key(b, k);
111 char buf[100];
112
113 bch2_bkey_to_text(buf, sizeof(buf), &uk);
114 printk(KERN_ERR "set %zu key %zi/%u: %s\n", t - b->set,
115 k->_data - bset(b, t)->_data, bset(b, t)->u64s, buf);
116 }
117}
118
119#ifdef CONFIG_BCACHEFS_DEBUG
120
121static bool keys_out_of_order(struct btree *b,
122 const struct bkey_packed *prev,
123 const struct bkey_packed *next,
124 bool is_extents)
125{
126 struct bkey nextu = bkey_unpack_key(b, next);
127
128 return bkey_cmp_left_packed_byval(b, prev, bkey_start_pos(&nextu)) > 0 ||
129 ((is_extents
130 ? !bkey_deleted(next)
131 : !bkey_deleted(prev)) &&
132 !bkey_cmp_packed(b, prev, next));
133}
134
135void __bch2_verify_btree_nr_keys(struct btree *b)
136{
137 struct bset_tree *t;
138 struct bkey_packed *k;
139 struct btree_nr_keys nr = { 0 };
140
141 for_each_bset(b, t)
142 for (k = btree_bkey_first(b, t);
143 k != btree_bkey_last(b, t);
144 k = bkey_next(k))
145 if (!bkey_whiteout(k))
146 btree_keys_account_key_add(&nr, t - b->set, k);
147
148 BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
149}
150
151static void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
152 struct btree *b,
153 struct bkey_packed *k)
154{
155 const struct bkey_packed *n = bch2_btree_node_iter_peek_all(iter, b);
156
157 bkey_unpack_key(b, k);
158
159 if (n &&
160 keys_out_of_order(b, k, n, iter->is_extents)) {
161 struct bkey ku = bkey_unpack_key(b, k);
162 struct bkey nu = bkey_unpack_key(b, n);
163 char buf1[80], buf2[80];
164
165 bch2_dump_btree_node(b);
166 bch2_bkey_to_text(buf1, sizeof(buf1), &ku);
167 bch2_bkey_to_text(buf2, sizeof(buf2), &nu);
168 panic("out of order/overlapping:\n%s\n%s\n", buf1, buf2);
169 }
170}
171
172void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
173 struct btree *b)
174{
175 struct btree_node_iter_set *set, *prev = NULL;
176 struct bset_tree *t;
177 struct bkey_packed *k, *first;
178
179 if (bch2_btree_node_iter_end(iter))
180 return;
181
182 btree_node_iter_for_each(iter, set) {
183 k = __btree_node_offset_to_key(b, set->k);
184 t = bch2_bkey_to_bset(b, k);
185
186 BUG_ON(__btree_node_offset_to_key(b, set->end) !=
187 btree_bkey_last(b, t));
188
189 BUG_ON(prev &&
190 btree_node_iter_cmp(iter, b, *prev, *set) > 0);
191
192 prev = set;
193 }
194
195 first = __btree_node_offset_to_key(b, iter->data[0].k);
196
197 for_each_bset(b, t)
198 if (bch2_btree_node_iter_bset_pos(iter, b, t) ==
199 btree_bkey_last(b, t) &&
200 (k = bch2_bkey_prev_all(b, t, btree_bkey_last(b, t))))
201 BUG_ON(__btree_node_iter_cmp(iter->is_extents, b,
202 k, first) > 0);
203}
204
205void bch2_verify_key_order(struct btree *b,
206 struct btree_node_iter *iter,
207 struct bkey_packed *where)
208{
209 struct bset_tree *t = bch2_bkey_to_bset(b, where);
210 struct bkey_packed *k, *prev;
211 struct bkey uk, uw = bkey_unpack_key(b, where);
212
213 k = bch2_bkey_prev_all(b, t, where);
214 if (k &&
215 keys_out_of_order(b, k, where, iter->is_extents)) {
216 char buf1[100], buf2[100];
217
218 bch2_dump_btree_node(b);
219 uk = bkey_unpack_key(b, k);
220 bch2_bkey_to_text(buf1, sizeof(buf1), &uk);
221 bch2_bkey_to_text(buf2, sizeof(buf2), &uw);
222 panic("out of order with prev:\n%s\n%s\n",
223 buf1, buf2);
224 }
225
226 k = bkey_next(where);
227 BUG_ON(k != btree_bkey_last(b, t) &&
228 keys_out_of_order(b, where, k, iter->is_extents));
229
230 for_each_bset(b, t) {
231 if (where >= btree_bkey_first(b, t) ||
232 where < btree_bkey_last(b, t))
233 continue;
234
235 k = bch2_btree_node_iter_bset_pos(iter, b, t);
236
237 if (k == btree_bkey_last(b, t))
238 k = bch2_bkey_prev_all(b, t, k);
239
240 while (bkey_cmp_left_packed_byval(b, k, bkey_start_pos(&uw)) > 0 &&
241 (prev = bch2_bkey_prev_all(b, t, k)))
242 k = prev;
243
244 for (;
245 k != btree_bkey_last(b, t);
246 k = bkey_next(k)) {
247 uk = bkey_unpack_key(b, k);
248
249 if (iter->is_extents) {
250 BUG_ON(!(bkey_cmp(uw.p, bkey_start_pos(&uk)) <= 0 ||
251 bkey_cmp(uk.p, bkey_start_pos(&uw)) <= 0));
252 } else {
253 BUG_ON(!bkey_cmp(uw.p, uk.p) &&
254 !bkey_deleted(&uk));
255 }
256
257 if (bkey_cmp(uw.p, bkey_start_pos(&uk)) <= 0)
258 break;
259 }
260 }
261}
262
263#else
264
265static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
266 struct btree *b,
267 struct bkey_packed *k) {}
268
269#endif
270
271/* Auxiliary search trees */
272
273#define BFLOAT_FAILED_UNPACKED (U8_MAX - 0)
274#define BFLOAT_FAILED_PREV (U8_MAX - 1)
275#define BFLOAT_FAILED_OVERFLOW (U8_MAX - 2)
276#define BFLOAT_FAILED (U8_MAX - 2)
277
278#define KEY_WORDS BITS_TO_LONGS(1 << BKEY_EXPONENT_BITS)
279
280struct bkey_float {
281 u8 exponent;
282 u8 key_offset;
283 union {
284 u32 mantissa32;
285 struct {
286 u16 mantissa16;
287 u16 _pad;
288 };
289 };
290} __packed;
291
292#define BFLOAT_32BIT_NR 32U
293
294static unsigned bkey_float_byte_offset(unsigned idx)
295{
296 int d = (idx - BFLOAT_32BIT_NR) << 1;
297
298 d &= ~(d >> 31);
299
300 return idx * 6 - d;
301}
302
303struct ro_aux_tree {
304 struct bkey_float _d[0];
305};
306
307struct rw_aux_tree {
308 u16 offset;
309 struct bpos k;
310};
311
312/*
313 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
314 * it used to be 64, but I realized the lookup code would touch slightly less
315 * memory if it was 128.
316 *
317 * It definites the number of bytes (in struct bset) per struct bkey_float in
318 * the auxiliar search tree - when we're done searching the bset_float tree we
319 * have this many bytes left that we do a linear search over.
320 *
321 * Since (after level 5) every level of the bset_tree is on a new cacheline,
322 * we're touching one fewer cacheline in the bset tree in exchange for one more
323 * cacheline in the linear search - but the linear search might stop before it
324 * gets to the second cacheline.
325 */
326
327#define BSET_CACHELINE 128
328
329/* Space required for the btree node keys */
330static inline size_t btree_keys_bytes(struct btree *b)
331{
332 return PAGE_SIZE << b->page_order;
333}
334
335static inline size_t btree_keys_cachelines(struct btree *b)
336{
337 return btree_keys_bytes(b) / BSET_CACHELINE;
338}
339
340static inline size_t btree_aux_data_bytes(struct btree *b)
341{
342 return btree_keys_cachelines(b) * 8;
343}
344
345static inline size_t btree_aux_data_u64s(struct btree *b)
346{
347 return btree_aux_data_bytes(b) / sizeof(u64);
348}
349
350static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
351{
352 BUG_ON(t->aux_data_offset == U16_MAX);
353
354 switch (bset_aux_tree_type(t)) {
355 case BSET_NO_AUX_TREE:
356 return t->aux_data_offset;
357 case BSET_RO_AUX_TREE:
358 return t->aux_data_offset +
359 DIV_ROUND_UP(bkey_float_byte_offset(t->size) +
360 sizeof(u8) * t->size, 8);
361 case BSET_RW_AUX_TREE:
362 return t->aux_data_offset +
363 DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
364 default:
365 BUG();
366 }
367}
368
369static unsigned bset_aux_tree_buf_start(const struct btree *b,
370 const struct bset_tree *t)
371{
372 return t == b->set
373 ? DIV_ROUND_UP(b->unpack_fn_len, 8)
374 : bset_aux_tree_buf_end(t - 1);
375}
376
377static void *__aux_tree_base(const struct btree *b,
378 const struct bset_tree *t)
379{
380 return b->aux_data + t->aux_data_offset * 8;
381}
382
383static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
384 const struct bset_tree *t)
385{
386 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
387
388 return __aux_tree_base(b, t);
389}
390
391static u8 *ro_aux_tree_prev(const struct btree *b,
392 const struct bset_tree *t)
393{
394 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
395
396 return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
397}
398
399static struct bkey_float *bkey_float_get(struct ro_aux_tree *b,
400 unsigned idx)
401{
402 return (void *) b + bkey_float_byte_offset(idx);
403}
404
405static struct bkey_float *bkey_float(const struct btree *b,
406 const struct bset_tree *t,
407 unsigned idx)
408{
409 return bkey_float_get(ro_aux_tree_base(b, t), idx);
410}
411
412static void bset_aux_tree_verify(struct btree *b)
413{
414#ifdef CONFIG_BCACHEFS_DEBUG
415 struct bset_tree *t;
416
417 for_each_bset(b, t) {
418 if (t->aux_data_offset == U16_MAX)
419 continue;
420
421 BUG_ON(t != b->set &&
422 t[-1].aux_data_offset == U16_MAX);
423
424 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
425 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
426 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
427 }
428#endif
429}
430
431/* Memory allocation */
432
433void bch2_btree_keys_free(struct btree *b)
434{
435 kvfree(b->aux_data);
436 b->aux_data = NULL;
437}
438
439int bch2_btree_keys_alloc(struct btree *b, unsigned page_order, gfp_t gfp)
440{
441 b->page_order = page_order;
442 b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
443 if (!b->aux_data)
444 return -ENOMEM;
445
446 return 0;
447}
448
449void bch2_btree_keys_init(struct btree *b, bool *expensive_debug_checks)
450{
451 unsigned i;
452
453 b->nsets = 0;
454 memset(&b->nr, 0, sizeof(b->nr));
455#ifdef CONFIG_BCACHEFS_DEBUG
456 b->expensive_debug_checks = expensive_debug_checks;
457#endif
458 for (i = 0; i < MAX_BSETS; i++)
459 b->set[i].data_offset = U16_MAX;
460
461 bch2_bset_set_no_aux_tree(b, b->set);
462}
463
464/* Binary tree stuff for auxiliary search trees */
465
466/*
467 * Cacheline/offset <-> bkey pointer arithmetic:
468 *
469 * t->tree is a binary search tree in an array; each node corresponds to a key
470 * in one cacheline in t->set (BSET_CACHELINE bytes).
471 *
472 * This means we don't have to store the full index of the key that a node in
473 * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
474 * then bkey_float->m gives us the offset within that cacheline, in units of 8
475 * bytes.
476 *
477 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
478 * make this work.
479 *
480 * To construct the bfloat for an arbitrary key we need to know what the key
481 * immediately preceding it is: we have to check if the two keys differ in the
482 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
483 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
484 */
485
486static inline void *bset_cacheline(const struct btree *b,
487 const struct bset_tree *t,
488 unsigned cacheline)
489{
490 return (void *) round_down((unsigned long) btree_bkey_first(b, t),
491 L1_CACHE_BYTES) +
492 cacheline * BSET_CACHELINE;
493}
494
495static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
496 const struct bset_tree *t,
497 unsigned cacheline,
498 unsigned offset)
499{
500 return bset_cacheline(b, t, cacheline) + offset * 8;
501}
502
503static unsigned bkey_to_cacheline(const struct btree *b,
504 const struct bset_tree *t,
505 const struct bkey_packed *k)
506{
507 return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
508}
509
510static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
511 const struct bset_tree *t,
512 unsigned cacheline,
513 const struct bkey_packed *k)
514{
515 return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
516}
517
518static unsigned bkey_to_cacheline_offset(const struct btree *b,
519 const struct bset_tree *t,
520 unsigned cacheline,
521 const struct bkey_packed *k)
522{
523 size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
524
525 EBUG_ON(m > U8_MAX);
526 return m;
527}
528
529static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
530 const struct bset_tree *t,
531 unsigned j)
532{
533 return cacheline_to_bkey(b, t,
534 __eytzinger1_to_inorder(j, t->size, t->extra),
535 bkey_float(b, t, j)->key_offset);
536}
537
538static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
539 const struct bset_tree *t,
540 unsigned j)
541{
542 unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
543
544 return (void *) (tree_to_bkey(b, t, j)->_data - prev_u64s);
545}
546
547static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
548 const struct bset_tree *t)
549{
550 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
551
552 return __aux_tree_base(b, t);
553}
554
555/*
556 * For the write set - the one we're currently inserting keys into - we don't
557 * maintain a full search tree, we just keep a simple lookup table in t->prev.
558 */
559static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
560 struct bset_tree *t,
561 unsigned j)
562{
563 return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
564}
565
566static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
567 unsigned j, struct bkey_packed *k)
568{
569 EBUG_ON(k >= btree_bkey_last(b, t));
570
571 rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
572 .offset = __btree_node_key_to_offset(b, k),
573 .k = bkey_unpack_pos(b, k),
574 };
575}
576
577static void bch2_bset_verify_rw_aux_tree(struct btree *b,
578 struct bset_tree *t)
579{
580 struct bkey_packed *k = btree_bkey_first(b, t);
581 unsigned j = 0;
582
583 if (!btree_keys_expensive_checks(b))
584 return;
585
586 BUG_ON(bset_has_ro_aux_tree(t));
587
588 if (!bset_has_rw_aux_tree(t))
589 return;
590
591 BUG_ON(t->size < 1);
592 BUG_ON(rw_aux_to_bkey(b, t, j) != k);
593
594 goto start;
595 while (1) {
596 if (rw_aux_to_bkey(b, t, j) == k) {
597 BUG_ON(bkey_cmp(rw_aux_tree(b, t)[j].k,
598 bkey_unpack_pos(b, k)));
599start:
600 if (++j == t->size)
601 break;
602
603 BUG_ON(rw_aux_tree(b, t)[j].offset <=
604 rw_aux_tree(b, t)[j - 1].offset);
605 }
606
607 k = bkey_next(k);
608 BUG_ON(k >= btree_bkey_last(b, t));
609 }
610}
611
612/* returns idx of first entry >= offset: */
613static unsigned rw_aux_tree_bsearch(struct btree *b,
614 struct bset_tree *t,
615 unsigned offset)
616{
617 unsigned l = 0, r = t->size;
618
619 EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
620
621 while (l < r) {
622 unsigned m = (l + r) >> 1;
623
624 if (rw_aux_tree(b, t)[m].offset < offset)
625 l = m + 1;
626 else
627 r = m;
628 }
629
630 EBUG_ON(l < t->size &&
631 rw_aux_tree(b, t)[l].offset < offset);
632 EBUG_ON(l &&
633 rw_aux_tree(b, t)[l - 1].offset >= offset);
634
635 EBUG_ON(l > r);
636 EBUG_ON(l > t->size);
637
638 return l;
639}
640
641static inline unsigned bfloat_mantissa(const struct bkey_float *f,
642 unsigned idx)
643{
644 return idx < BFLOAT_32BIT_NR ? f->mantissa32 : f->mantissa16;
645}
646
647static inline void bfloat_mantissa_set(struct bkey_float *f,
648 unsigned idx, unsigned mantissa)
649{
650 if (idx < BFLOAT_32BIT_NR)
651 f->mantissa32 = mantissa;
652 else
653 f->mantissa16 = mantissa;
654}
655
656static inline unsigned bkey_mantissa(const struct bkey_packed *k,
657 const struct bkey_float *f,
658 unsigned idx)
659{
660 u64 v;
661
662 EBUG_ON(!bkey_packed(k));
663
664 v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
665
666 /*
667 * In little endian, we're shifting off low bits (and then the bits we
668 * want are at the low end), in big endian we're shifting off high bits
669 * (and then the bits we want are at the high end, so we shift them
670 * back down):
671 */
672#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
673 v >>= f->exponent & 7;
674#else
675 v >>= 64 - (f->exponent & 7) - (idx < BFLOAT_32BIT_NR ? 32 : 16);
676#endif
677 return idx < BFLOAT_32BIT_NR ? (u32) v : (u16) v;
678}
679
680static void make_bfloat(struct btree *b, struct bset_tree *t,
681 unsigned j,
682 struct bkey_packed *min_key,
683 struct bkey_packed *max_key)
684{
685 struct bkey_float *f = bkey_float(b, t, j);
686 struct bkey_packed *m = tree_to_bkey(b, t, j);
687 struct bkey_packed *p = tree_to_prev_bkey(b, t, j);
688 struct bkey_packed *l, *r;
689 unsigned bits = j < BFLOAT_32BIT_NR ? 32 : 16;
690 unsigned mantissa;
691 int shift, exponent, high_bit;
692
693 EBUG_ON(bkey_next(p) != m);
694
695 if (is_power_of_2(j)) {
696 l = min_key;
697
698 if (!l->u64s) {
699 if (!bkey_pack_pos(l, b->data->min_key, b)) {
700 struct bkey_i tmp;
701
702 bkey_init(&tmp.k);
703 tmp.k.p = b->data->min_key;
704 bkey_copy(l, &tmp);
705 }
706 }
707 } else {
708 l = tree_to_prev_bkey(b, t, j >> ffs(j));
709
710 EBUG_ON(m < l);
711 }
712
713 if (is_power_of_2(j + 1)) {
714 r = max_key;
715
716 if (!r->u64s) {
717 if (!bkey_pack_pos(r, t->max_key, b)) {
718 struct bkey_i tmp;
719
720 bkey_init(&tmp.k);
721 tmp.k.p = t->max_key;
722 bkey_copy(r, &tmp);
723 }
724 }
725 } else {
726 r = tree_to_bkey(b, t, j >> (ffz(j) + 1));
727
728 EBUG_ON(m > r);
729 }
730
731 /*
732 * for failed bfloats, the lookup code falls back to comparing against
733 * the original key.
734 */
735
736 if (!bkey_packed(l) || !bkey_packed(r) ||
737 !bkey_packed(p) || !bkey_packed(m) ||
738 !b->nr_key_bits) {
739 f->exponent = BFLOAT_FAILED_UNPACKED;
740 return;
741 }
742
743 /*
744 * The greatest differing bit of l and r is the first bit we must
745 * include in the bfloat mantissa we're creating in order to do
746 * comparisons - that bit always becomes the high bit of
747 * bfloat->mantissa, and thus the exponent we're calculating here is
748 * the position of what will become the low bit in bfloat->mantissa:
749 *
750 * Note that this may be negative - we may be running off the low end
751 * of the key: we handle this later:
752 */
753 high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
754 min_t(unsigned, bits, b->nr_key_bits) - 1);
755 exponent = high_bit - (bits - 1);
756
757 /*
758 * Then we calculate the actual shift value, from the start of the key
759 * (k->_data), to get the key bits starting at exponent:
760 */
761#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
762 shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
763
764 EBUG_ON(shift + bits > b->format.key_u64s * 64);
765#else
766 shift = high_bit_offset +
767 b->nr_key_bits -
768 exponent -
769 bits;
770
771 EBUG_ON(shift < KEY_PACKED_BITS_START);
772#endif
773 EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
774
775 f->exponent = shift;
776 mantissa = bkey_mantissa(m, f, j);
777
778 /*
779 * If we've got garbage bits, set them to all 1s - it's legal for the
780 * bfloat to compare larger than the original key, but not smaller:
781 */
782 if (exponent < 0)
783 mantissa |= ~(~0U << -exponent);
784
785 bfloat_mantissa_set(f, j, mantissa);
786
787 /*
788 * The bfloat must be able to tell its key apart from the previous key -
789 * if its key and the previous key don't differ in the required bits,
790 * flag as failed - unless the keys are actually equal, in which case
791 * we aren't required to return a specific one:
792 */
793 if (exponent > 0 &&
794 bfloat_mantissa(f, j) == bkey_mantissa(p, f, j) &&
795 bkey_cmp_packed(b, p, m)) {
796 f->exponent = BFLOAT_FAILED_PREV;
797 return;
798 }
799
800 /*
801 * f->mantissa must compare >= the original key - for transitivity with
802 * the comparison in bset_search_tree. If we're dropping set bits,
803 * increment it:
804 */
805 if (exponent > (int) bch2_bkey_ffs(b, m)) {
806 if (j < BFLOAT_32BIT_NR
807 ? f->mantissa32 == U32_MAX
808 : f->mantissa16 == U16_MAX)
809 f->exponent = BFLOAT_FAILED_OVERFLOW;
810
811 if (j < BFLOAT_32BIT_NR)
812 f->mantissa32++;
813 else
814 f->mantissa16++;
815 }
816}
817
818/* bytes remaining - only valid for last bset: */
819static unsigned __bset_tree_capacity(struct btree *b, struct bset_tree *t)
820{
821 bset_aux_tree_verify(b);
822
823 return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
824}
825
826static unsigned bset_ro_tree_capacity(struct btree *b, struct bset_tree *t)
827{
828 unsigned bytes = __bset_tree_capacity(b, t);
829
830 if (bytes < 7 * BFLOAT_32BIT_NR)
831 return bytes / 7;
832
833 bytes -= 7 * BFLOAT_32BIT_NR;
834
835 return BFLOAT_32BIT_NR + bytes / 5;
836}
837
838static unsigned bset_rw_tree_capacity(struct btree *b, struct bset_tree *t)
839{
840 return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
841}
842
843static void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
844{
845 struct bkey_packed *k;
846
847 t->size = 1;
848 t->extra = BSET_RW_AUX_TREE_VAL;
849 rw_aux_tree(b, t)[0].offset =
850 __btree_node_key_to_offset(b, btree_bkey_first(b, t));
851
852 for (k = btree_bkey_first(b, t);
853 k != btree_bkey_last(b, t);
854 k = bkey_next(k)) {
855 if (t->size == bset_rw_tree_capacity(b, t))
856 break;
857
858 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
859 L1_CACHE_BYTES)
860 rw_aux_tree_set(b, t, t->size++, k);
861 }
862}
863
864static void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
865{
866 struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
867 struct bkey_packed min_key, max_key;
868 unsigned j, cacheline = 1;
869
870 /* signal to make_bfloat() that they're uninitialized: */
871 min_key.u64s = max_key.u64s = 0;
872
873 t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
874 bset_ro_tree_capacity(b, t));
875retry:
876 if (t->size < 2) {
877 t->size = 0;
878 t->extra = BSET_NO_AUX_TREE_VAL;
879 return;
880 }
881
882 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
883
884 /* First we figure out where the first key in each cacheline is */
885 eytzinger1_for_each(j, t->size) {
886 while (bkey_to_cacheline(b, t, k) < cacheline)
887 prev = k, k = bkey_next(k);
888
889 if (k >= btree_bkey_last(b, t)) {
890 /* XXX: this path sucks */
891 t->size--;
892 goto retry;
893 }
894
895 ro_aux_tree_prev(b, t)[j] = prev->u64s;
896 bkey_float(b, t, j)->key_offset =
897 bkey_to_cacheline_offset(b, t, cacheline++, k);
898
899 EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
900 EBUG_ON(tree_to_bkey(b, t, j) != k);
901 }
902
903 while (bkey_next(k) != btree_bkey_last(b, t))
904 k = bkey_next(k);
905
906 t->max_key = bkey_unpack_pos(b, k);
907
908 /* Then we build the tree */
909 eytzinger1_for_each(j, t->size)
910 make_bfloat(b, t, j, &min_key, &max_key);
911}
912
913static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
914{
915 struct bset_tree *i;
916
917 for (i = b->set; i != t; i++)
918 BUG_ON(bset_has_rw_aux_tree(i));
919
920 bch2_bset_set_no_aux_tree(b, t);
921
922 /* round up to next cacheline: */
923 t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
924 SMP_CACHE_BYTES / sizeof(u64));
925
926 bset_aux_tree_verify(b);
927}
928
929void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
930 bool writeable)
931{
932 if (writeable
933 ? bset_has_rw_aux_tree(t)
934 : bset_has_ro_aux_tree(t))
935 return;
936
937 bset_alloc_tree(b, t);
938
939 if (!__bset_tree_capacity(b, t))
940 return;
941
942 if (writeable)
943 __build_rw_aux_tree(b, t);
944 else
945 __build_ro_aux_tree(b, t);
946
947 bset_aux_tree_verify(b);
948}
949
950void bch2_bset_init_first(struct btree *b, struct bset *i)
951{
952 struct bset_tree *t;
953
954 BUG_ON(b->nsets);
955
956 memset(i, 0, sizeof(*i));
957 get_random_bytes(&i->seq, sizeof(i->seq));
958 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
959
960 t = &b->set[b->nsets++];
961 set_btree_bset(b, t, i);
962}
963
964void bch2_bset_init_next(struct bch_fs *c, struct btree *b,
965 struct btree_node_entry *bne)
966{
967 struct bset *i = &bne->keys;
968 struct bset_tree *t;
969
970 BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c));
971 BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
972 BUG_ON(b->nsets >= MAX_BSETS);
973
974 memset(i, 0, sizeof(*i));
975 i->seq = btree_bset_first(b)->seq;
976 SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
977
978 t = &b->set[b->nsets++];
979 set_btree_bset(b, t, i);
980}
981
982/*
983 * find _some_ key in the same bset as @k that precedes @k - not necessarily the
984 * immediate predecessor:
985 */
986static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
987 struct bkey_packed *k)
988{
989 struct bkey_packed *p;
990 unsigned offset;
991 int j;
992
993 EBUG_ON(k < btree_bkey_first(b, t) ||
994 k > btree_bkey_last(b, t));
995
996 if (k == btree_bkey_first(b, t))
997 return NULL;
998
999 switch (bset_aux_tree_type(t)) {
1000 case BSET_NO_AUX_TREE:
1001 p = btree_bkey_first(b, t);
1002 break;
1003 case BSET_RO_AUX_TREE:
1004 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
1005
1006 do {
1007 p = j ? tree_to_bkey(b, t,
1008 __inorder_to_eytzinger1(j--,
1009 t->size, t->extra))
1010 : btree_bkey_first(b, t);
1011 } while (p >= k);
1012 break;
1013 case BSET_RW_AUX_TREE:
1014 offset = __btree_node_key_to_offset(b, k);
1015 j = rw_aux_tree_bsearch(b, t, offset);
1016 p = j ? rw_aux_to_bkey(b, t, j - 1)
1017 : btree_bkey_first(b, t);
1018 break;
1019 }
1020
1021 return p;
1022}
1023
1024struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
1025 struct bset_tree *t,
1026 struct bkey_packed *k,
1027 unsigned min_key_type)
1028{
1029 struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
1030
1031 while ((p = __bkey_prev(b, t, k)) && !ret) {
1032 for (i = p; i != k; i = bkey_next(i))
1033 if (i->type >= min_key_type)
1034 ret = i;
1035
1036 k = p;
1037 }
1038
1039 if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) {
1040 BUG_ON(ret >= orig_k);
1041
1042 for (i = ret ? bkey_next(ret) : btree_bkey_first(b, t);
1043 i != orig_k;
1044 i = bkey_next(i))
1045 BUG_ON(i->type >= min_key_type);
1046 }
1047
1048 return ret;
1049}
1050
1051/* Insert */
1052
1053static void rw_aux_tree_fix_invalidated_key(struct btree *b,
1054 struct bset_tree *t,
1055 struct bkey_packed *k)
1056{
1057 unsigned offset = __btree_node_key_to_offset(b, k);
1058 unsigned j = rw_aux_tree_bsearch(b, t, offset);
1059
1060 if (j < t->size &&
1061 rw_aux_tree(b, t)[j].offset == offset)
1062 rw_aux_tree_set(b, t, j, k);
1063
1064 bch2_bset_verify_rw_aux_tree(b, t);
1065}
1066
1067static void ro_aux_tree_fix_invalidated_key(struct btree *b,
1068 struct bset_tree *t,
1069 struct bkey_packed *k)
1070{
1071 struct bkey_packed min_key, max_key;
1072 unsigned inorder, j;
1073
1074 EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
1075
1076 /* signal to make_bfloat() that they're uninitialized: */
1077 min_key.u64s = max_key.u64s = 0;
1078
1079 if (bkey_next(k) == btree_bkey_last(b, t)) {
1080 t->max_key = bkey_unpack_pos(b, k);
1081
1082 for (j = 1; j < t->size; j = j * 2 + 1)
1083 make_bfloat(b, t, j, &min_key, &max_key);
1084 }
1085
1086 inorder = bkey_to_cacheline(b, t, k);
1087
1088 if (inorder &&
1089 inorder < t->size) {
1090 j = __inorder_to_eytzinger1(inorder, t->size, t->extra);
1091
1092 if (k == tree_to_bkey(b, t, j)) {
1093 /* Fix the node this key corresponds to */
1094 make_bfloat(b, t, j, &min_key, &max_key);
1095
1096 /* Children for which this key is the right boundary */
1097 for (j = eytzinger1_left_child(j);
1098 j < t->size;
1099 j = eytzinger1_right_child(j))
1100 make_bfloat(b, t, j, &min_key, &max_key);
1101 }
1102 }
1103
1104 if (inorder + 1 < t->size) {
1105 j = __inorder_to_eytzinger1(inorder + 1, t->size, t->extra);
1106
1107 if (k == tree_to_prev_bkey(b, t, j)) {
1108 make_bfloat(b, t, j, &min_key, &max_key);
1109
1110 /* Children for which this key is the left boundary */
1111 for (j = eytzinger1_right_child(j);
1112 j < t->size;
1113 j = eytzinger1_left_child(j))
1114 make_bfloat(b, t, j, &min_key, &max_key);
1115 }
1116 }
1117}
1118
1119/**
1120 * bch2_bset_fix_invalidated_key() - given an existing key @k that has been
1121 * modified, fix any auxiliary search tree by remaking all the nodes in the
1122 * auxiliary search tree that @k corresponds to
1123 */
1124void bch2_bset_fix_invalidated_key(struct btree *b, struct bset_tree *t,
1125 struct bkey_packed *k)
1126{
1127 switch (bset_aux_tree_type(t)) {
1128 case BSET_NO_AUX_TREE:
1129 break;
1130 case BSET_RO_AUX_TREE:
1131 ro_aux_tree_fix_invalidated_key(b, t, k);
1132 break;
1133 case BSET_RW_AUX_TREE:
1134 rw_aux_tree_fix_invalidated_key(b, t, k);
1135 break;
1136 }
1137}
1138
1139static void bch2_bset_fix_lookup_table(struct btree *b,
1140 struct bset_tree *t,
1141 struct bkey_packed *_where,
1142 unsigned clobber_u64s,
1143 unsigned new_u64s)
1144{
1145 int shift = new_u64s - clobber_u64s;
1146 unsigned l, j, where = __btree_node_key_to_offset(b, _where);
1147
1148 EBUG_ON(bset_has_ro_aux_tree(t));
1149
1150 if (!bset_has_rw_aux_tree(t))
1151 return;
1152
1153 l = rw_aux_tree_bsearch(b, t, where);
1154
1155 /* l is first >= than @where */
1156
1157 EBUG_ON(l < t->size && rw_aux_tree(b, t)[l].offset < where);
1158 EBUG_ON(l && rw_aux_tree(b, t)[l - 1].offset >= where);
1159
1160 if (!l) /* never delete first entry */
1161 l++;
1162 else if (l < t->size &&
1163 where < t->end_offset &&
1164 rw_aux_tree(b, t)[l].offset == where)
1165 rw_aux_tree_set(b, t, l++, _where);
1166
1167 /* l now > where */
1168
1169 for (j = l;
1170 j < t->size &&
1171 rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
1172 j++)
1173 ;
1174
1175 if (j < t->size &&
1176 rw_aux_tree(b, t)[j].offset + shift ==
1177 rw_aux_tree(b, t)[l - 1].offset)
1178 j++;
1179
1180 memmove(&rw_aux_tree(b, t)[l],
1181 &rw_aux_tree(b, t)[j],
1182 (void *) &rw_aux_tree(b, t)[t->size] -
1183 (void *) &rw_aux_tree(b, t)[j]);
1184 t->size -= j - l;
1185
1186 for (j = l; j < t->size; j++)
1187 rw_aux_tree(b, t)[j].offset += shift;
1188
1189 EBUG_ON(l < t->size &&
1190 rw_aux_tree(b, t)[l].offset ==
1191 rw_aux_tree(b, t)[l - 1].offset);
1192
1193 if (t->size < bset_rw_tree_capacity(b, t) &&
1194 (l < t->size
1195 ? rw_aux_tree(b, t)[l].offset
1196 : t->end_offset) -
1197 rw_aux_tree(b, t)[l - 1].offset >
1198 L1_CACHE_BYTES / sizeof(u64)) {
1199 struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
1200 struct bkey_packed *end = l < t->size
1201 ? rw_aux_to_bkey(b, t, l)
1202 : btree_bkey_last(b, t);
1203 struct bkey_packed *k = start;
1204
1205 while (1) {
1206 k = bkey_next(k);
1207 if (k == end)
1208 break;
1209
1210 if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
1211 memmove(&rw_aux_tree(b, t)[l + 1],
1212 &rw_aux_tree(b, t)[l],
1213 (void *) &rw_aux_tree(b, t)[t->size] -
1214 (void *) &rw_aux_tree(b, t)[l]);
1215 t->size++;
1216 rw_aux_tree_set(b, t, l, k);
1217 break;
1218 }
1219 }
1220 }
1221
1222 bch2_bset_verify_rw_aux_tree(b, t);
1223 bset_aux_tree_verify(b);
1224}
1225
1226void bch2_bset_insert(struct btree *b,
1227 struct btree_node_iter *iter,
1228 struct bkey_packed *where,
1229 struct bkey_i *insert,
1230 unsigned clobber_u64s)
1231{
1232 struct bkey_format *f = &b->format;
1233 struct bset_tree *t = bset_tree_last(b);
1234 struct bkey_packed packed, *src = bkey_to_packed(insert);
1235
1236 bch2_bset_verify_rw_aux_tree(b, t);
1237
1238 if (bch2_bkey_pack_key(&packed, &insert->k, f))
1239 src = &packed;
1240
1241 if (!bkey_whiteout(&insert->k))
1242 btree_keys_account_key_add(&b->nr, t - b->set, src);
1243
1244 if (src->u64s != clobber_u64s) {
1245 u64 *src_p = where->_data + clobber_u64s;
1246 u64 *dst_p = where->_data + src->u64s;
1247
1248 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1249 (int) clobber_u64s - src->u64s);
1250
1251 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1252 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1253 set_btree_bset_end(b, t);
1254 }
1255
1256 memcpy_u64s(where, src,
1257 bkeyp_key_u64s(f, src));
1258 memcpy_u64s(bkeyp_val(f, where), &insert->v,
1259 bkeyp_val_u64s(f, src));
1260
1261 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1262
1263 bch2_verify_key_order(b, iter, where);
1264 bch2_verify_btree_nr_keys(b);
1265}
1266
1267void bch2_bset_delete(struct btree *b,
1268 struct bkey_packed *where,
1269 unsigned clobber_u64s)
1270{
1271 struct bset_tree *t = bset_tree_last(b);
1272 u64 *src_p = where->_data + clobber_u64s;
1273 u64 *dst_p = where->_data;
1274
1275 bch2_bset_verify_rw_aux_tree(b, t);
1276
1277 EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1278
1279 memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1280 le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1281 set_btree_bset_end(b, t);
1282
1283 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1284}
1285
1286/* Lookup */
1287
1288__flatten
1289static struct bkey_packed *bset_search_write_set(const struct btree *b,
1290 struct bset_tree *t,
1291 struct bpos search,
1292 const struct bkey_packed *packed_search)
1293{
1294 unsigned l = 0, r = t->size;
1295
1296 while (l + 1 != r) {
1297 unsigned m = (l + r) >> 1;
1298
1299 if (bkey_cmp(rw_aux_tree(b, t)[m].k, search) < 0)
1300 l = m;
1301 else
1302 r = m;
1303 }
1304
1305 return rw_aux_to_bkey(b, t, l);
1306}
1307
1308noinline
1309static int bset_search_tree_slowpath(const struct btree *b,
1310 struct bset_tree *t, struct bpos *search,
1311 const struct bkey_packed *packed_search,
1312 unsigned n)
1313{
1314 return bkey_cmp_p_or_unp(b, tree_to_bkey(b, t, n),
1315 packed_search, search) < 0;
1316}
1317
1318__flatten
1319static struct bkey_packed *bset_search_tree(const struct btree *b,
1320 struct bset_tree *t,
1321 struct bpos search,
1322 const struct bkey_packed *packed_search)
1323{
1324 struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1325 struct bkey_float *f = bkey_float_get(base, 1);
1326 void *p;
1327 unsigned inorder, n = 1;
1328
1329 while (1) {
1330 if (likely(n << 4 < t->size)) {
1331 p = bkey_float_get(base, n << 4);
1332 prefetch(p);
1333 } else if (n << 3 < t->size) {
1334 inorder = __eytzinger1_to_inorder(n, t->size, t->extra);
1335 p = bset_cacheline(b, t, inorder);
1336#ifdef CONFIG_X86_64
1337 asm(".intel_syntax noprefix;"
1338 "prefetcht0 [%0 - 127 + 64 * 0];"
1339 "prefetcht0 [%0 - 127 + 64 * 1];"
1340 "prefetcht0 [%0 - 127 + 64 * 2];"
1341 "prefetcht0 [%0 - 127 + 64 * 3];"
1342 ".att_syntax prefix;"
1343 :
1344 : "r" (p + 127));
1345#else
1346 prefetch(p + L1_CACHE_BYTES * 0);
1347 prefetch(p + L1_CACHE_BYTES * 1);
1348 prefetch(p + L1_CACHE_BYTES * 2);
1349 prefetch(p + L1_CACHE_BYTES * 3);
1350#endif
1351 } else if (n >= t->size)
1352 break;
1353
1354 f = bkey_float_get(base, n);
1355
1356 if (packed_search &&
1357 likely(f->exponent < BFLOAT_FAILED))
1358 n = n * 2 + (bfloat_mantissa(f, n) <
1359 bkey_mantissa(packed_search, f, n));
1360 else
1361 n = n * 2 + bset_search_tree_slowpath(b, t,
1362 &search, packed_search, n);
1363 } while (n < t->size);
1364
1365 inorder = __eytzinger1_to_inorder(n >> 1, t->size, t->extra);
1366
1367 /*
1368 * n would have been the node we recursed to - the low bit tells us if
1369 * we recursed left or recursed right.
1370 */
1371 if (n & 1) {
1372 return cacheline_to_bkey(b, t, inorder, f->key_offset);
1373 } else {
1374 if (--inorder) {
1375 n = eytzinger1_prev(n >> 1, t->size);
1376 f = bkey_float_get(base, n);
1377 return cacheline_to_bkey(b, t, inorder, f->key_offset);
1378 } else
1379 return btree_bkey_first(b, t);
1380 }
1381}
1382
1383/*
1384 * Returns the first key greater than or equal to @search
1385 */
1386__always_inline __flatten
1387static struct bkey_packed *bch2_bset_search(struct btree *b,
1388 struct bset_tree *t,
1389 struct bpos search,
1390 struct bkey_packed *packed_search,
1391 const struct bkey_packed *lossy_packed_search,
1392 bool strictly_greater)
1393{
1394 struct bkey_packed *m;
1395
1396 /*
1397 * First, we search for a cacheline, then lastly we do a linear search
1398 * within that cacheline.
1399 *
1400 * To search for the cacheline, there's three different possibilities:
1401 * * The set is too small to have a search tree, so we just do a linear
1402 * search over the whole set.
1403 * * The set is the one we're currently inserting into; keeping a full
1404 * auxiliary search tree up to date would be too expensive, so we
1405 * use a much simpler lookup table to do a binary search -
1406 * bset_search_write_set().
1407 * * Or we use the auxiliary search tree we constructed earlier -
1408 * bset_search_tree()
1409 */
1410
1411 switch (bset_aux_tree_type(t)) {
1412 case BSET_NO_AUX_TREE:
1413 m = btree_bkey_first(b, t);
1414 break;
1415 case BSET_RW_AUX_TREE:
1416 m = bset_search_write_set(b, t, search, lossy_packed_search);
1417 break;
1418 case BSET_RO_AUX_TREE:
1419 /*
1420 * Each node in the auxiliary search tree covers a certain range
1421 * of bits, and keys above and below the set it covers might
1422 * differ outside those bits - so we have to special case the
1423 * start and end - handle that here:
1424 */
1425
1426 if (bkey_cmp(search, t->max_key) > 0)
1427 return btree_bkey_last(b, t);
1428
1429 m = bset_search_tree(b, t, search, lossy_packed_search);
1430 break;
1431 }
1432
1433 if (lossy_packed_search)
1434 while (m != btree_bkey_last(b, t) &&
1435 !btree_iter_pos_cmp_p_or_unp(b, search, lossy_packed_search,
1436 m, strictly_greater))
1437 m = bkey_next(m);
1438
1439 if (!packed_search)
1440 while (m != btree_bkey_last(b, t) &&
1441 !btree_iter_pos_cmp_packed(b, &search, m, strictly_greater))
1442 m = bkey_next(m);
1443
1444 if (btree_keys_expensive_checks(b)) {
1445 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1446
1447 BUG_ON(prev &&
1448 btree_iter_pos_cmp_p_or_unp(b, search, packed_search,
1449 prev, strictly_greater));
1450 }
1451
1452 return m;
1453}
1454
1455/* Btree node iterator */
1456
1457void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1458 struct btree *b,
1459 const struct bkey_packed *k,
1460 const struct bkey_packed *end)
1461{
1462 __bch2_btree_node_iter_push(iter, b, k, end);
1463 bch2_btree_node_iter_sort(iter, b);
1464}
1465
1466noinline __flatten __attribute__((cold))
1467static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1468 struct btree *b, struct bpos search,
1469 bool strictly_greater, bool is_extents)
1470{
1471 struct bset_tree *t;
1472
1473 trace_bkey_pack_pos_fail(&search);
1474
1475 for_each_bset(b, t)
1476 __bch2_btree_node_iter_push(iter, b,
1477 bch2_bset_search(b, t, search, NULL, NULL,
1478 strictly_greater),
1479 btree_bkey_last(b, t));
1480
1481 bch2_btree_node_iter_sort(iter, b);
1482}
1483
1484/**
1485 * bch_btree_node_iter_init - initialize a btree node iterator, starting from a
1486 * given position
1487 *
1488 * Main entry point to the lookup code for individual btree nodes:
1489 *
1490 * NOTE:
1491 *
1492 * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1493 * keys. This doesn't matter for most code, but it does matter for lookups.
1494 *
1495 * Some adjacent keys with a string of equal keys:
1496 * i j k k k k l m
1497 *
1498 * If you search for k, the lookup code isn't guaranteed to return you any
1499 * specific k. The lookup code is conceptually doing a binary search and
1500 * iterating backwards is very expensive so if the pivot happens to land at the
1501 * last k that's what you'll get.
1502 *
1503 * This works out ok, but it's something to be aware of:
1504 *
1505 * - For non extents, we guarantee that the live key comes last - see
1506 * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1507 * see will only be deleted keys you don't care about.
1508 *
1509 * - For extents, deleted keys sort last (see the comment at the top of this
1510 * file). But when you're searching for extents, you actually want the first
1511 * key strictly greater than your search key - an extent that compares equal
1512 * to the search key is going to have 0 sectors after the search key.
1513 *
1514 * But this does mean that we can't just search for
1515 * bkey_successor(start_of_range) to get the first extent that overlaps with
1516 * the range we want - if we're unlucky and there's an extent that ends
1517 * exactly where we searched, then there could be a deleted key at the same
1518 * position and we'd get that when we search instead of the preceding extent
1519 * we needed.
1520 *
1521 * So we've got to search for start_of_range, then after the lookup iterate
1522 * past any extents that compare equal to the position we searched for.
1523 */
1524void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1525 struct btree *b, struct bpos search,
1526 bool strictly_greater, bool is_extents)
1527{
1528 struct bset_tree *t;
1529 struct bkey_packed p, *packed_search = NULL;
1530
1531 EBUG_ON(bkey_cmp(search, b->data->min_key) < 0);
1532 bset_aux_tree_verify(b);
1533
1534 __bch2_btree_node_iter_init(iter, is_extents);
1535
1536 switch (bch2_bkey_pack_pos_lossy(&p, search, b)) {
1537 case BKEY_PACK_POS_EXACT:
1538 packed_search = &p;
1539 break;
1540 case BKEY_PACK_POS_SMALLER:
1541 packed_search = NULL;
1542 break;
1543 case BKEY_PACK_POS_FAIL:
1544 btree_node_iter_init_pack_failed(iter, b, search,
1545 strictly_greater, is_extents);
1546 return;
1547 }
1548
1549 for_each_bset(b, t)
1550 __bch2_btree_node_iter_push(iter, b,
1551 bch2_bset_search(b, t, search,
1552 packed_search, &p,
1553 strictly_greater),
1554 btree_bkey_last(b, t));
1555
1556 bch2_btree_node_iter_sort(iter, b);
1557}
1558
1559void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1560 struct btree *b,
1561 bool is_extents)
1562{
1563 struct bset_tree *t;
1564
1565 __bch2_btree_node_iter_init(iter, is_extents);
1566
1567 for_each_bset(b, t)
1568 __bch2_btree_node_iter_push(iter, b,
1569 btree_bkey_first(b, t),
1570 btree_bkey_last(b, t));
1571 bch2_btree_node_iter_sort(iter, b);
1572}
1573
1574struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1575 struct btree *b,
1576 struct bset_tree *t)
1577{
1578 struct btree_node_iter_set *set;
1579
1580 btree_node_iter_for_each(iter, set)
1581 if (set->end == t->end_offset)
1582 return __btree_node_offset_to_key(b, set->k);
1583
1584 return btree_bkey_last(b, t);
1585}
1586
1587static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1588 struct btree *b,
1589 unsigned first)
1590{
1591 bool ret;
1592
1593 if ((ret = (btree_node_iter_cmp(iter, b,
1594 iter->data[first],
1595 iter->data[first + 1]) > 0)))
1596 swap(iter->data[first], iter->data[first + 1]);
1597 return ret;
1598}
1599
1600void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1601 struct btree *b)
1602{
1603 /* unrolled bubble sort: */
1604
1605 if (!__btree_node_iter_set_end(iter, 2)) {
1606 btree_node_iter_sort_two(iter, b, 0);
1607 btree_node_iter_sort_two(iter, b, 1);
1608 }
1609
1610 if (!__btree_node_iter_set_end(iter, 1))
1611 btree_node_iter_sort_two(iter, b, 0);
1612}
1613
1614void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1615 struct btree_node_iter_set *set)
1616{
1617 struct btree_node_iter_set *last =
1618 iter->data + ARRAY_SIZE(iter->data) - 1;
1619
1620 memmove(&set[0], &set[1], (void *) last - (void *) set);
1621 *last = (struct btree_node_iter_set) { 0, 0 };
1622}
1623
1624static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1625 struct btree *b)
1626{
1627 iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1628
1629 EBUG_ON(iter->data->k > iter->data->end);
1630
1631 if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1632 bch2_btree_node_iter_set_drop(iter, iter->data);
1633 return;
1634 }
1635
1636 if (__btree_node_iter_set_end(iter, 1))
1637 return;
1638
1639 if (!btree_node_iter_sort_two(iter, b, 0))
1640 return;
1641
1642 if (__btree_node_iter_set_end(iter, 2))
1643 return;
1644
1645 btree_node_iter_sort_two(iter, b, 1);
1646}
1647
1648/**
1649 * bch_btree_node_iter_advance - advance @iter by one key
1650 *
1651 * Doesn't do debugchecks - for cases where (insert_fixup_extent()) a bset might
1652 * momentarily have out of order extents.
1653 */
1654void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1655 struct btree *b)
1656{
1657#ifdef CONFIG_BCACHEFS_DEBUG
1658 struct bkey_packed *k = bch2_btree_node_iter_peek_all(iter, b);
1659
1660 __bch2_btree_node_iter_advance(iter, b);
1661 bch2_btree_node_iter_next_check(iter, b, k);
1662#else
1663 __bch2_btree_node_iter_advance(iter, b);
1664#endif
1665}
1666
1667static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
1668{
1669 unsigned n = ARRAY_SIZE(iter->data);
1670
1671 while (n && __btree_node_iter_set_end(iter, n - 1))
1672 --n;
1673
1674 return n;
1675}
1676
1677/*
1678 * Expensive:
1679 */
1680struct bkey_packed *bch2_btree_node_iter_prev_filter(struct btree_node_iter *iter,
1681 struct btree *b,
1682 unsigned min_key_type)
1683{
1684 struct bkey_packed *k, *prev = NULL;
1685 struct bkey_packed *orig_pos = bch2_btree_node_iter_peek_all(iter, b);
1686 struct btree_node_iter_set *set;
1687 struct bset_tree *t;
1688 unsigned end;
1689
1690 bch2_btree_node_iter_verify(iter, b);
1691
1692 for_each_bset(b, t) {
1693 k = bch2_bkey_prev_filter(b, t,
1694 bch2_btree_node_iter_bset_pos(iter, b, t),
1695 min_key_type);
1696 if (k &&
1697 (!prev || __btree_node_iter_cmp(iter->is_extents, b,
1698 k, prev) > 0)) {
1699 prev = k;
1700 end = t->end_offset;
1701 }
1702 }
1703
1704 if (!prev)
1705 goto out;
1706
1707 /*
1708 * We're manually memmoving instead of just calling sort() to ensure the
1709 * prev we picked ends up in slot 0 - sort won't necessarily put it
1710 * there because of duplicate deleted keys:
1711 */
1712 btree_node_iter_for_each(iter, set)
1713 if (set->end == end)
1714 goto found;
1715
1716 BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1717found:
1718 BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1719
1720 memmove(&iter->data[1],
1721 &iter->data[0],
1722 (void *) set - (void *) &iter->data[0]);
1723
1724 iter->data[0].k = __btree_node_key_to_offset(b, prev);
1725 iter->data[0].end = end;
1726out:
1727 if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) {
1728 struct btree_node_iter iter2 = *iter;
1729
1730 if (prev)
1731 bch2_btree_node_iter_advance(&iter2, b);
1732
1733 while ((k = bch2_btree_node_iter_peek_all(&iter2, b)) != orig_pos) {
1734 BUG_ON(k->type >= min_key_type);
1735 bch2_btree_node_iter_advance(&iter2, b);
1736 }
1737 }
1738
1739 return prev;
1740}
1741
1742struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1743 struct btree *b,
1744 struct bkey *u)
1745{
1746 struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1747
1748 return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1749}
1750
1751/* Mergesort */
1752
1753void bch2_btree_keys_stats(struct btree *b, struct bset_stats *stats)
1754{
1755 struct bset_tree *t;
1756
1757 for_each_bset(b, t) {
1758 enum bset_aux_tree_type type = bset_aux_tree_type(t);
1759 size_t j;
1760
1761 stats->sets[type].nr++;
1762 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1763 sizeof(u64);
1764
1765 if (bset_has_ro_aux_tree(t)) {
1766 stats->floats += t->size - 1;
1767
1768 for (j = 1; j < t->size; j++)
1769 switch (bkey_float(b, t, j)->exponent) {
1770 case BFLOAT_FAILED_UNPACKED:
1771 stats->failed_unpacked++;
1772 break;
1773 case BFLOAT_FAILED_PREV:
1774 stats->failed_prev++;
1775 break;
1776 case BFLOAT_FAILED_OVERFLOW:
1777 stats->failed_overflow++;
1778 break;
1779 }
1780 }
1781 }
1782}
1783
1784int bch2_bkey_print_bfloat(struct btree *b, struct bkey_packed *k,
1785 char *buf, size_t size)
1786{
1787 struct bset_tree *t = bch2_bkey_to_bset(b, k);
1788 struct bkey_packed *l, *r, *p;
1789 struct bkey uk, up;
1790 char buf1[200], buf2[200];
1791 unsigned j;
1792
1793 if (!size)
1794 return 0;
1795
1796 if (!bset_has_ro_aux_tree(t))
1797 goto out;
1798
1799 j = __inorder_to_eytzinger1(bkey_to_cacheline(b, t, k), t->size, t->extra);
1800 if (j &&
1801 j < t->size &&
1802 k == tree_to_bkey(b, t, j))
1803 switch (bkey_float(b, t, j)->exponent) {
1804 case BFLOAT_FAILED_UNPACKED:
1805 uk = bkey_unpack_key(b, k);
1806 return scnprintf(buf, size,
1807 " failed unpacked at depth %u\n"
1808 "\t%llu:%llu\n",
1809 ilog2(j),
1810 uk.p.inode, uk.p.offset);
1811 case BFLOAT_FAILED_PREV:
1812 p = tree_to_prev_bkey(b, t, j);
1813 l = is_power_of_2(j)
1814 ? btree_bkey_first(b, t)
1815 : tree_to_prev_bkey(b, t, j >> ffs(j));
1816 r = is_power_of_2(j + 1)
1817 ? bch2_bkey_prev_all(b, t, btree_bkey_last(b, t))
1818 : tree_to_bkey(b, t, j >> (ffz(j) + 1));
1819
1820 up = bkey_unpack_key(b, p);
1821 uk = bkey_unpack_key(b, k);
1822 bch2_to_binary(buf1, high_word(&b->format, p), b->nr_key_bits);
1823 bch2_to_binary(buf2, high_word(&b->format, k), b->nr_key_bits);
1824
1825 return scnprintf(buf, size,
1826 " failed prev at depth %u\n"
1827 "\tkey starts at bit %u but first differing bit at %u\n"
1828 "\t%llu:%llu\n"
1829 "\t%llu:%llu\n"
1830 "\t%s\n"
1831 "\t%s\n",
1832 ilog2(j),
1833 bch2_bkey_greatest_differing_bit(b, l, r),
1834 bch2_bkey_greatest_differing_bit(b, p, k),
1835 uk.p.inode, uk.p.offset,
1836 up.p.inode, up.p.offset,
1837 buf1, buf2);
1838 case BFLOAT_FAILED_OVERFLOW:
1839 uk = bkey_unpack_key(b, k);
1840 return scnprintf(buf, size,
1841 " failed overflow at depth %u\n"
1842 "\t%llu:%llu\n",
1843 ilog2(j),
1844 uk.p.inode, uk.p.offset);
1845 }
1846out:
1847 *buf = '\0';
1848 return 0;
1849}