bcachefs: lockdep fix when going rw from bch2_alloc_write()
[linux-block.git] / fs / bcachefs / bcachefs.h
CommitLineData
1c6fdbd8
KO
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_H
3#define _BCACHEFS_H
4
5/*
6 * SOME HIGH LEVEL CODE DOCUMENTATION:
7 *
8 * Bcache mostly works with cache sets, cache devices, and backing devices.
9 *
10 * Support for multiple cache devices hasn't quite been finished off yet, but
11 * it's about 95% plumbed through. A cache set and its cache devices is sort of
12 * like a md raid array and its component devices. Most of the code doesn't care
13 * about individual cache devices, the main abstraction is the cache set.
14 *
15 * Multiple cache devices is intended to give us the ability to mirror dirty
16 * cached data and metadata, without mirroring clean cached data.
17 *
18 * Backing devices are different, in that they have a lifetime independent of a
19 * cache set. When you register a newly formatted backing device it'll come up
20 * in passthrough mode, and then you can attach and detach a backing device from
21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22 * invalidates any cached data for that backing device.
23 *
24 * A cache set can have multiple (many) backing devices attached to it.
25 *
26 * There's also flash only volumes - this is the reason for the distinction
27 * between struct cached_dev and struct bcache_device. A flash only volume
28 * works much like a bcache device that has a backing device, except the
29 * "cached" data is always dirty. The end result is that we get thin
30 * provisioning with very little additional code.
31 *
32 * Flash only volumes work but they're not production ready because the moving
33 * garbage collector needs more work. More on that later.
34 *
35 * BUCKETS/ALLOCATION:
36 *
37 * Bcache is primarily designed for caching, which means that in normal
38 * operation all of our available space will be allocated. Thus, we need an
39 * efficient way of deleting things from the cache so we can write new things to
40 * it.
41 *
42 * To do this, we first divide the cache device up into buckets. A bucket is the
43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44 * works efficiently.
45 *
46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47 * it. The gens and priorities for all the buckets are stored contiguously and
48 * packed on disk (in a linked list of buckets - aside from the superblock, all
49 * of bcache's metadata is stored in buckets).
50 *
51 * The priority is used to implement an LRU. We reset a bucket's priority when
52 * we allocate it or on cache it, and every so often we decrement the priority
53 * of each bucket. It could be used to implement something more sophisticated,
54 * if anyone ever gets around to it.
55 *
56 * The generation is used for invalidating buckets. Each pointer also has an 8
57 * bit generation embedded in it; for a pointer to be considered valid, its gen
58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
59 * we have to do is increment its gen (and write its new gen to disk; we batch
60 * this up).
61 *
62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63 * contain metadata (including btree nodes).
64 *
65 * THE BTREE:
66 *
67 * Bcache is in large part design around the btree.
68 *
69 * At a high level, the btree is just an index of key -> ptr tuples.
70 *
71 * Keys represent extents, and thus have a size field. Keys also have a variable
72 * number of pointers attached to them (potentially zero, which is handy for
73 * invalidating the cache).
74 *
75 * The key itself is an inode:offset pair. The inode number corresponds to a
76 * backing device or a flash only volume. The offset is the ending offset of the
77 * extent within the inode - not the starting offset; this makes lookups
78 * slightly more convenient.
79 *
80 * Pointers contain the cache device id, the offset on that device, and an 8 bit
81 * generation number. More on the gen later.
82 *
83 * Index lookups are not fully abstracted - cache lookups in particular are
84 * still somewhat mixed in with the btree code, but things are headed in that
85 * direction.
86 *
87 * Updates are fairly well abstracted, though. There are two different ways of
88 * updating the btree; insert and replace.
89 *
90 * BTREE_INSERT will just take a list of keys and insert them into the btree -
91 * overwriting (possibly only partially) any extents they overlap with. This is
92 * used to update the index after a write.
93 *
94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95 * overwriting a key that matches another given key. This is used for inserting
96 * data into the cache after a cache miss, and for background writeback, and for
97 * the moving garbage collector.
98 *
99 * There is no "delete" operation; deleting things from the index is
100 * accomplished by either by invalidating pointers (by incrementing a bucket's
101 * gen) or by inserting a key with 0 pointers - which will overwrite anything
102 * previously present at that location in the index.
103 *
104 * This means that there are always stale/invalid keys in the btree. They're
105 * filtered out by the code that iterates through a btree node, and removed when
106 * a btree node is rewritten.
107 *
108 * BTREE NODES:
109 *
110 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
111 * free smaller than a bucket - so, that's how big our btree nodes are.
112 *
113 * (If buckets are really big we'll only use part of the bucket for a btree node
114 * - no less than 1/4th - but a bucket still contains no more than a single
115 * btree node. I'd actually like to change this, but for now we rely on the
116 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117 *
118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119 * btree implementation.
120 *
121 * The way this is solved is that btree nodes are internally log structured; we
122 * can append new keys to an existing btree node without rewriting it. This
123 * means each set of keys we write is sorted, but the node is not.
124 *
125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126 * be expensive, and we have to distinguish between the keys we have written and
127 * the keys we haven't. So to do a lookup in a btree node, we have to search
128 * each sorted set. But we do merge written sets together lazily, so the cost of
129 * these extra searches is quite low (normally most of the keys in a btree node
130 * will be in one big set, and then there'll be one or two sets that are much
131 * smaller).
132 *
133 * This log structure makes bcache's btree more of a hybrid between a
134 * conventional btree and a compacting data structure, with some of the
135 * advantages of both.
136 *
137 * GARBAGE COLLECTION:
138 *
139 * We can't just invalidate any bucket - it might contain dirty data or
140 * metadata. If it once contained dirty data, other writes might overwrite it
141 * later, leaving no valid pointers into that bucket in the index.
142 *
143 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144 * It also counts how much valid data it each bucket currently contains, so that
145 * allocation can reuse buckets sooner when they've been mostly overwritten.
146 *
147 * It also does some things that are really internal to the btree
148 * implementation. If a btree node contains pointers that are stale by more than
149 * some threshold, it rewrites the btree node to avoid the bucket's generation
150 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151 *
152 * THE JOURNAL:
153 *
154 * Bcache's journal is not necessary for consistency; we always strictly
155 * order metadata writes so that the btree and everything else is consistent on
156 * disk in the event of an unclean shutdown, and in fact bcache had writeback
157 * caching (with recovery from unclean shutdown) before journalling was
158 * implemented.
159 *
160 * Rather, the journal is purely a performance optimization; we can't complete a
161 * write until we've updated the index on disk, otherwise the cache would be
162 * inconsistent in the event of an unclean shutdown. This means that without the
163 * journal, on random write workloads we constantly have to update all the leaf
164 * nodes in the btree, and those writes will be mostly empty (appending at most
165 * a few keys each) - highly inefficient in terms of amount of metadata writes,
166 * and it puts more strain on the various btree resorting/compacting code.
167 *
168 * The journal is just a log of keys we've inserted; on startup we just reinsert
169 * all the keys in the open journal entries. That means that when we're updating
170 * a node in the btree, we can wait until a 4k block of keys fills up before
171 * writing them out.
172 *
173 * For simplicity, we only journal updates to leaf nodes; updates to parent
174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175 * the complexity to deal with journalling them (in particular, journal replay)
176 * - updates to non leaf nodes just happen synchronously (see btree_split()).
177 */
178
179#undef pr_fmt
180#define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
181
182#include <linux/backing-dev-defs.h>
183#include <linux/bug.h>
184#include <linux/bio.h>
185#include <linux/closure.h>
186#include <linux/kobject.h>
187#include <linux/list.h>
1dd7f9d9 188#include <linux/math64.h>
1c6fdbd8
KO
189#include <linux/mutex.h>
190#include <linux/percpu-refcount.h>
191#include <linux/percpu-rwsem.h>
192#include <linux/rhashtable.h>
193#include <linux/rwsem.h>
194#include <linux/seqlock.h>
195#include <linux/shrinker.h>
196#include <linux/types.h>
197#include <linux/workqueue.h>
198#include <linux/zstd.h>
199
200#include "bcachefs_format.h"
201#include "fifo.h"
202#include "opts.h"
203#include "util.h"
204
205#define dynamic_fault(...) 0
206#define race_fault(...) 0
207
cd575ddf 208#define bch2_fs_init_fault(name) \
1c6fdbd8
KO
209 dynamic_fault("bcachefs:bch_fs_init:" name)
210#define bch2_meta_read_fault(name) \
211 dynamic_fault("bcachefs:meta:read:" name)
212#define bch2_meta_write_fault(name) \
213 dynamic_fault("bcachefs:meta:write:" name)
214
215#ifdef __KERNEL__
216#define bch2_fmt(_c, fmt) "bcachefs (%s): " fmt "\n", ((_c)->name)
217#else
218#define bch2_fmt(_c, fmt) fmt "\n"
219#endif
220
221#define bch_info(c, fmt, ...) \
222 printk(KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
223#define bch_notice(c, fmt, ...) \
224 printk(KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__)
225#define bch_warn(c, fmt, ...) \
226 printk(KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
ac7f0d77
KO
227#define bch_warn_ratelimited(c, fmt, ...) \
228 printk_ratelimited(KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
1c6fdbd8
KO
229#define bch_err(c, fmt, ...) \
230 printk(KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
dfe9bfb3
KO
231#define bch_err_ratelimited(c, fmt, ...) \
232 printk_ratelimited(KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
1c6fdbd8
KO
233
234#define bch_verbose(c, fmt, ...) \
235do { \
0b847a19 236 if ((c)->opts.verbose) \
1c6fdbd8
KO
237 bch_info(c, fmt, ##__VA_ARGS__); \
238} while (0)
239
240#define pr_verbose_init(opts, fmt, ...) \
241do { \
0b847a19 242 if (opt_get(opts, verbose)) \
1c6fdbd8
KO
243 pr_info(fmt, ##__VA_ARGS__); \
244} while (0)
245
246/* Parameters that are useful for debugging, but should always be compiled in: */
247#define BCH_DEBUG_PARAMS_ALWAYS() \
248 BCH_DEBUG_PARAM(key_merging_disabled, \
249 "Disables merging of extents") \
250 BCH_DEBUG_PARAM(btree_gc_always_rewrite, \
251 "Causes mark and sweep to compact and rewrite every " \
252 "btree node it traverses") \
253 BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \
254 "Disables rewriting of btree nodes during mark and sweep")\
255 BCH_DEBUG_PARAM(btree_shrinker_disabled, \
256 "Disables the shrinker callback for the btree node cache")
257
258/* Parameters that should only be compiled in in debug mode: */
259#define BCH_DEBUG_PARAMS_DEBUG() \
260 BCH_DEBUG_PARAM(expensive_debug_checks, \
261 "Enables various runtime debugging checks that " \
262 "significantly affect performance") \
f13f5a8c
KO
263 BCH_DEBUG_PARAM(debug_check_iterators, \
264 "Enables extra verification for btree iterators") \
1c6fdbd8
KO
265 BCH_DEBUG_PARAM(debug_check_bkeys, \
266 "Run bkey_debugcheck (primarily checking GC/allocation "\
267 "information) when iterating over keys") \
268 BCH_DEBUG_PARAM(verify_btree_ondisk, \
269 "Reread btree nodes at various points to verify the " \
270 "mergesort in the read path against modifications " \
271 "done in memory") \
272 BCH_DEBUG_PARAM(journal_seq_verify, \
273 "Store the journal sequence number in the version " \
274 "number of every btree key, and verify that btree " \
275 "update ordering is preserved during recovery") \
276 BCH_DEBUG_PARAM(inject_invalid_keys, \
277 "Store the journal sequence number in the version " \
278 "number of every btree key, and verify that btree " \
279 "update ordering is preserved during recovery") \
b29e197a
KO
280 BCH_DEBUG_PARAM(test_alloc_startup, \
281 "Force allocator startup to use the slowpath where it" \
282 "can't find enough free buckets without invalidating" \
cd575ddf
KO
283 "cached data") \
284 BCH_DEBUG_PARAM(force_reconstruct_read, \
285 "Force reads to use the reconstruct path, when reading" \
6122ab63
KO
286 "from erasure coded extents") \
287 BCH_DEBUG_PARAM(test_restart_gc, \
288 "Test restarting mark and sweep gc when bucket gens change")\
289 BCH_DEBUG_PARAM(test_reconstruct_alloc, \
290 "Test reconstructing the alloc btree")
1c6fdbd8
KO
291
292#define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
293
294#ifdef CONFIG_BCACHEFS_DEBUG
295#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
296#else
297#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
298#endif
299
300#define BCH_TIME_STATS() \
301 x(btree_node_mem_alloc) \
dc3b63dc
KO
302 x(btree_node_split) \
303 x(btree_node_sort) \
304 x(btree_node_read) \
1c6fdbd8 305 x(btree_gc) \
dc3b63dc 306 x(btree_update) \
1c6fdbd8
KO
307 x(btree_lock_contended_read) \
308 x(btree_lock_contended_intent) \
309 x(btree_lock_contended_write) \
310 x(data_write) \
311 x(data_read) \
312 x(data_promote) \
313 x(journal_write) \
314 x(journal_delay) \
49a67206
KO
315 x(journal_flush_seq) \
316 x(blocked_journal) \
317 x(blocked_allocate) \
318 x(blocked_allocate_open_bucket)
1c6fdbd8
KO
319
320enum bch_time_stats {
321#define x(name) BCH_TIME_##name,
322 BCH_TIME_STATS()
323#undef x
324 BCH_TIME_STAT_NR
325};
326
327#include "alloc_types.h"
328#include "btree_types.h"
329#include "buckets_types.h"
330#include "clock_types.h"
cd575ddf 331#include "ec_types.h"
1c6fdbd8
KO
332#include "journal_types.h"
333#include "keylist_types.h"
334#include "quota_types.h"
335#include "rebalance_types.h"
7a920560 336#include "replicas_types.h"
1c6fdbd8
KO
337#include "super_types.h"
338
339/* Number of nodes btree coalesce will try to coalesce at once */
340#define GC_MERGE_NODES 4U
341
342/* Maximum number of nodes we might need to allocate atomically: */
343#define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1))
344
345/* Size of the freelist we allocate btree nodes from: */
8b335bae 346#define BTREE_NODE_RESERVE BTREE_RESERVE_MAX
1c6fdbd8 347
b030f691
KO
348#define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
349
1c6fdbd8
KO
350struct btree;
351
352enum gc_phase {
dfe9bfb3 353 GC_PHASE_NOT_RUNNING,
1c6fdbd8
KO
354 GC_PHASE_START,
355 GC_PHASE_SB,
356
cd575ddf
KO
357 GC_PHASE_BTREE_EC,
358 GC_PHASE_BTREE_EXTENTS,
359 GC_PHASE_BTREE_INODES,
360 GC_PHASE_BTREE_DIRENTS,
361 GC_PHASE_BTREE_XATTRS,
362 GC_PHASE_BTREE_ALLOC,
363 GC_PHASE_BTREE_QUOTAS,
1c6fdbd8
KO
364
365 GC_PHASE_PENDING_DELETE,
366 GC_PHASE_ALLOC,
1c6fdbd8
KO
367};
368
369struct gc_pos {
370 enum gc_phase phase;
371 struct bpos pos;
372 unsigned level;
373};
374
375struct io_count {
376 u64 sectors[2][BCH_DATA_NR];
377};
378
379struct bch_dev {
380 struct kobject kobj;
381 struct percpu_ref ref;
382 struct completion ref_completion;
383 struct percpu_ref io_ref;
384 struct completion io_ref_completion;
385
386 struct bch_fs *fs;
387
388 u8 dev_idx;
389 /*
390 * Cached version of this device's member info from superblock
391 * Committed by bch2_write_super() -> bch_fs_mi_update()
392 */
393 struct bch_member_cpu mi;
394 __uuid_t uuid;
395 char name[BDEVNAME_SIZE];
396
397 struct bch_sb_handle disk_sb;
03e183cb 398 struct bch_sb *sb_read_scratch;
1c6fdbd8
KO
399 int sb_write_error;
400
401 struct bch_devs_mask self;
402
403 /* biosets used in cloned bios for writing multiple replicas */
404 struct bio_set replica_set;
405
406 /*
407 * Buckets:
9166b41d 408 * Per-bucket arrays are protected by c->mark_lock, bucket_lock and
1c6fdbd8
KO
409 * gc_lock, for device resize - holding any is sufficient for access:
410 * Or rcu_read_lock(), but only for ptr_stale():
411 */
9ca53b55 412 struct bucket_array __rcu *buckets[2];
8eb7f3ee 413 unsigned long *buckets_nouse;
61274e9d 414 unsigned long *buckets_written;
1c6fdbd8
KO
415 struct rw_semaphore bucket_lock;
416
9ca53b55 417 struct bch_dev_usage __percpu *usage[2];
1c6fdbd8
KO
418
419 /* Allocator: */
420 struct task_struct __rcu *alloc_thread;
421
422 /*
423 * free: Buckets that are ready to be used
424 *
425 * free_inc: Incoming buckets - these are buckets that currently have
426 * cached data in them, and we can't reuse them until after we write
427 * their new gen to disk. After prio_write() finishes writing the new
428 * gens/prios, they'll be moved to the free list (and possibly discarded
429 * in the process)
430 */
431 alloc_fifo free[RESERVE_NR];
432 alloc_fifo free_inc;
433 spinlock_t freelist_lock;
1c6fdbd8
KO
434
435 u8 open_buckets_partial[OPEN_BUCKETS_COUNT];
436 unsigned open_buckets_partial_nr;
437
438 size_t fifo_last_bucket;
439
440 /* last calculated minimum prio */
441 u16 max_last_bucket_io[2];
442
1c6fdbd8
KO
443 size_t inc_gen_needs_gc;
444 size_t inc_gen_really_needs_gc;
430735cd
KO
445
446 /*
447 * XXX: this should be an enum for allocator state, so as to include
448 * error state
449 */
1c6fdbd8 450 bool allocator_blocked;
430735cd 451 bool allocator_blocked_full;
1c6fdbd8
KO
452
453 alloc_heap alloc_heap;
454
455 /* Copying GC: */
456 struct task_struct *copygc_thread;
457 copygc_heap copygc_heap;
458 struct bch_pd_controller copygc_pd;
459 struct write_point copygc_write_point;
a9bec520 460 u64 copygc_threshold;
1c6fdbd8
KO
461
462 atomic64_t rebalance_work;
463
464 struct journal_device journal;
465
466 struct work_struct io_error_work;
467
468 /* The rest of this all shows up in sysfs */
469 atomic64_t cur_latency[2];
470 struct bch2_time_stats io_latency[2];
471
472#define CONGESTED_MAX 1024
473 atomic_t congested;
474 u64 congested_last;
475
476 struct io_count __percpu *io_done;
477};
478
1c6fdbd8
KO
479enum {
480 /* startup: */
481 BCH_FS_ALLOC_READ_DONE,
482 BCH_FS_ALLOCATOR_STARTED,
b935a8a6 483 BCH_FS_ALLOCATOR_RUNNING,
1c6fdbd8
KO
484 BCH_FS_INITIAL_GC_DONE,
485 BCH_FS_FSCK_DONE,
486 BCH_FS_STARTED,
134915f3 487 BCH_FS_RW,
1c6fdbd8
KO
488
489 /* shutdown: */
1dd7f9d9 490 BCH_FS_STOPPING,
1c6fdbd8
KO
491 BCH_FS_EMERGENCY_RO,
492 BCH_FS_WRITE_DISABLE_COMPLETE,
493
494 /* errors: */
495 BCH_FS_ERROR,
0bc166ff 496 BCH_FS_ERRORS_FIXED,
1c6fdbd8
KO
497
498 /* misc: */
499 BCH_FS_BDEV_MOUNTED,
1c6fdbd8
KO
500 BCH_FS_FIXED_GENS,
501 BCH_FS_REBUILD_REPLICAS,
502 BCH_FS_HOLD_BTREE_WRITES,
503};
504
505struct btree_debug {
506 unsigned id;
507 struct dentry *btree;
508 struct dentry *btree_format;
509 struct dentry *failed;
510};
511
5663a415
KO
512struct bch_fs_pcpu {
513 u64 sectors_available;
514};
515
1dd7f9d9
KO
516struct journal_seq_blacklist_table {
517 size_t nr;
518 struct journal_seq_blacklist_table_entry {
519 u64 start;
520 u64 end;
521 bool dirty;
522 } entries[0];
523};
524
1c6fdbd8
KO
525struct bch_fs {
526 struct closure cl;
527
528 struct list_head list;
529 struct kobject kobj;
530 struct kobject internal;
531 struct kobject opts_dir;
532 struct kobject time_stats;
533 unsigned long flags;
534
535 int minor;
536 struct device *chardev;
537 struct super_block *vfs_sb;
538 char name[40];
539
540 /* ro/rw, add/remove devices: */
541 struct mutex state_lock;
1c6fdbd8
KO
542
543 /* Counts outstanding writes, for clean transition to read-only */
544 struct percpu_ref writes;
545 struct work_struct read_only_work;
546
547 struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX];
548
73e6ab95
KO
549 struct bch_replicas_cpu replicas;
550 struct bch_replicas_cpu replicas_gc;
1c6fdbd8
KO
551 struct mutex replicas_gc_lock;
552
2c5af169
KO
553 struct journal_entry_res replicas_journal_res;
554
1c6fdbd8
KO
555 struct bch_disk_groups_cpu __rcu *disk_groups;
556
557 struct bch_opts opts;
558
559 /* Updated by bch2_sb_update():*/
560 struct {
561 __uuid_t uuid;
562 __uuid_t user_uuid;
563
26609b61 564 u16 version;
1c6fdbd8
KO
565 u16 encoded_extent_max;
566
567 u8 nr_devices;
568 u8 clean;
569
570 u8 encryption_type;
571
572 u64 time_base_lo;
573 u32 time_base_hi;
574 u32 time_precision;
575 u64 features;
1df42b57 576 u64 compat;
1c6fdbd8
KO
577 } sb;
578
579 struct bch_sb_handle disk_sb;
580
581 unsigned short block_bits; /* ilog2(block_size) */
582
583 u16 btree_foreground_merge_threshold;
584
585 struct closure sb_write;
586 struct mutex sb_lock;
587
588 /* BTREE CACHE */
589 struct bio_set btree_bio;
590
591 struct btree_root btree_roots[BTREE_ID_NR];
592 bool btree_roots_dirty;
593 struct mutex btree_root_lock;
594
595 struct btree_cache btree_cache;
596
597 mempool_t btree_reserve_pool;
598
599 /*
600 * Cache of allocated btree nodes - if we allocate a btree node and
601 * don't use it, if we free it that space can't be reused until going
602 * _all_ the way through the allocator (which exposes us to a livelock
603 * when allocating btree reserves fail halfway through) - instead, we
604 * can stick them here:
605 */
606 struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2];
607 unsigned btree_reserve_cache_nr;
608 struct mutex btree_reserve_cache_lock;
609
610 mempool_t btree_interior_update_pool;
611 struct list_head btree_interior_update_list;
612 struct mutex btree_interior_update_lock;
613 struct closure_waitlist btree_interior_update_wait;
614
581edb63
KO
615 mempool_t btree_iters_pool;
616
1c6fdbd8
KO
617 struct workqueue_struct *wq;
618 /* copygc needs its own workqueue for index updates.. */
619 struct workqueue_struct *copygc_wq;
0519b72d 620 struct workqueue_struct *journal_reclaim_wq;
1c6fdbd8
KO
621
622 /* ALLOCATION */
623 struct delayed_work pd_controllers_update;
624 unsigned pd_controllers_update_seconds;
625
626 struct bch_devs_mask rw_devs[BCH_DATA_NR];
627
628 u64 capacity; /* sectors */
629
630 /*
631 * When capacity _decreases_ (due to a disk being removed), we
632 * increment capacity_gen - this invalidates outstanding reservations
633 * and forces them to be revalidated
634 */
635 u32 capacity_gen;
b092dadd 636 unsigned bucket_size_max;
1c6fdbd8
KO
637
638 atomic64_t sectors_available;
639
5663a415
KO
640 struct bch_fs_pcpu __percpu *pcpu;
641
5663a415 642 struct percpu_rw_semaphore mark_lock;
1c6fdbd8 643
7ef2a73a 644 struct bch_fs_usage __percpu *usage[2];
4d8100da
KO
645
646 /* single element mempool: */
647 struct mutex usage_scratch_lock;
648 struct bch_fs_usage *usage_scratch;
7ef2a73a 649
1c6fdbd8
KO
650 /*
651 * When we invalidate buckets, we use both the priority and the amount
652 * of good data to determine which buckets to reuse first - to weight
653 * those together consistently we keep track of the smallest nonzero
654 * priority of any bucket.
655 */
656 struct bucket_clock bucket_clock[2];
657
658 struct io_clock io_clock[2];
659
1dd7f9d9
KO
660 /* JOURNAL SEQ BLACKLIST */
661 struct journal_seq_blacklist_table *
662 journal_seq_blacklist_table;
663 struct work_struct journal_seq_blacklist_gc_work;
664
1c6fdbd8
KO
665 /* ALLOCATOR */
666 spinlock_t freelist_lock;
90541a74 667 struct closure_waitlist freelist_wait;
49a67206
KO
668 u64 blocked_allocate;
669 u64 blocked_allocate_open_bucket;
1c6fdbd8
KO
670 u8 open_buckets_freelist;
671 u8 open_buckets_nr_free;
672 struct closure_waitlist open_buckets_wait;
673 struct open_bucket open_buckets[OPEN_BUCKETS_COUNT];
674
675 struct write_point btree_write_point;
676 struct write_point rebalance_write_point;
677
b092dadd
KO
678 struct write_point write_points[WRITE_POINT_MAX];
679 struct hlist_head write_points_hash[WRITE_POINT_HASH_NR];
1c6fdbd8 680 struct mutex write_points_hash_lock;
b092dadd 681 unsigned write_points_nr;
1c6fdbd8
KO
682
683 /* GARBAGE COLLECTION */
684 struct task_struct *gc_thread;
685 atomic_t kick_gc;
686 unsigned long gc_count;
687
688 /*
689 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
690 * has been marked by GC.
691 *
692 * gc_cur_phase is a superset of btree_ids (BTREE_ID_EXTENTS etc.)
693 *
1c6fdbd8
KO
694 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread
695 * can read without a lock.
696 */
697 seqcount_t gc_pos_lock;
698 struct gc_pos gc_pos;
699
700 /*
701 * The allocation code needs gc_mark in struct bucket to be correct, but
702 * it's not while a gc is in progress.
703 */
704 struct rw_semaphore gc_lock;
705
706 /* IO PATH */
707 struct bio_set bio_read;
708 struct bio_set bio_read_split;
709 struct bio_set bio_write;
710 struct mutex bio_bounce_pages_lock;
711 mempool_t bio_bounce_pages;
712 struct rhashtable promote_table;
713
714 mempool_t compression_bounce[2];
715 mempool_t compress_workspace[BCH_COMPRESSION_NR];
716 mempool_t decompress_workspace;
717 ZSTD_parameters zstd_params;
718
719 struct crypto_shash *sha256;
720 struct crypto_sync_skcipher *chacha20;
721 struct crypto_shash *poly1305;
722
723 atomic64_t key_version;
724
725 /* REBALANCE */
726 struct bch_fs_rebalance rebalance;
727
dfe9bfb3
KO
728 /* STRIPES: */
729 GENRADIX(struct stripe) stripes[2];
730 struct mutex ec_stripe_create_lock;
cd575ddf
KO
731
732 ec_stripes_heap ec_stripes_heap;
733 spinlock_t ec_stripes_heap_lock;
734
dfe9bfb3
KO
735 /* ERASURE CODING */
736 struct list_head ec_new_stripe_list;
737 struct mutex ec_new_stripe_lock;
738
cd575ddf
KO
739 struct bio_set ec_bioset;
740
741 struct work_struct ec_stripe_delete_work;
742 struct llist_head ec_stripe_delete_list;
743
1c6fdbd8
KO
744 /* VFS IO PATH - fs-io.c */
745 struct bio_set writepage_bioset;
746 struct bio_set dio_write_bioset;
747 struct bio_set dio_read_bioset;
748
749 struct bio_list btree_write_error_list;
750 struct work_struct btree_write_error_work;
751 spinlock_t btree_write_error_lock;
752
753 /* ERRORS */
754 struct list_head fsck_errors;
755 struct mutex fsck_error_lock;
756 bool fsck_alloc_err;
757
1c6fdbd8
KO
758 /* QUOTAS */
759 struct bch_memquota_type quotas[QTYP_NR];
760
761 /* DEBUG JUNK */
762 struct dentry *debug;
763 struct btree_debug btree_debug[BTREE_ID_NR];
764#ifdef CONFIG_BCACHEFS_DEBUG
765 struct btree *verify_data;
766 struct btree_node *verify_ondisk;
767 struct mutex verify_lock;
768#endif
769
770 u64 unused_inode_hint;
771
772 /*
773 * A btree node on disk could have too many bsets for an iterator to fit
774 * on the stack - have to dynamically allocate them
775 */
776 mempool_t fill_iter;
777
778 mempool_t btree_bounce_pool;
779
780 struct journal journal;
781
c6923995 782 u64 last_bucket_seq_cleanup;
1c6fdbd8
KO
783
784 /* The rest of this all shows up in sysfs */
785 atomic_long_t read_realloc_races;
786 atomic_long_t extent_migrate_done;
787 atomic_long_t extent_migrate_raced;
788
789 unsigned btree_gc_periodic:1;
790 unsigned copy_gc_enabled:1;
791 bool promote_whole_extents;
792
793#define BCH_DEBUG_PARAM(name, description) bool name;
794 BCH_DEBUG_PARAMS_ALL()
795#undef BCH_DEBUG_PARAM
796
797 struct bch2_time_stats times[BCH_TIME_STAT_NR];
798};
799
800static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
801{
802#ifndef NO_BCACHEFS_FS
803 if (c->vfs_sb)
804 c->vfs_sb->s_bdi->ra_pages = ra_pages;
805#endif
806}
807
1c6fdbd8
KO
808static inline unsigned bucket_bytes(const struct bch_dev *ca)
809{
810 return ca->mi.bucket_size << 9;
811}
812
813static inline unsigned block_bytes(const struct bch_fs *c)
814{
815 return c->opts.block_size << 9;
816}
817
818static inline struct timespec64 bch2_time_to_timespec(struct bch_fs *c, u64 time)
819{
820 return ns_to_timespec64(time * c->sb.time_precision + c->sb.time_base_lo);
821}
822
823static inline s64 timespec_to_bch2_time(struct bch_fs *c, struct timespec64 ts)
824{
825 s64 ns = timespec64_to_ns(&ts) - c->sb.time_base_lo;
826
827 if (c->sb.time_precision == 1)
828 return ns;
829
830 return div_s64(ns, c->sb.time_precision);
831}
832
833static inline s64 bch2_current_time(struct bch_fs *c)
834{
835 struct timespec64 now;
836
837 ktime_get_real_ts64(&now);
838 return timespec_to_bch2_time(c, now);
839}
840
841#endif /* _BCACHEFS_H */