bcachefs: Optimize bch2_dirent_name_bytes
[linux-block.git] / fs / bcachefs / bcachefs_format.h
CommitLineData
1c6fdbd8
KO
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_FORMAT_H
3#define _BCACHEFS_FORMAT_H
4
5/*
6 * bcachefs on disk data structures
7 *
8 * OVERVIEW:
9 *
10 * There are three main types of on disk data structures in bcachefs (this is
11 * reduced from 5 in bcache)
12 *
13 * - superblock
14 * - journal
15 * - btree
16 *
17 * The btree is the primary structure; most metadata exists as keys in the
18 * various btrees. There are only a small number of btrees, they're not
19 * sharded - we have one btree for extents, another for inodes, et cetera.
20 *
21 * SUPERBLOCK:
22 *
23 * The superblock contains the location of the journal, the list of devices in
24 * the filesystem, and in general any metadata we need in order to decide
25 * whether we can start a filesystem or prior to reading the journal/btree
26 * roots.
27 *
28 * The superblock is extensible, and most of the contents of the superblock are
29 * in variable length, type tagged fields; see struct bch_sb_field.
30 *
31 * Backup superblocks do not reside in a fixed location; also, superblocks do
32 * not have a fixed size. To locate backup superblocks we have struct
33 * bch_sb_layout; we store a copy of this inside every superblock, and also
34 * before the first superblock.
35 *
36 * JOURNAL:
37 *
38 * The journal primarily records btree updates in the order they occurred;
39 * journal replay consists of just iterating over all the keys in the open
40 * journal entries and re-inserting them into the btrees.
41 *
42 * The journal also contains entry types for the btree roots, and blacklisted
43 * journal sequence numbers (see journal_seq_blacklist.c).
44 *
45 * BTREE:
46 *
47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48 * 128k-256k) and log structured. We use struct btree_node for writing the first
49 * entry in a given node (offset 0), and struct btree_node_entry for all
50 * subsequent writes.
51 *
52 * After the header, btree node entries contain a list of keys in sorted order.
53 * Values are stored inline with the keys; since values are variable length (and
54 * keys effectively are variable length too, due to packing) we can't do random
55 * access without building up additional in memory tables in the btree node read
56 * path.
57 *
58 * BTREE KEYS (struct bkey):
59 *
60 * The various btrees share a common format for the key - so as to avoid
61 * switching in fastpath lookup/comparison code - but define their own
62 * structures for the key values.
63 *
64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65 * size is just under 2k. The common part also contains a type tag for the
66 * value, and a format field indicating whether the key is packed or not (and
67 * also meant to allow adding new key fields in the future, if desired).
68 *
69 * bkeys, when stored within a btree node, may also be packed. In that case, the
70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71 * be generous with field sizes in the common part of the key format (64 bit
72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73 */
74
75#include <asm/types.h>
76#include <asm/byteorder.h>
7121643e 77#include <linux/kernel.h>
1c6fdbd8 78#include <linux/uuid.h>
528b18e6 79#include "vstructs.h"
1c6fdbd8
KO
80
81#ifdef __KERNEL__
82typedef uuid_t __uuid_t;
83#endif
84
3d48a7f8
KO
85#define BITMASK(name, type, field, offset, end) \
86static const unsigned name##_OFFSET = offset; \
87static const unsigned name##_BITS = (end - offset); \
88 \
89static inline __u64 name(const type *k) \
90{ \
91 return (k->field >> offset) & ~(~0ULL << (end - offset)); \
92} \
93 \
94static inline void SET_##name(type *k, __u64 v) \
95{ \
96 k->field &= ~(~(~0ULL << (end - offset)) << offset); \
97 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
98}
99
1c6fdbd8
KO
100#define LE_BITMASK(_bits, name, type, field, offset, end) \
101static const unsigned name##_OFFSET = offset; \
102static const unsigned name##_BITS = (end - offset); \
103static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1; \
104 \
105static inline __u64 name(const type *k) \
106{ \
107 return (__le##_bits##_to_cpu(k->field) >> offset) & \
108 ~(~0ULL << (end - offset)); \
109} \
110 \
111static inline void SET_##name(type *k, __u64 v) \
112{ \
113 __u##_bits new = __le##_bits##_to_cpu(k->field); \
114 \
115 new &= ~(~(~0ULL << (end - offset)) << offset); \
116 new |= (v & ~(~0ULL << (end - offset))) << offset; \
117 k->field = __cpu_to_le##_bits(new); \
118}
119
120#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
121#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
122#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
123
124struct bkey_format {
125 __u8 key_u64s;
126 __u8 nr_fields;
127 /* One unused slot for now: */
128 __u8 bits_per_field[6];
129 __le64 field_offset[6];
130};
131
132/* Btree keys - all units are in sectors */
133
134struct bpos {
135 /*
136 * Word order matches machine byte order - btree code treats a bpos as a
137 * single large integer, for search/comparison purposes
138 *
139 * Note that wherever a bpos is embedded in another on disk data
140 * structure, it has to be byte swabbed when reading in metadata that
141 * wasn't written in native endian order:
142 */
143#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
144 __u32 snapshot;
145 __u64 offset;
146 __u64 inode;
147#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
148 __u64 inode;
149 __u64 offset; /* Points to end of extent - sectors */
150 __u32 snapshot;
151#else
152#error edit for your odd byteorder.
153#endif
fd0c7679 154} __packed __aligned(4);
1c6fdbd8
KO
155
156#define KEY_INODE_MAX ((__u64)~0ULL)
157#define KEY_OFFSET_MAX ((__u64)~0ULL)
158#define KEY_SNAPSHOT_MAX ((__u32)~0U)
159#define KEY_SIZE_MAX ((__u32)~0U)
160
e751c01a 161static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
1c6fdbd8 162{
e751c01a
KO
163 return (struct bpos) {
164 .inode = inode,
165 .offset = offset,
166 .snapshot = snapshot,
167 };
1c6fdbd8
KO
168}
169
e751c01a 170#define POS_MIN SPOS(0, 0, 0)
618b1c0e
KO
171#define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
172#define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
e751c01a 173#define POS(_inode, _offset) SPOS(_inode, _offset, 0)
1c6fdbd8
KO
174
175/* Empty placeholder struct, for container_of() */
176struct bch_val {
177 __u64 __nothing[0];
178};
179
180struct bversion {
181#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
182 __u64 lo;
183 __u32 hi;
184#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
185 __u32 hi;
186 __u64 lo;
187#endif
fd0c7679 188} __packed __aligned(4);
1c6fdbd8
KO
189
190struct bkey {
191 /* Size of combined key and value, in u64s */
192 __u8 u64s;
193
194 /* Format of key (0 for format local to btree node) */
195#if defined(__LITTLE_ENDIAN_BITFIELD)
196 __u8 format:7,
197 needs_whiteout:1;
198#elif defined (__BIG_ENDIAN_BITFIELD)
199 __u8 needs_whiteout:1,
200 format:7;
201#else
202#error edit for your odd byteorder.
203#endif
204
205 /* Type of the value */
206 __u8 type;
207
208#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
209 __u8 pad[1];
210
211 struct bversion version;
212 __u32 size; /* extent size, in sectors */
213 struct bpos p;
214#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
215 struct bpos p;
216 __u32 size; /* extent size, in sectors */
217 struct bversion version;
218
219 __u8 pad[1];
220#endif
fd0c7679 221} __packed __aligned(8);
1c6fdbd8
KO
222
223struct bkey_packed {
224 __u64 _data[0];
225
226 /* Size of combined key and value, in u64s */
227 __u8 u64s;
228
229 /* Format of key (0 for format local to btree node) */
230
231 /*
232 * XXX: next incompat on disk format change, switch format and
233 * needs_whiteout - bkey_packed() will be cheaper if format is the high
234 * bits of the bitfield
235 */
236#if defined(__LITTLE_ENDIAN_BITFIELD)
237 __u8 format:7,
238 needs_whiteout:1;
239#elif defined (__BIG_ENDIAN_BITFIELD)
240 __u8 needs_whiteout:1,
241 format:7;
242#endif
243
244 /* Type of the value */
245 __u8 type;
246 __u8 key_start[0];
247
248 /*
249 * We copy bkeys with struct assignment in various places, and while
250 * that shouldn't be done with packed bkeys we can't disallow it in C,
251 * and it's legal to cast a bkey to a bkey_packed - so padding it out
252 * to the same size as struct bkey should hopefully be safest.
253 */
254 __u8 pad[sizeof(struct bkey) - 3];
fd0c7679 255} __packed __aligned(8);
1c6fdbd8 256
653693be
KO
257typedef struct {
258 __le64 lo;
259 __le64 hi;
260} bch_le128;
261
1c6fdbd8 262#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
cd575ddf
KO
263#define BKEY_U64s_MAX U8_MAX
264#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
265
1c6fdbd8
KO
266#define KEY_PACKED_BITS_START 24
267
268#define KEY_FORMAT_LOCAL_BTREE 0
269#define KEY_FORMAT_CURRENT 1
270
271enum bch_bkey_fields {
272 BKEY_FIELD_INODE,
273 BKEY_FIELD_OFFSET,
274 BKEY_FIELD_SNAPSHOT,
275 BKEY_FIELD_SIZE,
276 BKEY_FIELD_VERSION_HI,
277 BKEY_FIELD_VERSION_LO,
278 BKEY_NR_FIELDS,
279};
280
281#define bkey_format_field(name, field) \
282 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
283
284#define BKEY_FORMAT_CURRENT \
285((struct bkey_format) { \
286 .key_u64s = BKEY_U64s, \
287 .nr_fields = BKEY_NR_FIELDS, \
288 .bits_per_field = { \
289 bkey_format_field(INODE, p.inode), \
290 bkey_format_field(OFFSET, p.offset), \
291 bkey_format_field(SNAPSHOT, p.snapshot), \
292 bkey_format_field(SIZE, size), \
293 bkey_format_field(VERSION_HI, version.hi), \
294 bkey_format_field(VERSION_LO, version.lo), \
295 }, \
296})
297
298/* bkey with inline value */
299struct bkey_i {
300 __u64 _data[0];
301
ac2ccddc
KO
302 struct bkey k;
303 struct bch_val v;
1c6fdbd8
KO
304};
305
306#define KEY(_inode, _offset, _size) \
307((struct bkey) { \
308 .u64s = BKEY_U64s, \
309 .format = KEY_FORMAT_CURRENT, \
310 .p = POS(_inode, _offset), \
311 .size = _size, \
312})
313
314static inline void bkey_init(struct bkey *k)
315{
316 *k = KEY(0, 0, 0);
317}
318
319#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
320
321#define __BKEY_PADDED(key, pad) \
45dd05b3 322 struct bkey_i key; __u64 key ## _pad[pad]
1c6fdbd8 323
1c6fdbd8
KO
324/*
325 * - DELETED keys are used internally to mark keys that should be ignored but
326 * override keys in composition order. Their version number is ignored.
327 *
328 * - DISCARDED keys indicate that the data is all 0s because it has been
329 * discarded. DISCARDs may have a version; if the version is nonzero the key
330 * will be persistent, otherwise the key will be dropped whenever the btree
331 * node is rewritten (like DELETED keys).
332 *
333 * - ERROR: any read of the data returns a read error, as the data was lost due
334 * to a failing device. Like DISCARDED keys, they can be removed (overridden)
335 * by new writes or cluster-wide GC. Node repair can also overwrite them with
336 * the same or a more recent version number, but not with an older version
337 * number.
26609b61
KO
338 *
339 * - WHITEOUT: for hash table btrees
3e3e02e6 340 */
26609b61
KO
341#define BCH_BKEY_TYPES() \
342 x(deleted, 0) \
7a7d17b2 343 x(whiteout, 1) \
26609b61
KO
344 x(error, 2) \
345 x(cookie, 3) \
79f88eba 346 x(hash_whiteout, 4) \
26609b61
KO
347 x(btree_ptr, 5) \
348 x(extent, 6) \
349 x(reservation, 7) \
350 x(inode, 8) \
351 x(inode_generation, 9) \
352 x(dirent, 10) \
353 x(xattr, 11) \
354 x(alloc, 12) \
355 x(quota, 13) \
76426098
KO
356 x(stripe, 14) \
357 x(reflink_p, 15) \
4be1a412 358 x(reflink_v, 16) \
548b3d20 359 x(inline_data, 17) \
801a3de6 360 x(btree_ptr_v2, 18) \
7f4e1d5d 361 x(indirect_inline_data, 19) \
14b393ee
KO
362 x(alloc_v2, 20) \
363 x(subvolume, 21) \
3e52c222
KO
364 x(snapshot, 22) \
365 x(inode_v2, 23) \
179e3434 366 x(alloc_v3, 24) \
d326ab2f 367 x(set, 25) \
3d48a7f8 368 x(lru, 26) \
a8c752bb 369 x(alloc_v4, 27) \
8dd69d9f 370 x(backpointer, 28) \
5250b74d 371 x(inode_v3, 29) \
1c59b483
KO
372 x(bucket_gens, 30) \
373 x(snapshot_tree, 31)
26609b61
KO
374
375enum bch_bkey_type {
376#define x(name, nr) KEY_TYPE_##name = nr,
377 BCH_BKEY_TYPES()
378#undef x
379 KEY_TYPE_MAX,
380};
1c6fdbd8 381
79f88eba
KO
382struct bch_deleted {
383 struct bch_val v;
384};
385
7a7d17b2 386struct bch_whiteout {
79f88eba
KO
387 struct bch_val v;
388};
389
390struct bch_error {
391 struct bch_val v;
392};
393
1c6fdbd8
KO
394struct bch_cookie {
395 struct bch_val v;
396 __le64 cookie;
397};
1c6fdbd8 398
79f88eba
KO
399struct bch_hash_whiteout {
400 struct bch_val v;
401};
402
179e3434
KO
403struct bch_set {
404 struct bch_val v;
405};
406
1c6fdbd8
KO
407/* Extents */
408
409/*
410 * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
411 * preceded by checksum/compression information (bch_extent_crc32 or
412 * bch_extent_crc64).
413 *
414 * One major determining factor in the format of extents is how we handle and
415 * represent extents that have been partially overwritten and thus trimmed:
416 *
417 * If an extent is not checksummed or compressed, when the extent is trimmed we
418 * don't have to remember the extent we originally allocated and wrote: we can
419 * merely adjust ptr->offset to point to the start of the data that is currently
420 * live. The size field in struct bkey records the current (live) size of the
421 * extent, and is also used to mean "size of region on disk that we point to" in
422 * this case.
423 *
424 * Thus an extent that is not checksummed or compressed will consist only of a
425 * list of bch_extent_ptrs, with none of the fields in
426 * bch_extent_crc32/bch_extent_crc64.
427 *
428 * When an extent is checksummed or compressed, it's not possible to read only
429 * the data that is currently live: we have to read the entire extent that was
430 * originally written, and then return only the part of the extent that is
431 * currently live.
432 *
433 * Thus, in addition to the current size of the extent in struct bkey, we need
434 * to store the size of the originally allocated space - this is the
435 * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
436 * when the extent is trimmed, instead of modifying the offset field of the
437 * pointer, we keep a second smaller offset field - "offset into the original
438 * extent of the currently live region".
439 *
440 * The other major determining factor is replication and data migration:
441 *
442 * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
443 * write, we will initially write all the replicas in the same format, with the
444 * same checksum type and compression format - however, when copygc runs later (or
445 * tiering/cache promotion, anything that moves data), it is not in general
446 * going to rewrite all the pointers at once - one of the replicas may be in a
447 * bucket on one device that has very little fragmentation while another lives
448 * in a bucket that has become heavily fragmented, and thus is being rewritten
449 * sooner than the rest.
450 *
451 * Thus it will only move a subset of the pointers (or in the case of
452 * tiering/cache promotion perhaps add a single pointer without dropping any
453 * current pointers), and if the extent has been partially overwritten it must
454 * write only the currently live portion (or copygc would not be able to reduce
455 * fragmentation!) - which necessitates a different bch_extent_crc format for
456 * the new pointer.
457 *
458 * But in the interests of space efficiency, we don't want to store one
459 * bch_extent_crc for each pointer if we don't have to.
460 *
461 * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
462 * bch_extent_ptrs appended arbitrarily one after the other. We determine the
463 * type of a given entry with a scheme similar to utf8 (except we're encoding a
464 * type, not a size), encoding the type in the position of the first set bit:
465 *
466 * bch_extent_crc32 - 0b1
467 * bch_extent_ptr - 0b10
468 * bch_extent_crc64 - 0b100
469 *
470 * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
471 * bch_extent_crc64 is the least constrained).
472 *
473 * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
474 * until the next bch_extent_crc32/64.
475 *
476 * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
477 * is neither checksummed nor compressed.
478 */
479
480/* 128 bits, sufficient for cryptographic MACs: */
481struct bch_csum {
482 __le64 lo;
483 __le64 hi;
fd0c7679 484} __packed __aligned(8);
1c6fdbd8 485
abce30b7
KO
486#define BCH_EXTENT_ENTRY_TYPES() \
487 x(ptr, 0) \
488 x(crc32, 1) \
489 x(crc64, 2) \
cd575ddf 490 x(crc128, 3) \
2766876d
KO
491 x(stripe_ptr, 4) \
492 x(rebalance, 5)
493#define BCH_EXTENT_ENTRY_MAX 6
abce30b7 494
1c6fdbd8 495enum bch_extent_entry_type {
abce30b7
KO
496#define x(f, n) BCH_EXTENT_ENTRY_##f = n,
497 BCH_EXTENT_ENTRY_TYPES()
498#undef x
1c6fdbd8
KO
499};
500
1c6fdbd8
KO
501/* Compressed/uncompressed size are stored biased by 1: */
502struct bch_extent_crc32 {
503#if defined(__LITTLE_ENDIAN_BITFIELD)
504 __u32 type:2,
505 _compressed_size:7,
506 _uncompressed_size:7,
507 offset:7,
508 _unused:1,
509 csum_type:4,
510 compression_type:4;
511 __u32 csum;
512#elif defined (__BIG_ENDIAN_BITFIELD)
513 __u32 csum;
514 __u32 compression_type:4,
515 csum_type:4,
516 _unused:1,
517 offset:7,
518 _uncompressed_size:7,
519 _compressed_size:7,
520 type:2;
521#endif
fd0c7679 522} __packed __aligned(8);
1c6fdbd8
KO
523
524#define CRC32_SIZE_MAX (1U << 7)
525#define CRC32_NONCE_MAX 0
526
527struct bch_extent_crc64 {
528#if defined(__LITTLE_ENDIAN_BITFIELD)
529 __u64 type:3,
530 _compressed_size:9,
531 _uncompressed_size:9,
532 offset:9,
533 nonce:10,
534 csum_type:4,
535 compression_type:4,
536 csum_hi:16;
537#elif defined (__BIG_ENDIAN_BITFIELD)
538 __u64 csum_hi:16,
539 compression_type:4,
540 csum_type:4,
541 nonce:10,
542 offset:9,
543 _uncompressed_size:9,
544 _compressed_size:9,
545 type:3;
546#endif
547 __u64 csum_lo;
fd0c7679 548} __packed __aligned(8);
1c6fdbd8
KO
549
550#define CRC64_SIZE_MAX (1U << 9)
551#define CRC64_NONCE_MAX ((1U << 10) - 1)
552
553struct bch_extent_crc128 {
554#if defined(__LITTLE_ENDIAN_BITFIELD)
555 __u64 type:4,
556 _compressed_size:13,
557 _uncompressed_size:13,
558 offset:13,
559 nonce:13,
560 csum_type:4,
561 compression_type:4;
562#elif defined (__BIG_ENDIAN_BITFIELD)
563 __u64 compression_type:4,
564 csum_type:4,
565 nonce:13,
566 offset:13,
567 _uncompressed_size:13,
568 _compressed_size:13,
569 type:4;
570#endif
571 struct bch_csum csum;
fd0c7679 572} __packed __aligned(8);
1c6fdbd8
KO
573
574#define CRC128_SIZE_MAX (1U << 13)
575#define CRC128_NONCE_MAX ((1U << 13) - 1)
576
577/*
578 * @reservation - pointer hasn't been written to, just reserved
579 */
580struct bch_extent_ptr {
581#if defined(__LITTLE_ENDIAN_BITFIELD)
582 __u64 type:1,
583 cached:1,
cd575ddf 584 unused:1,
79203111 585 unwritten:1,
1c6fdbd8
KO
586 offset:44, /* 8 petabytes */
587 dev:8,
588 gen:8;
589#elif defined (__BIG_ENDIAN_BITFIELD)
590 __u64 gen:8,
591 dev:8,
592 offset:44,
79203111 593 unwritten:1,
cd575ddf 594 unused:1,
1c6fdbd8
KO
595 cached:1,
596 type:1;
597#endif
fd0c7679 598} __packed __aligned(8);
1c6fdbd8 599
cd575ddf 600struct bch_extent_stripe_ptr {
1c6fdbd8
KO
601#if defined(__LITTLE_ENDIAN_BITFIELD)
602 __u64 type:5,
cd575ddf 603 block:8,
7f4e1d5d
KO
604 redundancy:4,
605 idx:47;
cd575ddf 606#elif defined (__BIG_ENDIAN_BITFIELD)
7f4e1d5d
KO
607 __u64 idx:47,
608 redundancy:4,
cd575ddf
KO
609 block:8,
610 type:5;
611#endif
612};
613
614struct bch_extent_reservation {
615#if defined(__LITTLE_ENDIAN_BITFIELD)
616 __u64 type:6,
617 unused:22,
1c6fdbd8
KO
618 replicas:4,
619 generation:32;
620#elif defined (__BIG_ENDIAN_BITFIELD)
621 __u64 generation:32,
622 replicas:4,
cd575ddf
KO
623 unused:22,
624 type:6;
1c6fdbd8
KO
625#endif
626};
627
2766876d
KO
628struct bch_extent_rebalance {
629#if defined(__LITTLE_ENDIAN_BITFIELD)
630 __u64 type:7,
631 unused:33,
632 compression:8,
633 target:16;
634#elif defined (__BIG_ENDIAN_BITFIELD)
635 __u64 target:16,
636 compression:8,
637 unused:33,
638 type:7;
639#endif
640};
641
1c6fdbd8
KO
642union bch_extent_entry {
643#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64
644 unsigned long type;
645#elif __BITS_PER_LONG == 32
646 struct {
647 unsigned long pad;
648 unsigned long type;
649 };
650#else
651#error edit for your odd byteorder.
652#endif
abce30b7
KO
653
654#define x(f, n) struct bch_extent_##f f;
655 BCH_EXTENT_ENTRY_TYPES()
656#undef x
1c6fdbd8
KO
657};
658
26609b61
KO
659struct bch_btree_ptr {
660 struct bch_val v;
1c6fdbd8 661
26609b61
KO
662 __u64 _data[0];
663 struct bch_extent_ptr start[];
fd0c7679 664} __packed __aligned(8);
1c6fdbd8 665
548b3d20
KO
666struct bch_btree_ptr_v2 {
667 struct bch_val v;
668
669 __u64 mem_ptr;
670 __le64 seq;
671 __le16 sectors_written;
51d2dfb8 672 __le16 flags;
548b3d20
KO
673 struct bpos min_key;
674 __u64 _data[0];
675 struct bch_extent_ptr start[];
fd0c7679 676} __packed __aligned(8);
548b3d20 677
51d2dfb8
KO
678LE16_BITMASK(BTREE_PTR_RANGE_UPDATED, struct bch_btree_ptr_v2, flags, 0, 1);
679
1c6fdbd8
KO
680struct bch_extent {
681 struct bch_val v;
682
683 __u64 _data[0];
684 union bch_extent_entry start[];
fd0c7679 685} __packed __aligned(8);
1c6fdbd8
KO
686
687struct bch_reservation {
688 struct bch_val v;
689
690 __le32 generation;
691 __u8 nr_replicas;
692 __u8 pad[3];
fd0c7679 693} __packed __aligned(8);
1c6fdbd8
KO
694
695/* Maximum size (in u64s) a single pointer could be: */
696#define BKEY_EXTENT_PTR_U64s_MAX\
697 ((sizeof(struct bch_extent_crc128) + \
a5cf5a4b 698 sizeof(struct bch_extent_ptr)) / sizeof(__u64))
1c6fdbd8
KO
699
700/* Maximum possible size of an entire extent value: */
701#define BKEY_EXTENT_VAL_U64s_MAX \
5055b509 702 (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
1c6fdbd8 703
1c6fdbd8
KO
704/* * Maximum possible size of an entire extent, key + value: */
705#define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
706
707/* Btree pointers don't carry around checksums: */
708#define BKEY_BTREE_PTR_VAL_U64s_MAX \
548b3d20 709 ((sizeof(struct bch_btree_ptr_v2) + \
a5cf5a4b 710 sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(__u64))
1c6fdbd8
KO
711#define BKEY_BTREE_PTR_U64s_MAX \
712 (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
713
714/* Inodes */
715
716#define BLOCKDEV_INODE_MAX 4096
717
718#define BCACHEFS_ROOT_INO 4096
719
1c6fdbd8
KO
720struct bch_inode {
721 struct bch_val v;
722
723 __le64 bi_hash_seed;
724 __le32 bi_flags;
725 __le16 bi_mode;
726 __u8 fields[0];
fd0c7679 727} __packed __aligned(8);
1c6fdbd8 728
3e52c222
KO
729struct bch_inode_v2 {
730 struct bch_val v;
731
732 __le64 bi_journal_seq;
733 __le64 bi_hash_seed;
734 __le64 bi_flags;
735 __le16 bi_mode;
736 __u8 fields[0];
fd0c7679 737} __packed __aligned(8);
3e52c222 738
8dd69d9f
KO
739struct bch_inode_v3 {
740 struct bch_val v;
741
742 __le64 bi_journal_seq;
743 __le64 bi_hash_seed;
744 __le64 bi_flags;
745 __le64 bi_sectors;
746 __le64 bi_size;
747 __le64 bi_version;
748 __u8 fields[0];
749} __packed __aligned(8);
750
751#define INODEv3_FIELDS_START_INITIAL 6
a5cf5a4b 752#define INODEv3_FIELDS_START_CUR (offsetof(struct bch_inode_v3, fields) / sizeof(__u64))
8dd69d9f 753
1c6fdbd8
KO
754struct bch_inode_generation {
755 struct bch_val v;
756
757 __le32 bi_generation;
758 __le32 pad;
fd0c7679 759} __packed __aligned(8);
1c6fdbd8 760
14b393ee
KO
761/*
762 * bi_subvol and bi_parent_subvol are only set for subvolume roots:
763 */
764
8dd69d9f 765#define BCH_INODE_FIELDS_v2() \
a3e72262
KO
766 x(bi_atime, 96) \
767 x(bi_ctime, 96) \
768 x(bi_mtime, 96) \
769 x(bi_otime, 96) \
a3e70fb2
KO
770 x(bi_size, 64) \
771 x(bi_sectors, 64) \
772 x(bi_uid, 32) \
773 x(bi_gid, 32) \
774 x(bi_nlink, 32) \
775 x(bi_generation, 32) \
776 x(bi_dev, 32) \
777 x(bi_data_checksum, 8) \
778 x(bi_compression, 8) \
779 x(bi_project, 32) \
780 x(bi_background_compression, 8) \
781 x(bi_data_replicas, 8) \
782 x(bi_promote_target, 16) \
783 x(bi_foreground_target, 16) \
784 x(bi_background_target, 16) \
721d4ad8 785 x(bi_erasure_code, 16) \
ab2a29cc
KO
786 x(bi_fields_set, 16) \
787 x(bi_dir, 64) \
14b393ee
KO
788 x(bi_dir_offset, 64) \
789 x(bi_subvol, 32) \
790 x(bi_parent_subvol, 32)
a3e70fb2 791
8dd69d9f
KO
792#define BCH_INODE_FIELDS_v3() \
793 x(bi_atime, 96) \
794 x(bi_ctime, 96) \
795 x(bi_mtime, 96) \
796 x(bi_otime, 96) \
797 x(bi_uid, 32) \
798 x(bi_gid, 32) \
799 x(bi_nlink, 32) \
800 x(bi_generation, 32) \
801 x(bi_dev, 32) \
802 x(bi_data_checksum, 8) \
803 x(bi_compression, 8) \
804 x(bi_project, 32) \
805 x(bi_background_compression, 8) \
806 x(bi_data_replicas, 8) \
807 x(bi_promote_target, 16) \
808 x(bi_foreground_target, 16) \
809 x(bi_background_target, 16) \
810 x(bi_erasure_code, 16) \
811 x(bi_fields_set, 16) \
812 x(bi_dir, 64) \
813 x(bi_dir_offset, 64) \
814 x(bi_subvol, 32) \
a8b3a677
KO
815 x(bi_parent_subvol, 32) \
816 x(bi_nocow, 8)
8dd69d9f 817
d42dd4ad
KO
818/* subset of BCH_INODE_FIELDS */
819#define BCH_INODE_OPTS() \
820 x(data_checksum, 8) \
821 x(compression, 8) \
822 x(project, 32) \
823 x(background_compression, 8) \
824 x(data_replicas, 8) \
825 x(promote_target, 16) \
826 x(foreground_target, 16) \
827 x(background_target, 16) \
a8b3a677
KO
828 x(erasure_code, 16) \
829 x(nocow, 8)
1c6fdbd8 830
721d4ad8
KO
831enum inode_opt_id {
832#define x(name, ...) \
833 Inode_opt_##name,
834 BCH_INODE_OPTS()
835#undef x
836 Inode_opt_nr,
837};
838
1c6fdbd8
KO
839enum {
840 /*
841 * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
842 * flags)
843 */
3e3e02e6
KO
844 __BCH_INODE_SYNC = 0,
845 __BCH_INODE_IMMUTABLE = 1,
846 __BCH_INODE_APPEND = 2,
847 __BCH_INODE_NODUMP = 3,
848 __BCH_INODE_NOATIME = 4,
849
850 __BCH_INODE_I_SIZE_DIRTY = 5,
851 __BCH_INODE_I_SECTORS_DIRTY = 6,
852 __BCH_INODE_UNLINKED = 7,
853 __BCH_INODE_BACKPTR_UNTRUSTED = 8,
1c6fdbd8
KO
854
855 /* bits 20+ reserved for packed fields below: */
856};
857
858#define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC)
859#define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE)
860#define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND)
861#define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP)
862#define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME)
863#define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY)
864#define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
865#define BCH_INODE_UNLINKED (1 << __BCH_INODE_UNLINKED)
ab2a29cc 866#define BCH_INODE_BACKPTR_UNTRUSTED (1 << __BCH_INODE_BACKPTR_UNTRUSTED)
1c6fdbd8
KO
867
868LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24);
a3e72262
KO
869LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 31);
870LE32_BITMASK(INODE_NEW_VARINT, struct bch_inode, bi_flags, 31, 32);
1c6fdbd8 871
3e52c222
KO
872LE64_BITMASK(INODEv2_STR_HASH, struct bch_inode_v2, bi_flags, 20, 24);
873LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31);
874
8dd69d9f
KO
875LE64_BITMASK(INODEv3_STR_HASH, struct bch_inode_v3, bi_flags, 20, 24);
876LE64_BITMASK(INODEv3_NR_FIELDS, struct bch_inode_v3, bi_flags, 24, 31);
877
878LE64_BITMASK(INODEv3_FIELDS_START,
879 struct bch_inode_v3, bi_flags, 31, 36);
880LE64_BITMASK(INODEv3_MODE, struct bch_inode_v3, bi_flags, 36, 52);
881
1c6fdbd8
KO
882/* Dirents */
883
884/*
885 * Dirents (and xattrs) have to implement string lookups; since our b-tree
886 * doesn't support arbitrary length strings for the key, we instead index by a
887 * 64 bit hash (currently truncated sha1) of the string, stored in the offset
888 * field of the key - using linear probing to resolve hash collisions. This also
889 * provides us with the readdir cookie posix requires.
890 *
891 * Linear probing requires us to use whiteouts for deletions, in the event of a
892 * collision:
893 */
894
1c6fdbd8
KO
895struct bch_dirent {
896 struct bch_val v;
897
898 /* Target inode number: */
4db65027 899 union {
1c6fdbd8 900 __le64 d_inum;
4db65027
KO
901 struct { /* DT_SUBVOL */
902 __le32 d_child_subvol;
903 __le32 d_parent_subvol;
904 };
905 };
1c6fdbd8
KO
906
907 /*
908 * Copy of mode bits 12-15 from the target inode - so userspace can get
909 * the filetype without having to do a stat()
910 */
911 __u8 d_type;
912
913 __u8 d_name[];
fd0c7679 914} __packed __aligned(8);
1c6fdbd8 915
14b393ee
KO
916#define DT_SUBVOL 16
917#define BCH_DT_MAX 17
918
a5cf5a4b 919#define BCH_NAME_MAX ((unsigned) (U8_MAX * sizeof(__u64) - \
1c6fdbd8 920 sizeof(struct bkey) - \
502f973d 921 offsetof(struct bch_dirent, d_name)))
1c6fdbd8
KO
922
923/* Xattrs */
924
26609b61
KO
925#define KEY_TYPE_XATTR_INDEX_USER 0
926#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1
927#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2
928#define KEY_TYPE_XATTR_INDEX_TRUSTED 3
929#define KEY_TYPE_XATTR_INDEX_SECURITY 4
1c6fdbd8
KO
930
931struct bch_xattr {
932 struct bch_val v;
933 __u8 x_type;
934 __u8 x_name_len;
935 __le16 x_val_len;
936 __u8 x_name[];
fd0c7679 937} __packed __aligned(8);
1c6fdbd8
KO
938
939/* Bucket/allocation information: */
940
1c6fdbd8
KO
941struct bch_alloc {
942 struct bch_val v;
943 __u8 fields;
944 __u8 gen;
945 __u8 data[];
fd0c7679 946} __packed __aligned(8);
1c6fdbd8 947
7f4e1d5d 948#define BCH_ALLOC_FIELDS_V1() \
8fe826f9
KO
949 x(read_time, 16) \
950 x(write_time, 16) \
951 x(data_type, 8) \
952 x(dirty_sectors, 16) \
953 x(cached_sectors, 16) \
7f4e1d5d
KO
954 x(oldest_gen, 8) \
955 x(stripe, 32) \
956 x(stripe_redundancy, 8)
957
a8c752bb
KO
958enum {
959#define x(name, _bits) BCH_ALLOC_FIELD_V1_##name,
960 BCH_ALLOC_FIELDS_V1()
961#undef x
962};
963
7f4e1d5d
KO
964struct bch_alloc_v2 {
965 struct bch_val v;
966 __u8 nr_fields;
967 __u8 gen;
968 __u8 oldest_gen;
969 __u8 data_type;
970 __u8 data[];
fd0c7679 971} __packed __aligned(8);
7f4e1d5d
KO
972
973#define BCH_ALLOC_FIELDS_V2() \
974 x(read_time, 64) \
975 x(write_time, 64) \
66d90823
KO
976 x(dirty_sectors, 32) \
977 x(cached_sectors, 32) \
7f4e1d5d
KO
978 x(stripe, 32) \
979 x(stripe_redundancy, 8)
90541a74 980
3e52c222
KO
981struct bch_alloc_v3 {
982 struct bch_val v;
983 __le64 journal_seq;
984 __le32 flags;
985 __u8 nr_fields;
986 __u8 gen;
987 __u8 oldest_gen;
988 __u8 data_type;
989 __u8 data[];
fd0c7679 990} __packed __aligned(8);
3e52c222 991
a8c752bb
KO
992LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags, 0, 1)
993LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags, 1, 2)
994
3d48a7f8
KO
995struct bch_alloc_v4 {
996 struct bch_val v;
997 __u64 journal_seq;
998 __u32 flags;
999 __u8 gen;
1000 __u8 oldest_gen;
1001 __u8 data_type;
1002 __u8 stripe_redundancy;
1003 __u32 dirty_sectors;
1004 __u32 cached_sectors;
1005 __u64 io_time[2];
1006 __u32 stripe;
1007 __u32 nr_external_backpointers;
80c33085 1008 __u64 fragmentation_lru;
fd0c7679 1009} __packed __aligned(8);
3d48a7f8 1010
19a614d2 1011#define BCH_ALLOC_V4_U64s_V0 6
a5cf5a4b 1012#define BCH_ALLOC_V4_U64s (sizeof(struct bch_alloc_v4) / sizeof(__u64))
19a614d2 1013
3d48a7f8
KO
1014BITMASK(BCH_ALLOC_V4_NEED_DISCARD, struct bch_alloc_v4, flags, 0, 1)
1015BITMASK(BCH_ALLOC_V4_NEED_INC_GEN, struct bch_alloc_v4, flags, 1, 2)
1016BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags, 2, 8)
1017BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS, struct bch_alloc_v4, flags, 8, 14)
1018
a8c752bb
KO
1019#define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX 40
1020
1021struct bch_backpointer {
1022 struct bch_val v;
1023 __u8 btree_id;
1024 __u8 level;
1025 __u8 data_type;
1026 __u64 bucket_offset:40;
1027 __u32 bucket_len;
1028 struct bpos pos;
1029} __packed __aligned(8);
90541a74 1030
5250b74d
KO
1031#define KEY_TYPE_BUCKET_GENS_BITS 8
1032#define KEY_TYPE_BUCKET_GENS_NR (1U << KEY_TYPE_BUCKET_GENS_BITS)
1033#define KEY_TYPE_BUCKET_GENS_MASK (KEY_TYPE_BUCKET_GENS_NR - 1)
1034
1035struct bch_bucket_gens {
1036 struct bch_val v;
1037 u8 gens[KEY_TYPE_BUCKET_GENS_NR];
1038} __packed __aligned(8);
1039
1c6fdbd8
KO
1040/* Quotas: */
1041
1c6fdbd8
KO
1042enum quota_types {
1043 QTYP_USR = 0,
1044 QTYP_GRP = 1,
1045 QTYP_PRJ = 2,
1046 QTYP_NR = 3,
1047};
1048
1049enum quota_counters {
1050 Q_SPC = 0,
1051 Q_INO = 1,
1052 Q_COUNTERS = 2,
1053};
1054
1055struct bch_quota_counter {
1056 __le64 hardlimit;
1057 __le64 softlimit;
1058};
1059
1060struct bch_quota {
1061 struct bch_val v;
1062 struct bch_quota_counter c[Q_COUNTERS];
fd0c7679 1063} __packed __aligned(8);
1c6fdbd8 1064
cd575ddf
KO
1065/* Erasure coding */
1066
cd575ddf
KO
1067struct bch_stripe {
1068 struct bch_val v;
1069 __le16 sectors;
1070 __u8 algorithm;
1071 __u8 nr_blocks;
1072 __u8 nr_redundant;
1073
1074 __u8 csum_granularity_bits;
1075 __u8 csum_type;
1076 __u8 pad;
1077
81d8599e 1078 struct bch_extent_ptr ptrs[];
fd0c7679 1079} __packed __aligned(8);
cd575ddf 1080
76426098
KO
1081/* Reflink: */
1082
1083struct bch_reflink_p {
1084 struct bch_val v;
1085 __le64 idx;
6d76aefe
KO
1086 /*
1087 * A reflink pointer might point to an indirect extent which is then
1088 * later split (by copygc or rebalance). If we only pointed to part of
1089 * the original indirect extent, and then one of the fragments is
1090 * outside the range we point to, we'd leak a refcount: so when creating
1091 * reflink pointers, we need to store pad values to remember the full
1092 * range we were taking a reference on.
1093 */
1094 __le32 front_pad;
1095 __le32 back_pad;
fd0c7679 1096} __packed __aligned(8);
76426098
KO
1097
1098struct bch_reflink_v {
1099 struct bch_val v;
1100 __le64 refcount;
1101 union bch_extent_entry start[0];
1102 __u64 _data[0];
fd0c7679 1103} __packed __aligned(8);
76426098 1104
801a3de6
KO
1105struct bch_indirect_inline_data {
1106 struct bch_val v;
1107 __le64 refcount;
1108 u8 data[0];
1109};
1110
4be1a412
KO
1111/* Inline data */
1112
1113struct bch_inline_data {
1114 struct bch_val v;
1115 u8 data[0];
1116};
1117
14b393ee
KO
1118/* Subvolumes: */
1119
1120#define SUBVOL_POS_MIN POS(0, 1)
1121#define SUBVOL_POS_MAX POS(0, S32_MAX)
1122#define BCACHEFS_ROOT_SUBVOL 1
1123
1124struct bch_subvolume {
1125 struct bch_val v;
1126 __le32 flags;
1127 __le32 snapshot;
1128 __le64 inode;
653693be
KO
1129 __le32 parent;
1130 __le32 pad;
1131 bch_le128 otime;
14b393ee
KO
1132};
1133
1134LE32_BITMASK(BCH_SUBVOLUME_RO, struct bch_subvolume, flags, 0, 1)
1135/*
1136 * We need to know whether a subvolume is a snapshot so we can know whether we
1137 * can delete it (or whether it should just be rm -rf'd)
1138 */
1139LE32_BITMASK(BCH_SUBVOLUME_SNAP, struct bch_subvolume, flags, 1, 2)
2027875b 1140LE32_BITMASK(BCH_SUBVOLUME_UNLINKED, struct bch_subvolume, flags, 2, 3)
14b393ee
KO
1141
1142/* Snapshots */
1143
1144struct bch_snapshot {
1145 struct bch_val v;
1146 __le32 flags;
1147 __le32 parent;
1148 __le32 children[2];
1149 __le32 subvol;
1c59b483 1150 __le32 tree;
f26c67f4
KO
1151 __le32 depth;
1152 __le32 skip[3];
14b393ee
KO
1153};
1154
1155LE32_BITMASK(BCH_SNAPSHOT_DELETED, struct bch_snapshot, flags, 0, 1)
1156
1157/* True if a subvolume points to this snapshot node: */
1158LE32_BITMASK(BCH_SNAPSHOT_SUBVOL, struct bch_snapshot, flags, 1, 2)
1159
1c59b483
KO
1160/*
1161 * Snapshot trees:
1162 *
1163 * The snapshot_trees btree gives us persistent indentifier for each tree of
1164 * bch_snapshot nodes, and allow us to record and easily find the root/master
1165 * subvolume that other snapshots were created from:
1166 */
1167struct bch_snapshot_tree {
1168 struct bch_val v;
1169 __le32 master_subvol;
1170 __le32 root_snapshot;
1171};
1172
d326ab2f
KO
1173/* LRU btree: */
1174
1175struct bch_lru {
1176 struct bch_val v;
1177 __le64 idx;
fd0c7679 1178} __packed __aligned(8);
d326ab2f
KO
1179
1180#define LRU_ID_STRIPES (1U << 16)
1181
1c6fdbd8
KO
1182/* Optional/variable size superblock sections: */
1183
1184struct bch_sb_field {
1185 __u64 _data[0];
1186 __le32 u64s;
1187 __le32 type;
1188};
1189
25be2e5d
KO
1190#define BCH_SB_FIELDS() \
1191 x(journal, 0) \
1192 x(members, 1) \
1193 x(crypt, 2) \
1194 x(replicas_v0, 3) \
1195 x(quota, 4) \
1196 x(disk_groups, 5) \
1197 x(clean, 6) \
1198 x(replicas, 7) \
1199 x(journal_seq_blacklist, 8) \
104c6974
DH
1200 x(journal_v2, 9) \
1201 x(counters, 10)
1c6fdbd8
KO
1202
1203enum bch_sb_field_type {
1204#define x(f, nr) BCH_SB_FIELD_##f = nr,
1205 BCH_SB_FIELDS()
1206#undef x
1207 BCH_SB_FIELD_NR
1208};
1209
25be2e5d
KO
1210/*
1211 * Most superblock fields are replicated in all device's superblocks - a few are
1212 * not:
1213 */
1214#define BCH_SINGLE_DEVICE_SB_FIELDS \
1215 ((1U << BCH_SB_FIELD_journal)| \
1216 (1U << BCH_SB_FIELD_journal_v2))
1217
1c6fdbd8
KO
1218/* BCH_SB_FIELD_journal: */
1219
1220struct bch_sb_field_journal {
1221 struct bch_sb_field field;
1222 __le64 buckets[0];
1223};
1224
25be2e5d
KO
1225struct bch_sb_field_journal_v2 {
1226 struct bch_sb_field field;
1227
1228 struct bch_sb_field_journal_v2_entry {
1229 __le64 start;
1230 __le64 nr;
1231 } d[0];
1232};
1233
1c6fdbd8
KO
1234/* BCH_SB_FIELD_members: */
1235
8b335bae
KO
1236#define BCH_MIN_NR_NBUCKETS (1 << 6)
1237
1c6fdbd8
KO
1238struct bch_member {
1239 __uuid_t uuid;
1240 __le64 nbuckets; /* device size */
1241 __le16 first_bucket; /* index of first bucket used */
1242 __le16 bucket_size; /* sectors */
1243 __le32 pad;
1244 __le64 last_mount; /* time_t */
1245
1246 __le64 flags[2];
1247};
1248
1249LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags[0], 0, 4)
7243498d 1250/* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
1c6fdbd8
KO
1251LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags[0], 14, 15)
1252LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags[0], 15, 20)
1253LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags[0], 20, 28)
1254LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags[0], 28, 30)
c6b2826c
KO
1255LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
1256 struct bch_member, flags[0], 30, 31)
1c6fdbd8 1257
1c6fdbd8
KO
1258#if 0
1259LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20);
1260LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
1261#endif
1262
2436cb9f
KO
1263#define BCH_MEMBER_STATES() \
1264 x(rw, 0) \
1265 x(ro, 1) \
1266 x(failed, 2) \
1267 x(spare, 3)
1268
1c6fdbd8 1269enum bch_member_state {
2436cb9f
KO
1270#define x(t, n) BCH_MEMBER_STATE_##t = n,
1271 BCH_MEMBER_STATES()
1272#undef x
1273 BCH_MEMBER_STATE_NR
1c6fdbd8
KO
1274};
1275
1c6fdbd8
KO
1276struct bch_sb_field_members {
1277 struct bch_sb_field field;
1278 struct bch_member members[0];
1279};
1280
1281/* BCH_SB_FIELD_crypt: */
1282
1283struct nonce {
1284 __le32 d[4];
1285};
1286
1287struct bch_key {
1288 __le64 key[4];
1289};
1290
1291#define BCH_KEY_MAGIC \
a5cf5a4b
KO
1292 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \
1293 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \
1294 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \
1295 ((__u64) 'e' << 48)|((__u64) 'y' << 56))
1c6fdbd8
KO
1296
1297struct bch_encrypted_key {
1298 __le64 magic;
1299 struct bch_key key;
1300};
1301
1302/*
1303 * If this field is present in the superblock, it stores an encryption key which
1304 * is used encrypt all other data/metadata. The key will normally be encrypted
1305 * with the key userspace provides, but if encryption has been turned off we'll
1306 * just store the master key unencrypted in the superblock so we can access the
1307 * previously encrypted data.
1308 */
1309struct bch_sb_field_crypt {
1310 struct bch_sb_field field;
1311
1312 __le64 flags;
1313 __le64 kdf_flags;
1314 struct bch_encrypted_key key;
1315};
1316
1317LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4);
1318
1319enum bch_kdf_types {
1320 BCH_KDF_SCRYPT = 0,
1321 BCH_KDF_NR = 1,
1322};
1323
1324/* stored as base 2 log of scrypt params: */
1325LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16);
1326LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32);
1327LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48);
1328
1329/* BCH_SB_FIELD_replicas: */
1330
89fd25be 1331#define BCH_DATA_TYPES() \
822835ff 1332 x(free, 0) \
89fd25be
KO
1333 x(sb, 1) \
1334 x(journal, 2) \
1335 x(btree, 3) \
1336 x(user, 4) \
af4d05c4 1337 x(cached, 5) \
822835ff
KO
1338 x(parity, 6) \
1339 x(stripe, 7) \
1340 x(need_gc_gens, 8) \
1341 x(need_discard, 9)
89fd25be 1342
1c6fdbd8 1343enum bch_data_type {
89fd25be
KO
1344#define x(t, n) BCH_DATA_##t,
1345 BCH_DATA_TYPES()
1346#undef x
1347 BCH_DATA_NR
1c6fdbd8
KO
1348};
1349
822835ff
KO
1350static inline bool data_type_is_empty(enum bch_data_type type)
1351{
1352 switch (type) {
1353 case BCH_DATA_free:
1354 case BCH_DATA_need_gc_gens:
1355 case BCH_DATA_need_discard:
1356 return true;
1357 default:
1358 return false;
1359 }
1360}
1361
1362static inline bool data_type_is_hidden(enum bch_data_type type)
1363{
1364 switch (type) {
1365 case BCH_DATA_sb:
1366 case BCH_DATA_journal:
1367 return true;
1368 default:
1369 return false;
1370 }
1371}
1372
af9d3bc2
KO
1373struct bch_replicas_entry_v0 {
1374 __u8 data_type;
1375 __u8 nr_devs;
73bd774d 1376 __u8 devs[0];
fd0c7679 1377} __packed;
af9d3bc2
KO
1378
1379struct bch_sb_field_replicas_v0 {
1380 struct bch_sb_field field;
73bd774d 1381 struct bch_replicas_entry_v0 entries[0];
fd0c7679 1382} __packed __aligned(8);
af9d3bc2 1383
1c6fdbd8 1384struct bch_replicas_entry {
7a920560
KO
1385 __u8 data_type;
1386 __u8 nr_devs;
af9d3bc2 1387 __u8 nr_required;
73bd774d 1388 __u8 devs[0];
fd0c7679 1389} __packed;
1c6fdbd8 1390
22502ac2
KO
1391#define replicas_entry_bytes(_i) \
1392 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
1393
1c6fdbd8
KO
1394struct bch_sb_field_replicas {
1395 struct bch_sb_field field;
73bd774d 1396 struct bch_replicas_entry entries[0];
fd0c7679 1397} __packed __aligned(8);
1c6fdbd8
KO
1398
1399/* BCH_SB_FIELD_quota: */
1400
1401struct bch_sb_quota_counter {
1402 __le32 timelimit;
1403 __le32 warnlimit;
1404};
1405
1406struct bch_sb_quota_type {
1407 __le64 flags;
1408 struct bch_sb_quota_counter c[Q_COUNTERS];
1409};
1410
1411struct bch_sb_field_quota {
1412 struct bch_sb_field field;
1413 struct bch_sb_quota_type q[QTYP_NR];
fd0c7679 1414} __packed __aligned(8);
1c6fdbd8
KO
1415
1416/* BCH_SB_FIELD_disk_groups: */
1417
1418#define BCH_SB_LABEL_SIZE 32
1419
1420struct bch_disk_group {
1421 __u8 label[BCH_SB_LABEL_SIZE];
1422 __le64 flags[2];
fd0c7679 1423} __packed __aligned(8);
1c6fdbd8
KO
1424
1425LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1)
1426LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6)
1427LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24)
1428
1429struct bch_sb_field_disk_groups {
1430 struct bch_sb_field field;
1431 struct bch_disk_group entries[0];
fd0c7679 1432} __packed __aligned(8);
1c6fdbd8 1433
104c6974
DH
1434/* BCH_SB_FIELD_counters */
1435
674cfc26
KO
1436#define BCH_PERSISTENT_COUNTERS() \
1437 x(io_read, 0) \
1438 x(io_write, 1) \
1439 x(io_move, 2) \
1440 x(bucket_invalidate, 3) \
1441 x(bucket_discard, 4) \
1442 x(bucket_alloc, 5) \
1443 x(bucket_alloc_fail, 6) \
1444 x(btree_cache_scan, 7) \
1445 x(btree_cache_reap, 8) \
1446 x(btree_cache_cannibalize, 9) \
1447 x(btree_cache_cannibalize_lock, 10) \
1448 x(btree_cache_cannibalize_lock_fail, 11) \
1449 x(btree_cache_cannibalize_unlock, 12) \
1450 x(btree_node_write, 13) \
1451 x(btree_node_read, 14) \
1452 x(btree_node_compact, 15) \
1453 x(btree_node_merge, 16) \
1454 x(btree_node_split, 17) \
1455 x(btree_node_rewrite, 18) \
1456 x(btree_node_alloc, 19) \
1457 x(btree_node_free, 20) \
1458 x(btree_node_set_root, 21) \
1459 x(btree_path_relock_fail, 22) \
1460 x(btree_path_upgrade_fail, 23) \
1461 x(btree_reserve_get_fail, 24) \
1462 x(journal_entry_full, 25) \
1463 x(journal_full, 26) \
1464 x(journal_reclaim_finish, 27) \
1465 x(journal_reclaim_start, 28) \
1466 x(journal_write, 29) \
1467 x(read_promote, 30) \
1468 x(read_bounce, 31) \
1469 x(read_split, 33) \
1470 x(read_retry, 32) \
1471 x(read_reuse_race, 34) \
1472 x(move_extent_read, 35) \
1473 x(move_extent_write, 36) \
1474 x(move_extent_finish, 37) \
1475 x(move_extent_fail, 38) \
1476 x(move_extent_alloc_mem_fail, 39) \
1477 x(copygc, 40) \
1478 x(copygc_wait, 41) \
1479 x(gc_gens_end, 42) \
1480 x(gc_gens_start, 43) \
1481 x(trans_blocked_journal_reclaim, 44) \
1482 x(trans_restart_btree_node_reused, 45) \
1483 x(trans_restart_btree_node_split, 46) \
1484 x(trans_restart_fault_inject, 47) \
1485 x(trans_restart_iter_upgrade, 48) \
1486 x(trans_restart_journal_preres_get, 49) \
1487 x(trans_restart_journal_reclaim, 50) \
1488 x(trans_restart_journal_res_get, 51) \
1489 x(trans_restart_key_cache_key_realloced, 52) \
1490 x(trans_restart_key_cache_raced, 53) \
1491 x(trans_restart_mark_replicas, 54) \
1492 x(trans_restart_mem_realloced, 55) \
1493 x(trans_restart_memory_allocation_failure, 56) \
1494 x(trans_restart_relock, 57) \
1495 x(trans_restart_relock_after_fill, 58) \
1496 x(trans_restart_relock_key_cache_fill, 59) \
1497 x(trans_restart_relock_next_node, 60) \
1498 x(trans_restart_relock_parent_for_fill, 61) \
1499 x(trans_restart_relock_path, 62) \
1500 x(trans_restart_relock_path_intent, 63) \
1501 x(trans_restart_too_many_iters, 64) \
1502 x(trans_restart_traverse, 65) \
1503 x(trans_restart_upgrade, 66) \
1504 x(trans_restart_would_deadlock, 67) \
1505 x(trans_restart_would_deadlock_write, 68) \
1506 x(trans_restart_injected, 69) \
1507 x(trans_restart_key_cache_upgrade, 70) \
1508 x(trans_traverse_all, 71) \
1509 x(transaction_commit, 72) \
33bd5d06 1510 x(write_super, 73) \
920e69bc 1511 x(trans_restart_would_deadlock_recursion_limit, 74) \
e151580d
KO
1512 x(trans_restart_write_buffer_flush, 75) \
1513 x(trans_restart_split_race, 76)
104c6974
DH
1514
1515enum bch_persistent_counters {
1516#define x(t, n, ...) BCH_COUNTER_##t,
1517 BCH_PERSISTENT_COUNTERS()
1518#undef x
1519 BCH_COUNTER_NR
1520};
1521
1522struct bch_sb_field_counters {
1523 struct bch_sb_field field;
1524 __le64 d[0];
1525};
1526
1c6fdbd8
KO
1527/*
1528 * On clean shutdown, store btree roots and current journal sequence number in
1529 * the superblock:
1530 */
1531struct jset_entry {
1532 __le16 u64s;
1533 __u8 btree_id;
1534 __u8 level;
1535 __u8 type; /* designates what this jset holds */
1536 __u8 pad[3];
1537
1538 union {
1539 struct bkey_i start[0];
1540 __u64 _data[0];
1541 };
1542};
1543
1544struct bch_sb_field_clean {
1545 struct bch_sb_field field;
1546
1547 __le32 flags;
2abe5420
KO
1548 __le16 _read_clock; /* no longer used */
1549 __le16 _write_clock;
1c6fdbd8
KO
1550 __le64 journal_seq;
1551
1552 union {
1553 struct jset_entry start[0];
1554 __u64 _data[0];
1555 };
1556};
1557
1dd7f9d9
KO
1558struct journal_seq_blacklist_entry {
1559 __le64 start;
1560 __le64 end;
1561};
1562
1563struct bch_sb_field_journal_seq_blacklist {
1564 struct bch_sb_field field;
1565
1566 union {
1567 struct journal_seq_blacklist_entry start[0];
1568 __u64 _data[0];
1569 };
1570};
1571
1c6fdbd8
KO
1572/* Superblock: */
1573
1574/*
26609b61
KO
1575 * New versioning scheme:
1576 * One common version number for all on disk data structures - superblock, btree
1577 * nodes, journal entries
1c6fdbd8 1578 */
ba8eeae8
KO
1579#define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10))
1580#define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10)))
1581#define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0)
26609b61 1582
065bd335
KO
1583#define RECOVERY_PASS_ALL_FSCK (1ULL << 63)
1584
1585#define BCH_METADATA_VERSIONS() \
1586 x(bkey_renumber, BCH_VERSION(0, 10), \
1587 RECOVERY_PASS_ALL_FSCK) \
1588 x(inode_btree_change, BCH_VERSION(0, 11), \
1589 RECOVERY_PASS_ALL_FSCK) \
1590 x(snapshot, BCH_VERSION(0, 12), \
1591 RECOVERY_PASS_ALL_FSCK) \
1592 x(inode_backpointers, BCH_VERSION(0, 13), \
1593 RECOVERY_PASS_ALL_FSCK) \
1594 x(btree_ptr_sectors_written, BCH_VERSION(0, 14), \
1595 RECOVERY_PASS_ALL_FSCK) \
1596 x(snapshot_2, BCH_VERSION(0, 15), \
1597 BIT_ULL(BCH_RECOVERY_PASS_fs_upgrade_for_subvolumes)| \
1598 BIT_ULL(BCH_RECOVERY_PASS_initialize_subvolumes)| \
1599 RECOVERY_PASS_ALL_FSCK) \
1600 x(reflink_p_fix, BCH_VERSION(0, 16), \
1601 BIT_ULL(BCH_RECOVERY_PASS_fix_reflink_p)) \
1602 x(subvol_dirent, BCH_VERSION(0, 17), \
1603 RECOVERY_PASS_ALL_FSCK) \
1604 x(inode_v2, BCH_VERSION(0, 18), \
1605 RECOVERY_PASS_ALL_FSCK) \
1606 x(freespace, BCH_VERSION(0, 19), \
1607 RECOVERY_PASS_ALL_FSCK) \
1608 x(alloc_v4, BCH_VERSION(0, 20), \
1609 RECOVERY_PASS_ALL_FSCK) \
1610 x(new_data_types, BCH_VERSION(0, 21), \
1611 RECOVERY_PASS_ALL_FSCK) \
1612 x(backpointers, BCH_VERSION(0, 22), \
1613 RECOVERY_PASS_ALL_FSCK) \
1614 x(inode_v3, BCH_VERSION(0, 23), \
1615 RECOVERY_PASS_ALL_FSCK) \
1616 x(unwritten_extents, BCH_VERSION(0, 24), \
1617 RECOVERY_PASS_ALL_FSCK) \
1618 x(bucket_gens, BCH_VERSION(0, 25), \
1619 BIT_ULL(BCH_RECOVERY_PASS_bucket_gens_init)| \
1620 RECOVERY_PASS_ALL_FSCK) \
1621 x(lru_v2, BCH_VERSION(0, 26), \
1622 RECOVERY_PASS_ALL_FSCK) \
1623 x(fragmentation_lru, BCH_VERSION(0, 27), \
1624 RECOVERY_PASS_ALL_FSCK) \
1625 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28), \
1626 RECOVERY_PASS_ALL_FSCK) \
1627 x(snapshot_trees, BCH_VERSION(0, 29), \
1628 RECOVERY_PASS_ALL_FSCK) \
1629 x(major_minor, BCH_VERSION(1, 0), \
f26c67f4
KO
1630 0) \
1631 x(snapshot_skiplists, BCH_VERSION(1, 1), \
dde8cb11
KO
1632 BIT_ULL(BCH_RECOVERY_PASS_check_snapshots)) \
1633 x(deleted_inodes, BCH_VERSION(1, 2), \
1634 BIT_ULL(BCH_RECOVERY_PASS_check_inodes))
74b33393 1635
26609b61 1636enum bcachefs_metadata_version {
74b33393 1637 bcachefs_metadata_version_min = 9,
065bd335 1638#define x(t, n, upgrade_passes) bcachefs_metadata_version_##t = n,
74b33393
KO
1639 BCH_METADATA_VERSIONS()
1640#undef x
1641 bcachefs_metadata_version_max
26609b61 1642};
1c6fdbd8 1643
ba8eeae8 1644static const unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_major_minor;
1c59b483 1645
26609b61 1646#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
1c6fdbd8
KO
1647
1648#define BCH_SB_SECTOR 8
1649#define BCH_SB_MEMBERS_MAX 64 /* XXX kill */
1650
1651struct bch_sb_layout {
1652 __uuid_t magic; /* bcachefs superblock UUID */
1653 __u8 layout_type;
1654 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */
1655 __u8 nr_superblocks;
1656 __u8 pad[5];
1657 __le64 sb_offset[61];
fd0c7679 1658} __packed __aligned(8);
1c6fdbd8
KO
1659
1660#define BCH_SB_LAYOUT_SECTOR 7
1661
1662/*
1663 * @offset - sector where this sb was written
1664 * @version - on disk format version
26609b61
KO
1665 * @version_min - Oldest metadata version this filesystem contains; so we can
1666 * safely drop compatibility code and refuse to mount filesystems
1667 * we'd need it for
e1538212 1668 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC)
1c6fdbd8
KO
1669 * @seq - incremented each time superblock is written
1670 * @uuid - used for generating various magic numbers and identifying
1671 * member devices, never changes
1672 * @user_uuid - user visible UUID, may be changed
1673 * @label - filesystem label
1674 * @seq - identifies most recent superblock, incremented each time
1675 * superblock is written
1676 * @features - enabled incompatible features
1677 */
1678struct bch_sb {
1679 struct bch_csum csum;
1680 __le16 version;
1681 __le16 version_min;
1682 __le16 pad[2];
1683 __uuid_t magic;
1684 __uuid_t uuid;
1685 __uuid_t user_uuid;
1686 __u8 label[BCH_SB_LABEL_SIZE];
1687 __le64 offset;
1688 __le64 seq;
1689
1690 __le16 block_size;
1691 __u8 dev_idx;
1692 __u8 nr_devices;
1693 __le32 u64s;
1694
1695 __le64 time_base_lo;
1696 __le32 time_base_hi;
1697 __le32 time_precision;
1698
1699 __le64 flags[8];
1700 __le64 features[2];
1701 __le64 compat[2];
1702
1703 struct bch_sb_layout layout;
1704
1705 union {
1706 struct bch_sb_field start[0];
1707 __le64 _data[0];
1708 };
fd0c7679 1709} __packed __aligned(8);
1c6fdbd8
KO
1710
1711/*
1712 * Flags:
1713 * BCH_SB_INITALIZED - set on first mount
1714 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
1715 * behaviour of mount/recovery path:
1716 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
1717 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
1718 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
1719 * DATA/META_CSUM_TYPE. Also indicates encryption
1720 * algorithm in use, if/when we get more than one
1721 */
1722
1723LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16);
1724
1725LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1);
1726LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2);
1727LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8);
1728LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12);
1729
1730LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28);
1731
1732LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33);
1733LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40);
1734
1735LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44);
1736LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48);
1737
1738LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
1739LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
1740
1741LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57);
1742LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58);
1743LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59);
1744LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60);
1745
0bc166ff 1746LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61);
aae15aaf 1747LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
0bc166ff 1748
7d6f07ed 1749LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63);
36b8372b 1750
1c6fdbd8 1751LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4);
e86e9124 1752LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8);
1c6fdbd8
KO
1753LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9);
1754
1755LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10);
1756LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14);
1757
1758/*
1759 * Max size of an extent that may require bouncing to read or write
1760 * (checksummed, compressed): 64k
1761 */
1762LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1763 struct bch_sb, flags[1], 14, 20);
1764
1765LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24);
1766LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28);
1767
1768LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40);
1769LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52);
1770LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64);
1771
e86e9124 1772LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO,
1c6fdbd8 1773 struct bch_sb, flags[2], 0, 4);
a50ed7c8 1774LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64);
1c6fdbd8 1775
cd575ddf 1776LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16);
d042b040 1777LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28);
b282a74f 1778LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29);
996fb577 1779LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
2430e72f
KO
1780LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1781LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1782LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
fb64f3fd 1783LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
a8b3a677 1784LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34);
920e69bc 1785LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54);
3045bb95 1786LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56);
cd575ddf 1787
e86e9124
KO
1788LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60);
1789LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI,
1790 struct bch_sb, flags[4], 60, 64);
24964e1c
KO
1791
1792LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
1793 struct bch_sb, flags[5], 0, 16);
1794
e86e9124
KO
1795static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb)
1796{
1797 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4);
1798}
1799
1800static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1801{
1802 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v);
1803 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4);
1804}
1805
1806static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb)
1807{
1808 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) |
1809 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4);
1810}
1811
1812static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1813{
1814 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v);
1815 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4);
1816}
1817
1c3ff72c
KO
1818/*
1819 * Features:
1820 *
1821 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
1822 * reflink: gates KEY_TYPE_reflink
1823 * inline_data: gates KEY_TYPE_inline_data
6404dcc9 1824 * new_siphash: gates BCH_STR_HASH_siphash
bcd6f3e0 1825 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1c3ff72c
KO
1826 */
1827#define BCH_SB_FEATURES() \
1828 x(lz4, 0) \
1829 x(gzip, 1) \
1830 x(zstd, 2) \
1831 x(atomic_nlink, 3) \
1832 x(ec, 4) \
1833 x(journal_seq_blacklist_v3, 5) \
1834 x(reflink, 6) \
1835 x(new_siphash, 7) \
bcd6f3e0 1836 x(inline_data, 8) \
ab05de4c 1837 x(new_extent_overwrite, 9) \
548b3d20 1838 x(incompressible, 10) \
e3e464ac 1839 x(btree_ptr_v2, 11) \
6357d607 1840 x(extents_above_btree_updates, 12) \
801a3de6 1841 x(btree_updates_journalled, 13) \
a3e72262 1842 x(reflink_inline_data, 14) \
adbcada4 1843 x(new_varint, 15) \
7f4e1d5d 1844 x(journal_no_flush, 16) \
8042b5b7
KO
1845 x(alloc_v2, 17) \
1846 x(extents_across_btree_nodes, 18)
1847
1848#define BCH_SB_FEATURES_ALWAYS \
1849 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \
1850 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1851 (1ULL << BCH_FEATURE_btree_updates_journalled)|\
73590619 1852 (1ULL << BCH_FEATURE_alloc_v2)|\
8042b5b7 1853 (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1c3ff72c 1854
b807a0c8 1855#define BCH_SB_FEATURES_ALL \
8042b5b7
KO
1856 (BCH_SB_FEATURES_ALWAYS| \
1857 (1ULL << BCH_FEATURE_new_siphash)| \
e3e464ac 1858 (1ULL << BCH_FEATURE_btree_ptr_v2)| \
adbcada4 1859 (1ULL << BCH_FEATURE_new_varint)| \
73590619 1860 (1ULL << BCH_FEATURE_journal_no_flush))
b807a0c8 1861
1c3ff72c
KO
1862enum bch_sb_feature {
1863#define x(f, n) BCH_FEATURE_##f,
1864 BCH_SB_FEATURES()
1865#undef x
c258f28e 1866 BCH_FEATURE_NR,
1c6fdbd8
KO
1867};
1868
19dd3172
KO
1869#define BCH_SB_COMPAT() \
1870 x(alloc_info, 0) \
1871 x(alloc_metadata, 1) \
1872 x(extents_above_btree_updates_done, 2) \
1873 x(bformat_overflow_done, 3)
1874
1df42b57 1875enum bch_sb_compat {
19dd3172
KO
1876#define x(f, n) BCH_COMPAT_##f,
1877 BCH_SB_COMPAT()
1878#undef x
1879 BCH_COMPAT_NR,
1df42b57
KO
1880};
1881
1c6fdbd8
KO
1882/* options: */
1883
3045bb95
KO
1884#define BCH_VERSION_UPGRADE_OPTS() \
1885 x(compatible, 0) \
1886 x(incompatible, 1) \
1887 x(none, 2)
1888
1889enum bch_version_upgrade_opts {
1890#define x(t, n) BCH_VERSION_UPGRADE_##t = n,
1891 BCH_VERSION_UPGRADE_OPTS()
1892#undef x
1893};
1894
1c6fdbd8
KO
1895#define BCH_REPLICAS_MAX 4U
1896
ffb7c3d3
KO
1897#define BCH_BKEY_PTRS_MAX 16U
1898
2436cb9f
KO
1899#define BCH_ERROR_ACTIONS() \
1900 x(continue, 0) \
1901 x(ro, 1) \
1902 x(panic, 2)
1903
1c6fdbd8 1904enum bch_error_actions {
2436cb9f
KO
1905#define x(t, n) BCH_ON_ERROR_##t = n,
1906 BCH_ERROR_ACTIONS()
1907#undef x
1908 BCH_ON_ERROR_NR
1c6fdbd8
KO
1909};
1910
6404dcc9
KO
1911#define BCH_STR_HASH_TYPES() \
1912 x(crc32c, 0) \
1913 x(crc64, 1) \
1914 x(siphash_old, 2) \
1915 x(siphash, 3)
1916
73501ab8 1917enum bch_str_hash_type {
6404dcc9
KO
1918#define x(t, n) BCH_STR_HASH_##t = n,
1919 BCH_STR_HASH_TYPES()
1920#undef x
1921 BCH_STR_HASH_NR
73501ab8
KO
1922};
1923
2436cb9f
KO
1924#define BCH_STR_HASH_OPTS() \
1925 x(crc32c, 0) \
1926 x(crc64, 1) \
1927 x(siphash, 2)
1928
73501ab8 1929enum bch_str_hash_opts {
2436cb9f
KO
1930#define x(t, n) BCH_STR_HASH_OPT_##t = n,
1931 BCH_STR_HASH_OPTS()
1932#undef x
1933 BCH_STR_HASH_OPT_NR
1c6fdbd8
KO
1934};
1935
6404dcc9
KO
1936#define BCH_CSUM_TYPES() \
1937 x(none, 0) \
1938 x(crc32c_nonzero, 1) \
1939 x(crc64_nonzero, 2) \
1940 x(chacha20_poly1305_80, 3) \
1941 x(chacha20_poly1305_128, 4) \
1942 x(crc32c, 5) \
1943 x(crc64, 6) \
1944 x(xxhash, 7)
1945
1c3ff72c 1946enum bch_csum_type {
6404dcc9
KO
1947#define x(t, n) BCH_CSUM_##t = n,
1948 BCH_CSUM_TYPES()
1949#undef x
1950 BCH_CSUM_NR
1c3ff72c
KO
1951};
1952
1953static const unsigned bch_crc_bytes[] = {
6404dcc9
KO
1954 [BCH_CSUM_none] = 0,
1955 [BCH_CSUM_crc32c_nonzero] = 4,
1956 [BCH_CSUM_crc32c] = 4,
1957 [BCH_CSUM_crc64_nonzero] = 8,
1958 [BCH_CSUM_crc64] = 8,
1959 [BCH_CSUM_xxhash] = 8,
1960 [BCH_CSUM_chacha20_poly1305_80] = 10,
1961 [BCH_CSUM_chacha20_poly1305_128] = 16,
1c3ff72c
KO
1962};
1963
1964static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1965{
1966 switch (type) {
6404dcc9
KO
1967 case BCH_CSUM_chacha20_poly1305_80:
1968 case BCH_CSUM_chacha20_poly1305_128:
1c3ff72c
KO
1969 return true;
1970 default:
1971 return false;
1972 }
1973}
1974
2436cb9f
KO
1975#define BCH_CSUM_OPTS() \
1976 x(none, 0) \
1977 x(crc32c, 1) \
41e63382 1978 x(crc64, 2) \
1979 x(xxhash, 3)
2436cb9f 1980
1c3ff72c 1981enum bch_csum_opts {
2436cb9f
KO
1982#define x(t, n) BCH_CSUM_OPT_##t = n,
1983 BCH_CSUM_OPTS()
1984#undef x
1985 BCH_CSUM_OPT_NR
1c3ff72c
KO
1986};
1987
1c6fdbd8 1988#define BCH_COMPRESSION_TYPES() \
ab05de4c
KO
1989 x(none, 0) \
1990 x(lz4_old, 1) \
1991 x(gzip, 2) \
1992 x(lz4, 3) \
1993 x(zstd, 4) \
1994 x(incompressible, 5)
1c6fdbd8 1995
1c3ff72c 1996enum bch_compression_type {
2436cb9f 1997#define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1c6fdbd8 1998 BCH_COMPRESSION_TYPES()
1c3ff72c
KO
1999#undef x
2000 BCH_COMPRESSION_TYPE_NR
2001};
2002
2003#define BCH_COMPRESSION_OPTS() \
2004 x(none, 0) \
2005 x(lz4, 1) \
2006 x(gzip, 2) \
2007 x(zstd, 3)
2008
2009enum bch_compression_opts {
2436cb9f 2010#define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1c3ff72c 2011 BCH_COMPRESSION_OPTS()
1c6fdbd8
KO
2012#undef x
2013 BCH_COMPRESSION_OPT_NR
2014};
2015
2016/*
2017 * Magic numbers
2018 *
2019 * The various other data structures have their own magic numbers, which are
2020 * xored with the first part of the cache set's UUID
2021 */
2022
2023#define BCACHE_MAGIC \
2024 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
2025 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
2026#define BCHFS_MAGIC \
2027 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
2028 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
2029
2030#define BCACHEFS_STATFS_MAGIC 0xca451a4e
2031
2032#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
2033#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
2034
2035static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
2036{
2037 __le64 ret;
a1019576 2038
1c6fdbd8
KO
2039 memcpy(&ret, &sb->uuid, sizeof(ret));
2040 return ret;
2041}
2042
2043static inline __u64 __jset_magic(struct bch_sb *sb)
2044{
2045 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
2046}
2047
2048static inline __u64 __bset_magic(struct bch_sb *sb)
2049{
2050 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
2051}
2052
2053/* Journal */
2054
1c6fdbd8
KO
2055#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
2056
2057#define BCH_JSET_ENTRY_TYPES() \
2058 x(btree_keys, 0) \
2059 x(btree_root, 1) \
2060 x(prio_ptrs, 2) \
2061 x(blacklist, 3) \
2c5af169 2062 x(blacklist_v2, 4) \
3577df5f 2063 x(usage, 5) \
2abe5420 2064 x(data_usage, 6) \
180fb49d 2065 x(clock, 7) \
fb64f3fd 2066 x(dev_usage, 8) \
cb685ce7
KO
2067 x(log, 9) \
2068 x(overwrite, 10)
1c6fdbd8
KO
2069
2070enum {
2071#define x(f, nr) BCH_JSET_ENTRY_##f = nr,
2072 BCH_JSET_ENTRY_TYPES()
2073#undef x
2074 BCH_JSET_ENTRY_NR
2075};
2076
2077/*
2078 * Journal sequence numbers can be blacklisted: bsets record the max sequence
2079 * number of all the journal entries they contain updates for, so that on
2080 * recovery we can ignore those bsets that contain index updates newer that what
2081 * made it into the journal.
2082 *
2083 * This means that we can't reuse that journal_seq - we have to skip it, and
2084 * then record that we skipped it so that the next time we crash and recover we
2085 * don't think there was a missing journal entry.
2086 */
2087struct jset_entry_blacklist {
2088 struct jset_entry entry;
2089 __le64 seq;
2090};
2091
2092struct jset_entry_blacklist_v2 {
2093 struct jset_entry entry;
2094 __le64 start;
2095 __le64 end;
2096};
2097
528b18e6
KO
2098#define BCH_FS_USAGE_TYPES() \
2099 x(reserved, 0) \
2100 x(inodes, 1) \
2101 x(key_version, 2)
2102
2c5af169 2103enum {
528b18e6
KO
2104#define x(f, nr) BCH_FS_USAGE_##f = nr,
2105 BCH_FS_USAGE_TYPES()
2106#undef x
2107 BCH_FS_USAGE_NR
2c5af169
KO
2108};
2109
2110struct jset_entry_usage {
2111 struct jset_entry entry;
3577df5f 2112 __le64 v;
fd0c7679 2113} __packed;
3577df5f
KO
2114
2115struct jset_entry_data_usage {
2116 struct jset_entry entry;
2117 __le64 v;
2c5af169 2118 struct bch_replicas_entry r;
fd0c7679 2119} __packed;
2c5af169 2120
2abe5420
KO
2121struct jset_entry_clock {
2122 struct jset_entry entry;
2123 __u8 rw;
2124 __u8 pad[7];
2125 __le64 time;
fd0c7679 2126} __packed;
2abe5420 2127
180fb49d
KO
2128struct jset_entry_dev_usage_type {
2129 __le64 buckets;
2130 __le64 sectors;
2131 __le64 fragmented;
fd0c7679 2132} __packed;
180fb49d
KO
2133
2134struct jset_entry_dev_usage {
2135 struct jset_entry entry;
2136 __le32 dev;
2137 __u32 pad;
2138
2139 __le64 buckets_ec;
822835ff 2140 __le64 _buckets_unavailable; /* No longer used */
180fb49d
KO
2141
2142 struct jset_entry_dev_usage_type d[];
bf5a261c 2143};
180fb49d 2144
528b18e6
KO
2145static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
2146{
2147 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
2148 sizeof(struct jset_entry_dev_usage_type);
2149}
2150
fb64f3fd
KO
2151struct jset_entry_log {
2152 struct jset_entry entry;
2153 u8 d[];
fd0c7679 2154} __packed;
fb64f3fd 2155
1c6fdbd8
KO
2156/*
2157 * On disk format for a journal entry:
2158 * seq is monotonically increasing; every journal entry has its own unique
2159 * sequence number.
2160 *
2161 * last_seq is the oldest journal entry that still has keys the btree hasn't
2162 * flushed to disk yet.
2163 *
2164 * version is for on disk format changes.
2165 */
2166struct jset {
2167 struct bch_csum csum;
2168
2169 __le64 magic;
2170 __le64 seq;
2171 __le32 version;
2172 __le32 flags;
2173
2174 __le32 u64s; /* size of d[] in u64s */
2175
2176 __u8 encrypted_start[0];
2177
2abe5420
KO
2178 __le16 _read_clock; /* no longer used */
2179 __le16 _write_clock;
1c6fdbd8
KO
2180
2181 /* Sequence number of oldest dirty journal entry */
2182 __le64 last_seq;
2183
2184
2185 union {
2186 struct jset_entry start[0];
2187 __u64 _data[0];
2188 };
fd0c7679 2189} __packed __aligned(8);
1c6fdbd8
KO
2190
2191LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
2192LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5);
adbcada4 2193LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6);
1c6fdbd8 2194
8b335bae 2195#define BCH_JOURNAL_BUCKETS_MIN 8
1c6fdbd8
KO
2196
2197/* Btree: */
2198
e8d2fe3b
KO
2199enum btree_id_flags {
2200 BTREE_ID_EXTENTS = BIT(0),
2201 BTREE_ID_SNAPSHOTS = BIT(1),
2202 BTREE_ID_DATA = BIT(2),
2203};
2204
2205#define BCH_BTREE_IDS() \
2206 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\
2207 BIT_ULL(KEY_TYPE_whiteout)| \
2208 BIT_ULL(KEY_TYPE_error)| \
2209 BIT_ULL(KEY_TYPE_cookie)| \
2210 BIT_ULL(KEY_TYPE_extent)| \
2211 BIT_ULL(KEY_TYPE_reservation)| \
2212 BIT_ULL(KEY_TYPE_reflink_p)| \
2213 BIT_ULL(KEY_TYPE_inline_data)) \
2214 x(inodes, 1, BTREE_ID_SNAPSHOTS, \
2215 BIT_ULL(KEY_TYPE_whiteout)| \
2216 BIT_ULL(KEY_TYPE_inode)| \
2217 BIT_ULL(KEY_TYPE_inode_v2)| \
2218 BIT_ULL(KEY_TYPE_inode_v3)| \
2219 BIT_ULL(KEY_TYPE_inode_generation)) \
2220 x(dirents, 2, BTREE_ID_SNAPSHOTS, \
2221 BIT_ULL(KEY_TYPE_whiteout)| \
2222 BIT_ULL(KEY_TYPE_hash_whiteout)| \
2223 BIT_ULL(KEY_TYPE_dirent)) \
2224 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \
2225 BIT_ULL(KEY_TYPE_whiteout)| \
2226 BIT_ULL(KEY_TYPE_cookie)| \
2227 BIT_ULL(KEY_TYPE_hash_whiteout)| \
2228 BIT_ULL(KEY_TYPE_xattr)) \
2229 x(alloc, 4, 0, \
2230 BIT_ULL(KEY_TYPE_alloc)| \
2231 BIT_ULL(KEY_TYPE_alloc_v2)| \
2232 BIT_ULL(KEY_TYPE_alloc_v3)| \
2233 BIT_ULL(KEY_TYPE_alloc_v4)) \
2234 x(quotas, 5, 0, \
2235 BIT_ULL(KEY_TYPE_quota)) \
2236 x(stripes, 6, 0, \
2237 BIT_ULL(KEY_TYPE_stripe)) \
2238 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \
2239 BIT_ULL(KEY_TYPE_reflink_v)| \
2240 BIT_ULL(KEY_TYPE_indirect_inline_data)) \
2241 x(subvolumes, 8, 0, \
2242 BIT_ULL(KEY_TYPE_subvolume)) \
2243 x(snapshots, 9, 0, \
2244 BIT_ULL(KEY_TYPE_snapshot)) \
2245 x(lru, 10, 0, \
2246 BIT_ULL(KEY_TYPE_set)) \
2247 x(freespace, 11, BTREE_ID_EXTENTS, \
2248 BIT_ULL(KEY_TYPE_set)) \
2249 x(need_discard, 12, 0, \
2250 BIT_ULL(KEY_TYPE_set)) \
2251 x(backpointers, 13, 0, \
2252 BIT_ULL(KEY_TYPE_backpointer)) \
2253 x(bucket_gens, 14, 0, \
2254 BIT_ULL(KEY_TYPE_bucket_gens)) \
2255 x(snapshot_trees, 15, 0, \
dde8cb11
KO
2256 BIT_ULL(KEY_TYPE_snapshot_tree)) \
2257 x(deleted_inodes, 16, BTREE_ID_SNAPSHOTS, \
2258 BIT_ULL(KEY_TYPE_set))
1c6fdbd8
KO
2259
2260enum btree_id {
e8d2fe3b 2261#define x(name, nr, ...) BTREE_ID_##name = nr,
26609b61
KO
2262 BCH_BTREE_IDS()
2263#undef x
1c6fdbd8
KO
2264 BTREE_ID_NR
2265};
2266
1c6fdbd8
KO
2267#define BTREE_MAX_DEPTH 4U
2268
2269/* Btree nodes */
2270
1c6fdbd8
KO
2271/*
2272 * Btree nodes
2273 *
2274 * On disk a btree node is a list/log of these; within each set the keys are
2275 * sorted
2276 */
2277struct bset {
2278 __le64 seq;
2279
2280 /*
2281 * Highest journal entry this bset contains keys for.
2282 * If on recovery we don't see that journal entry, this bset is ignored:
2283 * this allows us to preserve the order of all index updates after a
2284 * crash, since the journal records a total order of all index updates
2285 * and anything that didn't make it to the journal doesn't get used.
2286 */
2287 __le64 journal_seq;
2288
2289 __le32 flags;
2290 __le16 version;
2291 __le16 u64s; /* count of d[] in u64s */
2292
2293 union {
2294 struct bkey_packed start[0];
2295 __u64 _data[0];
2296 };
fd0c7679 2297} __packed __aligned(8);
1c6fdbd8
KO
2298
2299LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
2300
2301LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5);
2302LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
2303 struct bset, flags, 5, 6);
2304
e719fc34
KO
2305/* Sector offset within the btree node: */
2306LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32);
2307
1c6fdbd8
KO
2308struct btree_node {
2309 struct bch_csum csum;
2310 __le64 magic;
2311
2312 /* this flags field is encrypted, unlike bset->flags: */
2313 __le64 flags;
2314
2315 /* Closed interval: */
2316 struct bpos min_key;
2317 struct bpos max_key;
e751c01a 2318 struct bch_extent_ptr _ptr; /* not used anymore */
1c6fdbd8
KO
2319 struct bkey_format format;
2320
2321 union {
2322 struct bset keys;
2323 struct {
2324 __u8 pad[22];
2325 __le16 u64s;
2326 __u64 _data[0];
2327
2328 };
2329 };
fd0c7679 2330} __packed __aligned(8);
1c6fdbd8 2331
4e1430a7 2332LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4);
1c6fdbd8 2333LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8);
bcd6f3e0
KO
2334LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
2335 struct btree_node, flags, 8, 9);
4e1430a7
KO
2336LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25);
2337/* 25-32 unused */
1c6fdbd8
KO
2338LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64);
2339
4e1430a7
KO
2340static inline __u64 BTREE_NODE_ID(struct btree_node *n)
2341{
2342 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4);
2343}
2344
a5cf5a4b 2345static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v)
4e1430a7
KO
2346{
2347 SET_BTREE_NODE_ID_LO(n, v);
2348 SET_BTREE_NODE_ID_HI(n, v >> 4);
2349}
2350
1c6fdbd8
KO
2351struct btree_node_entry {
2352 struct bch_csum csum;
2353
2354 union {
2355 struct bset keys;
2356 struct {
2357 __u8 pad[22];
2358 __le16 u64s;
2359 __u64 _data[0];
1c6fdbd8
KO
2360 };
2361 };
fd0c7679 2362} __packed __aligned(8);
1c6fdbd8
KO
2363
2364#endif /* _BCACHEFS_FORMAT_H */