bcachefs: BCH_SB_VERSION_UPGRADE_COMPLETE()
[linux-block.git] / fs / bcachefs / bcachefs_format.h
CommitLineData
1c6fdbd8
KO
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_FORMAT_H
3#define _BCACHEFS_FORMAT_H
4
5/*
6 * bcachefs on disk data structures
7 *
8 * OVERVIEW:
9 *
10 * There are three main types of on disk data structures in bcachefs (this is
11 * reduced from 5 in bcache)
12 *
13 * - superblock
14 * - journal
15 * - btree
16 *
17 * The btree is the primary structure; most metadata exists as keys in the
18 * various btrees. There are only a small number of btrees, they're not
19 * sharded - we have one btree for extents, another for inodes, et cetera.
20 *
21 * SUPERBLOCK:
22 *
23 * The superblock contains the location of the journal, the list of devices in
24 * the filesystem, and in general any metadata we need in order to decide
25 * whether we can start a filesystem or prior to reading the journal/btree
26 * roots.
27 *
28 * The superblock is extensible, and most of the contents of the superblock are
29 * in variable length, type tagged fields; see struct bch_sb_field.
30 *
31 * Backup superblocks do not reside in a fixed location; also, superblocks do
32 * not have a fixed size. To locate backup superblocks we have struct
33 * bch_sb_layout; we store a copy of this inside every superblock, and also
34 * before the first superblock.
35 *
36 * JOURNAL:
37 *
38 * The journal primarily records btree updates in the order they occurred;
39 * journal replay consists of just iterating over all the keys in the open
40 * journal entries and re-inserting them into the btrees.
41 *
42 * The journal also contains entry types for the btree roots, and blacklisted
43 * journal sequence numbers (see journal_seq_blacklist.c).
44 *
45 * BTREE:
46 *
47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48 * 128k-256k) and log structured. We use struct btree_node for writing the first
49 * entry in a given node (offset 0), and struct btree_node_entry for all
50 * subsequent writes.
51 *
52 * After the header, btree node entries contain a list of keys in sorted order.
53 * Values are stored inline with the keys; since values are variable length (and
54 * keys effectively are variable length too, due to packing) we can't do random
55 * access without building up additional in memory tables in the btree node read
56 * path.
57 *
58 * BTREE KEYS (struct bkey):
59 *
60 * The various btrees share a common format for the key - so as to avoid
61 * switching in fastpath lookup/comparison code - but define their own
62 * structures for the key values.
63 *
64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65 * size is just under 2k. The common part also contains a type tag for the
66 * value, and a format field indicating whether the key is packed or not (and
67 * also meant to allow adding new key fields in the future, if desired).
68 *
69 * bkeys, when stored within a btree node, may also be packed. In that case, the
70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71 * be generous with field sizes in the common part of the key format (64 bit
72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73 */
74
75#include <asm/types.h>
76#include <asm/byteorder.h>
7121643e 77#include <linux/kernel.h>
1c6fdbd8 78#include <linux/uuid.h>
528b18e6 79#include "vstructs.h"
1c6fdbd8
KO
80
81#ifdef __KERNEL__
82typedef uuid_t __uuid_t;
83#endif
84
3d48a7f8
KO
85#define BITMASK(name, type, field, offset, end) \
86static const unsigned name##_OFFSET = offset; \
87static const unsigned name##_BITS = (end - offset); \
88 \
89static inline __u64 name(const type *k) \
90{ \
91 return (k->field >> offset) & ~(~0ULL << (end - offset)); \
92} \
93 \
94static inline void SET_##name(type *k, __u64 v) \
95{ \
96 k->field &= ~(~(~0ULL << (end - offset)) << offset); \
97 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
98}
99
1c6fdbd8
KO
100#define LE_BITMASK(_bits, name, type, field, offset, end) \
101static const unsigned name##_OFFSET = offset; \
102static const unsigned name##_BITS = (end - offset); \
103static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1; \
104 \
105static inline __u64 name(const type *k) \
106{ \
107 return (__le##_bits##_to_cpu(k->field) >> offset) & \
108 ~(~0ULL << (end - offset)); \
109} \
110 \
111static inline void SET_##name(type *k, __u64 v) \
112{ \
113 __u##_bits new = __le##_bits##_to_cpu(k->field); \
114 \
115 new &= ~(~(~0ULL << (end - offset)) << offset); \
116 new |= (v & ~(~0ULL << (end - offset))) << offset; \
117 k->field = __cpu_to_le##_bits(new); \
118}
119
120#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
121#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
122#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
123
124struct bkey_format {
125 __u8 key_u64s;
126 __u8 nr_fields;
127 /* One unused slot for now: */
128 __u8 bits_per_field[6];
129 __le64 field_offset[6];
130};
131
132/* Btree keys - all units are in sectors */
133
134struct bpos {
135 /*
136 * Word order matches machine byte order - btree code treats a bpos as a
137 * single large integer, for search/comparison purposes
138 *
139 * Note that wherever a bpos is embedded in another on disk data
140 * structure, it has to be byte swabbed when reading in metadata that
141 * wasn't written in native endian order:
142 */
143#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
144 __u32 snapshot;
145 __u64 offset;
146 __u64 inode;
147#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
148 __u64 inode;
149 __u64 offset; /* Points to end of extent - sectors */
150 __u32 snapshot;
151#else
152#error edit for your odd byteorder.
153#endif
fd0c7679 154} __packed __aligned(4);
1c6fdbd8
KO
155
156#define KEY_INODE_MAX ((__u64)~0ULL)
157#define KEY_OFFSET_MAX ((__u64)~0ULL)
158#define KEY_SNAPSHOT_MAX ((__u32)~0U)
159#define KEY_SIZE_MAX ((__u32)~0U)
160
e751c01a 161static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
1c6fdbd8 162{
e751c01a
KO
163 return (struct bpos) {
164 .inode = inode,
165 .offset = offset,
166 .snapshot = snapshot,
167 };
1c6fdbd8
KO
168}
169
e751c01a 170#define POS_MIN SPOS(0, 0, 0)
618b1c0e
KO
171#define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
172#define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
e751c01a 173#define POS(_inode, _offset) SPOS(_inode, _offset, 0)
1c6fdbd8
KO
174
175/* Empty placeholder struct, for container_of() */
176struct bch_val {
177 __u64 __nothing[0];
178};
179
180struct bversion {
181#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
182 __u64 lo;
183 __u32 hi;
184#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
185 __u32 hi;
186 __u64 lo;
187#endif
fd0c7679 188} __packed __aligned(4);
1c6fdbd8
KO
189
190struct bkey {
191 /* Size of combined key and value, in u64s */
192 __u8 u64s;
193
194 /* Format of key (0 for format local to btree node) */
195#if defined(__LITTLE_ENDIAN_BITFIELD)
196 __u8 format:7,
197 needs_whiteout:1;
198#elif defined (__BIG_ENDIAN_BITFIELD)
199 __u8 needs_whiteout:1,
200 format:7;
201#else
202#error edit for your odd byteorder.
203#endif
204
205 /* Type of the value */
206 __u8 type;
207
208#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
209 __u8 pad[1];
210
211 struct bversion version;
212 __u32 size; /* extent size, in sectors */
213 struct bpos p;
214#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
215 struct bpos p;
216 __u32 size; /* extent size, in sectors */
217 struct bversion version;
218
219 __u8 pad[1];
220#endif
fd0c7679 221} __packed __aligned(8);
1c6fdbd8
KO
222
223struct bkey_packed {
224 __u64 _data[0];
225
226 /* Size of combined key and value, in u64s */
227 __u8 u64s;
228
229 /* Format of key (0 for format local to btree node) */
230
231 /*
232 * XXX: next incompat on disk format change, switch format and
233 * needs_whiteout - bkey_packed() will be cheaper if format is the high
234 * bits of the bitfield
235 */
236#if defined(__LITTLE_ENDIAN_BITFIELD)
237 __u8 format:7,
238 needs_whiteout:1;
239#elif defined (__BIG_ENDIAN_BITFIELD)
240 __u8 needs_whiteout:1,
241 format:7;
242#endif
243
244 /* Type of the value */
245 __u8 type;
246 __u8 key_start[0];
247
248 /*
249 * We copy bkeys with struct assignment in various places, and while
250 * that shouldn't be done with packed bkeys we can't disallow it in C,
251 * and it's legal to cast a bkey to a bkey_packed - so padding it out
252 * to the same size as struct bkey should hopefully be safest.
253 */
254 __u8 pad[sizeof(struct bkey) - 3];
fd0c7679 255} __packed __aligned(8);
1c6fdbd8 256
653693be
KO
257typedef struct {
258 __le64 lo;
259 __le64 hi;
260} bch_le128;
261
1c6fdbd8 262#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
cd575ddf
KO
263#define BKEY_U64s_MAX U8_MAX
264#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
265
1c6fdbd8
KO
266#define KEY_PACKED_BITS_START 24
267
268#define KEY_FORMAT_LOCAL_BTREE 0
269#define KEY_FORMAT_CURRENT 1
270
271enum bch_bkey_fields {
272 BKEY_FIELD_INODE,
273 BKEY_FIELD_OFFSET,
274 BKEY_FIELD_SNAPSHOT,
275 BKEY_FIELD_SIZE,
276 BKEY_FIELD_VERSION_HI,
277 BKEY_FIELD_VERSION_LO,
278 BKEY_NR_FIELDS,
279};
280
281#define bkey_format_field(name, field) \
282 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
283
284#define BKEY_FORMAT_CURRENT \
285((struct bkey_format) { \
286 .key_u64s = BKEY_U64s, \
287 .nr_fields = BKEY_NR_FIELDS, \
288 .bits_per_field = { \
289 bkey_format_field(INODE, p.inode), \
290 bkey_format_field(OFFSET, p.offset), \
291 bkey_format_field(SNAPSHOT, p.snapshot), \
292 bkey_format_field(SIZE, size), \
293 bkey_format_field(VERSION_HI, version.hi), \
294 bkey_format_field(VERSION_LO, version.lo), \
295 }, \
296})
297
298/* bkey with inline value */
299struct bkey_i {
300 __u64 _data[0];
301
ac2ccddc
KO
302 struct bkey k;
303 struct bch_val v;
1c6fdbd8
KO
304};
305
306#define KEY(_inode, _offset, _size) \
307((struct bkey) { \
308 .u64s = BKEY_U64s, \
309 .format = KEY_FORMAT_CURRENT, \
310 .p = POS(_inode, _offset), \
311 .size = _size, \
312})
313
314static inline void bkey_init(struct bkey *k)
315{
316 *k = KEY(0, 0, 0);
317}
318
319#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
320
321#define __BKEY_PADDED(key, pad) \
45dd05b3 322 struct bkey_i key; __u64 key ## _pad[pad]
1c6fdbd8 323
1c6fdbd8
KO
324/*
325 * - DELETED keys are used internally to mark keys that should be ignored but
326 * override keys in composition order. Their version number is ignored.
327 *
328 * - DISCARDED keys indicate that the data is all 0s because it has been
329 * discarded. DISCARDs may have a version; if the version is nonzero the key
330 * will be persistent, otherwise the key will be dropped whenever the btree
331 * node is rewritten (like DELETED keys).
332 *
333 * - ERROR: any read of the data returns a read error, as the data was lost due
334 * to a failing device. Like DISCARDED keys, they can be removed (overridden)
335 * by new writes or cluster-wide GC. Node repair can also overwrite them with
336 * the same or a more recent version number, but not with an older version
337 * number.
26609b61
KO
338 *
339 * - WHITEOUT: for hash table btrees
3e3e02e6 340 */
26609b61
KO
341#define BCH_BKEY_TYPES() \
342 x(deleted, 0) \
7a7d17b2 343 x(whiteout, 1) \
26609b61
KO
344 x(error, 2) \
345 x(cookie, 3) \
79f88eba 346 x(hash_whiteout, 4) \
26609b61
KO
347 x(btree_ptr, 5) \
348 x(extent, 6) \
349 x(reservation, 7) \
350 x(inode, 8) \
351 x(inode_generation, 9) \
352 x(dirent, 10) \
353 x(xattr, 11) \
354 x(alloc, 12) \
355 x(quota, 13) \
76426098
KO
356 x(stripe, 14) \
357 x(reflink_p, 15) \
4be1a412 358 x(reflink_v, 16) \
548b3d20 359 x(inline_data, 17) \
801a3de6 360 x(btree_ptr_v2, 18) \
7f4e1d5d 361 x(indirect_inline_data, 19) \
14b393ee
KO
362 x(alloc_v2, 20) \
363 x(subvolume, 21) \
3e52c222
KO
364 x(snapshot, 22) \
365 x(inode_v2, 23) \
179e3434 366 x(alloc_v3, 24) \
d326ab2f 367 x(set, 25) \
3d48a7f8 368 x(lru, 26) \
a8c752bb 369 x(alloc_v4, 27) \
8dd69d9f 370 x(backpointer, 28) \
5250b74d 371 x(inode_v3, 29) \
1c59b483
KO
372 x(bucket_gens, 30) \
373 x(snapshot_tree, 31)
26609b61
KO
374
375enum bch_bkey_type {
376#define x(name, nr) KEY_TYPE_##name = nr,
377 BCH_BKEY_TYPES()
378#undef x
379 KEY_TYPE_MAX,
380};
1c6fdbd8 381
79f88eba
KO
382struct bch_deleted {
383 struct bch_val v;
384};
385
7a7d17b2 386struct bch_whiteout {
79f88eba
KO
387 struct bch_val v;
388};
389
390struct bch_error {
391 struct bch_val v;
392};
393
1c6fdbd8
KO
394struct bch_cookie {
395 struct bch_val v;
396 __le64 cookie;
397};
1c6fdbd8 398
79f88eba
KO
399struct bch_hash_whiteout {
400 struct bch_val v;
401};
402
179e3434
KO
403struct bch_set {
404 struct bch_val v;
405};
406
1c6fdbd8
KO
407/* Extents */
408
409/*
410 * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
411 * preceded by checksum/compression information (bch_extent_crc32 or
412 * bch_extent_crc64).
413 *
414 * One major determining factor in the format of extents is how we handle and
415 * represent extents that have been partially overwritten and thus trimmed:
416 *
417 * If an extent is not checksummed or compressed, when the extent is trimmed we
418 * don't have to remember the extent we originally allocated and wrote: we can
419 * merely adjust ptr->offset to point to the start of the data that is currently
420 * live. The size field in struct bkey records the current (live) size of the
421 * extent, and is also used to mean "size of region on disk that we point to" in
422 * this case.
423 *
424 * Thus an extent that is not checksummed or compressed will consist only of a
425 * list of bch_extent_ptrs, with none of the fields in
426 * bch_extent_crc32/bch_extent_crc64.
427 *
428 * When an extent is checksummed or compressed, it's not possible to read only
429 * the data that is currently live: we have to read the entire extent that was
430 * originally written, and then return only the part of the extent that is
431 * currently live.
432 *
433 * Thus, in addition to the current size of the extent in struct bkey, we need
434 * to store the size of the originally allocated space - this is the
435 * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
436 * when the extent is trimmed, instead of modifying the offset field of the
437 * pointer, we keep a second smaller offset field - "offset into the original
438 * extent of the currently live region".
439 *
440 * The other major determining factor is replication and data migration:
441 *
442 * Each pointer may have its own bch_extent_crc32/64. When doing a replicated
443 * write, we will initially write all the replicas in the same format, with the
444 * same checksum type and compression format - however, when copygc runs later (or
445 * tiering/cache promotion, anything that moves data), it is not in general
446 * going to rewrite all the pointers at once - one of the replicas may be in a
447 * bucket on one device that has very little fragmentation while another lives
448 * in a bucket that has become heavily fragmented, and thus is being rewritten
449 * sooner than the rest.
450 *
451 * Thus it will only move a subset of the pointers (or in the case of
452 * tiering/cache promotion perhaps add a single pointer without dropping any
453 * current pointers), and if the extent has been partially overwritten it must
454 * write only the currently live portion (or copygc would not be able to reduce
455 * fragmentation!) - which necessitates a different bch_extent_crc format for
456 * the new pointer.
457 *
458 * But in the interests of space efficiency, we don't want to store one
459 * bch_extent_crc for each pointer if we don't have to.
460 *
461 * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
462 * bch_extent_ptrs appended arbitrarily one after the other. We determine the
463 * type of a given entry with a scheme similar to utf8 (except we're encoding a
464 * type, not a size), encoding the type in the position of the first set bit:
465 *
466 * bch_extent_crc32 - 0b1
467 * bch_extent_ptr - 0b10
468 * bch_extent_crc64 - 0b100
469 *
470 * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
471 * bch_extent_crc64 is the least constrained).
472 *
473 * Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
474 * until the next bch_extent_crc32/64.
475 *
476 * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
477 * is neither checksummed nor compressed.
478 */
479
480/* 128 bits, sufficient for cryptographic MACs: */
481struct bch_csum {
482 __le64 lo;
483 __le64 hi;
fd0c7679 484} __packed __aligned(8);
1c6fdbd8 485
abce30b7
KO
486#define BCH_EXTENT_ENTRY_TYPES() \
487 x(ptr, 0) \
488 x(crc32, 1) \
489 x(crc64, 2) \
cd575ddf 490 x(crc128, 3) \
2766876d
KO
491 x(stripe_ptr, 4) \
492 x(rebalance, 5)
493#define BCH_EXTENT_ENTRY_MAX 6
abce30b7 494
1c6fdbd8 495enum bch_extent_entry_type {
abce30b7
KO
496#define x(f, n) BCH_EXTENT_ENTRY_##f = n,
497 BCH_EXTENT_ENTRY_TYPES()
498#undef x
1c6fdbd8
KO
499};
500
1c6fdbd8
KO
501/* Compressed/uncompressed size are stored biased by 1: */
502struct bch_extent_crc32 {
503#if defined(__LITTLE_ENDIAN_BITFIELD)
504 __u32 type:2,
505 _compressed_size:7,
506 _uncompressed_size:7,
507 offset:7,
508 _unused:1,
509 csum_type:4,
510 compression_type:4;
511 __u32 csum;
512#elif defined (__BIG_ENDIAN_BITFIELD)
513 __u32 csum;
514 __u32 compression_type:4,
515 csum_type:4,
516 _unused:1,
517 offset:7,
518 _uncompressed_size:7,
519 _compressed_size:7,
520 type:2;
521#endif
fd0c7679 522} __packed __aligned(8);
1c6fdbd8
KO
523
524#define CRC32_SIZE_MAX (1U << 7)
525#define CRC32_NONCE_MAX 0
526
527struct bch_extent_crc64 {
528#if defined(__LITTLE_ENDIAN_BITFIELD)
529 __u64 type:3,
530 _compressed_size:9,
531 _uncompressed_size:9,
532 offset:9,
533 nonce:10,
534 csum_type:4,
535 compression_type:4,
536 csum_hi:16;
537#elif defined (__BIG_ENDIAN_BITFIELD)
538 __u64 csum_hi:16,
539 compression_type:4,
540 csum_type:4,
541 nonce:10,
542 offset:9,
543 _uncompressed_size:9,
544 _compressed_size:9,
545 type:3;
546#endif
547 __u64 csum_lo;
fd0c7679 548} __packed __aligned(8);
1c6fdbd8
KO
549
550#define CRC64_SIZE_MAX (1U << 9)
551#define CRC64_NONCE_MAX ((1U << 10) - 1)
552
553struct bch_extent_crc128 {
554#if defined(__LITTLE_ENDIAN_BITFIELD)
555 __u64 type:4,
556 _compressed_size:13,
557 _uncompressed_size:13,
558 offset:13,
559 nonce:13,
560 csum_type:4,
561 compression_type:4;
562#elif defined (__BIG_ENDIAN_BITFIELD)
563 __u64 compression_type:4,
564 csum_type:4,
565 nonce:13,
566 offset:13,
567 _uncompressed_size:13,
568 _compressed_size:13,
569 type:4;
570#endif
571 struct bch_csum csum;
fd0c7679 572} __packed __aligned(8);
1c6fdbd8
KO
573
574#define CRC128_SIZE_MAX (1U << 13)
575#define CRC128_NONCE_MAX ((1U << 13) - 1)
576
577/*
578 * @reservation - pointer hasn't been written to, just reserved
579 */
580struct bch_extent_ptr {
581#if defined(__LITTLE_ENDIAN_BITFIELD)
582 __u64 type:1,
583 cached:1,
cd575ddf 584 unused:1,
79203111 585 unwritten:1,
1c6fdbd8
KO
586 offset:44, /* 8 petabytes */
587 dev:8,
588 gen:8;
589#elif defined (__BIG_ENDIAN_BITFIELD)
590 __u64 gen:8,
591 dev:8,
592 offset:44,
79203111 593 unwritten:1,
cd575ddf 594 unused:1,
1c6fdbd8
KO
595 cached:1,
596 type:1;
597#endif
fd0c7679 598} __packed __aligned(8);
1c6fdbd8 599
cd575ddf 600struct bch_extent_stripe_ptr {
1c6fdbd8
KO
601#if defined(__LITTLE_ENDIAN_BITFIELD)
602 __u64 type:5,
cd575ddf 603 block:8,
7f4e1d5d
KO
604 redundancy:4,
605 idx:47;
cd575ddf 606#elif defined (__BIG_ENDIAN_BITFIELD)
7f4e1d5d
KO
607 __u64 idx:47,
608 redundancy:4,
cd575ddf
KO
609 block:8,
610 type:5;
611#endif
612};
613
614struct bch_extent_reservation {
615#if defined(__LITTLE_ENDIAN_BITFIELD)
616 __u64 type:6,
617 unused:22,
1c6fdbd8
KO
618 replicas:4,
619 generation:32;
620#elif defined (__BIG_ENDIAN_BITFIELD)
621 __u64 generation:32,
622 replicas:4,
cd575ddf
KO
623 unused:22,
624 type:6;
1c6fdbd8
KO
625#endif
626};
627
2766876d
KO
628struct bch_extent_rebalance {
629#if defined(__LITTLE_ENDIAN_BITFIELD)
630 __u64 type:7,
631 unused:33,
632 compression:8,
633 target:16;
634#elif defined (__BIG_ENDIAN_BITFIELD)
635 __u64 target:16,
636 compression:8,
637 unused:33,
638 type:7;
639#endif
640};
641
1c6fdbd8
KO
642union bch_extent_entry {
643#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64
644 unsigned long type;
645#elif __BITS_PER_LONG == 32
646 struct {
647 unsigned long pad;
648 unsigned long type;
649 };
650#else
651#error edit for your odd byteorder.
652#endif
abce30b7
KO
653
654#define x(f, n) struct bch_extent_##f f;
655 BCH_EXTENT_ENTRY_TYPES()
656#undef x
1c6fdbd8
KO
657};
658
26609b61
KO
659struct bch_btree_ptr {
660 struct bch_val v;
1c6fdbd8 661
26609b61
KO
662 __u64 _data[0];
663 struct bch_extent_ptr start[];
fd0c7679 664} __packed __aligned(8);
1c6fdbd8 665
548b3d20
KO
666struct bch_btree_ptr_v2 {
667 struct bch_val v;
668
669 __u64 mem_ptr;
670 __le64 seq;
671 __le16 sectors_written;
51d2dfb8 672 __le16 flags;
548b3d20
KO
673 struct bpos min_key;
674 __u64 _data[0];
675 struct bch_extent_ptr start[];
fd0c7679 676} __packed __aligned(8);
548b3d20 677
51d2dfb8
KO
678LE16_BITMASK(BTREE_PTR_RANGE_UPDATED, struct bch_btree_ptr_v2, flags, 0, 1);
679
1c6fdbd8
KO
680struct bch_extent {
681 struct bch_val v;
682
683 __u64 _data[0];
684 union bch_extent_entry start[];
fd0c7679 685} __packed __aligned(8);
1c6fdbd8
KO
686
687struct bch_reservation {
688 struct bch_val v;
689
690 __le32 generation;
691 __u8 nr_replicas;
692 __u8 pad[3];
fd0c7679 693} __packed __aligned(8);
1c6fdbd8
KO
694
695/* Maximum size (in u64s) a single pointer could be: */
696#define BKEY_EXTENT_PTR_U64s_MAX\
697 ((sizeof(struct bch_extent_crc128) + \
698 sizeof(struct bch_extent_ptr)) / sizeof(u64))
699
700/* Maximum possible size of an entire extent value: */
701#define BKEY_EXTENT_VAL_U64s_MAX \
5055b509 702 (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
1c6fdbd8 703
1c6fdbd8
KO
704/* * Maximum possible size of an entire extent, key + value: */
705#define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
706
707/* Btree pointers don't carry around checksums: */
708#define BKEY_BTREE_PTR_VAL_U64s_MAX \
548b3d20
KO
709 ((sizeof(struct bch_btree_ptr_v2) + \
710 sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64))
1c6fdbd8
KO
711#define BKEY_BTREE_PTR_U64s_MAX \
712 (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
713
714/* Inodes */
715
716#define BLOCKDEV_INODE_MAX 4096
717
718#define BCACHEFS_ROOT_INO 4096
719
1c6fdbd8
KO
720struct bch_inode {
721 struct bch_val v;
722
723 __le64 bi_hash_seed;
724 __le32 bi_flags;
725 __le16 bi_mode;
726 __u8 fields[0];
fd0c7679 727} __packed __aligned(8);
1c6fdbd8 728
3e52c222
KO
729struct bch_inode_v2 {
730 struct bch_val v;
731
732 __le64 bi_journal_seq;
733 __le64 bi_hash_seed;
734 __le64 bi_flags;
735 __le16 bi_mode;
736 __u8 fields[0];
fd0c7679 737} __packed __aligned(8);
3e52c222 738
8dd69d9f
KO
739struct bch_inode_v3 {
740 struct bch_val v;
741
742 __le64 bi_journal_seq;
743 __le64 bi_hash_seed;
744 __le64 bi_flags;
745 __le64 bi_sectors;
746 __le64 bi_size;
747 __le64 bi_version;
748 __u8 fields[0];
749} __packed __aligned(8);
750
751#define INODEv3_FIELDS_START_INITIAL 6
752#define INODEv3_FIELDS_START_CUR (offsetof(struct bch_inode_v3, fields) / sizeof(u64))
753
1c6fdbd8
KO
754struct bch_inode_generation {
755 struct bch_val v;
756
757 __le32 bi_generation;
758 __le32 pad;
fd0c7679 759} __packed __aligned(8);
1c6fdbd8 760
14b393ee
KO
761/*
762 * bi_subvol and bi_parent_subvol are only set for subvolume roots:
763 */
764
8dd69d9f 765#define BCH_INODE_FIELDS_v2() \
a3e72262
KO
766 x(bi_atime, 96) \
767 x(bi_ctime, 96) \
768 x(bi_mtime, 96) \
769 x(bi_otime, 96) \
a3e70fb2
KO
770 x(bi_size, 64) \
771 x(bi_sectors, 64) \
772 x(bi_uid, 32) \
773 x(bi_gid, 32) \
774 x(bi_nlink, 32) \
775 x(bi_generation, 32) \
776 x(bi_dev, 32) \
777 x(bi_data_checksum, 8) \
778 x(bi_compression, 8) \
779 x(bi_project, 32) \
780 x(bi_background_compression, 8) \
781 x(bi_data_replicas, 8) \
782 x(bi_promote_target, 16) \
783 x(bi_foreground_target, 16) \
784 x(bi_background_target, 16) \
721d4ad8 785 x(bi_erasure_code, 16) \
ab2a29cc
KO
786 x(bi_fields_set, 16) \
787 x(bi_dir, 64) \
14b393ee
KO
788 x(bi_dir_offset, 64) \
789 x(bi_subvol, 32) \
790 x(bi_parent_subvol, 32)
a3e70fb2 791
8dd69d9f
KO
792#define BCH_INODE_FIELDS_v3() \
793 x(bi_atime, 96) \
794 x(bi_ctime, 96) \
795 x(bi_mtime, 96) \
796 x(bi_otime, 96) \
797 x(bi_uid, 32) \
798 x(bi_gid, 32) \
799 x(bi_nlink, 32) \
800 x(bi_generation, 32) \
801 x(bi_dev, 32) \
802 x(bi_data_checksum, 8) \
803 x(bi_compression, 8) \
804 x(bi_project, 32) \
805 x(bi_background_compression, 8) \
806 x(bi_data_replicas, 8) \
807 x(bi_promote_target, 16) \
808 x(bi_foreground_target, 16) \
809 x(bi_background_target, 16) \
810 x(bi_erasure_code, 16) \
811 x(bi_fields_set, 16) \
812 x(bi_dir, 64) \
813 x(bi_dir_offset, 64) \
814 x(bi_subvol, 32) \
a8b3a677
KO
815 x(bi_parent_subvol, 32) \
816 x(bi_nocow, 8)
8dd69d9f 817
d42dd4ad
KO
818/* subset of BCH_INODE_FIELDS */
819#define BCH_INODE_OPTS() \
820 x(data_checksum, 8) \
821 x(compression, 8) \
822 x(project, 32) \
823 x(background_compression, 8) \
824 x(data_replicas, 8) \
825 x(promote_target, 16) \
826 x(foreground_target, 16) \
827 x(background_target, 16) \
a8b3a677
KO
828 x(erasure_code, 16) \
829 x(nocow, 8)
1c6fdbd8 830
721d4ad8
KO
831enum inode_opt_id {
832#define x(name, ...) \
833 Inode_opt_##name,
834 BCH_INODE_OPTS()
835#undef x
836 Inode_opt_nr,
837};
838
1c6fdbd8
KO
839enum {
840 /*
841 * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
842 * flags)
843 */
3e3e02e6
KO
844 __BCH_INODE_SYNC = 0,
845 __BCH_INODE_IMMUTABLE = 1,
846 __BCH_INODE_APPEND = 2,
847 __BCH_INODE_NODUMP = 3,
848 __BCH_INODE_NOATIME = 4,
849
850 __BCH_INODE_I_SIZE_DIRTY = 5,
851 __BCH_INODE_I_SECTORS_DIRTY = 6,
852 __BCH_INODE_UNLINKED = 7,
853 __BCH_INODE_BACKPTR_UNTRUSTED = 8,
1c6fdbd8
KO
854
855 /* bits 20+ reserved for packed fields below: */
856};
857
858#define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC)
859#define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE)
860#define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND)
861#define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP)
862#define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME)
863#define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY)
864#define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
865#define BCH_INODE_UNLINKED (1 << __BCH_INODE_UNLINKED)
ab2a29cc 866#define BCH_INODE_BACKPTR_UNTRUSTED (1 << __BCH_INODE_BACKPTR_UNTRUSTED)
1c6fdbd8
KO
867
868LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24);
a3e72262
KO
869LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 31);
870LE32_BITMASK(INODE_NEW_VARINT, struct bch_inode, bi_flags, 31, 32);
1c6fdbd8 871
3e52c222
KO
872LE64_BITMASK(INODEv2_STR_HASH, struct bch_inode_v2, bi_flags, 20, 24);
873LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31);
874
8dd69d9f
KO
875LE64_BITMASK(INODEv3_STR_HASH, struct bch_inode_v3, bi_flags, 20, 24);
876LE64_BITMASK(INODEv3_NR_FIELDS, struct bch_inode_v3, bi_flags, 24, 31);
877
878LE64_BITMASK(INODEv3_FIELDS_START,
879 struct bch_inode_v3, bi_flags, 31, 36);
880LE64_BITMASK(INODEv3_MODE, struct bch_inode_v3, bi_flags, 36, 52);
881
1c6fdbd8
KO
882/* Dirents */
883
884/*
885 * Dirents (and xattrs) have to implement string lookups; since our b-tree
886 * doesn't support arbitrary length strings for the key, we instead index by a
887 * 64 bit hash (currently truncated sha1) of the string, stored in the offset
888 * field of the key - using linear probing to resolve hash collisions. This also
889 * provides us with the readdir cookie posix requires.
890 *
891 * Linear probing requires us to use whiteouts for deletions, in the event of a
892 * collision:
893 */
894
1c6fdbd8
KO
895struct bch_dirent {
896 struct bch_val v;
897
898 /* Target inode number: */
4db65027 899 union {
1c6fdbd8 900 __le64 d_inum;
4db65027
KO
901 struct { /* DT_SUBVOL */
902 __le32 d_child_subvol;
903 __le32 d_parent_subvol;
904 };
905 };
1c6fdbd8
KO
906
907 /*
908 * Copy of mode bits 12-15 from the target inode - so userspace can get
909 * the filetype without having to do a stat()
910 */
911 __u8 d_type;
912
913 __u8 d_name[];
fd0c7679 914} __packed __aligned(8);
1c6fdbd8 915
14b393ee
KO
916#define DT_SUBVOL 16
917#define BCH_DT_MAX 17
918
502f973d 919#define BCH_NAME_MAX ((unsigned) (U8_MAX * sizeof(u64) - \
1c6fdbd8 920 sizeof(struct bkey) - \
502f973d 921 offsetof(struct bch_dirent, d_name)))
1c6fdbd8
KO
922
923/* Xattrs */
924
26609b61
KO
925#define KEY_TYPE_XATTR_INDEX_USER 0
926#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1
927#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2
928#define KEY_TYPE_XATTR_INDEX_TRUSTED 3
929#define KEY_TYPE_XATTR_INDEX_SECURITY 4
1c6fdbd8
KO
930
931struct bch_xattr {
932 struct bch_val v;
933 __u8 x_type;
934 __u8 x_name_len;
935 __le16 x_val_len;
936 __u8 x_name[];
fd0c7679 937} __packed __aligned(8);
1c6fdbd8
KO
938
939/* Bucket/allocation information: */
940
1c6fdbd8
KO
941struct bch_alloc {
942 struct bch_val v;
943 __u8 fields;
944 __u8 gen;
945 __u8 data[];
fd0c7679 946} __packed __aligned(8);
1c6fdbd8 947
7f4e1d5d 948#define BCH_ALLOC_FIELDS_V1() \
8fe826f9
KO
949 x(read_time, 16) \
950 x(write_time, 16) \
951 x(data_type, 8) \
952 x(dirty_sectors, 16) \
953 x(cached_sectors, 16) \
7f4e1d5d
KO
954 x(oldest_gen, 8) \
955 x(stripe, 32) \
956 x(stripe_redundancy, 8)
957
a8c752bb
KO
958enum {
959#define x(name, _bits) BCH_ALLOC_FIELD_V1_##name,
960 BCH_ALLOC_FIELDS_V1()
961#undef x
962};
963
7f4e1d5d
KO
964struct bch_alloc_v2 {
965 struct bch_val v;
966 __u8 nr_fields;
967 __u8 gen;
968 __u8 oldest_gen;
969 __u8 data_type;
970 __u8 data[];
fd0c7679 971} __packed __aligned(8);
7f4e1d5d
KO
972
973#define BCH_ALLOC_FIELDS_V2() \
974 x(read_time, 64) \
975 x(write_time, 64) \
66d90823
KO
976 x(dirty_sectors, 32) \
977 x(cached_sectors, 32) \
7f4e1d5d
KO
978 x(stripe, 32) \
979 x(stripe_redundancy, 8)
90541a74 980
3e52c222
KO
981struct bch_alloc_v3 {
982 struct bch_val v;
983 __le64 journal_seq;
984 __le32 flags;
985 __u8 nr_fields;
986 __u8 gen;
987 __u8 oldest_gen;
988 __u8 data_type;
989 __u8 data[];
fd0c7679 990} __packed __aligned(8);
3e52c222 991
a8c752bb
KO
992LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags, 0, 1)
993LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags, 1, 2)
994
3d48a7f8
KO
995struct bch_alloc_v4 {
996 struct bch_val v;
997 __u64 journal_seq;
998 __u32 flags;
999 __u8 gen;
1000 __u8 oldest_gen;
1001 __u8 data_type;
1002 __u8 stripe_redundancy;
1003 __u32 dirty_sectors;
1004 __u32 cached_sectors;
1005 __u64 io_time[2];
1006 __u32 stripe;
1007 __u32 nr_external_backpointers;
80c33085 1008 __u64 fragmentation_lru;
fd0c7679 1009} __packed __aligned(8);
3d48a7f8 1010
19a614d2
KO
1011#define BCH_ALLOC_V4_U64s_V0 6
1012#define BCH_ALLOC_V4_U64s (sizeof(struct bch_alloc_v4) / sizeof(u64))
1013
3d48a7f8
KO
1014BITMASK(BCH_ALLOC_V4_NEED_DISCARD, struct bch_alloc_v4, flags, 0, 1)
1015BITMASK(BCH_ALLOC_V4_NEED_INC_GEN, struct bch_alloc_v4, flags, 1, 2)
1016BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags, 2, 8)
1017BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS, struct bch_alloc_v4, flags, 8, 14)
1018
a8c752bb
KO
1019#define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX 40
1020
1021struct bch_backpointer {
1022 struct bch_val v;
1023 __u8 btree_id;
1024 __u8 level;
1025 __u8 data_type;
1026 __u64 bucket_offset:40;
1027 __u32 bucket_len;
1028 struct bpos pos;
1029} __packed __aligned(8);
90541a74 1030
5250b74d
KO
1031#define KEY_TYPE_BUCKET_GENS_BITS 8
1032#define KEY_TYPE_BUCKET_GENS_NR (1U << KEY_TYPE_BUCKET_GENS_BITS)
1033#define KEY_TYPE_BUCKET_GENS_MASK (KEY_TYPE_BUCKET_GENS_NR - 1)
1034
1035struct bch_bucket_gens {
1036 struct bch_val v;
1037 u8 gens[KEY_TYPE_BUCKET_GENS_NR];
1038} __packed __aligned(8);
1039
1c6fdbd8
KO
1040/* Quotas: */
1041
1c6fdbd8
KO
1042enum quota_types {
1043 QTYP_USR = 0,
1044 QTYP_GRP = 1,
1045 QTYP_PRJ = 2,
1046 QTYP_NR = 3,
1047};
1048
1049enum quota_counters {
1050 Q_SPC = 0,
1051 Q_INO = 1,
1052 Q_COUNTERS = 2,
1053};
1054
1055struct bch_quota_counter {
1056 __le64 hardlimit;
1057 __le64 softlimit;
1058};
1059
1060struct bch_quota {
1061 struct bch_val v;
1062 struct bch_quota_counter c[Q_COUNTERS];
fd0c7679 1063} __packed __aligned(8);
1c6fdbd8 1064
cd575ddf
KO
1065/* Erasure coding */
1066
cd575ddf
KO
1067struct bch_stripe {
1068 struct bch_val v;
1069 __le16 sectors;
1070 __u8 algorithm;
1071 __u8 nr_blocks;
1072 __u8 nr_redundant;
1073
1074 __u8 csum_granularity_bits;
1075 __u8 csum_type;
1076 __u8 pad;
1077
81d8599e 1078 struct bch_extent_ptr ptrs[];
fd0c7679 1079} __packed __aligned(8);
cd575ddf 1080
76426098
KO
1081/* Reflink: */
1082
1083struct bch_reflink_p {
1084 struct bch_val v;
1085 __le64 idx;
6d76aefe
KO
1086 /*
1087 * A reflink pointer might point to an indirect extent which is then
1088 * later split (by copygc or rebalance). If we only pointed to part of
1089 * the original indirect extent, and then one of the fragments is
1090 * outside the range we point to, we'd leak a refcount: so when creating
1091 * reflink pointers, we need to store pad values to remember the full
1092 * range we were taking a reference on.
1093 */
1094 __le32 front_pad;
1095 __le32 back_pad;
fd0c7679 1096} __packed __aligned(8);
76426098
KO
1097
1098struct bch_reflink_v {
1099 struct bch_val v;
1100 __le64 refcount;
1101 union bch_extent_entry start[0];
1102 __u64 _data[0];
fd0c7679 1103} __packed __aligned(8);
76426098 1104
801a3de6
KO
1105struct bch_indirect_inline_data {
1106 struct bch_val v;
1107 __le64 refcount;
1108 u8 data[0];
1109};
1110
4be1a412
KO
1111/* Inline data */
1112
1113struct bch_inline_data {
1114 struct bch_val v;
1115 u8 data[0];
1116};
1117
14b393ee
KO
1118/* Subvolumes: */
1119
1120#define SUBVOL_POS_MIN POS(0, 1)
1121#define SUBVOL_POS_MAX POS(0, S32_MAX)
1122#define BCACHEFS_ROOT_SUBVOL 1
1123
1124struct bch_subvolume {
1125 struct bch_val v;
1126 __le32 flags;
1127 __le32 snapshot;
1128 __le64 inode;
653693be
KO
1129 __le32 parent;
1130 __le32 pad;
1131 bch_le128 otime;
14b393ee
KO
1132};
1133
1134LE32_BITMASK(BCH_SUBVOLUME_RO, struct bch_subvolume, flags, 0, 1)
1135/*
1136 * We need to know whether a subvolume is a snapshot so we can know whether we
1137 * can delete it (or whether it should just be rm -rf'd)
1138 */
1139LE32_BITMASK(BCH_SUBVOLUME_SNAP, struct bch_subvolume, flags, 1, 2)
2027875b 1140LE32_BITMASK(BCH_SUBVOLUME_UNLINKED, struct bch_subvolume, flags, 2, 3)
14b393ee
KO
1141
1142/* Snapshots */
1143
1144struct bch_snapshot {
1145 struct bch_val v;
1146 __le32 flags;
1147 __le32 parent;
1148 __le32 children[2];
1149 __le32 subvol;
1c59b483 1150 __le32 tree;
14b393ee
KO
1151};
1152
1153LE32_BITMASK(BCH_SNAPSHOT_DELETED, struct bch_snapshot, flags, 0, 1)
1154
1155/* True if a subvolume points to this snapshot node: */
1156LE32_BITMASK(BCH_SNAPSHOT_SUBVOL, struct bch_snapshot, flags, 1, 2)
1157
1c59b483
KO
1158/*
1159 * Snapshot trees:
1160 *
1161 * The snapshot_trees btree gives us persistent indentifier for each tree of
1162 * bch_snapshot nodes, and allow us to record and easily find the root/master
1163 * subvolume that other snapshots were created from:
1164 */
1165struct bch_snapshot_tree {
1166 struct bch_val v;
1167 __le32 master_subvol;
1168 __le32 root_snapshot;
1169};
1170
d326ab2f
KO
1171/* LRU btree: */
1172
1173struct bch_lru {
1174 struct bch_val v;
1175 __le64 idx;
fd0c7679 1176} __packed __aligned(8);
d326ab2f
KO
1177
1178#define LRU_ID_STRIPES (1U << 16)
1179
1c6fdbd8
KO
1180/* Optional/variable size superblock sections: */
1181
1182struct bch_sb_field {
1183 __u64 _data[0];
1184 __le32 u64s;
1185 __le32 type;
1186};
1187
25be2e5d
KO
1188#define BCH_SB_FIELDS() \
1189 x(journal, 0) \
1190 x(members, 1) \
1191 x(crypt, 2) \
1192 x(replicas_v0, 3) \
1193 x(quota, 4) \
1194 x(disk_groups, 5) \
1195 x(clean, 6) \
1196 x(replicas, 7) \
1197 x(journal_seq_blacklist, 8) \
104c6974
DH
1198 x(journal_v2, 9) \
1199 x(counters, 10)
1c6fdbd8
KO
1200
1201enum bch_sb_field_type {
1202#define x(f, nr) BCH_SB_FIELD_##f = nr,
1203 BCH_SB_FIELDS()
1204#undef x
1205 BCH_SB_FIELD_NR
1206};
1207
25be2e5d
KO
1208/*
1209 * Most superblock fields are replicated in all device's superblocks - a few are
1210 * not:
1211 */
1212#define BCH_SINGLE_DEVICE_SB_FIELDS \
1213 ((1U << BCH_SB_FIELD_journal)| \
1214 (1U << BCH_SB_FIELD_journal_v2))
1215
1c6fdbd8
KO
1216/* BCH_SB_FIELD_journal: */
1217
1218struct bch_sb_field_journal {
1219 struct bch_sb_field field;
1220 __le64 buckets[0];
1221};
1222
25be2e5d
KO
1223struct bch_sb_field_journal_v2 {
1224 struct bch_sb_field field;
1225
1226 struct bch_sb_field_journal_v2_entry {
1227 __le64 start;
1228 __le64 nr;
1229 } d[0];
1230};
1231
1c6fdbd8
KO
1232/* BCH_SB_FIELD_members: */
1233
8b335bae
KO
1234#define BCH_MIN_NR_NBUCKETS (1 << 6)
1235
1c6fdbd8
KO
1236struct bch_member {
1237 __uuid_t uuid;
1238 __le64 nbuckets; /* device size */
1239 __le16 first_bucket; /* index of first bucket used */
1240 __le16 bucket_size; /* sectors */
1241 __le32 pad;
1242 __le64 last_mount; /* time_t */
1243
1244 __le64 flags[2];
1245};
1246
1247LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags[0], 0, 4)
7243498d 1248/* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
1c6fdbd8
KO
1249LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags[0], 14, 15)
1250LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags[0], 15, 20)
1251LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags[0], 20, 28)
1252LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags[0], 28, 30)
c6b2826c
KO
1253LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
1254 struct bch_member, flags[0], 30, 31)
1c6fdbd8 1255
1c6fdbd8
KO
1256#if 0
1257LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20);
1258LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
1259#endif
1260
2436cb9f
KO
1261#define BCH_MEMBER_STATES() \
1262 x(rw, 0) \
1263 x(ro, 1) \
1264 x(failed, 2) \
1265 x(spare, 3)
1266
1c6fdbd8 1267enum bch_member_state {
2436cb9f
KO
1268#define x(t, n) BCH_MEMBER_STATE_##t = n,
1269 BCH_MEMBER_STATES()
1270#undef x
1271 BCH_MEMBER_STATE_NR
1c6fdbd8
KO
1272};
1273
1c6fdbd8
KO
1274struct bch_sb_field_members {
1275 struct bch_sb_field field;
1276 struct bch_member members[0];
1277};
1278
1279/* BCH_SB_FIELD_crypt: */
1280
1281struct nonce {
1282 __le32 d[4];
1283};
1284
1285struct bch_key {
1286 __le64 key[4];
1287};
1288
1289#define BCH_KEY_MAGIC \
1290 (((u64) 'b' << 0)|((u64) 'c' << 8)| \
1291 ((u64) 'h' << 16)|((u64) '*' << 24)| \
1292 ((u64) '*' << 32)|((u64) 'k' << 40)| \
1293 ((u64) 'e' << 48)|((u64) 'y' << 56))
1294
1295struct bch_encrypted_key {
1296 __le64 magic;
1297 struct bch_key key;
1298};
1299
1300/*
1301 * If this field is present in the superblock, it stores an encryption key which
1302 * is used encrypt all other data/metadata. The key will normally be encrypted
1303 * with the key userspace provides, but if encryption has been turned off we'll
1304 * just store the master key unencrypted in the superblock so we can access the
1305 * previously encrypted data.
1306 */
1307struct bch_sb_field_crypt {
1308 struct bch_sb_field field;
1309
1310 __le64 flags;
1311 __le64 kdf_flags;
1312 struct bch_encrypted_key key;
1313};
1314
1315LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4);
1316
1317enum bch_kdf_types {
1318 BCH_KDF_SCRYPT = 0,
1319 BCH_KDF_NR = 1,
1320};
1321
1322/* stored as base 2 log of scrypt params: */
1323LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16);
1324LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32);
1325LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48);
1326
1327/* BCH_SB_FIELD_replicas: */
1328
89fd25be 1329#define BCH_DATA_TYPES() \
822835ff 1330 x(free, 0) \
89fd25be
KO
1331 x(sb, 1) \
1332 x(journal, 2) \
1333 x(btree, 3) \
1334 x(user, 4) \
af4d05c4 1335 x(cached, 5) \
822835ff
KO
1336 x(parity, 6) \
1337 x(stripe, 7) \
1338 x(need_gc_gens, 8) \
1339 x(need_discard, 9)
89fd25be 1340
1c6fdbd8 1341enum bch_data_type {
89fd25be
KO
1342#define x(t, n) BCH_DATA_##t,
1343 BCH_DATA_TYPES()
1344#undef x
1345 BCH_DATA_NR
1c6fdbd8
KO
1346};
1347
822835ff
KO
1348static inline bool data_type_is_empty(enum bch_data_type type)
1349{
1350 switch (type) {
1351 case BCH_DATA_free:
1352 case BCH_DATA_need_gc_gens:
1353 case BCH_DATA_need_discard:
1354 return true;
1355 default:
1356 return false;
1357 }
1358}
1359
1360static inline bool data_type_is_hidden(enum bch_data_type type)
1361{
1362 switch (type) {
1363 case BCH_DATA_sb:
1364 case BCH_DATA_journal:
1365 return true;
1366 default:
1367 return false;
1368 }
1369}
1370
af9d3bc2
KO
1371struct bch_replicas_entry_v0 {
1372 __u8 data_type;
1373 __u8 nr_devs;
73bd774d 1374 __u8 devs[0];
fd0c7679 1375} __packed;
af9d3bc2
KO
1376
1377struct bch_sb_field_replicas_v0 {
1378 struct bch_sb_field field;
73bd774d 1379 struct bch_replicas_entry_v0 entries[0];
fd0c7679 1380} __packed __aligned(8);
af9d3bc2 1381
1c6fdbd8 1382struct bch_replicas_entry {
7a920560
KO
1383 __u8 data_type;
1384 __u8 nr_devs;
af9d3bc2 1385 __u8 nr_required;
73bd774d 1386 __u8 devs[0];
fd0c7679 1387} __packed;
1c6fdbd8 1388
22502ac2
KO
1389#define replicas_entry_bytes(_i) \
1390 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
1391
1c6fdbd8
KO
1392struct bch_sb_field_replicas {
1393 struct bch_sb_field field;
73bd774d 1394 struct bch_replicas_entry entries[0];
fd0c7679 1395} __packed __aligned(8);
1c6fdbd8
KO
1396
1397/* BCH_SB_FIELD_quota: */
1398
1399struct bch_sb_quota_counter {
1400 __le32 timelimit;
1401 __le32 warnlimit;
1402};
1403
1404struct bch_sb_quota_type {
1405 __le64 flags;
1406 struct bch_sb_quota_counter c[Q_COUNTERS];
1407};
1408
1409struct bch_sb_field_quota {
1410 struct bch_sb_field field;
1411 struct bch_sb_quota_type q[QTYP_NR];
fd0c7679 1412} __packed __aligned(8);
1c6fdbd8
KO
1413
1414/* BCH_SB_FIELD_disk_groups: */
1415
1416#define BCH_SB_LABEL_SIZE 32
1417
1418struct bch_disk_group {
1419 __u8 label[BCH_SB_LABEL_SIZE];
1420 __le64 flags[2];
fd0c7679 1421} __packed __aligned(8);
1c6fdbd8
KO
1422
1423LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1)
1424LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6)
1425LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24)
1426
1427struct bch_sb_field_disk_groups {
1428 struct bch_sb_field field;
1429 struct bch_disk_group entries[0];
fd0c7679 1430} __packed __aligned(8);
1c6fdbd8 1431
104c6974
DH
1432/* BCH_SB_FIELD_counters */
1433
674cfc26
KO
1434#define BCH_PERSISTENT_COUNTERS() \
1435 x(io_read, 0) \
1436 x(io_write, 1) \
1437 x(io_move, 2) \
1438 x(bucket_invalidate, 3) \
1439 x(bucket_discard, 4) \
1440 x(bucket_alloc, 5) \
1441 x(bucket_alloc_fail, 6) \
1442 x(btree_cache_scan, 7) \
1443 x(btree_cache_reap, 8) \
1444 x(btree_cache_cannibalize, 9) \
1445 x(btree_cache_cannibalize_lock, 10) \
1446 x(btree_cache_cannibalize_lock_fail, 11) \
1447 x(btree_cache_cannibalize_unlock, 12) \
1448 x(btree_node_write, 13) \
1449 x(btree_node_read, 14) \
1450 x(btree_node_compact, 15) \
1451 x(btree_node_merge, 16) \
1452 x(btree_node_split, 17) \
1453 x(btree_node_rewrite, 18) \
1454 x(btree_node_alloc, 19) \
1455 x(btree_node_free, 20) \
1456 x(btree_node_set_root, 21) \
1457 x(btree_path_relock_fail, 22) \
1458 x(btree_path_upgrade_fail, 23) \
1459 x(btree_reserve_get_fail, 24) \
1460 x(journal_entry_full, 25) \
1461 x(journal_full, 26) \
1462 x(journal_reclaim_finish, 27) \
1463 x(journal_reclaim_start, 28) \
1464 x(journal_write, 29) \
1465 x(read_promote, 30) \
1466 x(read_bounce, 31) \
1467 x(read_split, 33) \
1468 x(read_retry, 32) \
1469 x(read_reuse_race, 34) \
1470 x(move_extent_read, 35) \
1471 x(move_extent_write, 36) \
1472 x(move_extent_finish, 37) \
1473 x(move_extent_fail, 38) \
1474 x(move_extent_alloc_mem_fail, 39) \
1475 x(copygc, 40) \
1476 x(copygc_wait, 41) \
1477 x(gc_gens_end, 42) \
1478 x(gc_gens_start, 43) \
1479 x(trans_blocked_journal_reclaim, 44) \
1480 x(trans_restart_btree_node_reused, 45) \
1481 x(trans_restart_btree_node_split, 46) \
1482 x(trans_restart_fault_inject, 47) \
1483 x(trans_restart_iter_upgrade, 48) \
1484 x(trans_restart_journal_preres_get, 49) \
1485 x(trans_restart_journal_reclaim, 50) \
1486 x(trans_restart_journal_res_get, 51) \
1487 x(trans_restart_key_cache_key_realloced, 52) \
1488 x(trans_restart_key_cache_raced, 53) \
1489 x(trans_restart_mark_replicas, 54) \
1490 x(trans_restart_mem_realloced, 55) \
1491 x(trans_restart_memory_allocation_failure, 56) \
1492 x(trans_restart_relock, 57) \
1493 x(trans_restart_relock_after_fill, 58) \
1494 x(trans_restart_relock_key_cache_fill, 59) \
1495 x(trans_restart_relock_next_node, 60) \
1496 x(trans_restart_relock_parent_for_fill, 61) \
1497 x(trans_restart_relock_path, 62) \
1498 x(trans_restart_relock_path_intent, 63) \
1499 x(trans_restart_too_many_iters, 64) \
1500 x(trans_restart_traverse, 65) \
1501 x(trans_restart_upgrade, 66) \
1502 x(trans_restart_would_deadlock, 67) \
1503 x(trans_restart_would_deadlock_write, 68) \
1504 x(trans_restart_injected, 69) \
1505 x(trans_restart_key_cache_upgrade, 70) \
1506 x(trans_traverse_all, 71) \
1507 x(transaction_commit, 72) \
33bd5d06 1508 x(write_super, 73) \
920e69bc 1509 x(trans_restart_would_deadlock_recursion_limit, 74) \
e151580d
KO
1510 x(trans_restart_write_buffer_flush, 75) \
1511 x(trans_restart_split_race, 76)
104c6974
DH
1512
1513enum bch_persistent_counters {
1514#define x(t, n, ...) BCH_COUNTER_##t,
1515 BCH_PERSISTENT_COUNTERS()
1516#undef x
1517 BCH_COUNTER_NR
1518};
1519
1520struct bch_sb_field_counters {
1521 struct bch_sb_field field;
1522 __le64 d[0];
1523};
1524
1c6fdbd8
KO
1525/*
1526 * On clean shutdown, store btree roots and current journal sequence number in
1527 * the superblock:
1528 */
1529struct jset_entry {
1530 __le16 u64s;
1531 __u8 btree_id;
1532 __u8 level;
1533 __u8 type; /* designates what this jset holds */
1534 __u8 pad[3];
1535
1536 union {
1537 struct bkey_i start[0];
1538 __u64 _data[0];
1539 };
1540};
1541
1542struct bch_sb_field_clean {
1543 struct bch_sb_field field;
1544
1545 __le32 flags;
2abe5420
KO
1546 __le16 _read_clock; /* no longer used */
1547 __le16 _write_clock;
1c6fdbd8
KO
1548 __le64 journal_seq;
1549
1550 union {
1551 struct jset_entry start[0];
1552 __u64 _data[0];
1553 };
1554};
1555
1dd7f9d9
KO
1556struct journal_seq_blacklist_entry {
1557 __le64 start;
1558 __le64 end;
1559};
1560
1561struct bch_sb_field_journal_seq_blacklist {
1562 struct bch_sb_field field;
1563
1564 union {
1565 struct journal_seq_blacklist_entry start[0];
1566 __u64 _data[0];
1567 };
1568};
1569
1c6fdbd8
KO
1570/* Superblock: */
1571
1572/*
26609b61
KO
1573 * New versioning scheme:
1574 * One common version number for all on disk data structures - superblock, btree
1575 * nodes, journal entries
1c6fdbd8 1576 */
26609b61 1577
74b33393
KO
1578#define BCH_METADATA_VERSIONS() \
1579 x(bkey_renumber, 10) \
1580 x(inode_btree_change, 11) \
1581 x(snapshot, 12) \
1582 x(inode_backpointers, 13) \
1583 x(btree_ptr_sectors_written, 14) \
1584 x(snapshot_2, 15) \
1585 x(reflink_p_fix, 16) \
1586 x(subvol_dirent, 17) \
c6b2826c
KO
1587 x(inode_v2, 18) \
1588 x(freespace, 19) \
822835ff 1589 x(alloc_v4, 20) \
a8c752bb 1590 x(new_data_types, 21) \
8dd69d9f 1591 x(backpointers, 22) \
a8b3a677 1592 x(inode_v3, 23) \
5250b74d 1593 x(unwritten_extents, 24) \
83f33d68 1594 x(bucket_gens, 25) \
80c33085 1595 x(lru_v2, 26) \
62a03559 1596 x(fragmentation_lru, 27) \
1c59b483
KO
1597 x(no_bps_in_alloc_keys, 28) \
1598 x(snapshot_trees, 29)
74b33393 1599
26609b61 1600enum bcachefs_metadata_version {
74b33393
KO
1601 bcachefs_metadata_version_min = 9,
1602#define x(t, n) bcachefs_metadata_version_##t = n,
1603 BCH_METADATA_VERSIONS()
1604#undef x
1605 bcachefs_metadata_version_max
26609b61 1606};
1c6fdbd8 1607
1c59b483
KO
1608static const unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_snapshot_trees;
1609
26609b61 1610#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
1c6fdbd8
KO
1611
1612#define BCH_SB_SECTOR 8
1613#define BCH_SB_MEMBERS_MAX 64 /* XXX kill */
1614
1615struct bch_sb_layout {
1616 __uuid_t magic; /* bcachefs superblock UUID */
1617 __u8 layout_type;
1618 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */
1619 __u8 nr_superblocks;
1620 __u8 pad[5];
1621 __le64 sb_offset[61];
fd0c7679 1622} __packed __aligned(8);
1c6fdbd8
KO
1623
1624#define BCH_SB_LAYOUT_SECTOR 7
1625
1626/*
1627 * @offset - sector where this sb was written
1628 * @version - on disk format version
26609b61
KO
1629 * @version_min - Oldest metadata version this filesystem contains; so we can
1630 * safely drop compatibility code and refuse to mount filesystems
1631 * we'd need it for
e1538212 1632 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC)
1c6fdbd8
KO
1633 * @seq - incremented each time superblock is written
1634 * @uuid - used for generating various magic numbers and identifying
1635 * member devices, never changes
1636 * @user_uuid - user visible UUID, may be changed
1637 * @label - filesystem label
1638 * @seq - identifies most recent superblock, incremented each time
1639 * superblock is written
1640 * @features - enabled incompatible features
1641 */
1642struct bch_sb {
1643 struct bch_csum csum;
1644 __le16 version;
1645 __le16 version_min;
1646 __le16 pad[2];
1647 __uuid_t magic;
1648 __uuid_t uuid;
1649 __uuid_t user_uuid;
1650 __u8 label[BCH_SB_LABEL_SIZE];
1651 __le64 offset;
1652 __le64 seq;
1653
1654 __le16 block_size;
1655 __u8 dev_idx;
1656 __u8 nr_devices;
1657 __le32 u64s;
1658
1659 __le64 time_base_lo;
1660 __le32 time_base_hi;
1661 __le32 time_precision;
1662
1663 __le64 flags[8];
1664 __le64 features[2];
1665 __le64 compat[2];
1666
1667 struct bch_sb_layout layout;
1668
1669 union {
1670 struct bch_sb_field start[0];
1671 __le64 _data[0];
1672 };
fd0c7679 1673} __packed __aligned(8);
1c6fdbd8
KO
1674
1675/*
1676 * Flags:
1677 * BCH_SB_INITALIZED - set on first mount
1678 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
1679 * behaviour of mount/recovery path:
1680 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
1681 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
1682 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
1683 * DATA/META_CSUM_TYPE. Also indicates encryption
1684 * algorithm in use, if/when we get more than one
1685 */
1686
1687LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16);
1688
1689LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1);
1690LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2);
1691LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8);
1692LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12);
1693
1694LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28);
1695
1696LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33);
1697LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40);
1698
1699LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44);
1700LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48);
1701
1702LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
1703LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
1704
1705LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57);
1706LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58);
1707LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59);
1708LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60);
1709
0bc166ff 1710LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61);
aae15aaf 1711LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
0bc166ff 1712
7d6f07ed 1713LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63);
36b8372b 1714
1c6fdbd8
KO
1715LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4);
1716LE64_BITMASK(BCH_SB_COMPRESSION_TYPE, struct bch_sb, flags[1], 4, 8);
1717LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9);
1718
1719LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10);
1720LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14);
1721
1722/*
1723 * Max size of an extent that may require bouncing to read or write
1724 * (checksummed, compressed): 64k
1725 */
1726LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1727 struct bch_sb, flags[1], 14, 20);
1728
1729LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24);
1730LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28);
1731
1732LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40);
1733LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52);
1734LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64);
1735
1736LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE,
1737 struct bch_sb, flags[2], 0, 4);
a50ed7c8 1738LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64);
1c6fdbd8 1739
cd575ddf 1740LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16);
d042b040 1741LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28);
b282a74f 1742LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29);
996fb577 1743LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
2430e72f
KO
1744LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1745LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1746LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
fb64f3fd 1747LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
a8b3a677 1748LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34);
920e69bc 1749LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54);
cd575ddf 1750
24964e1c
KO
1751/* flags[4] 56-64 unused: */
1752
1753LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
1754 struct bch_sb, flags[5], 0, 16);
1755
1c3ff72c
KO
1756/*
1757 * Features:
1758 *
1759 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
1760 * reflink: gates KEY_TYPE_reflink
1761 * inline_data: gates KEY_TYPE_inline_data
6404dcc9 1762 * new_siphash: gates BCH_STR_HASH_siphash
bcd6f3e0 1763 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1c3ff72c
KO
1764 */
1765#define BCH_SB_FEATURES() \
1766 x(lz4, 0) \
1767 x(gzip, 1) \
1768 x(zstd, 2) \
1769 x(atomic_nlink, 3) \
1770 x(ec, 4) \
1771 x(journal_seq_blacklist_v3, 5) \
1772 x(reflink, 6) \
1773 x(new_siphash, 7) \
bcd6f3e0 1774 x(inline_data, 8) \
ab05de4c 1775 x(new_extent_overwrite, 9) \
548b3d20 1776 x(incompressible, 10) \
e3e464ac 1777 x(btree_ptr_v2, 11) \
6357d607 1778 x(extents_above_btree_updates, 12) \
801a3de6 1779 x(btree_updates_journalled, 13) \
a3e72262 1780 x(reflink_inline_data, 14) \
adbcada4 1781 x(new_varint, 15) \
7f4e1d5d 1782 x(journal_no_flush, 16) \
8042b5b7
KO
1783 x(alloc_v2, 17) \
1784 x(extents_across_btree_nodes, 18)
1785
1786#define BCH_SB_FEATURES_ALWAYS \
1787 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \
1788 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1789 (1ULL << BCH_FEATURE_btree_updates_journalled)|\
73590619 1790 (1ULL << BCH_FEATURE_alloc_v2)|\
8042b5b7 1791 (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1c3ff72c 1792
b807a0c8 1793#define BCH_SB_FEATURES_ALL \
8042b5b7
KO
1794 (BCH_SB_FEATURES_ALWAYS| \
1795 (1ULL << BCH_FEATURE_new_siphash)| \
e3e464ac 1796 (1ULL << BCH_FEATURE_btree_ptr_v2)| \
adbcada4 1797 (1ULL << BCH_FEATURE_new_varint)| \
73590619 1798 (1ULL << BCH_FEATURE_journal_no_flush))
b807a0c8 1799
1c3ff72c
KO
1800enum bch_sb_feature {
1801#define x(f, n) BCH_FEATURE_##f,
1802 BCH_SB_FEATURES()
1803#undef x
c258f28e 1804 BCH_FEATURE_NR,
1c6fdbd8
KO
1805};
1806
19dd3172
KO
1807#define BCH_SB_COMPAT() \
1808 x(alloc_info, 0) \
1809 x(alloc_metadata, 1) \
1810 x(extents_above_btree_updates_done, 2) \
1811 x(bformat_overflow_done, 3)
1812
1df42b57 1813enum bch_sb_compat {
19dd3172
KO
1814#define x(f, n) BCH_COMPAT_##f,
1815 BCH_SB_COMPAT()
1816#undef x
1817 BCH_COMPAT_NR,
1df42b57
KO
1818};
1819
1c6fdbd8
KO
1820/* options: */
1821
1822#define BCH_REPLICAS_MAX 4U
1823
ffb7c3d3
KO
1824#define BCH_BKEY_PTRS_MAX 16U
1825
2436cb9f
KO
1826#define BCH_ERROR_ACTIONS() \
1827 x(continue, 0) \
1828 x(ro, 1) \
1829 x(panic, 2)
1830
1c6fdbd8 1831enum bch_error_actions {
2436cb9f
KO
1832#define x(t, n) BCH_ON_ERROR_##t = n,
1833 BCH_ERROR_ACTIONS()
1834#undef x
1835 BCH_ON_ERROR_NR
1c6fdbd8
KO
1836};
1837
6404dcc9
KO
1838#define BCH_STR_HASH_TYPES() \
1839 x(crc32c, 0) \
1840 x(crc64, 1) \
1841 x(siphash_old, 2) \
1842 x(siphash, 3)
1843
73501ab8 1844enum bch_str_hash_type {
6404dcc9
KO
1845#define x(t, n) BCH_STR_HASH_##t = n,
1846 BCH_STR_HASH_TYPES()
1847#undef x
1848 BCH_STR_HASH_NR
73501ab8
KO
1849};
1850
2436cb9f
KO
1851#define BCH_STR_HASH_OPTS() \
1852 x(crc32c, 0) \
1853 x(crc64, 1) \
1854 x(siphash, 2)
1855
73501ab8 1856enum bch_str_hash_opts {
2436cb9f
KO
1857#define x(t, n) BCH_STR_HASH_OPT_##t = n,
1858 BCH_STR_HASH_OPTS()
1859#undef x
1860 BCH_STR_HASH_OPT_NR
1c6fdbd8
KO
1861};
1862
6404dcc9
KO
1863#define BCH_CSUM_TYPES() \
1864 x(none, 0) \
1865 x(crc32c_nonzero, 1) \
1866 x(crc64_nonzero, 2) \
1867 x(chacha20_poly1305_80, 3) \
1868 x(chacha20_poly1305_128, 4) \
1869 x(crc32c, 5) \
1870 x(crc64, 6) \
1871 x(xxhash, 7)
1872
1c3ff72c 1873enum bch_csum_type {
6404dcc9
KO
1874#define x(t, n) BCH_CSUM_##t = n,
1875 BCH_CSUM_TYPES()
1876#undef x
1877 BCH_CSUM_NR
1c3ff72c
KO
1878};
1879
1880static const unsigned bch_crc_bytes[] = {
6404dcc9
KO
1881 [BCH_CSUM_none] = 0,
1882 [BCH_CSUM_crc32c_nonzero] = 4,
1883 [BCH_CSUM_crc32c] = 4,
1884 [BCH_CSUM_crc64_nonzero] = 8,
1885 [BCH_CSUM_crc64] = 8,
1886 [BCH_CSUM_xxhash] = 8,
1887 [BCH_CSUM_chacha20_poly1305_80] = 10,
1888 [BCH_CSUM_chacha20_poly1305_128] = 16,
1c3ff72c
KO
1889};
1890
1891static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1892{
1893 switch (type) {
6404dcc9
KO
1894 case BCH_CSUM_chacha20_poly1305_80:
1895 case BCH_CSUM_chacha20_poly1305_128:
1c3ff72c
KO
1896 return true;
1897 default:
1898 return false;
1899 }
1900}
1901
2436cb9f
KO
1902#define BCH_CSUM_OPTS() \
1903 x(none, 0) \
1904 x(crc32c, 1) \
41e63382 1905 x(crc64, 2) \
1906 x(xxhash, 3)
2436cb9f 1907
1c3ff72c 1908enum bch_csum_opts {
2436cb9f
KO
1909#define x(t, n) BCH_CSUM_OPT_##t = n,
1910 BCH_CSUM_OPTS()
1911#undef x
1912 BCH_CSUM_OPT_NR
1c3ff72c
KO
1913};
1914
1c6fdbd8 1915#define BCH_COMPRESSION_TYPES() \
ab05de4c
KO
1916 x(none, 0) \
1917 x(lz4_old, 1) \
1918 x(gzip, 2) \
1919 x(lz4, 3) \
1920 x(zstd, 4) \
1921 x(incompressible, 5)
1c6fdbd8 1922
1c3ff72c 1923enum bch_compression_type {
2436cb9f 1924#define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1c6fdbd8 1925 BCH_COMPRESSION_TYPES()
1c3ff72c
KO
1926#undef x
1927 BCH_COMPRESSION_TYPE_NR
1928};
1929
1930#define BCH_COMPRESSION_OPTS() \
1931 x(none, 0) \
1932 x(lz4, 1) \
1933 x(gzip, 2) \
1934 x(zstd, 3)
1935
1936enum bch_compression_opts {
2436cb9f 1937#define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1c3ff72c 1938 BCH_COMPRESSION_OPTS()
1c6fdbd8
KO
1939#undef x
1940 BCH_COMPRESSION_OPT_NR
1941};
1942
1943/*
1944 * Magic numbers
1945 *
1946 * The various other data structures have their own magic numbers, which are
1947 * xored with the first part of the cache set's UUID
1948 */
1949
1950#define BCACHE_MAGIC \
1951 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
1952 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1953#define BCHFS_MAGIC \
1954 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
1955 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
1956
1957#define BCACHEFS_STATFS_MAGIC 0xca451a4e
1958
1959#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
1960#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
1961
1962static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
1963{
1964 __le64 ret;
a1019576 1965
1c6fdbd8
KO
1966 memcpy(&ret, &sb->uuid, sizeof(ret));
1967 return ret;
1968}
1969
1970static inline __u64 __jset_magic(struct bch_sb *sb)
1971{
1972 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
1973}
1974
1975static inline __u64 __bset_magic(struct bch_sb *sb)
1976{
1977 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
1978}
1979
1980/* Journal */
1981
1c6fdbd8
KO
1982#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
1983
1984#define BCH_JSET_ENTRY_TYPES() \
1985 x(btree_keys, 0) \
1986 x(btree_root, 1) \
1987 x(prio_ptrs, 2) \
1988 x(blacklist, 3) \
2c5af169 1989 x(blacklist_v2, 4) \
3577df5f 1990 x(usage, 5) \
2abe5420 1991 x(data_usage, 6) \
180fb49d 1992 x(clock, 7) \
fb64f3fd 1993 x(dev_usage, 8) \
cb685ce7
KO
1994 x(log, 9) \
1995 x(overwrite, 10)
1c6fdbd8
KO
1996
1997enum {
1998#define x(f, nr) BCH_JSET_ENTRY_##f = nr,
1999 BCH_JSET_ENTRY_TYPES()
2000#undef x
2001 BCH_JSET_ENTRY_NR
2002};
2003
2004/*
2005 * Journal sequence numbers can be blacklisted: bsets record the max sequence
2006 * number of all the journal entries they contain updates for, so that on
2007 * recovery we can ignore those bsets that contain index updates newer that what
2008 * made it into the journal.
2009 *
2010 * This means that we can't reuse that journal_seq - we have to skip it, and
2011 * then record that we skipped it so that the next time we crash and recover we
2012 * don't think there was a missing journal entry.
2013 */
2014struct jset_entry_blacklist {
2015 struct jset_entry entry;
2016 __le64 seq;
2017};
2018
2019struct jset_entry_blacklist_v2 {
2020 struct jset_entry entry;
2021 __le64 start;
2022 __le64 end;
2023};
2024
528b18e6
KO
2025#define BCH_FS_USAGE_TYPES() \
2026 x(reserved, 0) \
2027 x(inodes, 1) \
2028 x(key_version, 2)
2029
2c5af169 2030enum {
528b18e6
KO
2031#define x(f, nr) BCH_FS_USAGE_##f = nr,
2032 BCH_FS_USAGE_TYPES()
2033#undef x
2034 BCH_FS_USAGE_NR
2c5af169
KO
2035};
2036
2037struct jset_entry_usage {
2038 struct jset_entry entry;
3577df5f 2039 __le64 v;
fd0c7679 2040} __packed;
3577df5f
KO
2041
2042struct jset_entry_data_usage {
2043 struct jset_entry entry;
2044 __le64 v;
2c5af169 2045 struct bch_replicas_entry r;
fd0c7679 2046} __packed;
2c5af169 2047
2abe5420
KO
2048struct jset_entry_clock {
2049 struct jset_entry entry;
2050 __u8 rw;
2051 __u8 pad[7];
2052 __le64 time;
fd0c7679 2053} __packed;
2abe5420 2054
180fb49d
KO
2055struct jset_entry_dev_usage_type {
2056 __le64 buckets;
2057 __le64 sectors;
2058 __le64 fragmented;
fd0c7679 2059} __packed;
180fb49d
KO
2060
2061struct jset_entry_dev_usage {
2062 struct jset_entry entry;
2063 __le32 dev;
2064 __u32 pad;
2065
2066 __le64 buckets_ec;
822835ff 2067 __le64 _buckets_unavailable; /* No longer used */
180fb49d
KO
2068
2069 struct jset_entry_dev_usage_type d[];
fd0c7679 2070} __packed;
180fb49d 2071
528b18e6
KO
2072static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
2073{
2074 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
2075 sizeof(struct jset_entry_dev_usage_type);
2076}
2077
fb64f3fd
KO
2078struct jset_entry_log {
2079 struct jset_entry entry;
2080 u8 d[];
fd0c7679 2081} __packed;
fb64f3fd 2082
1c6fdbd8
KO
2083/*
2084 * On disk format for a journal entry:
2085 * seq is monotonically increasing; every journal entry has its own unique
2086 * sequence number.
2087 *
2088 * last_seq is the oldest journal entry that still has keys the btree hasn't
2089 * flushed to disk yet.
2090 *
2091 * version is for on disk format changes.
2092 */
2093struct jset {
2094 struct bch_csum csum;
2095
2096 __le64 magic;
2097 __le64 seq;
2098 __le32 version;
2099 __le32 flags;
2100
2101 __le32 u64s; /* size of d[] in u64s */
2102
2103 __u8 encrypted_start[0];
2104
2abe5420
KO
2105 __le16 _read_clock; /* no longer used */
2106 __le16 _write_clock;
1c6fdbd8
KO
2107
2108 /* Sequence number of oldest dirty journal entry */
2109 __le64 last_seq;
2110
2111
2112 union {
2113 struct jset_entry start[0];
2114 __u64 _data[0];
2115 };
fd0c7679 2116} __packed __aligned(8);
1c6fdbd8
KO
2117
2118LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
2119LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5);
adbcada4 2120LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6);
1c6fdbd8 2121
8b335bae 2122#define BCH_JOURNAL_BUCKETS_MIN 8
1c6fdbd8
KO
2123
2124/* Btree: */
2125
41f8b09e 2126#define BCH_BTREE_IDS() \
a8c752bb
KO
2127 x(extents, 0) \
2128 x(inodes, 1) \
2129 x(dirents, 2) \
2130 x(xattrs, 3) \
2131 x(alloc, 4) \
2132 x(quotas, 5) \
2133 x(stripes, 6) \
2134 x(reflink, 7) \
2135 x(subvolumes, 8) \
2136 x(snapshots, 9) \
2137 x(lru, 10) \
2138 x(freespace, 11) \
2139 x(need_discard, 12) \
5250b74d 2140 x(backpointers, 13) \
1c59b483
KO
2141 x(bucket_gens, 14) \
2142 x(snapshot_trees, 15)
1c6fdbd8
KO
2143
2144enum btree_id {
41f8b09e 2145#define x(kwd, val) BTREE_ID_##kwd = val,
26609b61
KO
2146 BCH_BTREE_IDS()
2147#undef x
1c6fdbd8
KO
2148 BTREE_ID_NR
2149};
2150
1c6fdbd8
KO
2151#define BTREE_MAX_DEPTH 4U
2152
2153/* Btree nodes */
2154
1c6fdbd8
KO
2155/*
2156 * Btree nodes
2157 *
2158 * On disk a btree node is a list/log of these; within each set the keys are
2159 * sorted
2160 */
2161struct bset {
2162 __le64 seq;
2163
2164 /*
2165 * Highest journal entry this bset contains keys for.
2166 * If on recovery we don't see that journal entry, this bset is ignored:
2167 * this allows us to preserve the order of all index updates after a
2168 * crash, since the journal records a total order of all index updates
2169 * and anything that didn't make it to the journal doesn't get used.
2170 */
2171 __le64 journal_seq;
2172
2173 __le32 flags;
2174 __le16 version;
2175 __le16 u64s; /* count of d[] in u64s */
2176
2177 union {
2178 struct bkey_packed start[0];
2179 __u64 _data[0];
2180 };
fd0c7679 2181} __packed __aligned(8);
1c6fdbd8
KO
2182
2183LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
2184
2185LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5);
2186LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
2187 struct bset, flags, 5, 6);
2188
e719fc34
KO
2189/* Sector offset within the btree node: */
2190LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32);
2191
1c6fdbd8
KO
2192struct btree_node {
2193 struct bch_csum csum;
2194 __le64 magic;
2195
2196 /* this flags field is encrypted, unlike bset->flags: */
2197 __le64 flags;
2198
2199 /* Closed interval: */
2200 struct bpos min_key;
2201 struct bpos max_key;
e751c01a 2202 struct bch_extent_ptr _ptr; /* not used anymore */
1c6fdbd8
KO
2203 struct bkey_format format;
2204
2205 union {
2206 struct bset keys;
2207 struct {
2208 __u8 pad[22];
2209 __le16 u64s;
2210 __u64 _data[0];
2211
2212 };
2213 };
fd0c7679 2214} __packed __aligned(8);
1c6fdbd8 2215
4e1430a7 2216LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4);
1c6fdbd8 2217LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8);
bcd6f3e0
KO
2218LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
2219 struct btree_node, flags, 8, 9);
4e1430a7
KO
2220LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25);
2221/* 25-32 unused */
1c6fdbd8
KO
2222LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64);
2223
4e1430a7
KO
2224static inline __u64 BTREE_NODE_ID(struct btree_node *n)
2225{
2226 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4);
2227}
2228
2229static inline void SET_BTREE_NODE_ID(struct btree_node *n, u64 v)
2230{
2231 SET_BTREE_NODE_ID_LO(n, v);
2232 SET_BTREE_NODE_ID_HI(n, v >> 4);
2233}
2234
1c6fdbd8
KO
2235struct btree_node_entry {
2236 struct bch_csum csum;
2237
2238 union {
2239 struct bset keys;
2240 struct {
2241 __u8 pad[22];
2242 __le16 u64s;
2243 __u64 _data[0];
1c6fdbd8
KO
2244 };
2245 };
fd0c7679 2246} __packed __aligned(8);
1c6fdbd8
KO
2247
2248#endif /* _BCACHEFS_FORMAT_H */