aio: add a iocb refcount
[linux-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
caf4167a
KO
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/syscalls.h>
b9d128f1 20#include <linux/backing-dev.h>
9018ccc4 21#include <linux/refcount.h>
027445c3 22#include <linux/uio.h>
1da177e4 23
174cd4b1 24#include <linux/sched/signal.h>
1da177e4
LT
25#include <linux/fs.h>
26#include <linux/file.h>
27#include <linux/mm.h>
28#include <linux/mman.h>
3d2d827f 29#include <linux/mmu_context.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
1da177e4
LT
44
45#include <asm/kmap_types.h>
7c0f6ba6 46#include <linux/uaccess.h>
1da177e4 47
68d70d03
AV
48#include "internal.h"
49
f3a2752a
CH
50#define KIOCB_KEY 0
51
4e179bca
KO
52#define AIO_RING_MAGIC 0xa10a10a1
53#define AIO_RING_COMPAT_FEATURES 1
54#define AIO_RING_INCOMPAT_FEATURES 0
55struct aio_ring {
56 unsigned id; /* kernel internal index number */
57 unsigned nr; /* number of io_events */
fa8a53c3
BL
58 unsigned head; /* Written to by userland or under ring_lock
59 * mutex by aio_read_events_ring(). */
4e179bca
KO
60 unsigned tail;
61
62 unsigned magic;
63 unsigned compat_features;
64 unsigned incompat_features;
65 unsigned header_length; /* size of aio_ring */
66
67
68 struct io_event io_events[0];
69}; /* 128 bytes + ring size */
70
71#define AIO_RING_PAGES 8
4e179bca 72
db446a08 73struct kioctx_table {
d0264c01
TH
74 struct rcu_head rcu;
75 unsigned nr;
76 struct kioctx __rcu *table[];
db446a08
BL
77};
78
e1bdd5f2
KO
79struct kioctx_cpu {
80 unsigned reqs_available;
81};
82
dc48e56d
JA
83struct ctx_rq_wait {
84 struct completion comp;
85 atomic_t count;
86};
87
4e179bca 88struct kioctx {
723be6e3 89 struct percpu_ref users;
36f55889 90 atomic_t dead;
4e179bca 91
e34ecee2
KO
92 struct percpu_ref reqs;
93
4e179bca 94 unsigned long user_id;
4e179bca 95
e1bdd5f2
KO
96 struct __percpu kioctx_cpu *cpu;
97
98 /*
99 * For percpu reqs_available, number of slots we move to/from global
100 * counter at a time:
101 */
102 unsigned req_batch;
3e845ce0
KO
103 /*
104 * This is what userspace passed to io_setup(), it's not used for
105 * anything but counting against the global max_reqs quota.
106 *
58c85dc2 107 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
108 * aio_setup_ring())
109 */
4e179bca
KO
110 unsigned max_reqs;
111
58c85dc2
KO
112 /* Size of ringbuffer, in units of struct io_event */
113 unsigned nr_events;
4e179bca 114
58c85dc2
KO
115 unsigned long mmap_base;
116 unsigned long mmap_size;
117
118 struct page **ring_pages;
119 long nr_pages;
120
f729863a 121 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 122
e02ba72a
AP
123 /*
124 * signals when all in-flight requests are done
125 */
dc48e56d 126 struct ctx_rq_wait *rq_wait;
e02ba72a 127
4e23bcae 128 struct {
34e83fc6
KO
129 /*
130 * This counts the number of available slots in the ringbuffer,
131 * so we avoid overflowing it: it's decremented (if positive)
132 * when allocating a kiocb and incremented when the resulting
133 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
134 *
135 * We batch accesses to it with a percpu version.
34e83fc6
KO
136 */
137 atomic_t reqs_available;
4e23bcae
KO
138 } ____cacheline_aligned_in_smp;
139
140 struct {
141 spinlock_t ctx_lock;
142 struct list_head active_reqs; /* used for cancellation */
143 } ____cacheline_aligned_in_smp;
144
58c85dc2
KO
145 struct {
146 struct mutex ring_lock;
4e23bcae
KO
147 wait_queue_head_t wait;
148 } ____cacheline_aligned_in_smp;
58c85dc2
KO
149
150 struct {
151 unsigned tail;
d856f32a 152 unsigned completed_events;
58c85dc2 153 spinlock_t completion_lock;
4e23bcae 154 } ____cacheline_aligned_in_smp;
58c85dc2
KO
155
156 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 157 struct file *aio_ring_file;
db446a08
BL
158
159 unsigned id;
4e179bca
KO
160};
161
a3c0d439
CH
162struct fsync_iocb {
163 struct work_struct work;
164 struct file *file;
165 bool datasync;
166};
167
04b2fa9f 168struct aio_kiocb {
54843f87
CH
169 union {
170 struct kiocb rw;
a3c0d439 171 struct fsync_iocb fsync;
54843f87 172 };
04b2fa9f
CH
173
174 struct kioctx *ki_ctx;
175 kiocb_cancel_fn *ki_cancel;
176
177 struct iocb __user *ki_user_iocb; /* user's aiocb */
178 __u64 ki_user_data; /* user's data for completion */
179
180 struct list_head ki_list; /* the aio core uses this
181 * for cancellation */
9018ccc4 182 refcount_t ki_refcnt;
04b2fa9f
CH
183
184 /*
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
187 */
188 struct eventfd_ctx *ki_eventfd;
189};
190
1da177e4 191/*------ sysctl variables----*/
d55b5fda
ZB
192static DEFINE_SPINLOCK(aio_nr_lock);
193unsigned long aio_nr; /* current system wide number of aio requests */
194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
195/*----end sysctl variables---*/
196
e18b890b
CL
197static struct kmem_cache *kiocb_cachep;
198static struct kmem_cache *kioctx_cachep;
1da177e4 199
71ad7490
BL
200static struct vfsmount *aio_mnt;
201
202static const struct file_operations aio_ring_fops;
203static const struct address_space_operations aio_ctx_aops;
204
205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206{
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
71ad7490
BL
213
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
217
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
222 }
223 path.mnt = mntget(aio_mnt);
224
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
230 }
231
232 file->f_flags = O_RDWR;
71ad7490
BL
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
241 };
22f6b4d3
JH
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
244
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
71ad7490
BL
248}
249
1da177e4
LT
250/* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
253 */
254static int __init aio_setup(void)
255{
71ad7490
BL
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
260 };
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
264
04b2fa9f 265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
267 return 0;
268}
385773e0 269__initcall(aio_setup);
1da177e4 270
5e9ae2e5
BL
271static void put_aio_ring_file(struct kioctx *ctx)
272{
273 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
274 struct address_space *i_mapping;
275
5e9ae2e5 276 if (aio_ring_file) {
45063097 277 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
278
279 /* Prevent further access to the kioctx from migratepages */
45063097 280 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
281 spin_lock(&i_mapping->private_lock);
282 i_mapping->private_data = NULL;
5e9ae2e5 283 ctx->aio_ring_file = NULL;
de04e769 284 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
285
286 fput(aio_ring_file);
287 }
288}
289
1da177e4
LT
290static void aio_free_ring(struct kioctx *ctx)
291{
36bc08cc 292 int i;
1da177e4 293
fa8a53c3
BL
294 /* Disconnect the kiotx from the ring file. This prevents future
295 * accesses to the kioctx from page migration.
296 */
297 put_aio_ring_file(ctx);
298
36bc08cc 299 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 300 struct page *page;
36bc08cc
GZ
301 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
302 page_count(ctx->ring_pages[i]));
8e321fef
BL
303 page = ctx->ring_pages[i];
304 if (!page)
305 continue;
306 ctx->ring_pages[i] = NULL;
307 put_page(page);
36bc08cc 308 }
1da177e4 309
ddb8c45b 310 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 311 kfree(ctx->ring_pages);
ddb8c45b
SL
312 ctx->ring_pages = NULL;
313 }
36bc08cc
GZ
314}
315
5477e70a 316static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 317{
5477e70a 318 struct file *file = vma->vm_file;
e4a0d3e7
PE
319 struct mm_struct *mm = vma->vm_mm;
320 struct kioctx_table *table;
b2edffdd 321 int i, res = -EINVAL;
e4a0d3e7
PE
322
323 spin_lock(&mm->ioctx_lock);
324 rcu_read_lock();
325 table = rcu_dereference(mm->ioctx_table);
326 for (i = 0; i < table->nr; i++) {
327 struct kioctx *ctx;
328
d0264c01 329 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 330 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
331 if (!atomic_read(&ctx->dead)) {
332 ctx->user_id = ctx->mmap_base = vma->vm_start;
333 res = 0;
334 }
e4a0d3e7
PE
335 break;
336 }
337 }
338
339 rcu_read_unlock();
340 spin_unlock(&mm->ioctx_lock);
b2edffdd 341 return res;
e4a0d3e7
PE
342}
343
5477e70a
ON
344static const struct vm_operations_struct aio_ring_vm_ops = {
345 .mremap = aio_ring_mremap,
346#if IS_ENABLED(CONFIG_MMU)
347 .fault = filemap_fault,
348 .map_pages = filemap_map_pages,
349 .page_mkwrite = filemap_page_mkwrite,
350#endif
351};
352
353static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
354{
355 vma->vm_flags |= VM_DONTEXPAND;
356 vma->vm_ops = &aio_ring_vm_ops;
357 return 0;
358}
359
36bc08cc
GZ
360static const struct file_operations aio_ring_fops = {
361 .mmap = aio_ring_mmap,
362};
363
0c45355f 364#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
365static int aio_migratepage(struct address_space *mapping, struct page *new,
366 struct page *old, enum migrate_mode mode)
367{
5e9ae2e5 368 struct kioctx *ctx;
36bc08cc 369 unsigned long flags;
fa8a53c3 370 pgoff_t idx;
36bc08cc
GZ
371 int rc;
372
2916ecc0
JG
373 /*
374 * We cannot support the _NO_COPY case here, because copy needs to
375 * happen under the ctx->completion_lock. That does not work with the
376 * migration workflow of MIGRATE_SYNC_NO_COPY.
377 */
378 if (mode == MIGRATE_SYNC_NO_COPY)
379 return -EINVAL;
380
8e321fef
BL
381 rc = 0;
382
fa8a53c3 383 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
384 spin_lock(&mapping->private_lock);
385 ctx = mapping->private_data;
fa8a53c3
BL
386 if (!ctx) {
387 rc = -EINVAL;
388 goto out;
389 }
390
391 /* The ring_lock mutex. The prevents aio_read_events() from writing
392 * to the ring's head, and prevents page migration from mucking in
393 * a partially initialized kiotx.
394 */
395 if (!mutex_trylock(&ctx->ring_lock)) {
396 rc = -EAGAIN;
397 goto out;
398 }
399
400 idx = old->index;
401 if (idx < (pgoff_t)ctx->nr_pages) {
402 /* Make sure the old page hasn't already been changed */
403 if (ctx->ring_pages[idx] != old)
404 rc = -EAGAIN;
8e321fef
BL
405 } else
406 rc = -EINVAL;
8e321fef
BL
407
408 if (rc != 0)
fa8a53c3 409 goto out_unlock;
8e321fef 410
36bc08cc
GZ
411 /* Writeback must be complete */
412 BUG_ON(PageWriteback(old));
8e321fef 413 get_page(new);
36bc08cc 414
8e321fef 415 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 416 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 417 put_page(new);
fa8a53c3 418 goto out_unlock;
36bc08cc
GZ
419 }
420
fa8a53c3
BL
421 /* Take completion_lock to prevent other writes to the ring buffer
422 * while the old page is copied to the new. This prevents new
423 * events from being lost.
5e9ae2e5 424 */
fa8a53c3
BL
425 spin_lock_irqsave(&ctx->completion_lock, flags);
426 migrate_page_copy(new, old);
427 BUG_ON(ctx->ring_pages[idx] != old);
428 ctx->ring_pages[idx] = new;
429 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 430
fa8a53c3
BL
431 /* The old page is no longer accessible. */
432 put_page(old);
8e321fef 433
fa8a53c3
BL
434out_unlock:
435 mutex_unlock(&ctx->ring_lock);
436out:
437 spin_unlock(&mapping->private_lock);
36bc08cc 438 return rc;
1da177e4 439}
0c45355f 440#endif
1da177e4 441
36bc08cc 442static const struct address_space_operations aio_ctx_aops = {
835f252c 443 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 444#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 445 .migratepage = aio_migratepage,
0c45355f 446#endif
36bc08cc
GZ
447};
448
2a8a9867 449static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
450{
451 struct aio_ring *ring;
41003a7b 452 struct mm_struct *mm = current->mm;
3dc9acb6 453 unsigned long size, unused;
1da177e4 454 int nr_pages;
36bc08cc
GZ
455 int i;
456 struct file *file;
1da177e4
LT
457
458 /* Compensate for the ring buffer's head/tail overlap entry */
459 nr_events += 2; /* 1 is required, 2 for good luck */
460
461 size = sizeof(struct aio_ring);
462 size += sizeof(struct io_event) * nr_events;
1da177e4 463
36bc08cc 464 nr_pages = PFN_UP(size);
1da177e4
LT
465 if (nr_pages < 0)
466 return -EINVAL;
467
71ad7490 468 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
469 if (IS_ERR(file)) {
470 ctx->aio_ring_file = NULL;
fa8a53c3 471 return -ENOMEM;
36bc08cc
GZ
472 }
473
3dc9acb6
LT
474 ctx->aio_ring_file = file;
475 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
476 / sizeof(struct io_event);
477
478 ctx->ring_pages = ctx->internal_pages;
479 if (nr_pages > AIO_RING_PAGES) {
480 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
481 GFP_KERNEL);
482 if (!ctx->ring_pages) {
483 put_aio_ring_file(ctx);
484 return -ENOMEM;
485 }
486 }
487
36bc08cc
GZ
488 for (i = 0; i < nr_pages; i++) {
489 struct page *page;
45063097 490 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
491 i, GFP_HIGHUSER | __GFP_ZERO);
492 if (!page)
493 break;
494 pr_debug("pid(%d) page[%d]->count=%d\n",
495 current->pid, i, page_count(page));
496 SetPageUptodate(page);
36bc08cc 497 unlock_page(page);
3dc9acb6
LT
498
499 ctx->ring_pages[i] = page;
36bc08cc 500 }
3dc9acb6 501 ctx->nr_pages = i;
1da177e4 502
3dc9acb6
LT
503 if (unlikely(i != nr_pages)) {
504 aio_free_ring(ctx);
fa8a53c3 505 return -ENOMEM;
1da177e4
LT
506 }
507
58c85dc2
KO
508 ctx->mmap_size = nr_pages * PAGE_SIZE;
509 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 510
013373e8
MH
511 if (down_write_killable(&mm->mmap_sem)) {
512 ctx->mmap_size = 0;
513 aio_free_ring(ctx);
514 return -EINTR;
515 }
516
36bc08cc
GZ
517 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
518 PROT_READ | PROT_WRITE,
897ab3e0 519 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 520 up_write(&mm->mmap_sem);
58c85dc2 521 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 522 ctx->mmap_size = 0;
1da177e4 523 aio_free_ring(ctx);
fa8a53c3 524 return -ENOMEM;
1da177e4
LT
525 }
526
58c85dc2 527 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 528
58c85dc2
KO
529 ctx->user_id = ctx->mmap_base;
530 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 531
58c85dc2 532 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 533 ring->nr = nr_events; /* user copy */
db446a08 534 ring->id = ~0U;
1da177e4
LT
535 ring->head = ring->tail = 0;
536 ring->magic = AIO_RING_MAGIC;
537 ring->compat_features = AIO_RING_COMPAT_FEATURES;
538 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
539 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 540 kunmap_atomic(ring);
58c85dc2 541 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
542
543 return 0;
544}
545
1da177e4
LT
546#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
547#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
548#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
549
04b2fa9f 550void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 551{
54843f87 552 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
553 struct kioctx *ctx = req->ki_ctx;
554 unsigned long flags;
555
75321b50
CH
556 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
557 return;
0460fef2 558
75321b50
CH
559 spin_lock_irqsave(&ctx->ctx_lock, flags);
560 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 561 req->ki_cancel = cancel;
0460fef2
KO
562 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
563}
564EXPORT_SYMBOL(kiocb_set_cancel_fn);
565
a6d7cff4
TH
566/*
567 * free_ioctx() should be RCU delayed to synchronize against the RCU
568 * protected lookup_ioctx() and also needs process context to call
f729863a 569 * aio_free_ring(). Use rcu_work.
a6d7cff4 570 */
e34ecee2 571static void free_ioctx(struct work_struct *work)
36f55889 572{
f729863a
TH
573 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
574 free_rwork);
e34ecee2 575 pr_debug("freeing %p\n", ctx);
e1bdd5f2 576
e34ecee2 577 aio_free_ring(ctx);
e1bdd5f2 578 free_percpu(ctx->cpu);
9a1049da
TH
579 percpu_ref_exit(&ctx->reqs);
580 percpu_ref_exit(&ctx->users);
36f55889
KO
581 kmem_cache_free(kioctx_cachep, ctx);
582}
583
e34ecee2
KO
584static void free_ioctx_reqs(struct percpu_ref *ref)
585{
586 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
587
e02ba72a 588 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
589 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
590 complete(&ctx->rq_wait->comp);
e02ba72a 591
a6d7cff4 592 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
593 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
594 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
595}
596
36f55889
KO
597/*
598 * When this function runs, the kioctx has been removed from the "hash table"
599 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
600 * now it's safe to cancel any that need to be.
601 */
e34ecee2 602static void free_ioctx_users(struct percpu_ref *ref)
36f55889 603{
e34ecee2 604 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 605 struct aio_kiocb *req;
36f55889
KO
606
607 spin_lock_irq(&ctx->ctx_lock);
608
609 while (!list_empty(&ctx->active_reqs)) {
610 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 611 struct aio_kiocb, ki_list);
888933f8 612 req->ki_cancel(&req->rw);
4faa9996 613 list_del_init(&req->ki_list);
36f55889
KO
614 }
615
616 spin_unlock_irq(&ctx->ctx_lock);
617
e34ecee2
KO
618 percpu_ref_kill(&ctx->reqs);
619 percpu_ref_put(&ctx->reqs);
36f55889
KO
620}
621
db446a08
BL
622static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
623{
624 unsigned i, new_nr;
625 struct kioctx_table *table, *old;
626 struct aio_ring *ring;
627
628 spin_lock(&mm->ioctx_lock);
855ef0de 629 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
630
631 while (1) {
632 if (table)
633 for (i = 0; i < table->nr; i++)
d0264c01 634 if (!rcu_access_pointer(table->table[i])) {
db446a08 635 ctx->id = i;
d0264c01 636 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
637 spin_unlock(&mm->ioctx_lock);
638
fa8a53c3
BL
639 /* While kioctx setup is in progress,
640 * we are protected from page migration
641 * changes ring_pages by ->ring_lock.
642 */
db446a08
BL
643 ring = kmap_atomic(ctx->ring_pages[0]);
644 ring->id = ctx->id;
645 kunmap_atomic(ring);
646 return 0;
647 }
648
649 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
650 spin_unlock(&mm->ioctx_lock);
651
652 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
653 new_nr, GFP_KERNEL);
654 if (!table)
655 return -ENOMEM;
656
657 table->nr = new_nr;
658
659 spin_lock(&mm->ioctx_lock);
855ef0de 660 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
661
662 if (!old) {
663 rcu_assign_pointer(mm->ioctx_table, table);
664 } else if (table->nr > old->nr) {
665 memcpy(table->table, old->table,
666 old->nr * sizeof(struct kioctx *));
667
668 rcu_assign_pointer(mm->ioctx_table, table);
669 kfree_rcu(old, rcu);
670 } else {
671 kfree(table);
672 table = old;
673 }
674 }
675}
676
e34ecee2
KO
677static void aio_nr_sub(unsigned nr)
678{
679 spin_lock(&aio_nr_lock);
680 if (WARN_ON(aio_nr - nr > aio_nr))
681 aio_nr = 0;
682 else
683 aio_nr -= nr;
684 spin_unlock(&aio_nr_lock);
685}
686
1da177e4
LT
687/* ioctx_alloc
688 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
689 */
690static struct kioctx *ioctx_alloc(unsigned nr_events)
691{
41003a7b 692 struct mm_struct *mm = current->mm;
1da177e4 693 struct kioctx *ctx;
e23754f8 694 int err = -ENOMEM;
1da177e4 695
2a8a9867
MFO
696 /*
697 * Store the original nr_events -- what userspace passed to io_setup(),
698 * for counting against the global limit -- before it changes.
699 */
700 unsigned int max_reqs = nr_events;
701
e1bdd5f2
KO
702 /*
703 * We keep track of the number of available ringbuffer slots, to prevent
704 * overflow (reqs_available), and we also use percpu counters for this.
705 *
706 * So since up to half the slots might be on other cpu's percpu counters
707 * and unavailable, double nr_events so userspace sees what they
708 * expected: additionally, we move req_batch slots to/from percpu
709 * counters at a time, so make sure that isn't 0:
710 */
711 nr_events = max(nr_events, num_possible_cpus() * 4);
712 nr_events *= 2;
713
1da177e4 714 /* Prevent overflows */
08397acd 715 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
716 pr_debug("ENOMEM: nr_events too high\n");
717 return ERR_PTR(-EINVAL);
718 }
719
2a8a9867 720 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
721 return ERR_PTR(-EAGAIN);
722
c3762229 723 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
724 if (!ctx)
725 return ERR_PTR(-ENOMEM);
726
2a8a9867 727 ctx->max_reqs = max_reqs;
1da177e4 728
1da177e4 729 spin_lock_init(&ctx->ctx_lock);
0460fef2 730 spin_lock_init(&ctx->completion_lock);
58c85dc2 731 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
732 /* Protect against page migration throughout kiotx setup by keeping
733 * the ring_lock mutex held until setup is complete. */
734 mutex_lock(&ctx->ring_lock);
1da177e4
LT
735 init_waitqueue_head(&ctx->wait);
736
737 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 738
2aad2a86 739 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
740 goto err;
741
2aad2a86 742 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
743 goto err;
744
e1bdd5f2
KO
745 ctx->cpu = alloc_percpu(struct kioctx_cpu);
746 if (!ctx->cpu)
e34ecee2 747 goto err;
1da177e4 748
2a8a9867 749 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 750 if (err < 0)
e34ecee2 751 goto err;
e1bdd5f2 752
34e83fc6 753 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 754 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
755 if (ctx->req_batch < 1)
756 ctx->req_batch = 1;
34e83fc6 757
1da177e4 758 /* limit the number of system wide aios */
9fa1cb39 759 spin_lock(&aio_nr_lock);
2a8a9867
MFO
760 if (aio_nr + ctx->max_reqs > aio_max_nr ||
761 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 762 spin_unlock(&aio_nr_lock);
e34ecee2 763 err = -EAGAIN;
d1b94327 764 goto err_ctx;
2dd542b7
AV
765 }
766 aio_nr += ctx->max_reqs;
9fa1cb39 767 spin_unlock(&aio_nr_lock);
1da177e4 768
1881686f
BL
769 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
770 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 771
da90382c
BL
772 err = ioctx_add_table(ctx, mm);
773 if (err)
e34ecee2 774 goto err_cleanup;
da90382c 775
fa8a53c3
BL
776 /* Release the ring_lock mutex now that all setup is complete. */
777 mutex_unlock(&ctx->ring_lock);
778
caf4167a 779 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 780 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
781 return ctx;
782
e34ecee2
KO
783err_cleanup:
784 aio_nr_sub(ctx->max_reqs);
d1b94327 785err_ctx:
deeb8525
AV
786 atomic_set(&ctx->dead, 1);
787 if (ctx->mmap_size)
788 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 789 aio_free_ring(ctx);
e34ecee2 790err:
fa8a53c3 791 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 792 free_percpu(ctx->cpu);
9a1049da
TH
793 percpu_ref_exit(&ctx->reqs);
794 percpu_ref_exit(&ctx->users);
1da177e4 795 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 796 pr_debug("error allocating ioctx %d\n", err);
e23754f8 797 return ERR_PTR(err);
1da177e4
LT
798}
799
36f55889
KO
800/* kill_ioctx
801 * Cancels all outstanding aio requests on an aio context. Used
802 * when the processes owning a context have all exited to encourage
803 * the rapid destruction of the kioctx.
804 */
fb2d4483 805static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 806 struct ctx_rq_wait *wait)
36f55889 807{
fa88b6f8 808 struct kioctx_table *table;
db446a08 809
b2edffdd
AV
810 spin_lock(&mm->ioctx_lock);
811 if (atomic_xchg(&ctx->dead, 1)) {
812 spin_unlock(&mm->ioctx_lock);
fa88b6f8 813 return -EINVAL;
b2edffdd 814 }
db446a08 815
855ef0de 816 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
817 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
818 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 819 spin_unlock(&mm->ioctx_lock);
4fcc712f 820
a6d7cff4 821 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 822 wake_up_all(&ctx->wait);
4fcc712f 823
fa88b6f8
BL
824 /*
825 * It'd be more correct to do this in free_ioctx(), after all
826 * the outstanding kiocbs have finished - but by then io_destroy
827 * has already returned, so io_setup() could potentially return
828 * -EAGAIN with no ioctxs actually in use (as far as userspace
829 * could tell).
830 */
831 aio_nr_sub(ctx->max_reqs);
4fcc712f 832
fa88b6f8
BL
833 if (ctx->mmap_size)
834 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 835
dc48e56d 836 ctx->rq_wait = wait;
fa88b6f8
BL
837 percpu_ref_kill(&ctx->users);
838 return 0;
1da177e4
LT
839}
840
36f55889
KO
841/*
842 * exit_aio: called when the last user of mm goes away. At this point, there is
843 * no way for any new requests to be submited or any of the io_* syscalls to be
844 * called on the context.
845 *
846 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
847 * them.
1da177e4 848 */
fc9b52cd 849void exit_aio(struct mm_struct *mm)
1da177e4 850{
4b70ac5f 851 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
852 struct ctx_rq_wait wait;
853 int i, skipped;
db446a08 854
4b70ac5f
ON
855 if (!table)
856 return;
db446a08 857
dc48e56d
JA
858 atomic_set(&wait.count, table->nr);
859 init_completion(&wait.comp);
860
861 skipped = 0;
4b70ac5f 862 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
863 struct kioctx *ctx =
864 rcu_dereference_protected(table->table[i], true);
abf137dd 865
dc48e56d
JA
866 if (!ctx) {
867 skipped++;
4b70ac5f 868 continue;
dc48e56d
JA
869 }
870
936af157 871 /*
4b70ac5f
ON
872 * We don't need to bother with munmap() here - exit_mmap(mm)
873 * is coming and it'll unmap everything. And we simply can't,
874 * this is not necessarily our ->mm.
875 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
876 * that it needs to unmap the area, just set it to 0.
936af157 877 */
58c85dc2 878 ctx->mmap_size = 0;
dc48e56d
JA
879 kill_ioctx(mm, ctx, &wait);
880 }
36f55889 881
dc48e56d 882 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 883 /* Wait until all IO for the context are done. */
dc48e56d 884 wait_for_completion(&wait.comp);
1da177e4 885 }
4b70ac5f
ON
886
887 RCU_INIT_POINTER(mm->ioctx_table, NULL);
888 kfree(table);
1da177e4
LT
889}
890
e1bdd5f2
KO
891static void put_reqs_available(struct kioctx *ctx, unsigned nr)
892{
893 struct kioctx_cpu *kcpu;
263782c1 894 unsigned long flags;
e1bdd5f2 895
263782c1 896 local_irq_save(flags);
be6fb451 897 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 898 kcpu->reqs_available += nr;
263782c1 899
e1bdd5f2
KO
900 while (kcpu->reqs_available >= ctx->req_batch * 2) {
901 kcpu->reqs_available -= ctx->req_batch;
902 atomic_add(ctx->req_batch, &ctx->reqs_available);
903 }
904
263782c1 905 local_irq_restore(flags);
e1bdd5f2
KO
906}
907
908static bool get_reqs_available(struct kioctx *ctx)
909{
910 struct kioctx_cpu *kcpu;
911 bool ret = false;
263782c1 912 unsigned long flags;
e1bdd5f2 913
263782c1 914 local_irq_save(flags);
be6fb451 915 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
916 if (!kcpu->reqs_available) {
917 int old, avail = atomic_read(&ctx->reqs_available);
918
919 do {
920 if (avail < ctx->req_batch)
921 goto out;
922
923 old = avail;
924 avail = atomic_cmpxchg(&ctx->reqs_available,
925 avail, avail - ctx->req_batch);
926 } while (avail != old);
927
928 kcpu->reqs_available += ctx->req_batch;
929 }
930
931 ret = true;
932 kcpu->reqs_available--;
933out:
263782c1 934 local_irq_restore(flags);
e1bdd5f2
KO
935 return ret;
936}
937
d856f32a
BL
938/* refill_reqs_available
939 * Updates the reqs_available reference counts used for tracking the
940 * number of free slots in the completion ring. This can be called
941 * from aio_complete() (to optimistically update reqs_available) or
942 * from aio_get_req() (the we're out of events case). It must be
943 * called holding ctx->completion_lock.
944 */
945static void refill_reqs_available(struct kioctx *ctx, unsigned head,
946 unsigned tail)
947{
948 unsigned events_in_ring, completed;
949
950 /* Clamp head since userland can write to it. */
951 head %= ctx->nr_events;
952 if (head <= tail)
953 events_in_ring = tail - head;
954 else
955 events_in_ring = ctx->nr_events - (head - tail);
956
957 completed = ctx->completed_events;
958 if (events_in_ring < completed)
959 completed -= events_in_ring;
960 else
961 completed = 0;
962
963 if (!completed)
964 return;
965
966 ctx->completed_events -= completed;
967 put_reqs_available(ctx, completed);
968}
969
970/* user_refill_reqs_available
971 * Called to refill reqs_available when aio_get_req() encounters an
972 * out of space in the completion ring.
973 */
974static void user_refill_reqs_available(struct kioctx *ctx)
975{
976 spin_lock_irq(&ctx->completion_lock);
977 if (ctx->completed_events) {
978 struct aio_ring *ring;
979 unsigned head;
980
981 /* Access of ring->head may race with aio_read_events_ring()
982 * here, but that's okay since whether we read the old version
983 * or the new version, and either will be valid. The important
984 * part is that head cannot pass tail since we prevent
985 * aio_complete() from updating tail by holding
986 * ctx->completion_lock. Even if head is invalid, the check
987 * against ctx->completed_events below will make sure we do the
988 * safe/right thing.
989 */
990 ring = kmap_atomic(ctx->ring_pages[0]);
991 head = ring->head;
992 kunmap_atomic(ring);
993
994 refill_reqs_available(ctx, head, ctx->tail);
995 }
996
997 spin_unlock_irq(&ctx->completion_lock);
998}
999
1da177e4 1000/* aio_get_req
57282d8f
KO
1001 * Allocate a slot for an aio request.
1002 * Returns NULL if no requests are free.
1da177e4 1003 */
04b2fa9f 1004static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1005{
04b2fa9f 1006 struct aio_kiocb *req;
a1c8eae7 1007
d856f32a
BL
1008 if (!get_reqs_available(ctx)) {
1009 user_refill_reqs_available(ctx);
1010 if (!get_reqs_available(ctx))
1011 return NULL;
1012 }
a1c8eae7 1013
0460fef2 1014 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 1015 if (unlikely(!req))
a1c8eae7 1016 goto out_put;
1da177e4 1017
e34ecee2 1018 percpu_ref_get(&ctx->reqs);
75321b50 1019 INIT_LIST_HEAD(&req->ki_list);
9018ccc4 1020 refcount_set(&req->ki_refcnt, 0);
1da177e4 1021 req->ki_ctx = ctx;
080d676d 1022 return req;
a1c8eae7 1023out_put:
e1bdd5f2 1024 put_reqs_available(ctx, 1);
a1c8eae7 1025 return NULL;
1da177e4
LT
1026}
1027
d5470b59 1028static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1029{
db446a08 1030 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1031 struct mm_struct *mm = current->mm;
65c24491 1032 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1033 struct kioctx_table *table;
1034 unsigned id;
1035
1036 if (get_user(id, &ring->id))
1037 return NULL;
1da177e4 1038
abf137dd 1039 rcu_read_lock();
db446a08 1040 table = rcu_dereference(mm->ioctx_table);
abf137dd 1041
db446a08
BL
1042 if (!table || id >= table->nr)
1043 goto out;
1da177e4 1044
d0264c01 1045 ctx = rcu_dereference(table->table[id]);
f30d704f 1046 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1047 if (percpu_ref_tryget_live(&ctx->users))
1048 ret = ctx;
db446a08
BL
1049 }
1050out:
abf137dd 1051 rcu_read_unlock();
65c24491 1052 return ret;
1da177e4
LT
1053}
1054
9018ccc4
CH
1055static inline void iocb_put(struct aio_kiocb *iocb)
1056{
1057 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1058 refcount_dec_and_test(&iocb->ki_refcnt)) {
1059 percpu_ref_put(&iocb->ki_ctx->reqs);
1060 kmem_cache_free(kiocb_cachep, iocb);
1061 }
1062}
1063
1da177e4
LT
1064/* aio_complete
1065 * Called when the io request on the given iocb is complete.
1da177e4 1066 */
54843f87 1067static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1da177e4
LT
1068{
1069 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1070 struct aio_ring *ring;
21b40200 1071 struct io_event *ev_page, *event;
d856f32a 1072 unsigned tail, pos, head;
1da177e4 1073 unsigned long flags;
1da177e4 1074
0460fef2
KO
1075 /*
1076 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1077 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1078 * pointer since we might be called from irq context.
1079 */
1080 spin_lock_irqsave(&ctx->completion_lock, flags);
1081
58c85dc2 1082 tail = ctx->tail;
21b40200
KO
1083 pos = tail + AIO_EVENTS_OFFSET;
1084
58c85dc2 1085 if (++tail >= ctx->nr_events)
4bf69b2a 1086 tail = 0;
1da177e4 1087
58c85dc2 1088 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1089 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1090
04b2fa9f 1091 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1da177e4
LT
1092 event->data = iocb->ki_user_data;
1093 event->res = res;
1094 event->res2 = res2;
1095
21b40200 1096 kunmap_atomic(ev_page);
58c85dc2 1097 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1098
1099 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1100 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1101 res, res2);
1da177e4
LT
1102
1103 /* after flagging the request as done, we
1104 * must never even look at it again
1105 */
1106 smp_wmb(); /* make event visible before updating tail */
1107
58c85dc2 1108 ctx->tail = tail;
1da177e4 1109
58c85dc2 1110 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1111 head = ring->head;
21b40200 1112 ring->tail = tail;
e8e3c3d6 1113 kunmap_atomic(ring);
58c85dc2 1114 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1115
d856f32a
BL
1116 ctx->completed_events++;
1117 if (ctx->completed_events > 1)
1118 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1119 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1120
21b40200 1121 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1122
1123 /*
1124 * Check if the user asked us to deliver the result through an
1125 * eventfd. The eventfd_signal() function is safe to be called
1126 * from IRQ context.
1127 */
54843f87 1128 if (iocb->ki_eventfd) {
8d1c98b0 1129 eventfd_signal(iocb->ki_eventfd, 1);
54843f87
CH
1130 eventfd_ctx_put(iocb->ki_eventfd);
1131 }
8d1c98b0 1132
6cb2a210
QB
1133 /*
1134 * We have to order our ring_info tail store above and test
1135 * of the wait list below outside the wait lock. This is
1136 * like in wake_up_bit() where clearing a bit has to be
1137 * ordered with the unlocked test.
1138 */
1139 smp_mb();
1140
1da177e4
LT
1141 if (waitqueue_active(&ctx->wait))
1142 wake_up(&ctx->wait);
9018ccc4 1143 iocb_put(iocb);
1da177e4
LT
1144}
1145
2be4e7de 1146/* aio_read_events_ring
a31ad380
KO
1147 * Pull an event off of the ioctx's event ring. Returns the number of
1148 * events fetched
1da177e4 1149 */
a31ad380
KO
1150static long aio_read_events_ring(struct kioctx *ctx,
1151 struct io_event __user *event, long nr)
1da177e4 1152{
1da177e4 1153 struct aio_ring *ring;
5ffac122 1154 unsigned head, tail, pos;
a31ad380
KO
1155 long ret = 0;
1156 int copy_ret;
1157
9c9ce763
DC
1158 /*
1159 * The mutex can block and wake us up and that will cause
1160 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1161 * and repeat. This should be rare enough that it doesn't cause
1162 * peformance issues. See the comment in read_events() for more detail.
1163 */
1164 sched_annotate_sleep();
58c85dc2 1165 mutex_lock(&ctx->ring_lock);
1da177e4 1166
fa8a53c3 1167 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1168 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1169 head = ring->head;
5ffac122 1170 tail = ring->tail;
a31ad380
KO
1171 kunmap_atomic(ring);
1172
2ff396be
JM
1173 /*
1174 * Ensure that once we've read the current tail pointer, that
1175 * we also see the events that were stored up to the tail.
1176 */
1177 smp_rmb();
1178
5ffac122 1179 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1180
5ffac122 1181 if (head == tail)
1da177e4
LT
1182 goto out;
1183
edfbbf38
BL
1184 head %= ctx->nr_events;
1185 tail %= ctx->nr_events;
1186
a31ad380
KO
1187 while (ret < nr) {
1188 long avail;
1189 struct io_event *ev;
1190 struct page *page;
1191
5ffac122
KO
1192 avail = (head <= tail ? tail : ctx->nr_events) - head;
1193 if (head == tail)
a31ad380
KO
1194 break;
1195
a31ad380 1196 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1197 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1198 pos %= AIO_EVENTS_PER_PAGE;
1199
d2988bd4
AV
1200 avail = min(avail, nr - ret);
1201 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1202
a31ad380
KO
1203 ev = kmap(page);
1204 copy_ret = copy_to_user(event + ret, ev + pos,
1205 sizeof(*ev) * avail);
1206 kunmap(page);
1207
1208 if (unlikely(copy_ret)) {
1209 ret = -EFAULT;
1210 goto out;
1211 }
1212
1213 ret += avail;
1214 head += avail;
58c85dc2 1215 head %= ctx->nr_events;
1da177e4 1216 }
1da177e4 1217
58c85dc2 1218 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1219 ring->head = head;
91d80a84 1220 kunmap_atomic(ring);
58c85dc2 1221 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1222
5ffac122 1223 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1224out:
58c85dc2 1225 mutex_unlock(&ctx->ring_lock);
a31ad380 1226
1da177e4
LT
1227 return ret;
1228}
1229
a31ad380
KO
1230static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1231 struct io_event __user *event, long *i)
1da177e4 1232{
a31ad380 1233 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1234
a31ad380
KO
1235 if (ret > 0)
1236 *i += ret;
1da177e4 1237
a31ad380
KO
1238 if (unlikely(atomic_read(&ctx->dead)))
1239 ret = -EINVAL;
1da177e4 1240
a31ad380
KO
1241 if (!*i)
1242 *i = ret;
1da177e4 1243
a31ad380 1244 return ret < 0 || *i >= min_nr;
1da177e4
LT
1245}
1246
a31ad380 1247static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1248 struct io_event __user *event,
fa2e62a5 1249 ktime_t until)
1da177e4 1250{
a31ad380 1251 long ret = 0;
1da177e4 1252
a31ad380
KO
1253 /*
1254 * Note that aio_read_events() is being called as the conditional - i.e.
1255 * we're calling it after prepare_to_wait() has set task state to
1256 * TASK_INTERRUPTIBLE.
1257 *
1258 * But aio_read_events() can block, and if it blocks it's going to flip
1259 * the task state back to TASK_RUNNING.
1260 *
1261 * This should be ok, provided it doesn't flip the state back to
1262 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1263 * will only happen if the mutex_lock() call blocks, and we then find
1264 * the ringbuffer empty. So in practice we should be ok, but it's
1265 * something to be aware of when touching this code.
1266 */
2456e855 1267 if (until == 0)
5f785de5
FZ
1268 aio_read_events(ctx, min_nr, nr, event, &ret);
1269 else
1270 wait_event_interruptible_hrtimeout(ctx->wait,
1271 aio_read_events(ctx, min_nr, nr, event, &ret),
1272 until);
a31ad380 1273 return ret;
1da177e4
LT
1274}
1275
1da177e4
LT
1276/* sys_io_setup:
1277 * Create an aio_context capable of receiving at least nr_events.
1278 * ctxp must not point to an aio_context that already exists, and
1279 * must be initialized to 0 prior to the call. On successful
1280 * creation of the aio_context, *ctxp is filled in with the resulting
1281 * handle. May fail with -EINVAL if *ctxp is not initialized,
1282 * if the specified nr_events exceeds internal limits. May fail
1283 * with -EAGAIN if the specified nr_events exceeds the user's limit
1284 * of available events. May fail with -ENOMEM if insufficient kernel
1285 * resources are available. May fail with -EFAULT if an invalid
1286 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1287 * implemented.
1288 */
002c8976 1289SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1290{
1291 struct kioctx *ioctx = NULL;
1292 unsigned long ctx;
1293 long ret;
1294
1295 ret = get_user(ctx, ctxp);
1296 if (unlikely(ret))
1297 goto out;
1298
1299 ret = -EINVAL;
d55b5fda 1300 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1301 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1302 ctx, nr_events);
1da177e4
LT
1303 goto out;
1304 }
1305
1306 ioctx = ioctx_alloc(nr_events);
1307 ret = PTR_ERR(ioctx);
1308 if (!IS_ERR(ioctx)) {
1309 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1310 if (ret)
e02ba72a 1311 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1312 percpu_ref_put(&ioctx->users);
1da177e4
LT
1313 }
1314
1315out:
1316 return ret;
1317}
1318
c00d2c7e
AV
1319#ifdef CONFIG_COMPAT
1320COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1321{
1322 struct kioctx *ioctx = NULL;
1323 unsigned long ctx;
1324 long ret;
1325
1326 ret = get_user(ctx, ctx32p);
1327 if (unlikely(ret))
1328 goto out;
1329
1330 ret = -EINVAL;
1331 if (unlikely(ctx || nr_events == 0)) {
1332 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1333 ctx, nr_events);
1334 goto out;
1335 }
1336
1337 ioctx = ioctx_alloc(nr_events);
1338 ret = PTR_ERR(ioctx);
1339 if (!IS_ERR(ioctx)) {
1340 /* truncating is ok because it's a user address */
1341 ret = put_user((u32)ioctx->user_id, ctx32p);
1342 if (ret)
1343 kill_ioctx(current->mm, ioctx, NULL);
1344 percpu_ref_put(&ioctx->users);
1345 }
1346
1347out:
1348 return ret;
1349}
1350#endif
1351
1da177e4
LT
1352/* sys_io_destroy:
1353 * Destroy the aio_context specified. May cancel any outstanding
1354 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1355 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1356 * is invalid.
1357 */
002c8976 1358SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1359{
1360 struct kioctx *ioctx = lookup_ioctx(ctx);
1361 if (likely(NULL != ioctx)) {
dc48e56d 1362 struct ctx_rq_wait wait;
fb2d4483 1363 int ret;
e02ba72a 1364
dc48e56d
JA
1365 init_completion(&wait.comp);
1366 atomic_set(&wait.count, 1);
1367
e02ba72a
AP
1368 /* Pass requests_done to kill_ioctx() where it can be set
1369 * in a thread-safe way. If we try to set it here then we have
1370 * a race condition if two io_destroy() called simultaneously.
1371 */
dc48e56d 1372 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1373 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1374
1375 /* Wait until all IO for the context are done. Otherwise kernel
1376 * keep using user-space buffers even if user thinks the context
1377 * is destroyed.
1378 */
fb2d4483 1379 if (!ret)
dc48e56d 1380 wait_for_completion(&wait.comp);
e02ba72a 1381
fb2d4483 1382 return ret;
1da177e4 1383 }
acd88d4e 1384 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1385 return -EINVAL;
1386}
1387
3c96c7f4
AV
1388static void aio_remove_iocb(struct aio_kiocb *iocb)
1389{
1390 struct kioctx *ctx = iocb->ki_ctx;
1391 unsigned long flags;
1392
1393 spin_lock_irqsave(&ctx->ctx_lock, flags);
1394 list_del(&iocb->ki_list);
1395 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1396}
1397
54843f87
CH
1398static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1399{
1400 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1401
3c96c7f4
AV
1402 if (!list_empty_careful(&iocb->ki_list))
1403 aio_remove_iocb(iocb);
1404
54843f87
CH
1405 if (kiocb->ki_flags & IOCB_WRITE) {
1406 struct inode *inode = file_inode(kiocb->ki_filp);
1407
1408 /*
1409 * Tell lockdep we inherited freeze protection from submission
1410 * thread.
1411 */
1412 if (S_ISREG(inode->i_mode))
1413 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1414 file_end_write(kiocb->ki_filp);
1415 }
1416
1417 fput(kiocb->ki_filp);
1418 aio_complete(iocb, res, res2);
1419}
1420
1421static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1422{
1423 int ret;
1424
1425 req->ki_filp = fget(iocb->aio_fildes);
1426 if (unlikely(!req->ki_filp))
1427 return -EBADF;
1428 req->ki_complete = aio_complete_rw;
1429 req->ki_pos = iocb->aio_offset;
1430 req->ki_flags = iocb_flags(req->ki_filp);
1431 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1432 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1433 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1434 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1435 /*
1436 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1437 * aio_reqprio is interpreted as an I/O scheduling
1438 * class and priority.
1439 */
1440 ret = ioprio_check_cap(iocb->aio_reqprio);
1441 if (ret) {
9a6d9a62
AM
1442 pr_debug("aio ioprio check cap error: %d\n", ret);
1443 return ret;
d9a08a9e
AM
1444 }
1445
1446 req->ki_ioprio = iocb->aio_reqprio;
1447 } else
1448 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1449
54843f87
CH
1450 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1451 if (unlikely(ret))
1452 fput(req->ki_filp);
1453 return ret;
1454}
1455
89319d31
CH
1456static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1457 bool vectored, bool compat, struct iov_iter *iter)
eed4e51f 1458{
89319d31
CH
1459 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1460 size_t len = iocb->aio_nbytes;
1461
1462 if (!vectored) {
1463 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1464 *iovec = NULL;
1465 return ret;
1466 }
9d85cba7
JM
1467#ifdef CONFIG_COMPAT
1468 if (compat)
89319d31
CH
1469 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1470 iter);
9d85cba7 1471#endif
89319d31 1472 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1473}
1474
9061d14a 1475static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1476{
1477 switch (ret) {
1478 case -EIOCBQUEUED:
9061d14a 1479 break;
89319d31
CH
1480 case -ERESTARTSYS:
1481 case -ERESTARTNOINTR:
1482 case -ERESTARTNOHAND:
1483 case -ERESTART_RESTARTBLOCK:
1484 /*
1485 * There's no easy way to restart the syscall since other AIO's
1486 * may be already running. Just fail this IO with EINTR.
1487 */
1488 ret = -EINTR;
1489 /*FALLTHRU*/
1490 default:
54843f87 1491 aio_complete_rw(req, ret, 0);
89319d31
CH
1492 }
1493}
1494
1495static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1496 bool compat)
1da177e4 1497{
00fefb9c 1498 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1499 struct iov_iter iter;
54843f87 1500 struct file *file;
89319d31 1501 ssize_t ret;
1da177e4 1502
54843f87
CH
1503 ret = aio_prep_rw(req, iocb);
1504 if (ret)
1505 return ret;
1506 file = req->ki_filp;
1507
1508 ret = -EBADF;
89319d31 1509 if (unlikely(!(file->f_mode & FMODE_READ)))
54843f87
CH
1510 goto out_fput;
1511 ret = -EINVAL;
89319d31 1512 if (unlikely(!file->f_op->read_iter))
54843f87 1513 goto out_fput;
73a7075e 1514
89319d31
CH
1515 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1516 if (ret)
54843f87 1517 goto out_fput;
89319d31
CH
1518 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1519 if (!ret)
9061d14a 1520 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31 1521 kfree(iovec);
54843f87 1522out_fput:
9061d14a 1523 if (unlikely(ret))
54843f87 1524 fput(file);
89319d31
CH
1525 return ret;
1526}
73a7075e 1527
89319d31
CH
1528static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1529 bool compat)
1530{
89319d31
CH
1531 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1532 struct iov_iter iter;
54843f87 1533 struct file *file;
89319d31 1534 ssize_t ret;
41ef4eb8 1535
54843f87
CH
1536 ret = aio_prep_rw(req, iocb);
1537 if (ret)
1538 return ret;
1539 file = req->ki_filp;
1540
1541 ret = -EBADF;
89319d31 1542 if (unlikely(!(file->f_mode & FMODE_WRITE)))
54843f87
CH
1543 goto out_fput;
1544 ret = -EINVAL;
89319d31 1545 if (unlikely(!file->f_op->write_iter))
54843f87 1546 goto out_fput;
1da177e4 1547
89319d31
CH
1548 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1549 if (ret)
54843f87 1550 goto out_fput;
89319d31
CH
1551 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1552 if (!ret) {
70fe2f48 1553 /*
92ce4728 1554 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1555 * which will be released by another thread in
1556 * aio_complete_rw(). Fool lockdep by telling it the lock got
1557 * released so that it doesn't complain about the held lock when
1558 * we return to userspace.
70fe2f48 1559 */
92ce4728
CH
1560 if (S_ISREG(file_inode(file)->i_mode)) {
1561 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1562 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1563 }
1564 req->ki_flags |= IOCB_WRITE;
9061d14a 1565 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1566 }
89319d31 1567 kfree(iovec);
54843f87 1568out_fput:
9061d14a 1569 if (unlikely(ret))
54843f87 1570 fput(file);
89319d31 1571 return ret;
1da177e4
LT
1572}
1573
a3c0d439
CH
1574static void aio_fsync_work(struct work_struct *work)
1575{
1576 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1577 int ret;
1578
1579 ret = vfs_fsync(req->file, req->datasync);
1580 fput(req->file);
1581 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1582}
1583
1584static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1585{
1586 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1587 iocb->aio_rw_flags))
1588 return -EINVAL;
a11e1d43 1589
a3c0d439
CH
1590 req->file = fget(iocb->aio_fildes);
1591 if (unlikely(!req->file))
1592 return -EBADF;
1593 if (unlikely(!req->file->f_op->fsync)) {
1594 fput(req->file);
1595 return -EINVAL;
1596 }
1597
1598 req->datasync = datasync;
1599 INIT_WORK(&req->work, aio_fsync_work);
1600 schedule_work(&req->work);
9061d14a 1601 return 0;
a3c0d439
CH
1602}
1603
d5470b59 1604static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
95af8496 1605 bool compat)
1da177e4 1606{
04b2fa9f 1607 struct aio_kiocb *req;
95af8496 1608 struct iocb iocb;
1da177e4
LT
1609 ssize_t ret;
1610
95af8496
AV
1611 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1612 return -EFAULT;
1613
1da177e4 1614 /* enforce forwards compatibility on users */
95af8496 1615 if (unlikely(iocb.aio_reserved2)) {
caf4167a 1616 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1617 return -EINVAL;
1618 }
1619
1620 /* prevent overflows */
1621 if (unlikely(
95af8496
AV
1622 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1623 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1624 ((ssize_t)iocb.aio_nbytes < 0)
1da177e4 1625 )) {
acd88d4e 1626 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1627 return -EINVAL;
1628 }
1629
41ef4eb8 1630 req = aio_get_req(ctx);
1d98ebfc 1631 if (unlikely(!req))
1da177e4 1632 return -EAGAIN;
1d98ebfc 1633
95af8496 1634 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
9c3060be
DL
1635 /*
1636 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1637 * instance of the file* now. The file descriptor must be
1638 * an eventfd() fd, and will be signaled for each completed
1639 * event using the eventfd_signal() function.
1640 */
95af8496 1641 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
801678c5 1642 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1643 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1644 req->ki_eventfd = NULL;
9c3060be
DL
1645 goto out_put_req;
1646 }
9830f4be
GR
1647 }
1648
8a660890 1649 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1650 if (unlikely(ret)) {
caf4167a 1651 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1652 goto out_put_req;
1653 }
1654
04b2fa9f 1655 req->ki_user_iocb = user_iocb;
95af8496 1656 req->ki_user_data = iocb.aio_data;
1da177e4 1657
95af8496 1658 switch (iocb.aio_lio_opcode) {
89319d31 1659 case IOCB_CMD_PREAD:
95af8496 1660 ret = aio_read(&req->rw, &iocb, false, compat);
89319d31
CH
1661 break;
1662 case IOCB_CMD_PWRITE:
95af8496 1663 ret = aio_write(&req->rw, &iocb, false, compat);
89319d31
CH
1664 break;
1665 case IOCB_CMD_PREADV:
95af8496 1666 ret = aio_read(&req->rw, &iocb, true, compat);
89319d31
CH
1667 break;
1668 case IOCB_CMD_PWRITEV:
95af8496 1669 ret = aio_write(&req->rw, &iocb, true, compat);
89319d31 1670 break;
a3c0d439 1671 case IOCB_CMD_FSYNC:
95af8496 1672 ret = aio_fsync(&req->fsync, &iocb, false);
a3c0d439
CH
1673 break;
1674 case IOCB_CMD_FDSYNC:
95af8496 1675 ret = aio_fsync(&req->fsync, &iocb, true);
ac060cba 1676 break;
89319d31 1677 default:
95af8496 1678 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
89319d31
CH
1679 ret = -EINVAL;
1680 break;
1681 }
41003a7b 1682
92ce4728 1683 /*
9061d14a
AV
1684 * If ret is 0, we'd either done aio_complete() ourselves or have
1685 * arranged for that to be done asynchronously. Anything non-zero
1686 * means that we need to destroy req ourselves.
92ce4728 1687 */
9061d14a 1688 if (ret)
89319d31 1689 goto out_put_req;
1da177e4 1690 return 0;
1da177e4 1691out_put_req:
e1bdd5f2 1692 put_reqs_available(ctx, 1);
e34ecee2 1693 percpu_ref_put(&ctx->reqs);
54843f87
CH
1694 if (req->ki_eventfd)
1695 eventfd_ctx_put(req->ki_eventfd);
1696 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
1697 return ret;
1698}
1699
67ba049f
AV
1700/* sys_io_submit:
1701 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1702 * the number of iocbs queued. May return -EINVAL if the aio_context
1703 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1704 * *iocbpp[0] is not properly initialized, if the operation specified
1705 * is invalid for the file descriptor in the iocb. May fail with
1706 * -EFAULT if any of the data structures point to invalid data. May
1707 * fail with -EBADF if the file descriptor specified in the first
1708 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1709 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1710 * fail with -ENOSYS if not implemented.
1711 */
1712SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1713 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1714{
1715 struct kioctx *ctx;
1716 long ret = 0;
080d676d 1717 int i = 0;
9f5b9425 1718 struct blk_plug plug;
1da177e4
LT
1719
1720 if (unlikely(nr < 0))
1721 return -EINVAL;
1722
1da177e4
LT
1723 ctx = lookup_ioctx(ctx_id);
1724 if (unlikely(!ctx)) {
caf4167a 1725 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1726 return -EINVAL;
1727 }
1728
1da92779
AV
1729 if (nr > ctx->nr_events)
1730 nr = ctx->nr_events;
1731
9f5b9425 1732 blk_start_plug(&plug);
67ba049f 1733 for (i = 0; i < nr; i++) {
1da177e4 1734 struct iocb __user *user_iocb;
1da177e4 1735
67ba049f 1736 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1737 ret = -EFAULT;
1738 break;
1739 }
1740
67ba049f 1741 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1742 if (ret)
1743 break;
1744 }
9f5b9425 1745 blk_finish_plug(&plug);
1da177e4 1746
723be6e3 1747 percpu_ref_put(&ctx->users);
1da177e4
LT
1748 return i ? i : ret;
1749}
1750
c00d2c7e 1751#ifdef CONFIG_COMPAT
c00d2c7e 1752COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1753 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1754{
67ba049f
AV
1755 struct kioctx *ctx;
1756 long ret = 0;
1757 int i = 0;
1758 struct blk_plug plug;
c00d2c7e
AV
1759
1760 if (unlikely(nr < 0))
1761 return -EINVAL;
1762
67ba049f
AV
1763 ctx = lookup_ioctx(ctx_id);
1764 if (unlikely(!ctx)) {
1765 pr_debug("EINVAL: invalid context id\n");
1766 return -EINVAL;
1767 }
1768
1da92779
AV
1769 if (nr > ctx->nr_events)
1770 nr = ctx->nr_events;
1771
67ba049f
AV
1772 blk_start_plug(&plug);
1773 for (i = 0; i < nr; i++) {
1774 compat_uptr_t user_iocb;
1775
1776 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1777 ret = -EFAULT;
1778 break;
1779 }
1780
1781 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1782 if (ret)
1783 break;
1784 }
1785 blk_finish_plug(&plug);
1786
1787 percpu_ref_put(&ctx->users);
1788 return i ? i : ret;
c00d2c7e
AV
1789}
1790#endif
1791
1da177e4
LT
1792/* lookup_kiocb
1793 * Finds a given iocb for cancellation.
1da177e4 1794 */
04b2fa9f 1795static struct aio_kiocb *
f3a2752a 1796lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1da177e4 1797{
04b2fa9f 1798 struct aio_kiocb *kiocb;
d00689af
ZB
1799
1800 assert_spin_locked(&ctx->ctx_lock);
1801
1da177e4 1802 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
1803 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1804 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
1805 return kiocb;
1806 }
1807 return NULL;
1808}
1809
1810/* sys_io_cancel:
1811 * Attempts to cancel an iocb previously passed to io_submit. If
1812 * the operation is successfully cancelled, the resulting event is
1813 * copied into the memory pointed to by result without being placed
1814 * into the completion queue and 0 is returned. May fail with
1815 * -EFAULT if any of the data structures pointed to are invalid.
1816 * May fail with -EINVAL if aio_context specified by ctx_id is
1817 * invalid. May fail with -EAGAIN if the iocb specified was not
1818 * cancelled. Will fail with -ENOSYS if not implemented.
1819 */
002c8976
HC
1820SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1821 struct io_event __user *, result)
1da177e4 1822{
1da177e4 1823 struct kioctx *ctx;
04b2fa9f 1824 struct aio_kiocb *kiocb;
888933f8 1825 int ret = -EINVAL;
1da177e4 1826 u32 key;
1da177e4 1827
f3a2752a 1828 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 1829 return -EFAULT;
f3a2752a
CH
1830 if (unlikely(key != KIOCB_KEY))
1831 return -EINVAL;
1da177e4
LT
1832
1833 ctx = lookup_ioctx(ctx_id);
1834 if (unlikely(!ctx))
1835 return -EINVAL;
1836
1837 spin_lock_irq(&ctx->ctx_lock);
f3a2752a 1838 kiocb = lookup_kiocb(ctx, iocb);
888933f8
CH
1839 if (kiocb) {
1840 ret = kiocb->ki_cancel(&kiocb->rw);
1841 list_del_init(&kiocb->ki_list);
1842 }
1da177e4
LT
1843 spin_unlock_irq(&ctx->ctx_lock);
1844
906b973c 1845 if (!ret) {
bec68faa
KO
1846 /*
1847 * The result argument is no longer used - the io_event is
1848 * always delivered via the ring buffer. -EINPROGRESS indicates
1849 * cancellation is progress:
906b973c 1850 */
bec68faa 1851 ret = -EINPROGRESS;
906b973c 1852 }
1da177e4 1853
723be6e3 1854 percpu_ref_put(&ctx->users);
1da177e4
LT
1855
1856 return ret;
1857}
1858
fa2e62a5
DD
1859static long do_io_getevents(aio_context_t ctx_id,
1860 long min_nr,
1861 long nr,
1862 struct io_event __user *events,
1863 struct timespec64 *ts)
1864{
1865 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1866 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1867 long ret = -EINVAL;
1868
1869 if (likely(ioctx)) {
1870 if (likely(min_nr <= nr && min_nr >= 0))
1871 ret = read_events(ioctx, min_nr, nr, events, until);
1872 percpu_ref_put(&ioctx->users);
1873 }
1874
1875 return ret;
1876}
1877
1da177e4
LT
1878/* io_getevents:
1879 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
1880 * the completion queue for the aio_context specified by ctx_id. If
1881 * it succeeds, the number of read events is returned. May fail with
1882 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1883 * out of range, if timeout is out of range. May fail with -EFAULT
1884 * if any of the memory specified is invalid. May return 0 or
1885 * < min_nr if the timeout specified by timeout has elapsed
1886 * before sufficient events are available, where timeout == NULL
1887 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 1888 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 1889 */
002c8976
HC
1890SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1891 long, min_nr,
1892 long, nr,
1893 struct io_event __user *, events,
1894 struct timespec __user *, timeout)
1da177e4 1895{
fa2e62a5 1896 struct timespec64 ts;
7a074e96
CH
1897 int ret;
1898
1899 if (timeout && unlikely(get_timespec64(&ts, timeout)))
1900 return -EFAULT;
1901
1902 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1903 if (!ret && signal_pending(current))
1904 ret = -EINTR;
1905 return ret;
1906}
1da177e4 1907
9ba546c0
CH
1908struct __aio_sigset {
1909 const sigset_t __user *sigmask;
1910 size_t sigsetsize;
1911};
1912
7a074e96
CH
1913SYSCALL_DEFINE6(io_pgetevents,
1914 aio_context_t, ctx_id,
1915 long, min_nr,
1916 long, nr,
1917 struct io_event __user *, events,
1918 struct timespec __user *, timeout,
1919 const struct __aio_sigset __user *, usig)
1920{
1921 struct __aio_sigset ksig = { NULL, };
1922 sigset_t ksigmask, sigsaved;
1923 struct timespec64 ts;
1924 int ret;
1925
1926 if (timeout && unlikely(get_timespec64(&ts, timeout)))
1927 return -EFAULT;
1928
1929 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
1930 return -EFAULT;
1931
1932 if (ksig.sigmask) {
1933 if (ksig.sigsetsize != sizeof(sigset_t))
1934 return -EINVAL;
1935 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
fa2e62a5 1936 return -EFAULT;
7a074e96
CH
1937 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1938 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1939 }
1940
1941 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1942 if (signal_pending(current)) {
1943 if (ksig.sigmask) {
1944 current->saved_sigmask = sigsaved;
1945 set_restore_sigmask();
1946 }
1947
1948 if (!ret)
1949 ret = -ERESTARTNOHAND;
1950 } else {
1951 if (ksig.sigmask)
1952 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1da177e4 1953 }
fa2e62a5 1954
7a074e96 1955 return ret;
1da177e4 1956}
c00d2c7e
AV
1957
1958#ifdef CONFIG_COMPAT
1959COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1960 compat_long_t, min_nr,
1961 compat_long_t, nr,
1962 struct io_event __user *, events,
1963 struct compat_timespec __user *, timeout)
1964{
fa2e62a5 1965 struct timespec64 t;
7a074e96
CH
1966 int ret;
1967
1968 if (timeout && compat_get_timespec64(&t, timeout))
1969 return -EFAULT;
1970
1971 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1972 if (!ret && signal_pending(current))
1973 ret = -EINTR;
1974 return ret;
1975}
1976
c00d2c7e 1977
7a074e96
CH
1978struct __compat_aio_sigset {
1979 compat_sigset_t __user *sigmask;
1980 compat_size_t sigsetsize;
1981};
1982
1983COMPAT_SYSCALL_DEFINE6(io_pgetevents,
1984 compat_aio_context_t, ctx_id,
1985 compat_long_t, min_nr,
1986 compat_long_t, nr,
1987 struct io_event __user *, events,
1988 struct compat_timespec __user *, timeout,
1989 const struct __compat_aio_sigset __user *, usig)
1990{
1991 struct __compat_aio_sigset ksig = { NULL, };
1992 sigset_t ksigmask, sigsaved;
1993 struct timespec64 t;
1994 int ret;
1995
1996 if (timeout && compat_get_timespec64(&t, timeout))
1997 return -EFAULT;
1998
1999 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2000 return -EFAULT;
2001
2002 if (ksig.sigmask) {
2003 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2004 return -EINVAL;
2005 if (get_compat_sigset(&ksigmask, ksig.sigmask))
c00d2c7e 2006 return -EFAULT;
7a074e96
CH
2007 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2008 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2009 }
c00d2c7e 2010
7a074e96
CH
2011 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2012 if (signal_pending(current)) {
2013 if (ksig.sigmask) {
2014 current->saved_sigmask = sigsaved;
2015 set_restore_sigmask();
2016 }
2017 if (!ret)
2018 ret = -ERESTARTNOHAND;
2019 } else {
2020 if (ksig.sigmask)
2021 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
c00d2c7e 2022 }
fa2e62a5 2023
7a074e96 2024 return ret;
c00d2c7e
AV
2025}
2026#endif