bcachefs: Add persistent identifiers for recovery passes
[linux-block.git] / fs / bcachefs / bcachefs_format.h
CommitLineData
1c6fdbd8
KO
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_FORMAT_H
3#define _BCACHEFS_FORMAT_H
4
5/*
6 * bcachefs on disk data structures
7 *
8 * OVERVIEW:
9 *
10 * There are three main types of on disk data structures in bcachefs (this is
11 * reduced from 5 in bcache)
12 *
13 * - superblock
14 * - journal
15 * - btree
16 *
17 * The btree is the primary structure; most metadata exists as keys in the
18 * various btrees. There are only a small number of btrees, they're not
19 * sharded - we have one btree for extents, another for inodes, et cetera.
20 *
21 * SUPERBLOCK:
22 *
23 * The superblock contains the location of the journal, the list of devices in
24 * the filesystem, and in general any metadata we need in order to decide
25 * whether we can start a filesystem or prior to reading the journal/btree
26 * roots.
27 *
28 * The superblock is extensible, and most of the contents of the superblock are
29 * in variable length, type tagged fields; see struct bch_sb_field.
30 *
31 * Backup superblocks do not reside in a fixed location; also, superblocks do
32 * not have a fixed size. To locate backup superblocks we have struct
33 * bch_sb_layout; we store a copy of this inside every superblock, and also
34 * before the first superblock.
35 *
36 * JOURNAL:
37 *
38 * The journal primarily records btree updates in the order they occurred;
39 * journal replay consists of just iterating over all the keys in the open
40 * journal entries and re-inserting them into the btrees.
41 *
42 * The journal also contains entry types for the btree roots, and blacklisted
43 * journal sequence numbers (see journal_seq_blacklist.c).
44 *
45 * BTREE:
46 *
47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48 * 128k-256k) and log structured. We use struct btree_node for writing the first
49 * entry in a given node (offset 0), and struct btree_node_entry for all
50 * subsequent writes.
51 *
52 * After the header, btree node entries contain a list of keys in sorted order.
53 * Values are stored inline with the keys; since values are variable length (and
54 * keys effectively are variable length too, due to packing) we can't do random
55 * access without building up additional in memory tables in the btree node read
56 * path.
57 *
58 * BTREE KEYS (struct bkey):
59 *
60 * The various btrees share a common format for the key - so as to avoid
61 * switching in fastpath lookup/comparison code - but define their own
62 * structures for the key values.
63 *
64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65 * size is just under 2k. The common part also contains a type tag for the
66 * value, and a format field indicating whether the key is packed or not (and
67 * also meant to allow adding new key fields in the future, if desired).
68 *
69 * bkeys, when stored within a btree node, may also be packed. In that case, the
70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71 * be generous with field sizes in the common part of the key format (64 bit
72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73 */
74
75#include <asm/types.h>
76#include <asm/byteorder.h>
7121643e 77#include <linux/kernel.h>
1c6fdbd8 78#include <linux/uuid.h>
528b18e6 79#include "vstructs.h"
1c6fdbd8
KO
80
81#ifdef __KERNEL__
82typedef uuid_t __uuid_t;
83#endif
84
3d48a7f8 85#define BITMASK(name, type, field, offset, end) \
96dea3d5
KO
86static const __maybe_unused unsigned name##_OFFSET = offset; \
87static const __maybe_unused unsigned name##_BITS = (end - offset); \
3d48a7f8
KO
88 \
89static inline __u64 name(const type *k) \
90{ \
91 return (k->field >> offset) & ~(~0ULL << (end - offset)); \
92} \
93 \
94static inline void SET_##name(type *k, __u64 v) \
95{ \
96 k->field &= ~(~(~0ULL << (end - offset)) << offset); \
97 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
98}
99
1c6fdbd8 100#define LE_BITMASK(_bits, name, type, field, offset, end) \
96dea3d5
KO
101static const __maybe_unused unsigned name##_OFFSET = offset; \
102static const __maybe_unused unsigned name##_BITS = (end - offset); \
103static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\
1c6fdbd8
KO
104 \
105static inline __u64 name(const type *k) \
106{ \
107 return (__le##_bits##_to_cpu(k->field) >> offset) & \
108 ~(~0ULL << (end - offset)); \
109} \
110 \
111static inline void SET_##name(type *k, __u64 v) \
112{ \
113 __u##_bits new = __le##_bits##_to_cpu(k->field); \
114 \
115 new &= ~(~(~0ULL << (end - offset)) << offset); \
116 new |= (v & ~(~0ULL << (end - offset))) << offset; \
117 k->field = __cpu_to_le##_bits(new); \
118}
119
120#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
121#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
122#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
123
124struct bkey_format {
125 __u8 key_u64s;
126 __u8 nr_fields;
127 /* One unused slot for now: */
128 __u8 bits_per_field[6];
129 __le64 field_offset[6];
130};
131
132/* Btree keys - all units are in sectors */
133
134struct bpos {
135 /*
136 * Word order matches machine byte order - btree code treats a bpos as a
137 * single large integer, for search/comparison purposes
138 *
139 * Note that wherever a bpos is embedded in another on disk data
140 * structure, it has to be byte swabbed when reading in metadata that
141 * wasn't written in native endian order:
142 */
143#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
144 __u32 snapshot;
145 __u64 offset;
146 __u64 inode;
147#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
148 __u64 inode;
149 __u64 offset; /* Points to end of extent - sectors */
150 __u32 snapshot;
151#else
152#error edit for your odd byteorder.
153#endif
3f3ae125
KO
154} __packed
155#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
156__aligned(4)
157#endif
158;
1c6fdbd8
KO
159
160#define KEY_INODE_MAX ((__u64)~0ULL)
161#define KEY_OFFSET_MAX ((__u64)~0ULL)
162#define KEY_SNAPSHOT_MAX ((__u32)~0U)
163#define KEY_SIZE_MAX ((__u32)~0U)
164
e751c01a 165static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
1c6fdbd8 166{
e751c01a
KO
167 return (struct bpos) {
168 .inode = inode,
169 .offset = offset,
170 .snapshot = snapshot,
171 };
1c6fdbd8
KO
172}
173
e751c01a 174#define POS_MIN SPOS(0, 0, 0)
618b1c0e
KO
175#define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
176#define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
e751c01a 177#define POS(_inode, _offset) SPOS(_inode, _offset, 0)
1c6fdbd8
KO
178
179/* Empty placeholder struct, for container_of() */
180struct bch_val {
181 __u64 __nothing[0];
182};
183
184struct bversion {
185#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
186 __u64 lo;
187 __u32 hi;
188#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
189 __u32 hi;
190 __u64 lo;
191#endif
fd0c7679 192} __packed __aligned(4);
1c6fdbd8
KO
193
194struct bkey {
195 /* Size of combined key and value, in u64s */
196 __u8 u64s;
197
198 /* Format of key (0 for format local to btree node) */
199#if defined(__LITTLE_ENDIAN_BITFIELD)
200 __u8 format:7,
201 needs_whiteout:1;
202#elif defined (__BIG_ENDIAN_BITFIELD)
203 __u8 needs_whiteout:1,
204 format:7;
205#else
206#error edit for your odd byteorder.
207#endif
208
209 /* Type of the value */
210 __u8 type;
211
212#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
213 __u8 pad[1];
214
215 struct bversion version;
216 __u32 size; /* extent size, in sectors */
217 struct bpos p;
218#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
219 struct bpos p;
220 __u32 size; /* extent size, in sectors */
221 struct bversion version;
222
223 __u8 pad[1];
224#endif
fd0c7679 225} __packed __aligned(8);
1c6fdbd8
KO
226
227struct bkey_packed {
228 __u64 _data[0];
229
230 /* Size of combined key and value, in u64s */
231 __u8 u64s;
232
233 /* Format of key (0 for format local to btree node) */
234
235 /*
236 * XXX: next incompat on disk format change, switch format and
237 * needs_whiteout - bkey_packed() will be cheaper if format is the high
238 * bits of the bitfield
239 */
240#if defined(__LITTLE_ENDIAN_BITFIELD)
241 __u8 format:7,
242 needs_whiteout:1;
243#elif defined (__BIG_ENDIAN_BITFIELD)
244 __u8 needs_whiteout:1,
245 format:7;
246#endif
247
248 /* Type of the value */
249 __u8 type;
250 __u8 key_start[0];
251
252 /*
253 * We copy bkeys with struct assignment in various places, and while
254 * that shouldn't be done with packed bkeys we can't disallow it in C,
255 * and it's legal to cast a bkey to a bkey_packed - so padding it out
256 * to the same size as struct bkey should hopefully be safest.
257 */
258 __u8 pad[sizeof(struct bkey) - 3];
fd0c7679 259} __packed __aligned(8);
1c6fdbd8 260
653693be
KO
261typedef struct {
262 __le64 lo;
263 __le64 hi;
264} bch_le128;
265
1c6fdbd8 266#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
cd575ddf
KO
267#define BKEY_U64s_MAX U8_MAX
268#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
269
1c6fdbd8
KO
270#define KEY_PACKED_BITS_START 24
271
272#define KEY_FORMAT_LOCAL_BTREE 0
273#define KEY_FORMAT_CURRENT 1
274
275enum bch_bkey_fields {
276 BKEY_FIELD_INODE,
277 BKEY_FIELD_OFFSET,
278 BKEY_FIELD_SNAPSHOT,
279 BKEY_FIELD_SIZE,
280 BKEY_FIELD_VERSION_HI,
281 BKEY_FIELD_VERSION_LO,
282 BKEY_NR_FIELDS,
283};
284
285#define bkey_format_field(name, field) \
286 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
287
288#define BKEY_FORMAT_CURRENT \
289((struct bkey_format) { \
290 .key_u64s = BKEY_U64s, \
291 .nr_fields = BKEY_NR_FIELDS, \
292 .bits_per_field = { \
293 bkey_format_field(INODE, p.inode), \
294 bkey_format_field(OFFSET, p.offset), \
295 bkey_format_field(SNAPSHOT, p.snapshot), \
296 bkey_format_field(SIZE, size), \
297 bkey_format_field(VERSION_HI, version.hi), \
298 bkey_format_field(VERSION_LO, version.lo), \
299 }, \
300})
301
302/* bkey with inline value */
303struct bkey_i {
304 __u64 _data[0];
305
ac2ccddc
KO
306 struct bkey k;
307 struct bch_val v;
1c6fdbd8
KO
308};
309
310#define KEY(_inode, _offset, _size) \
311((struct bkey) { \
312 .u64s = BKEY_U64s, \
313 .format = KEY_FORMAT_CURRENT, \
314 .p = POS(_inode, _offset), \
315 .size = _size, \
316})
317
318static inline void bkey_init(struct bkey *k)
319{
320 *k = KEY(0, 0, 0);
321}
322
323#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
324
325#define __BKEY_PADDED(key, pad) \
45dd05b3 326 struct bkey_i key; __u64 key ## _pad[pad]
1c6fdbd8 327
1c6fdbd8
KO
328/*
329 * - DELETED keys are used internally to mark keys that should be ignored but
330 * override keys in composition order. Their version number is ignored.
331 *
332 * - DISCARDED keys indicate that the data is all 0s because it has been
333 * discarded. DISCARDs may have a version; if the version is nonzero the key
334 * will be persistent, otherwise the key will be dropped whenever the btree
335 * node is rewritten (like DELETED keys).
336 *
337 * - ERROR: any read of the data returns a read error, as the data was lost due
338 * to a failing device. Like DISCARDED keys, they can be removed (overridden)
339 * by new writes or cluster-wide GC. Node repair can also overwrite them with
340 * the same or a more recent version number, but not with an older version
341 * number.
26609b61
KO
342 *
343 * - WHITEOUT: for hash table btrees
3e3e02e6 344 */
26609b61
KO
345#define BCH_BKEY_TYPES() \
346 x(deleted, 0) \
7a7d17b2 347 x(whiteout, 1) \
26609b61
KO
348 x(error, 2) \
349 x(cookie, 3) \
79f88eba 350 x(hash_whiteout, 4) \
26609b61
KO
351 x(btree_ptr, 5) \
352 x(extent, 6) \
353 x(reservation, 7) \
354 x(inode, 8) \
355 x(inode_generation, 9) \
356 x(dirent, 10) \
357 x(xattr, 11) \
358 x(alloc, 12) \
359 x(quota, 13) \
76426098
KO
360 x(stripe, 14) \
361 x(reflink_p, 15) \
4be1a412 362 x(reflink_v, 16) \
548b3d20 363 x(inline_data, 17) \
801a3de6 364 x(btree_ptr_v2, 18) \
7f4e1d5d 365 x(indirect_inline_data, 19) \
14b393ee
KO
366 x(alloc_v2, 20) \
367 x(subvolume, 21) \
3e52c222
KO
368 x(snapshot, 22) \
369 x(inode_v2, 23) \
179e3434 370 x(alloc_v3, 24) \
d326ab2f 371 x(set, 25) \
3d48a7f8 372 x(lru, 26) \
a8c752bb 373 x(alloc_v4, 27) \
8dd69d9f 374 x(backpointer, 28) \
5250b74d 375 x(inode_v3, 29) \
1c59b483 376 x(bucket_gens, 30) \
b030e262 377 x(snapshot_tree, 31) \
f3e374ef
KO
378 x(logged_op_truncate, 32) \
379 x(logged_op_finsert, 33)
26609b61
KO
380
381enum bch_bkey_type {
382#define x(name, nr) KEY_TYPE_##name = nr,
383 BCH_BKEY_TYPES()
384#undef x
385 KEY_TYPE_MAX,
386};
1c6fdbd8 387
79f88eba
KO
388struct bch_deleted {
389 struct bch_val v;
390};
391
7a7d17b2 392struct bch_whiteout {
79f88eba
KO
393 struct bch_val v;
394};
395
396struct bch_error {
397 struct bch_val v;
398};
399
1c6fdbd8
KO
400struct bch_cookie {
401 struct bch_val v;
402 __le64 cookie;
403};
1c6fdbd8 404
79f88eba
KO
405struct bch_hash_whiteout {
406 struct bch_val v;
407};
408
179e3434
KO
409struct bch_set {
410 struct bch_val v;
411};
412
1c6fdbd8
KO
413/* Extents */
414
415/*
416 * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
417 * preceded by checksum/compression information (bch_extent_crc32 or
418 * bch_extent_crc64).
419 *
420 * One major determining factor in the format of extents is how we handle and
421 * represent extents that have been partially overwritten and thus trimmed:
422 *
423 * If an extent is not checksummed or compressed, when the extent is trimmed we
424 * don't have to remember the extent we originally allocated and wrote: we can
425 * merely adjust ptr->offset to point to the start of the data that is currently
426 * live. The size field in struct bkey records the current (live) size of the
427 * extent, and is also used to mean "size of region on disk that we point to" in
428 * this case.
429 *
430 * Thus an extent that is not checksummed or compressed will consist only of a
431 * list of bch_extent_ptrs, with none of the fields in
432 * bch_extent_crc32/bch_extent_crc64.
433 *
434 * When an extent is checksummed or compressed, it's not possible to read only
435 * the data that is currently live: we have to read the entire extent that was
436 * originally written, and then return only the part of the extent that is
437 * currently live.
438 *
439 * Thus, in addition to the current size of the extent in struct bkey, we need
440 * to store the size of the originally allocated space - this is the
441 * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
442 * when the extent is trimmed, instead of modifying the offset field of the
443 * pointer, we keep a second smaller offset field - "offset into the original
444 * extent of the currently live region".
445 *
446 * The other major determining factor is replication and data migration:
447 *
448 * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
449 * write, we will initially write all the replicas in the same format, with the
450 * same checksum type and compression format - however, when copygc runs later (or
451 * tiering/cache promotion, anything that moves data), it is not in general
452 * going to rewrite all the pointers at once - one of the replicas may be in a
453 * bucket on one device that has very little fragmentation while another lives
454 * in a bucket that has become heavily fragmented, and thus is being rewritten
455 * sooner than the rest.
456 *
457 * Thus it will only move a subset of the pointers (or in the case of
458 * tiering/cache promotion perhaps add a single pointer without dropping any
459 * current pointers), and if the extent has been partially overwritten it must
460 * write only the currently live portion (or copygc would not be able to reduce
461 * fragmentation!) - which necessitates a different bch_extent_crc format for
462 * the new pointer.
463 *
464 * But in the interests of space efficiency, we don't want to store one
465 * bch_extent_crc for each pointer if we don't have to.
466 *
467 * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
468 * bch_extent_ptrs appended arbitrarily one after the other. We determine the
469 * type of a given entry with a scheme similar to utf8 (except we're encoding a
470 * type, not a size), encoding the type in the position of the first set bit:
471 *
472 * bch_extent_crc32 - 0b1
473 * bch_extent_ptr - 0b10
474 * bch_extent_crc64 - 0b100
475 *
476 * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
477 * bch_extent_crc64 is the least constrained).
478 *
479 * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
480 * until the next bch_extent_crc32/64.
481 *
482 * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
483 * is neither checksummed nor compressed.
484 */
485
486/* 128 bits, sufficient for cryptographic MACs: */
487struct bch_csum {
488 __le64 lo;
489 __le64 hi;
fd0c7679 490} __packed __aligned(8);
1c6fdbd8 491
abce30b7
KO
492#define BCH_EXTENT_ENTRY_TYPES() \
493 x(ptr, 0) \
494 x(crc32, 1) \
495 x(crc64, 2) \
cd575ddf 496 x(crc128, 3) \
2766876d
KO
497 x(stripe_ptr, 4) \
498 x(rebalance, 5)
499#define BCH_EXTENT_ENTRY_MAX 6
abce30b7 500
1c6fdbd8 501enum bch_extent_entry_type {
abce30b7
KO
502#define x(f, n) BCH_EXTENT_ENTRY_##f = n,
503 BCH_EXTENT_ENTRY_TYPES()
504#undef x
1c6fdbd8
KO
505};
506
1c6fdbd8
KO
507/* Compressed/uncompressed size are stored biased by 1: */
508struct bch_extent_crc32 {
509#if defined(__LITTLE_ENDIAN_BITFIELD)
510 __u32 type:2,
511 _compressed_size:7,
512 _uncompressed_size:7,
513 offset:7,
514 _unused:1,
515 csum_type:4,
516 compression_type:4;
517 __u32 csum;
518#elif defined (__BIG_ENDIAN_BITFIELD)
519 __u32 csum;
520 __u32 compression_type:4,
521 csum_type:4,
522 _unused:1,
523 offset:7,
524 _uncompressed_size:7,
525 _compressed_size:7,
526 type:2;
527#endif
fd0c7679 528} __packed __aligned(8);
1c6fdbd8
KO
529
530#define CRC32_SIZE_MAX (1U << 7)
531#define CRC32_NONCE_MAX 0
532
533struct bch_extent_crc64 {
534#if defined(__LITTLE_ENDIAN_BITFIELD)
535 __u64 type:3,
536 _compressed_size:9,
537 _uncompressed_size:9,
538 offset:9,
539 nonce:10,
540 csum_type:4,
541 compression_type:4,
542 csum_hi:16;
543#elif defined (__BIG_ENDIAN_BITFIELD)
544 __u64 csum_hi:16,
545 compression_type:4,
546 csum_type:4,
547 nonce:10,
548 offset:9,
549 _uncompressed_size:9,
550 _compressed_size:9,
551 type:3;
552#endif
553 __u64 csum_lo;
fd0c7679 554} __packed __aligned(8);
1c6fdbd8
KO
555
556#define CRC64_SIZE_MAX (1U << 9)
557#define CRC64_NONCE_MAX ((1U << 10) - 1)
558
559struct bch_extent_crc128 {
560#if defined(__LITTLE_ENDIAN_BITFIELD)
561 __u64 type:4,
562 _compressed_size:13,
563 _uncompressed_size:13,
564 offset:13,
565 nonce:13,
566 csum_type:4,
567 compression_type:4;
568#elif defined (__BIG_ENDIAN_BITFIELD)
569 __u64 compression_type:4,
570 csum_type:4,
571 nonce:13,
572 offset:13,
573 _uncompressed_size:13,
574 _compressed_size:13,
575 type:4;
576#endif
577 struct bch_csum csum;
fd0c7679 578} __packed __aligned(8);
1c6fdbd8
KO
579
580#define CRC128_SIZE_MAX (1U << 13)
581#define CRC128_NONCE_MAX ((1U << 13) - 1)
582
583/*
584 * @reservation - pointer hasn't been written to, just reserved
585 */
586struct bch_extent_ptr {
587#if defined(__LITTLE_ENDIAN_BITFIELD)
588 __u64 type:1,
589 cached:1,
cd575ddf 590 unused:1,
79203111 591 unwritten:1,
1c6fdbd8
KO
592 offset:44, /* 8 petabytes */
593 dev:8,
594 gen:8;
595#elif defined (__BIG_ENDIAN_BITFIELD)
596 __u64 gen:8,
597 dev:8,
598 offset:44,
79203111 599 unwritten:1,
cd575ddf 600 unused:1,
1c6fdbd8
KO
601 cached:1,
602 type:1;
603#endif
fd0c7679 604} __packed __aligned(8);
1c6fdbd8 605
cd575ddf 606struct bch_extent_stripe_ptr {
1c6fdbd8
KO
607#if defined(__LITTLE_ENDIAN_BITFIELD)
608 __u64 type:5,
cd575ddf 609 block:8,
7f4e1d5d
KO
610 redundancy:4,
611 idx:47;
cd575ddf 612#elif defined (__BIG_ENDIAN_BITFIELD)
7f4e1d5d
KO
613 __u64 idx:47,
614 redundancy:4,
cd575ddf
KO
615 block:8,
616 type:5;
617#endif
618};
619
2766876d
KO
620struct bch_extent_rebalance {
621#if defined(__LITTLE_ENDIAN_BITFIELD)
fb3f57bb
KO
622 __u64 type:6,
623 unused:34,
624 compression:8, /* enum bch_compression_opt */
2766876d
KO
625 target:16;
626#elif defined (__BIG_ENDIAN_BITFIELD)
627 __u64 target:16,
628 compression:8,
fb3f57bb
KO
629 unused:34,
630 type:6;
2766876d
KO
631#endif
632};
633
1c6fdbd8
KO
634union bch_extent_entry {
635#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64
636 unsigned long type;
637#elif __BITS_PER_LONG == 32
638 struct {
639 unsigned long pad;
640 unsigned long type;
641 };
642#else
643#error edit for your odd byteorder.
644#endif
abce30b7
KO
645
646#define x(f, n) struct bch_extent_##f f;
647 BCH_EXTENT_ENTRY_TYPES()
648#undef x
1c6fdbd8
KO
649};
650
26609b61
KO
651struct bch_btree_ptr {
652 struct bch_val v;
1c6fdbd8 653
26609b61
KO
654 __u64 _data[0];
655 struct bch_extent_ptr start[];
fd0c7679 656} __packed __aligned(8);
1c6fdbd8 657
548b3d20
KO
658struct bch_btree_ptr_v2 {
659 struct bch_val v;
660
661 __u64 mem_ptr;
662 __le64 seq;
663 __le16 sectors_written;
51d2dfb8 664 __le16 flags;
548b3d20
KO
665 struct bpos min_key;
666 __u64 _data[0];
667 struct bch_extent_ptr start[];
fd0c7679 668} __packed __aligned(8);
548b3d20 669
51d2dfb8
KO
670LE16_BITMASK(BTREE_PTR_RANGE_UPDATED, struct bch_btree_ptr_v2, flags, 0, 1);
671
1c6fdbd8
KO
672struct bch_extent {
673 struct bch_val v;
674
675 __u64 _data[0];
676 union bch_extent_entry start[];
fd0c7679 677} __packed __aligned(8);
1c6fdbd8
KO
678
679struct bch_reservation {
680 struct bch_val v;
681
682 __le32 generation;
683 __u8 nr_replicas;
684 __u8 pad[3];
fd0c7679 685} __packed __aligned(8);
1c6fdbd8
KO
686
687/* Maximum size (in u64s) a single pointer could be: */
688#define BKEY_EXTENT_PTR_U64s_MAX\
689 ((sizeof(struct bch_extent_crc128) + \
a5cf5a4b 690 sizeof(struct bch_extent_ptr)) / sizeof(__u64))
1c6fdbd8
KO
691
692/* Maximum possible size of an entire extent value: */
693#define BKEY_EXTENT_VAL_U64s_MAX \
5055b509 694 (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
1c6fdbd8 695
1c6fdbd8
KO
696/* * Maximum possible size of an entire extent, key + value: */
697#define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
698
699/* Btree pointers don't carry around checksums: */
700#define BKEY_BTREE_PTR_VAL_U64s_MAX \
548b3d20 701 ((sizeof(struct bch_btree_ptr_v2) + \
a5cf5a4b 702 sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(__u64))
1c6fdbd8
KO
703#define BKEY_BTREE_PTR_U64s_MAX \
704 (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
705
706/* Inodes */
707
708#define BLOCKDEV_INODE_MAX 4096
709
710#define BCACHEFS_ROOT_INO 4096
711
1c6fdbd8
KO
712struct bch_inode {
713 struct bch_val v;
714
715 __le64 bi_hash_seed;
716 __le32 bi_flags;
717 __le16 bi_mode;
5cfd6977 718 __u8 fields[];
fd0c7679 719} __packed __aligned(8);
1c6fdbd8 720
3e52c222
KO
721struct bch_inode_v2 {
722 struct bch_val v;
723
724 __le64 bi_journal_seq;
725 __le64 bi_hash_seed;
726 __le64 bi_flags;
727 __le16 bi_mode;
5cfd6977 728 __u8 fields[];
fd0c7679 729} __packed __aligned(8);
3e52c222 730
8dd69d9f
KO
731struct bch_inode_v3 {
732 struct bch_val v;
733
734 __le64 bi_journal_seq;
735 __le64 bi_hash_seed;
736 __le64 bi_flags;
737 __le64 bi_sectors;
738 __le64 bi_size;
739 __le64 bi_version;
5cfd6977 740 __u8 fields[];
8dd69d9f
KO
741} __packed __aligned(8);
742
743#define INODEv3_FIELDS_START_INITIAL 6
a5cf5a4b 744#define INODEv3_FIELDS_START_CUR (offsetof(struct bch_inode_v3, fields) / sizeof(__u64))
8dd69d9f 745
1c6fdbd8
KO
746struct bch_inode_generation {
747 struct bch_val v;
748
749 __le32 bi_generation;
750 __le32 pad;
fd0c7679 751} __packed __aligned(8);
1c6fdbd8 752
14b393ee
KO
753/*
754 * bi_subvol and bi_parent_subvol are only set for subvolume roots:
755 */
756
8dd69d9f 757#define BCH_INODE_FIELDS_v2() \
a3e72262
KO
758 x(bi_atime, 96) \
759 x(bi_ctime, 96) \
760 x(bi_mtime, 96) \
761 x(bi_otime, 96) \
a3e70fb2
KO
762 x(bi_size, 64) \
763 x(bi_sectors, 64) \
764 x(bi_uid, 32) \
765 x(bi_gid, 32) \
766 x(bi_nlink, 32) \
767 x(bi_generation, 32) \
768 x(bi_dev, 32) \
769 x(bi_data_checksum, 8) \
770 x(bi_compression, 8) \
771 x(bi_project, 32) \
772 x(bi_background_compression, 8) \
773 x(bi_data_replicas, 8) \
774 x(bi_promote_target, 16) \
775 x(bi_foreground_target, 16) \
776 x(bi_background_target, 16) \
721d4ad8 777 x(bi_erasure_code, 16) \
ab2a29cc
KO
778 x(bi_fields_set, 16) \
779 x(bi_dir, 64) \
14b393ee
KO
780 x(bi_dir_offset, 64) \
781 x(bi_subvol, 32) \
782 x(bi_parent_subvol, 32)
a3e70fb2 783
8dd69d9f
KO
784#define BCH_INODE_FIELDS_v3() \
785 x(bi_atime, 96) \
786 x(bi_ctime, 96) \
787 x(bi_mtime, 96) \
788 x(bi_otime, 96) \
789 x(bi_uid, 32) \
790 x(bi_gid, 32) \
791 x(bi_nlink, 32) \
792 x(bi_generation, 32) \
793 x(bi_dev, 32) \
794 x(bi_data_checksum, 8) \
795 x(bi_compression, 8) \
796 x(bi_project, 32) \
797 x(bi_background_compression, 8) \
798 x(bi_data_replicas, 8) \
799 x(bi_promote_target, 16) \
800 x(bi_foreground_target, 16) \
801 x(bi_background_target, 16) \
802 x(bi_erasure_code, 16) \
803 x(bi_fields_set, 16) \
804 x(bi_dir, 64) \
805 x(bi_dir_offset, 64) \
806 x(bi_subvol, 32) \
a8b3a677
KO
807 x(bi_parent_subvol, 32) \
808 x(bi_nocow, 8)
8dd69d9f 809
d42dd4ad
KO
810/* subset of BCH_INODE_FIELDS */
811#define BCH_INODE_OPTS() \
812 x(data_checksum, 8) \
813 x(compression, 8) \
814 x(project, 32) \
815 x(background_compression, 8) \
816 x(data_replicas, 8) \
817 x(promote_target, 16) \
818 x(foreground_target, 16) \
819 x(background_target, 16) \
a8b3a677
KO
820 x(erasure_code, 16) \
821 x(nocow, 8)
1c6fdbd8 822
721d4ad8
KO
823enum inode_opt_id {
824#define x(name, ...) \
825 Inode_opt_##name,
826 BCH_INODE_OPTS()
827#undef x
828 Inode_opt_nr,
829};
830
103ffe9a
KO
831#define BCH_INODE_FLAGS() \
832 x(sync, 0) \
833 x(immutable, 1) \
834 x(append, 2) \
835 x(nodump, 3) \
836 x(noatime, 4) \
837 x(i_size_dirty, 5) \
838 x(i_sectors_dirty, 6) \
839 x(unlinked, 7) \
840 x(backptr_untrusted, 8)
841
842/* bits 20+ reserved for packed fields below: */
843
844enum bch_inode_flags {
845#define x(t, n) BCH_INODE_##t = 1U << n,
846 BCH_INODE_FLAGS()
847#undef x
1c6fdbd8
KO
848};
849
103ffe9a
KO
850enum __bch_inode_flags {
851#define x(t, n) __BCH_INODE_##t = n,
852 BCH_INODE_FLAGS()
853#undef x
854};
1c6fdbd8
KO
855
856LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24);
a3e72262
KO
857LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 31);
858LE32_BITMASK(INODE_NEW_VARINT, struct bch_inode, bi_flags, 31, 32);
1c6fdbd8 859
3e52c222
KO
860LE64_BITMASK(INODEv2_STR_HASH, struct bch_inode_v2, bi_flags, 20, 24);
861LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31);
862
8dd69d9f
KO
863LE64_BITMASK(INODEv3_STR_HASH, struct bch_inode_v3, bi_flags, 20, 24);
864LE64_BITMASK(INODEv3_NR_FIELDS, struct bch_inode_v3, bi_flags, 24, 31);
865
866LE64_BITMASK(INODEv3_FIELDS_START,
867 struct bch_inode_v3, bi_flags, 31, 36);
868LE64_BITMASK(INODEv3_MODE, struct bch_inode_v3, bi_flags, 36, 52);
869
1c6fdbd8
KO
870/* Dirents */
871
872/*
873 * Dirents (and xattrs) have to implement string lookups; since our b-tree
874 * doesn't support arbitrary length strings for the key, we instead index by a
875 * 64 bit hash (currently truncated sha1) of the string, stored in the offset
876 * field of the key - using linear probing to resolve hash collisions. This also
877 * provides us with the readdir cookie posix requires.
878 *
879 * Linear probing requires us to use whiteouts for deletions, in the event of a
880 * collision:
881 */
882
1c6fdbd8
KO
883struct bch_dirent {
884 struct bch_val v;
885
886 /* Target inode number: */
4db65027 887 union {
1c6fdbd8 888 __le64 d_inum;
4db65027
KO
889 struct { /* DT_SUBVOL */
890 __le32 d_child_subvol;
891 __le32 d_parent_subvol;
892 };
893 };
1c6fdbd8
KO
894
895 /*
896 * Copy of mode bits 12-15 from the target inode - so userspace can get
897 * the filetype without having to do a stat()
898 */
899 __u8 d_type;
900
901 __u8 d_name[];
fd0c7679 902} __packed __aligned(8);
1c6fdbd8 903
14b393ee
KO
904#define DT_SUBVOL 16
905#define BCH_DT_MAX 17
906
a125c074 907#define BCH_NAME_MAX 512
1c6fdbd8
KO
908
909/* Xattrs */
910
26609b61
KO
911#define KEY_TYPE_XATTR_INDEX_USER 0
912#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1
913#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2
914#define KEY_TYPE_XATTR_INDEX_TRUSTED 3
915#define KEY_TYPE_XATTR_INDEX_SECURITY 4
1c6fdbd8
KO
916
917struct bch_xattr {
918 struct bch_val v;
919 __u8 x_type;
920 __u8 x_name_len;
921 __le16 x_val_len;
922 __u8 x_name[];
fd0c7679 923} __packed __aligned(8);
1c6fdbd8
KO
924
925/* Bucket/allocation information: */
926
1c6fdbd8
KO
927struct bch_alloc {
928 struct bch_val v;
929 __u8 fields;
930 __u8 gen;
931 __u8 data[];
fd0c7679 932} __packed __aligned(8);
1c6fdbd8 933
7f4e1d5d 934#define BCH_ALLOC_FIELDS_V1() \
8fe826f9
KO
935 x(read_time, 16) \
936 x(write_time, 16) \
937 x(data_type, 8) \
938 x(dirty_sectors, 16) \
939 x(cached_sectors, 16) \
7f4e1d5d
KO
940 x(oldest_gen, 8) \
941 x(stripe, 32) \
942 x(stripe_redundancy, 8)
943
a8c752bb
KO
944enum {
945#define x(name, _bits) BCH_ALLOC_FIELD_V1_##name,
946 BCH_ALLOC_FIELDS_V1()
947#undef x
948};
949
7f4e1d5d
KO
950struct bch_alloc_v2 {
951 struct bch_val v;
952 __u8 nr_fields;
953 __u8 gen;
954 __u8 oldest_gen;
955 __u8 data_type;
956 __u8 data[];
fd0c7679 957} __packed __aligned(8);
7f4e1d5d
KO
958
959#define BCH_ALLOC_FIELDS_V2() \
960 x(read_time, 64) \
961 x(write_time, 64) \
66d90823
KO
962 x(dirty_sectors, 32) \
963 x(cached_sectors, 32) \
7f4e1d5d
KO
964 x(stripe, 32) \
965 x(stripe_redundancy, 8)
90541a74 966
3e52c222
KO
967struct bch_alloc_v3 {
968 struct bch_val v;
969 __le64 journal_seq;
970 __le32 flags;
971 __u8 nr_fields;
972 __u8 gen;
973 __u8 oldest_gen;
974 __u8 data_type;
975 __u8 data[];
fd0c7679 976} __packed __aligned(8);
3e52c222 977
a8c752bb
KO
978LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags, 0, 1)
979LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags, 1, 2)
980
3d48a7f8
KO
981struct bch_alloc_v4 {
982 struct bch_val v;
983 __u64 journal_seq;
984 __u32 flags;
985 __u8 gen;
986 __u8 oldest_gen;
987 __u8 data_type;
988 __u8 stripe_redundancy;
989 __u32 dirty_sectors;
990 __u32 cached_sectors;
991 __u64 io_time[2];
992 __u32 stripe;
993 __u32 nr_external_backpointers;
80c33085 994 __u64 fragmentation_lru;
fd0c7679 995} __packed __aligned(8);
3d48a7f8 996
19a614d2 997#define BCH_ALLOC_V4_U64s_V0 6
a5cf5a4b 998#define BCH_ALLOC_V4_U64s (sizeof(struct bch_alloc_v4) / sizeof(__u64))
19a614d2 999
3d48a7f8
KO
1000BITMASK(BCH_ALLOC_V4_NEED_DISCARD, struct bch_alloc_v4, flags, 0, 1)
1001BITMASK(BCH_ALLOC_V4_NEED_INC_GEN, struct bch_alloc_v4, flags, 1, 2)
1002BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags, 2, 8)
1003BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS, struct bch_alloc_v4, flags, 8, 14)
1004
a8c752bb
KO
1005#define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX 40
1006
1007struct bch_backpointer {
1008 struct bch_val v;
1009 __u8 btree_id;
1010 __u8 level;
1011 __u8 data_type;
1012 __u64 bucket_offset:40;
1013 __u32 bucket_len;
1014 struct bpos pos;
1015} __packed __aligned(8);
90541a74 1016
5250b74d
KO
1017#define KEY_TYPE_BUCKET_GENS_BITS 8
1018#define KEY_TYPE_BUCKET_GENS_NR (1U << KEY_TYPE_BUCKET_GENS_BITS)
1019#define KEY_TYPE_BUCKET_GENS_MASK (KEY_TYPE_BUCKET_GENS_NR - 1)
1020
1021struct bch_bucket_gens {
1022 struct bch_val v;
1023 u8 gens[KEY_TYPE_BUCKET_GENS_NR];
1024} __packed __aligned(8);
1025
1c6fdbd8
KO
1026/* Quotas: */
1027
1c6fdbd8
KO
1028enum quota_types {
1029 QTYP_USR = 0,
1030 QTYP_GRP = 1,
1031 QTYP_PRJ = 2,
1032 QTYP_NR = 3,
1033};
1034
1035enum quota_counters {
1036 Q_SPC = 0,
1037 Q_INO = 1,
1038 Q_COUNTERS = 2,
1039};
1040
1041struct bch_quota_counter {
1042 __le64 hardlimit;
1043 __le64 softlimit;
1044};
1045
1046struct bch_quota {
1047 struct bch_val v;
1048 struct bch_quota_counter c[Q_COUNTERS];
fd0c7679 1049} __packed __aligned(8);
1c6fdbd8 1050
cd575ddf
KO
1051/* Erasure coding */
1052
cd575ddf
KO
1053struct bch_stripe {
1054 struct bch_val v;
1055 __le16 sectors;
1056 __u8 algorithm;
1057 __u8 nr_blocks;
1058 __u8 nr_redundant;
1059
1060 __u8 csum_granularity_bits;
1061 __u8 csum_type;
1062 __u8 pad;
1063
81d8599e 1064 struct bch_extent_ptr ptrs[];
fd0c7679 1065} __packed __aligned(8);
cd575ddf 1066
76426098
KO
1067/* Reflink: */
1068
1069struct bch_reflink_p {
1070 struct bch_val v;
1071 __le64 idx;
6d76aefe
KO
1072 /*
1073 * A reflink pointer might point to an indirect extent which is then
1074 * later split (by copygc or rebalance). If we only pointed to part of
1075 * the original indirect extent, and then one of the fragments is
1076 * outside the range we point to, we'd leak a refcount: so when creating
1077 * reflink pointers, we need to store pad values to remember the full
1078 * range we were taking a reference on.
1079 */
1080 __le32 front_pad;
1081 __le32 back_pad;
fd0c7679 1082} __packed __aligned(8);
76426098
KO
1083
1084struct bch_reflink_v {
1085 struct bch_val v;
1086 __le64 refcount;
1087 union bch_extent_entry start[0];
5cfd6977 1088 __u64 _data[];
fd0c7679 1089} __packed __aligned(8);
76426098 1090
801a3de6
KO
1091struct bch_indirect_inline_data {
1092 struct bch_val v;
1093 __le64 refcount;
5cfd6977 1094 u8 data[];
801a3de6
KO
1095};
1096
4be1a412
KO
1097/* Inline data */
1098
1099struct bch_inline_data {
1100 struct bch_val v;
5cfd6977 1101 u8 data[];
4be1a412
KO
1102};
1103
14b393ee
KO
1104/* Subvolumes: */
1105
1106#define SUBVOL_POS_MIN POS(0, 1)
1107#define SUBVOL_POS_MAX POS(0, S32_MAX)
1108#define BCACHEFS_ROOT_SUBVOL 1
1109
1110struct bch_subvolume {
1111 struct bch_val v;
1112 __le32 flags;
1113 __le32 snapshot;
1114 __le64 inode;
8e877caa
KO
1115 /*
1116 * Snapshot subvolumes form a tree, separate from the snapshot nodes
1117 * tree - if this subvolume is a snapshot, this is the ID of the
1118 * subvolume it was created from:
1119 */
653693be
KO
1120 __le32 parent;
1121 __le32 pad;
1122 bch_le128 otime;
14b393ee
KO
1123};
1124
1125LE32_BITMASK(BCH_SUBVOLUME_RO, struct bch_subvolume, flags, 0, 1)
1126/*
1127 * We need to know whether a subvolume is a snapshot so we can know whether we
1128 * can delete it (or whether it should just be rm -rf'd)
1129 */
1130LE32_BITMASK(BCH_SUBVOLUME_SNAP, struct bch_subvolume, flags, 1, 2)
2027875b 1131LE32_BITMASK(BCH_SUBVOLUME_UNLINKED, struct bch_subvolume, flags, 2, 3)
14b393ee
KO
1132
1133/* Snapshots */
1134
1135struct bch_snapshot {
1136 struct bch_val v;
1137 __le32 flags;
1138 __le32 parent;
1139 __le32 children[2];
1140 __le32 subvol;
f55d6e07 1141 /* corresponds to a bch_snapshot_tree in BTREE_ID_snapshot_trees */
1c59b483 1142 __le32 tree;
f26c67f4
KO
1143 __le32 depth;
1144 __le32 skip[3];
14b393ee
KO
1145};
1146
1147LE32_BITMASK(BCH_SNAPSHOT_DELETED, struct bch_snapshot, flags, 0, 1)
1148
1149/* True if a subvolume points to this snapshot node: */
1150LE32_BITMASK(BCH_SNAPSHOT_SUBVOL, struct bch_snapshot, flags, 1, 2)
1151
1c59b483
KO
1152/*
1153 * Snapshot trees:
1154 *
1155 * The snapshot_trees btree gives us persistent indentifier for each tree of
1156 * bch_snapshot nodes, and allow us to record and easily find the root/master
1157 * subvolume that other snapshots were created from:
1158 */
1159struct bch_snapshot_tree {
1160 struct bch_val v;
1161 __le32 master_subvol;
1162 __le32 root_snapshot;
1163};
1164
d326ab2f
KO
1165/* LRU btree: */
1166
1167struct bch_lru {
1168 struct bch_val v;
1169 __le64 idx;
fd0c7679 1170} __packed __aligned(8);
d326ab2f
KO
1171
1172#define LRU_ID_STRIPES (1U << 16)
1173
b030e262
KO
1174/* Logged operations btree: */
1175
1176struct bch_logged_op_truncate {
1177 struct bch_val v;
1178 __le32 subvol;
1179 __le32 pad;
1180 __le64 inum;
1181 __le64 new_i_size;
1182};
1183
f3e374ef
KO
1184enum logged_op_finsert_state {
1185 LOGGED_OP_FINSERT_start,
1186 LOGGED_OP_FINSERT_shift_extents,
1187 LOGGED_OP_FINSERT_finish,
1188};
1189
1190struct bch_logged_op_finsert {
1191 struct bch_val v;
1192 __u8 state;
1193 __u8 pad[3];
1194 __le32 subvol;
1195 __le64 inum;
1196 __le64 dst_offset;
1197 __le64 src_offset;
1198 __le64 pos;
1199};
1200
1c6fdbd8
KO
1201/* Optional/variable size superblock sections: */
1202
1203struct bch_sb_field {
1204 __u64 _data[0];
1205 __le32 u64s;
1206 __le32 type;
1207};
1208
25be2e5d
KO
1209#define BCH_SB_FIELDS() \
1210 x(journal, 0) \
9af26120 1211 x(members_v1, 1) \
25be2e5d
KO
1212 x(crypt, 2) \
1213 x(replicas_v0, 3) \
1214 x(quota, 4) \
1215 x(disk_groups, 5) \
1216 x(clean, 6) \
1217 x(replicas, 7) \
1218 x(journal_seq_blacklist, 8) \
104c6974 1219 x(journal_v2, 9) \
3f7b9713 1220 x(counters, 10) \
f5d26fa3
KO
1221 x(members_v2, 11) \
1222 x(errors, 12)
1c6fdbd8
KO
1223
1224enum bch_sb_field_type {
1225#define x(f, nr) BCH_SB_FIELD_##f = nr,
1226 BCH_SB_FIELDS()
1227#undef x
1228 BCH_SB_FIELD_NR
1229};
1230
25be2e5d
KO
1231/*
1232 * Most superblock fields are replicated in all device's superblocks - a few are
1233 * not:
1234 */
1235#define BCH_SINGLE_DEVICE_SB_FIELDS \
1236 ((1U << BCH_SB_FIELD_journal)| \
1237 (1U << BCH_SB_FIELD_journal_v2))
1238
1c6fdbd8
KO
1239/* BCH_SB_FIELD_journal: */
1240
1241struct bch_sb_field_journal {
1242 struct bch_sb_field field;
5cfd6977 1243 __le64 buckets[];
1c6fdbd8
KO
1244};
1245
25be2e5d
KO
1246struct bch_sb_field_journal_v2 {
1247 struct bch_sb_field field;
1248
1249 struct bch_sb_field_journal_v2_entry {
1250 __le64 start;
1251 __le64 nr;
5cfd6977 1252 } d[];
25be2e5d
KO
1253};
1254
9af26120 1255/* BCH_SB_FIELD_members_v1: */
1c6fdbd8 1256
8b335bae
KO
1257#define BCH_MIN_NR_NBUCKETS (1 << 6)
1258
40f7914e
HS
1259#define BCH_IOPS_MEASUREMENTS() \
1260 x(seqread, 0) \
1261 x(seqwrite, 1) \
1262 x(randread, 2) \
1263 x(randwrite, 3)
1264
1265enum bch_iops_measurement {
1266#define x(t, n) BCH_IOPS_##t = n,
1267 BCH_IOPS_MEASUREMENTS()
1268#undef x
1269 BCH_IOPS_NR
1270};
1271
94119eeb
KO
1272#define BCH_MEMBER_ERROR_TYPES() \
1273 x(read, 0) \
1274 x(write, 1) \
1275 x(checksum, 2)
1276
1277enum bch_member_error_type {
1278#define x(t, n) BCH_MEMBER_ERROR_##t = n,
1279 BCH_MEMBER_ERROR_TYPES()
1280#undef x
1281 BCH_MEMBER_ERROR_NR
1282};
1283
1c6fdbd8
KO
1284struct bch_member {
1285 __uuid_t uuid;
1286 __le64 nbuckets; /* device size */
1287 __le16 first_bucket; /* index of first bucket used */
1288 __le16 bucket_size; /* sectors */
1289 __le32 pad;
1290 __le64 last_mount; /* time_t */
1291
40f7914e
HS
1292 __le64 flags;
1293 __le32 iops[4];
94119eeb
KO
1294 __le64 errors[BCH_MEMBER_ERROR_NR];
1295 __le64 errors_at_reset[BCH_MEMBER_ERROR_NR];
1296 __le64 errors_reset_time;
1c6fdbd8
KO
1297};
1298
3f7b9713
HS
1299#define BCH_MEMBER_V1_BYTES 56
1300
40f7914e 1301LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4)
7243498d 1302/* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
40f7914e
HS
1303LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15)
1304LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20)
1305LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28)
1306LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30)
c6b2826c 1307LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
40f7914e 1308 struct bch_member, flags, 30, 31)
1c6fdbd8 1309
1c6fdbd8
KO
1310#if 0
1311LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20);
1312LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
1313#endif
1314
2436cb9f
KO
1315#define BCH_MEMBER_STATES() \
1316 x(rw, 0) \
1317 x(ro, 1) \
1318 x(failed, 2) \
1319 x(spare, 3)
1320
1c6fdbd8 1321enum bch_member_state {
2436cb9f
KO
1322#define x(t, n) BCH_MEMBER_STATE_##t = n,
1323 BCH_MEMBER_STATES()
1324#undef x
1325 BCH_MEMBER_STATE_NR
1c6fdbd8
KO
1326};
1327
9af26120 1328struct bch_sb_field_members_v1 {
1c6fdbd8 1329 struct bch_sb_field field;
3f7b9713
HS
1330 struct bch_member _members[]; //Members are now variable size
1331};
1332
1333struct bch_sb_field_members_v2 {
1334 struct bch_sb_field field;
1335 __le16 member_bytes; //size of single member entry
1336 u8 pad[6];
1337 struct bch_member _members[];
1c6fdbd8
KO
1338};
1339
1340/* BCH_SB_FIELD_crypt: */
1341
1342struct nonce {
1343 __le32 d[4];
1344};
1345
1346struct bch_key {
1347 __le64 key[4];
1348};
1349
1350#define BCH_KEY_MAGIC \
a5cf5a4b
KO
1351 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \
1352 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \
1353 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \
1354 ((__u64) 'e' << 48)|((__u64) 'y' << 56))
1c6fdbd8
KO
1355
1356struct bch_encrypted_key {
1357 __le64 magic;
1358 struct bch_key key;
1359};
1360
1361/*
1362 * If this field is present in the superblock, it stores an encryption key which
1363 * is used encrypt all other data/metadata. The key will normally be encrypted
1364 * with the key userspace provides, but if encryption has been turned off we'll
1365 * just store the master key unencrypted in the superblock so we can access the
1366 * previously encrypted data.
1367 */
1368struct bch_sb_field_crypt {
1369 struct bch_sb_field field;
1370
1371 __le64 flags;
1372 __le64 kdf_flags;
1373 struct bch_encrypted_key key;
1374};
1375
1376LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4);
1377
1378enum bch_kdf_types {
1379 BCH_KDF_SCRYPT = 0,
1380 BCH_KDF_NR = 1,
1381};
1382
1383/* stored as base 2 log of scrypt params: */
1384LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16);
1385LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32);
1386LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48);
1387
1388/* BCH_SB_FIELD_replicas: */
1389
89fd25be 1390#define BCH_DATA_TYPES() \
822835ff 1391 x(free, 0) \
89fd25be
KO
1392 x(sb, 1) \
1393 x(journal, 2) \
1394 x(btree, 3) \
1395 x(user, 4) \
af4d05c4 1396 x(cached, 5) \
822835ff
KO
1397 x(parity, 6) \
1398 x(stripe, 7) \
1399 x(need_gc_gens, 8) \
1400 x(need_discard, 9)
89fd25be 1401
1c6fdbd8 1402enum bch_data_type {
89fd25be
KO
1403#define x(t, n) BCH_DATA_##t,
1404 BCH_DATA_TYPES()
1405#undef x
1406 BCH_DATA_NR
1c6fdbd8
KO
1407};
1408
822835ff
KO
1409static inline bool data_type_is_empty(enum bch_data_type type)
1410{
1411 switch (type) {
1412 case BCH_DATA_free:
1413 case BCH_DATA_need_gc_gens:
1414 case BCH_DATA_need_discard:
1415 return true;
1416 default:
1417 return false;
1418 }
1419}
1420
1421static inline bool data_type_is_hidden(enum bch_data_type type)
1422{
1423 switch (type) {
1424 case BCH_DATA_sb:
1425 case BCH_DATA_journal:
1426 return true;
1427 default:
1428 return false;
1429 }
1430}
1431
af9d3bc2
KO
1432struct bch_replicas_entry_v0 {
1433 __u8 data_type;
1434 __u8 nr_devs;
5cfd6977 1435 __u8 devs[];
fd0c7679 1436} __packed;
af9d3bc2
KO
1437
1438struct bch_sb_field_replicas_v0 {
1439 struct bch_sb_field field;
5cfd6977 1440 struct bch_replicas_entry_v0 entries[];
fd0c7679 1441} __packed __aligned(8);
af9d3bc2 1442
1c6fdbd8 1443struct bch_replicas_entry {
7a920560
KO
1444 __u8 data_type;
1445 __u8 nr_devs;
af9d3bc2 1446 __u8 nr_required;
5cfd6977 1447 __u8 devs[];
fd0c7679 1448} __packed;
1c6fdbd8 1449
22502ac2
KO
1450#define replicas_entry_bytes(_i) \
1451 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
1452
1c6fdbd8
KO
1453struct bch_sb_field_replicas {
1454 struct bch_sb_field field;
5cfd6977 1455 struct bch_replicas_entry entries[];
fd0c7679 1456} __packed __aligned(8);
1c6fdbd8
KO
1457
1458/* BCH_SB_FIELD_quota: */
1459
1460struct bch_sb_quota_counter {
1461 __le32 timelimit;
1462 __le32 warnlimit;
1463};
1464
1465struct bch_sb_quota_type {
1466 __le64 flags;
1467 struct bch_sb_quota_counter c[Q_COUNTERS];
1468};
1469
1470struct bch_sb_field_quota {
1471 struct bch_sb_field field;
1472 struct bch_sb_quota_type q[QTYP_NR];
fd0c7679 1473} __packed __aligned(8);
1c6fdbd8
KO
1474
1475/* BCH_SB_FIELD_disk_groups: */
1476
1477#define BCH_SB_LABEL_SIZE 32
1478
1479struct bch_disk_group {
1480 __u8 label[BCH_SB_LABEL_SIZE];
1481 __le64 flags[2];
fd0c7679 1482} __packed __aligned(8);
1c6fdbd8
KO
1483
1484LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1)
1485LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6)
1486LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24)
1487
1488struct bch_sb_field_disk_groups {
1489 struct bch_sb_field field;
5cfd6977 1490 struct bch_disk_group entries[];
fd0c7679 1491} __packed __aligned(8);
1c6fdbd8 1492
104c6974
DH
1493/* BCH_SB_FIELD_counters */
1494
674cfc26
KO
1495#define BCH_PERSISTENT_COUNTERS() \
1496 x(io_read, 0) \
1497 x(io_write, 1) \
1498 x(io_move, 2) \
1499 x(bucket_invalidate, 3) \
1500 x(bucket_discard, 4) \
1501 x(bucket_alloc, 5) \
1502 x(bucket_alloc_fail, 6) \
1503 x(btree_cache_scan, 7) \
1504 x(btree_cache_reap, 8) \
1505 x(btree_cache_cannibalize, 9) \
1506 x(btree_cache_cannibalize_lock, 10) \
1507 x(btree_cache_cannibalize_lock_fail, 11) \
1508 x(btree_cache_cannibalize_unlock, 12) \
1509 x(btree_node_write, 13) \
1510 x(btree_node_read, 14) \
1511 x(btree_node_compact, 15) \
1512 x(btree_node_merge, 16) \
1513 x(btree_node_split, 17) \
1514 x(btree_node_rewrite, 18) \
1515 x(btree_node_alloc, 19) \
1516 x(btree_node_free, 20) \
1517 x(btree_node_set_root, 21) \
1518 x(btree_path_relock_fail, 22) \
1519 x(btree_path_upgrade_fail, 23) \
1520 x(btree_reserve_get_fail, 24) \
1521 x(journal_entry_full, 25) \
1522 x(journal_full, 26) \
1523 x(journal_reclaim_finish, 27) \
1524 x(journal_reclaim_start, 28) \
1525 x(journal_write, 29) \
1526 x(read_promote, 30) \
1527 x(read_bounce, 31) \
1528 x(read_split, 33) \
1529 x(read_retry, 32) \
1530 x(read_reuse_race, 34) \
1531 x(move_extent_read, 35) \
1532 x(move_extent_write, 36) \
1533 x(move_extent_finish, 37) \
1534 x(move_extent_fail, 38) \
ae4d612c 1535 x(move_extent_start_fail, 39) \
674cfc26
KO
1536 x(copygc, 40) \
1537 x(copygc_wait, 41) \
1538 x(gc_gens_end, 42) \
1539 x(gc_gens_start, 43) \
1540 x(trans_blocked_journal_reclaim, 44) \
1541 x(trans_restart_btree_node_reused, 45) \
1542 x(trans_restart_btree_node_split, 46) \
1543 x(trans_restart_fault_inject, 47) \
1544 x(trans_restart_iter_upgrade, 48) \
1545 x(trans_restart_journal_preres_get, 49) \
1546 x(trans_restart_journal_reclaim, 50) \
1547 x(trans_restart_journal_res_get, 51) \
1548 x(trans_restart_key_cache_key_realloced, 52) \
1549 x(trans_restart_key_cache_raced, 53) \
1550 x(trans_restart_mark_replicas, 54) \
1551 x(trans_restart_mem_realloced, 55) \
1552 x(trans_restart_memory_allocation_failure, 56) \
1553 x(trans_restart_relock, 57) \
1554 x(trans_restart_relock_after_fill, 58) \
1555 x(trans_restart_relock_key_cache_fill, 59) \
1556 x(trans_restart_relock_next_node, 60) \
1557 x(trans_restart_relock_parent_for_fill, 61) \
1558 x(trans_restart_relock_path, 62) \
1559 x(trans_restart_relock_path_intent, 63) \
1560 x(trans_restart_too_many_iters, 64) \
1561 x(trans_restart_traverse, 65) \
1562 x(trans_restart_upgrade, 66) \
1563 x(trans_restart_would_deadlock, 67) \
1564 x(trans_restart_would_deadlock_write, 68) \
1565 x(trans_restart_injected, 69) \
1566 x(trans_restart_key_cache_upgrade, 70) \
1567 x(trans_traverse_all, 71) \
1568 x(transaction_commit, 72) \
33bd5d06 1569 x(write_super, 73) \
920e69bc 1570 x(trans_restart_would_deadlock_recursion_limit, 74) \
e151580d
KO
1571 x(trans_restart_write_buffer_flush, 75) \
1572 x(trans_restart_split_race, 76)
104c6974
DH
1573
1574enum bch_persistent_counters {
1575#define x(t, n, ...) BCH_COUNTER_##t,
1576 BCH_PERSISTENT_COUNTERS()
1577#undef x
1578 BCH_COUNTER_NR
1579};
1580
1581struct bch_sb_field_counters {
1582 struct bch_sb_field field;
5cfd6977 1583 __le64 d[];
104c6974
DH
1584};
1585
1c6fdbd8
KO
1586/*
1587 * On clean shutdown, store btree roots and current journal sequence number in
1588 * the superblock:
1589 */
1590struct jset_entry {
1591 __le16 u64s;
1592 __u8 btree_id;
1593 __u8 level;
1594 __u8 type; /* designates what this jset holds */
1595 __u8 pad[3];
1596
5cfd6977
KO
1597 struct bkey_i start[0];
1598 __u64 _data[];
1c6fdbd8
KO
1599};
1600
1601struct bch_sb_field_clean {
1602 struct bch_sb_field field;
1603
1604 __le32 flags;
2abe5420
KO
1605 __le16 _read_clock; /* no longer used */
1606 __le16 _write_clock;
1c6fdbd8
KO
1607 __le64 journal_seq;
1608
5cfd6977
KO
1609 struct jset_entry start[0];
1610 __u64 _data[];
1c6fdbd8
KO
1611};
1612
1dd7f9d9
KO
1613struct journal_seq_blacklist_entry {
1614 __le64 start;
1615 __le64 end;
1616};
1617
1618struct bch_sb_field_journal_seq_blacklist {
1619 struct bch_sb_field field;
6dfa10ab 1620 struct journal_seq_blacklist_entry start[];
1dd7f9d9
KO
1621};
1622
f5d26fa3
KO
1623struct bch_sb_field_errors {
1624 struct bch_sb_field field;
1625 struct bch_sb_field_error_entry {
1626 __le64 v;
1627 __le64 last_error_time;
1628 } entries[];
1629};
1630
1631LE64_BITMASK(BCH_SB_ERROR_ENTRY_ID, struct bch_sb_field_error_entry, v, 0, 16);
1632LE64_BITMASK(BCH_SB_ERROR_ENTRY_NR, struct bch_sb_field_error_entry, v, 16, 64);
1633
1c6fdbd8
KO
1634/* Superblock: */
1635
1636/*
26609b61
KO
1637 * New versioning scheme:
1638 * One common version number for all on disk data structures - superblock, btree
1639 * nodes, journal entries
1c6fdbd8 1640 */
ba8eeae8
KO
1641#define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10))
1642#define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10)))
1643#define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0)
26609b61 1644
065bd335
KO
1645#define RECOVERY_PASS_ALL_FSCK (1ULL << 63)
1646
1647#define BCH_METADATA_VERSIONS() \
1648 x(bkey_renumber, BCH_VERSION(0, 10), \
1649 RECOVERY_PASS_ALL_FSCK) \
1650 x(inode_btree_change, BCH_VERSION(0, 11), \
1651 RECOVERY_PASS_ALL_FSCK) \
1652 x(snapshot, BCH_VERSION(0, 12), \
1653 RECOVERY_PASS_ALL_FSCK) \
1654 x(inode_backpointers, BCH_VERSION(0, 13), \
1655 RECOVERY_PASS_ALL_FSCK) \
1656 x(btree_ptr_sectors_written, BCH_VERSION(0, 14), \
1657 RECOVERY_PASS_ALL_FSCK) \
1658 x(snapshot_2, BCH_VERSION(0, 15), \
1659 BIT_ULL(BCH_RECOVERY_PASS_fs_upgrade_for_subvolumes)| \
1660 BIT_ULL(BCH_RECOVERY_PASS_initialize_subvolumes)| \
1661 RECOVERY_PASS_ALL_FSCK) \
1662 x(reflink_p_fix, BCH_VERSION(0, 16), \
1663 BIT_ULL(BCH_RECOVERY_PASS_fix_reflink_p)) \
1664 x(subvol_dirent, BCH_VERSION(0, 17), \
1665 RECOVERY_PASS_ALL_FSCK) \
1666 x(inode_v2, BCH_VERSION(0, 18), \
1667 RECOVERY_PASS_ALL_FSCK) \
1668 x(freespace, BCH_VERSION(0, 19), \
1669 RECOVERY_PASS_ALL_FSCK) \
1670 x(alloc_v4, BCH_VERSION(0, 20), \
1671 RECOVERY_PASS_ALL_FSCK) \
1672 x(new_data_types, BCH_VERSION(0, 21), \
1673 RECOVERY_PASS_ALL_FSCK) \
1674 x(backpointers, BCH_VERSION(0, 22), \
1675 RECOVERY_PASS_ALL_FSCK) \
1676 x(inode_v3, BCH_VERSION(0, 23), \
1677 RECOVERY_PASS_ALL_FSCK) \
1678 x(unwritten_extents, BCH_VERSION(0, 24), \
1679 RECOVERY_PASS_ALL_FSCK) \
1680 x(bucket_gens, BCH_VERSION(0, 25), \
1681 BIT_ULL(BCH_RECOVERY_PASS_bucket_gens_init)| \
1682 RECOVERY_PASS_ALL_FSCK) \
1683 x(lru_v2, BCH_VERSION(0, 26), \
1684 RECOVERY_PASS_ALL_FSCK) \
1685 x(fragmentation_lru, BCH_VERSION(0, 27), \
1686 RECOVERY_PASS_ALL_FSCK) \
1687 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28), \
1688 RECOVERY_PASS_ALL_FSCK) \
1689 x(snapshot_trees, BCH_VERSION(0, 29), \
1690 RECOVERY_PASS_ALL_FSCK) \
1691 x(major_minor, BCH_VERSION(1, 0), \
f26c67f4
KO
1692 0) \
1693 x(snapshot_skiplists, BCH_VERSION(1, 1), \
dde8cb11
KO
1694 BIT_ULL(BCH_RECOVERY_PASS_check_snapshots)) \
1695 x(deleted_inodes, BCH_VERSION(1, 2), \
fb3f57bb
KO
1696 BIT_ULL(BCH_RECOVERY_PASS_check_inodes)) \
1697 x(rebalance_work, BCH_VERSION(1, 3), \
1698 BIT_ULL(BCH_RECOVERY_PASS_set_fs_needs_rebalance))
74b33393 1699
26609b61 1700enum bcachefs_metadata_version {
74b33393 1701 bcachefs_metadata_version_min = 9,
065bd335 1702#define x(t, n, upgrade_passes) bcachefs_metadata_version_##t = n,
74b33393
KO
1703 BCH_METADATA_VERSIONS()
1704#undef x
1705 bcachefs_metadata_version_max
26609b61 1706};
1c6fdbd8 1707
96dea3d5 1708static const __maybe_unused
fb3f57bb 1709unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work;
1c59b483 1710
26609b61 1711#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
1c6fdbd8
KO
1712
1713#define BCH_SB_SECTOR 8
1714#define BCH_SB_MEMBERS_MAX 64 /* XXX kill */
1715
1716struct bch_sb_layout {
1717 __uuid_t magic; /* bcachefs superblock UUID */
1718 __u8 layout_type;
1719 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */
1720 __u8 nr_superblocks;
1721 __u8 pad[5];
1722 __le64 sb_offset[61];
fd0c7679 1723} __packed __aligned(8);
1c6fdbd8
KO
1724
1725#define BCH_SB_LAYOUT_SECTOR 7
1726
1727/*
1728 * @offset - sector where this sb was written
1729 * @version - on disk format version
26609b61
KO
1730 * @version_min - Oldest metadata version this filesystem contains; so we can
1731 * safely drop compatibility code and refuse to mount filesystems
1732 * we'd need it for
e1538212 1733 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC)
1c6fdbd8
KO
1734 * @seq - incremented each time superblock is written
1735 * @uuid - used for generating various magic numbers and identifying
1736 * member devices, never changes
1737 * @user_uuid - user visible UUID, may be changed
1738 * @label - filesystem label
1739 * @seq - identifies most recent superblock, incremented each time
1740 * superblock is written
1741 * @features - enabled incompatible features
1742 */
1743struct bch_sb {
1744 struct bch_csum csum;
1745 __le16 version;
1746 __le16 version_min;
1747 __le16 pad[2];
1748 __uuid_t magic;
1749 __uuid_t uuid;
1750 __uuid_t user_uuid;
1751 __u8 label[BCH_SB_LABEL_SIZE];
1752 __le64 offset;
1753 __le64 seq;
1754
1755 __le16 block_size;
1756 __u8 dev_idx;
1757 __u8 nr_devices;
1758 __le32 u64s;
1759
1760 __le64 time_base_lo;
1761 __le32 time_base_hi;
1762 __le32 time_precision;
1763
1764 __le64 flags[8];
1765 __le64 features[2];
1766 __le64 compat[2];
1767
1768 struct bch_sb_layout layout;
1769
5cfd6977
KO
1770 struct bch_sb_field start[0];
1771 __le64 _data[];
fd0c7679 1772} __packed __aligned(8);
1c6fdbd8
KO
1773
1774/*
1775 * Flags:
1776 * BCH_SB_INITALIZED - set on first mount
1777 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
1778 * behaviour of mount/recovery path:
1779 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
1780 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
1781 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
1782 * DATA/META_CSUM_TYPE. Also indicates encryption
1783 * algorithm in use, if/when we get more than one
1784 */
1785
1786LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16);
1787
1788LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1);
1789LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2);
1790LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8);
1791LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12);
1792
1793LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28);
1794
1795LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33);
1796LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40);
1797
1798LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44);
1799LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48);
1800
1801LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
1802LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
1803
1804LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57);
1805LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58);
1806LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59);
1807LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60);
1808
0bc166ff 1809LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61);
aae15aaf 1810LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
0bc166ff 1811
7d6f07ed 1812LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63);
36b8372b 1813
1c6fdbd8 1814LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4);
e86e9124 1815LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8);
1c6fdbd8
KO
1816LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9);
1817
1818LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10);
1819LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14);
1820
1821/*
1822 * Max size of an extent that may require bouncing to read or write
1823 * (checksummed, compressed): 64k
1824 */
1825LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1826 struct bch_sb, flags[1], 14, 20);
1827
1828LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24);
1829LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28);
1830
1831LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40);
1832LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52);
1833LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64);
1834
e86e9124 1835LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO,
1c6fdbd8 1836 struct bch_sb, flags[2], 0, 4);
a50ed7c8 1837LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64);
1c6fdbd8 1838
cd575ddf 1839LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16);
d042b040 1840LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28);
b282a74f 1841LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29);
996fb577 1842LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
2430e72f
KO
1843LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1844LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1845LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
fb64f3fd 1846LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
a8b3a677 1847LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34);
920e69bc 1848LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54);
3045bb95 1849LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56);
cd575ddf 1850
e86e9124
KO
1851LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60);
1852LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI,
1853 struct bch_sb, flags[4], 60, 64);
24964e1c
KO
1854
1855LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
1856 struct bch_sb, flags[5], 0, 16);
1857
e86e9124
KO
1858static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb)
1859{
1860 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4);
1861}
1862
1863static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1864{
1865 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v);
1866 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4);
1867}
1868
1869static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb)
1870{
1871 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) |
1872 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4);
1873}
1874
1875static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1876{
1877 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v);
1878 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4);
1879}
1880
1c3ff72c
KO
1881/*
1882 * Features:
1883 *
1884 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
1885 * reflink: gates KEY_TYPE_reflink
1886 * inline_data: gates KEY_TYPE_inline_data
6404dcc9 1887 * new_siphash: gates BCH_STR_HASH_siphash
bcd6f3e0 1888 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1c3ff72c
KO
1889 */
1890#define BCH_SB_FEATURES() \
1891 x(lz4, 0) \
1892 x(gzip, 1) \
1893 x(zstd, 2) \
1894 x(atomic_nlink, 3) \
1895 x(ec, 4) \
1896 x(journal_seq_blacklist_v3, 5) \
1897 x(reflink, 6) \
1898 x(new_siphash, 7) \
bcd6f3e0 1899 x(inline_data, 8) \
ab05de4c 1900 x(new_extent_overwrite, 9) \
548b3d20 1901 x(incompressible, 10) \
e3e464ac 1902 x(btree_ptr_v2, 11) \
6357d607 1903 x(extents_above_btree_updates, 12) \
801a3de6 1904 x(btree_updates_journalled, 13) \
a3e72262 1905 x(reflink_inline_data, 14) \
adbcada4 1906 x(new_varint, 15) \
7f4e1d5d 1907 x(journal_no_flush, 16) \
8042b5b7
KO
1908 x(alloc_v2, 17) \
1909 x(extents_across_btree_nodes, 18)
1910
1911#define BCH_SB_FEATURES_ALWAYS \
1912 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \
1913 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1914 (1ULL << BCH_FEATURE_btree_updates_journalled)|\
73590619 1915 (1ULL << BCH_FEATURE_alloc_v2)|\
8042b5b7 1916 (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1c3ff72c 1917
b807a0c8 1918#define BCH_SB_FEATURES_ALL \
8042b5b7
KO
1919 (BCH_SB_FEATURES_ALWAYS| \
1920 (1ULL << BCH_FEATURE_new_siphash)| \
e3e464ac 1921 (1ULL << BCH_FEATURE_btree_ptr_v2)| \
adbcada4 1922 (1ULL << BCH_FEATURE_new_varint)| \
73590619 1923 (1ULL << BCH_FEATURE_journal_no_flush))
b807a0c8 1924
1c3ff72c
KO
1925enum bch_sb_feature {
1926#define x(f, n) BCH_FEATURE_##f,
1927 BCH_SB_FEATURES()
1928#undef x
c258f28e 1929 BCH_FEATURE_NR,
1c6fdbd8
KO
1930};
1931
19dd3172
KO
1932#define BCH_SB_COMPAT() \
1933 x(alloc_info, 0) \
1934 x(alloc_metadata, 1) \
1935 x(extents_above_btree_updates_done, 2) \
1936 x(bformat_overflow_done, 3)
1937
1df42b57 1938enum bch_sb_compat {
19dd3172
KO
1939#define x(f, n) BCH_COMPAT_##f,
1940 BCH_SB_COMPAT()
1941#undef x
1942 BCH_COMPAT_NR,
1df42b57
KO
1943};
1944
1c6fdbd8
KO
1945/* options: */
1946
3045bb95
KO
1947#define BCH_VERSION_UPGRADE_OPTS() \
1948 x(compatible, 0) \
1949 x(incompatible, 1) \
1950 x(none, 2)
1951
1952enum bch_version_upgrade_opts {
1953#define x(t, n) BCH_VERSION_UPGRADE_##t = n,
1954 BCH_VERSION_UPGRADE_OPTS()
1955#undef x
1956};
1957
1c6fdbd8
KO
1958#define BCH_REPLICAS_MAX 4U
1959
ffb7c3d3
KO
1960#define BCH_BKEY_PTRS_MAX 16U
1961
2436cb9f
KO
1962#define BCH_ERROR_ACTIONS() \
1963 x(continue, 0) \
1964 x(ro, 1) \
1965 x(panic, 2)
1966
1c6fdbd8 1967enum bch_error_actions {
2436cb9f
KO
1968#define x(t, n) BCH_ON_ERROR_##t = n,
1969 BCH_ERROR_ACTIONS()
1970#undef x
1971 BCH_ON_ERROR_NR
1c6fdbd8
KO
1972};
1973
6404dcc9
KO
1974#define BCH_STR_HASH_TYPES() \
1975 x(crc32c, 0) \
1976 x(crc64, 1) \
1977 x(siphash_old, 2) \
1978 x(siphash, 3)
1979
73501ab8 1980enum bch_str_hash_type {
6404dcc9
KO
1981#define x(t, n) BCH_STR_HASH_##t = n,
1982 BCH_STR_HASH_TYPES()
1983#undef x
1984 BCH_STR_HASH_NR
73501ab8
KO
1985};
1986
2436cb9f
KO
1987#define BCH_STR_HASH_OPTS() \
1988 x(crc32c, 0) \
1989 x(crc64, 1) \
1990 x(siphash, 2)
1991
73501ab8 1992enum bch_str_hash_opts {
2436cb9f
KO
1993#define x(t, n) BCH_STR_HASH_OPT_##t = n,
1994 BCH_STR_HASH_OPTS()
1995#undef x
1996 BCH_STR_HASH_OPT_NR
1c6fdbd8
KO
1997};
1998
6404dcc9
KO
1999#define BCH_CSUM_TYPES() \
2000 x(none, 0) \
2001 x(crc32c_nonzero, 1) \
2002 x(crc64_nonzero, 2) \
2003 x(chacha20_poly1305_80, 3) \
2004 x(chacha20_poly1305_128, 4) \
2005 x(crc32c, 5) \
2006 x(crc64, 6) \
2007 x(xxhash, 7)
2008
1c3ff72c 2009enum bch_csum_type {
6404dcc9
KO
2010#define x(t, n) BCH_CSUM_##t = n,
2011 BCH_CSUM_TYPES()
2012#undef x
2013 BCH_CSUM_NR
1c3ff72c
KO
2014};
2015
96dea3d5 2016static const __maybe_unused unsigned bch_crc_bytes[] = {
6404dcc9
KO
2017 [BCH_CSUM_none] = 0,
2018 [BCH_CSUM_crc32c_nonzero] = 4,
2019 [BCH_CSUM_crc32c] = 4,
2020 [BCH_CSUM_crc64_nonzero] = 8,
2021 [BCH_CSUM_crc64] = 8,
2022 [BCH_CSUM_xxhash] = 8,
2023 [BCH_CSUM_chacha20_poly1305_80] = 10,
2024 [BCH_CSUM_chacha20_poly1305_128] = 16,
1c3ff72c
KO
2025};
2026
2027static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
2028{
2029 switch (type) {
6404dcc9
KO
2030 case BCH_CSUM_chacha20_poly1305_80:
2031 case BCH_CSUM_chacha20_poly1305_128:
1c3ff72c
KO
2032 return true;
2033 default:
2034 return false;
2035 }
2036}
2037
2436cb9f
KO
2038#define BCH_CSUM_OPTS() \
2039 x(none, 0) \
2040 x(crc32c, 1) \
41e63382 2041 x(crc64, 2) \
2042 x(xxhash, 3)
2436cb9f 2043
1c3ff72c 2044enum bch_csum_opts {
2436cb9f
KO
2045#define x(t, n) BCH_CSUM_OPT_##t = n,
2046 BCH_CSUM_OPTS()
2047#undef x
2048 BCH_CSUM_OPT_NR
1c3ff72c
KO
2049};
2050
1c6fdbd8 2051#define BCH_COMPRESSION_TYPES() \
ab05de4c
KO
2052 x(none, 0) \
2053 x(lz4_old, 1) \
2054 x(gzip, 2) \
2055 x(lz4, 3) \
2056 x(zstd, 4) \
2057 x(incompressible, 5)
1c6fdbd8 2058
1c3ff72c 2059enum bch_compression_type {
2436cb9f 2060#define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1c6fdbd8 2061 BCH_COMPRESSION_TYPES()
1c3ff72c
KO
2062#undef x
2063 BCH_COMPRESSION_TYPE_NR
2064};
2065
2066#define BCH_COMPRESSION_OPTS() \
2067 x(none, 0) \
2068 x(lz4, 1) \
2069 x(gzip, 2) \
2070 x(zstd, 3)
2071
2072enum bch_compression_opts {
2436cb9f 2073#define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1c3ff72c 2074 BCH_COMPRESSION_OPTS()
1c6fdbd8
KO
2075#undef x
2076 BCH_COMPRESSION_OPT_NR
2077};
2078
2079/*
2080 * Magic numbers
2081 *
2082 * The various other data structures have their own magic numbers, which are
2083 * xored with the first part of the cache set's UUID
2084 */
2085
2086#define BCACHE_MAGIC \
2087 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
2088 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
2089#define BCHFS_MAGIC \
2090 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
2091 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
2092
2093#define BCACHEFS_STATFS_MAGIC 0xca451a4e
2094
2095#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
2096#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
2097
2098static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
2099{
2100 __le64 ret;
a1019576 2101
1c6fdbd8
KO
2102 memcpy(&ret, &sb->uuid, sizeof(ret));
2103 return ret;
2104}
2105
2106static inline __u64 __jset_magic(struct bch_sb *sb)
2107{
2108 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
2109}
2110
2111static inline __u64 __bset_magic(struct bch_sb *sb)
2112{
2113 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
2114}
2115
2116/* Journal */
2117
1c6fdbd8
KO
2118#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
2119
2120#define BCH_JSET_ENTRY_TYPES() \
2121 x(btree_keys, 0) \
2122 x(btree_root, 1) \
2123 x(prio_ptrs, 2) \
2124 x(blacklist, 3) \
2c5af169 2125 x(blacklist_v2, 4) \
3577df5f 2126 x(usage, 5) \
2abe5420 2127 x(data_usage, 6) \
180fb49d 2128 x(clock, 7) \
fb64f3fd 2129 x(dev_usage, 8) \
cb685ce7
KO
2130 x(log, 9) \
2131 x(overwrite, 10)
1c6fdbd8
KO
2132
2133enum {
2134#define x(f, nr) BCH_JSET_ENTRY_##f = nr,
2135 BCH_JSET_ENTRY_TYPES()
2136#undef x
2137 BCH_JSET_ENTRY_NR
2138};
2139
2140/*
2141 * Journal sequence numbers can be blacklisted: bsets record the max sequence
2142 * number of all the journal entries they contain updates for, so that on
2143 * recovery we can ignore those bsets that contain index updates newer that what
2144 * made it into the journal.
2145 *
2146 * This means that we can't reuse that journal_seq - we have to skip it, and
2147 * then record that we skipped it so that the next time we crash and recover we
2148 * don't think there was a missing journal entry.
2149 */
2150struct jset_entry_blacklist {
2151 struct jset_entry entry;
2152 __le64 seq;
2153};
2154
2155struct jset_entry_blacklist_v2 {
2156 struct jset_entry entry;
2157 __le64 start;
2158 __le64 end;
2159};
2160
528b18e6
KO
2161#define BCH_FS_USAGE_TYPES() \
2162 x(reserved, 0) \
2163 x(inodes, 1) \
2164 x(key_version, 2)
2165
2c5af169 2166enum {
528b18e6
KO
2167#define x(f, nr) BCH_FS_USAGE_##f = nr,
2168 BCH_FS_USAGE_TYPES()
2169#undef x
2170 BCH_FS_USAGE_NR
2c5af169
KO
2171};
2172
2173struct jset_entry_usage {
2174 struct jset_entry entry;
3577df5f 2175 __le64 v;
fd0c7679 2176} __packed;
3577df5f
KO
2177
2178struct jset_entry_data_usage {
2179 struct jset_entry entry;
2180 __le64 v;
2c5af169 2181 struct bch_replicas_entry r;
fd0c7679 2182} __packed;
2c5af169 2183
2abe5420
KO
2184struct jset_entry_clock {
2185 struct jset_entry entry;
2186 __u8 rw;
2187 __u8 pad[7];
2188 __le64 time;
fd0c7679 2189} __packed;
2abe5420 2190
180fb49d
KO
2191struct jset_entry_dev_usage_type {
2192 __le64 buckets;
2193 __le64 sectors;
2194 __le64 fragmented;
fd0c7679 2195} __packed;
180fb49d
KO
2196
2197struct jset_entry_dev_usage {
2198 struct jset_entry entry;
2199 __le32 dev;
2200 __u32 pad;
2201
2202 __le64 buckets_ec;
822835ff 2203 __le64 _buckets_unavailable; /* No longer used */
180fb49d
KO
2204
2205 struct jset_entry_dev_usage_type d[];
bf5a261c 2206};
180fb49d 2207
528b18e6
KO
2208static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
2209{
2210 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
2211 sizeof(struct jset_entry_dev_usage_type);
2212}
2213
fb64f3fd
KO
2214struct jset_entry_log {
2215 struct jset_entry entry;
2216 u8 d[];
fd0c7679 2217} __packed;
fb64f3fd 2218
1c6fdbd8
KO
2219/*
2220 * On disk format for a journal entry:
2221 * seq is monotonically increasing; every journal entry has its own unique
2222 * sequence number.
2223 *
2224 * last_seq is the oldest journal entry that still has keys the btree hasn't
2225 * flushed to disk yet.
2226 *
2227 * version is for on disk format changes.
2228 */
2229struct jset {
2230 struct bch_csum csum;
2231
2232 __le64 magic;
2233 __le64 seq;
2234 __le32 version;
2235 __le32 flags;
2236
2237 __le32 u64s; /* size of d[] in u64s */
2238
2239 __u8 encrypted_start[0];
2240
2abe5420
KO
2241 __le16 _read_clock; /* no longer used */
2242 __le16 _write_clock;
1c6fdbd8
KO
2243
2244 /* Sequence number of oldest dirty journal entry */
2245 __le64 last_seq;
2246
2247
5cfd6977
KO
2248 struct jset_entry start[0];
2249 __u64 _data[];
fd0c7679 2250} __packed __aligned(8);
1c6fdbd8
KO
2251
2252LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
2253LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5);
adbcada4 2254LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6);
1c6fdbd8 2255
8b335bae 2256#define BCH_JOURNAL_BUCKETS_MIN 8
1c6fdbd8
KO
2257
2258/* Btree: */
2259
e8d2fe3b
KO
2260enum btree_id_flags {
2261 BTREE_ID_EXTENTS = BIT(0),
2262 BTREE_ID_SNAPSHOTS = BIT(1),
d3c7727b
KO
2263 BTREE_ID_SNAPSHOT_FIELD = BIT(2),
2264 BTREE_ID_DATA = BIT(3),
e8d2fe3b
KO
2265};
2266
2267#define BCH_BTREE_IDS() \
2268 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\
2269 BIT_ULL(KEY_TYPE_whiteout)| \
2270 BIT_ULL(KEY_TYPE_error)| \
2271 BIT_ULL(KEY_TYPE_cookie)| \
2272 BIT_ULL(KEY_TYPE_extent)| \
2273 BIT_ULL(KEY_TYPE_reservation)| \
2274 BIT_ULL(KEY_TYPE_reflink_p)| \
2275 BIT_ULL(KEY_TYPE_inline_data)) \
2276 x(inodes, 1, BTREE_ID_SNAPSHOTS, \
2277 BIT_ULL(KEY_TYPE_whiteout)| \
2278 BIT_ULL(KEY_TYPE_inode)| \
2279 BIT_ULL(KEY_TYPE_inode_v2)| \
2280 BIT_ULL(KEY_TYPE_inode_v3)| \
2281 BIT_ULL(KEY_TYPE_inode_generation)) \
2282 x(dirents, 2, BTREE_ID_SNAPSHOTS, \
2283 BIT_ULL(KEY_TYPE_whiteout)| \
2284 BIT_ULL(KEY_TYPE_hash_whiteout)| \
2285 BIT_ULL(KEY_TYPE_dirent)) \
2286 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \
2287 BIT_ULL(KEY_TYPE_whiteout)| \
2288 BIT_ULL(KEY_TYPE_cookie)| \
2289 BIT_ULL(KEY_TYPE_hash_whiteout)| \
2290 BIT_ULL(KEY_TYPE_xattr)) \
2291 x(alloc, 4, 0, \
2292 BIT_ULL(KEY_TYPE_alloc)| \
2293 BIT_ULL(KEY_TYPE_alloc_v2)| \
2294 BIT_ULL(KEY_TYPE_alloc_v3)| \
2295 BIT_ULL(KEY_TYPE_alloc_v4)) \
2296 x(quotas, 5, 0, \
2297 BIT_ULL(KEY_TYPE_quota)) \
2298 x(stripes, 6, 0, \
2299 BIT_ULL(KEY_TYPE_stripe)) \
2300 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \
2301 BIT_ULL(KEY_TYPE_reflink_v)| \
2302 BIT_ULL(KEY_TYPE_indirect_inline_data)) \
2303 x(subvolumes, 8, 0, \
2304 BIT_ULL(KEY_TYPE_subvolume)) \
2305 x(snapshots, 9, 0, \
2306 BIT_ULL(KEY_TYPE_snapshot)) \
2307 x(lru, 10, 0, \
2308 BIT_ULL(KEY_TYPE_set)) \
2309 x(freespace, 11, BTREE_ID_EXTENTS, \
2310 BIT_ULL(KEY_TYPE_set)) \
2311 x(need_discard, 12, 0, \
2312 BIT_ULL(KEY_TYPE_set)) \
2313 x(backpointers, 13, 0, \
2314 BIT_ULL(KEY_TYPE_backpointer)) \
2315 x(bucket_gens, 14, 0, \
2316 BIT_ULL(KEY_TYPE_bucket_gens)) \
2317 x(snapshot_trees, 15, 0, \
dde8cb11 2318 BIT_ULL(KEY_TYPE_snapshot_tree)) \
d3c7727b 2319 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \
aaad530a
KO
2320 BIT_ULL(KEY_TYPE_set)) \
2321 x(logged_ops, 17, 0, \
f3e374ef 2322 BIT_ULL(KEY_TYPE_logged_op_truncate)| \
fb3f57bb 2323 BIT_ULL(KEY_TYPE_logged_op_finsert)) \
d3c7727b 2324 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \
fb3f57bb 2325 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie))
1c6fdbd8
KO
2326
2327enum btree_id {
e8d2fe3b 2328#define x(name, nr, ...) BTREE_ID_##name = nr,
26609b61
KO
2329 BCH_BTREE_IDS()
2330#undef x
1c6fdbd8
KO
2331 BTREE_ID_NR
2332};
2333
1c6fdbd8
KO
2334#define BTREE_MAX_DEPTH 4U
2335
2336/* Btree nodes */
2337
1c6fdbd8
KO
2338/*
2339 * Btree nodes
2340 *
2341 * On disk a btree node is a list/log of these; within each set the keys are
2342 * sorted
2343 */
2344struct bset {
2345 __le64 seq;
2346
2347 /*
2348 * Highest journal entry this bset contains keys for.
2349 * If on recovery we don't see that journal entry, this bset is ignored:
2350 * this allows us to preserve the order of all index updates after a
2351 * crash, since the journal records a total order of all index updates
2352 * and anything that didn't make it to the journal doesn't get used.
2353 */
2354 __le64 journal_seq;
2355
2356 __le32 flags;
2357 __le16 version;
2358 __le16 u64s; /* count of d[] in u64s */
2359
5cfd6977
KO
2360 struct bkey_packed start[0];
2361 __u64 _data[];
fd0c7679 2362} __packed __aligned(8);
1c6fdbd8
KO
2363
2364LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
2365
2366LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5);
2367LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
2368 struct bset, flags, 5, 6);
2369
e719fc34
KO
2370/* Sector offset within the btree node: */
2371LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32);
2372
1c6fdbd8
KO
2373struct btree_node {
2374 struct bch_csum csum;
2375 __le64 magic;
2376
2377 /* this flags field is encrypted, unlike bset->flags: */
2378 __le64 flags;
2379
2380 /* Closed interval: */
2381 struct bpos min_key;
2382 struct bpos max_key;
e751c01a 2383 struct bch_extent_ptr _ptr; /* not used anymore */
1c6fdbd8
KO
2384 struct bkey_format format;
2385
2386 union {
2387 struct bset keys;
2388 struct {
2389 __u8 pad[22];
2390 __le16 u64s;
2391 __u64 _data[0];
2392
2393 };
2394 };
fd0c7679 2395} __packed __aligned(8);
1c6fdbd8 2396
4e1430a7 2397LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4);
1c6fdbd8 2398LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8);
bcd6f3e0
KO
2399LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
2400 struct btree_node, flags, 8, 9);
4e1430a7
KO
2401LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25);
2402/* 25-32 unused */
1c6fdbd8
KO
2403LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64);
2404
4e1430a7
KO
2405static inline __u64 BTREE_NODE_ID(struct btree_node *n)
2406{
2407 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4);
2408}
2409
a5cf5a4b 2410static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v)
4e1430a7
KO
2411{
2412 SET_BTREE_NODE_ID_LO(n, v);
2413 SET_BTREE_NODE_ID_HI(n, v >> 4);
2414}
2415
1c6fdbd8
KO
2416struct btree_node_entry {
2417 struct bch_csum csum;
2418
2419 union {
2420 struct bset keys;
2421 struct {
2422 __u8 pad[22];
2423 __le16 u64s;
2424 __u64 _data[0];
1c6fdbd8
KO
2425 };
2426 };
fd0c7679 2427} __packed __aligned(8);
1c6fdbd8
KO
2428
2429#endif /* _BCACHEFS_FORMAT_H */