Merge branches 'acpi-pm', 'acpi-enumeration' and 'acpi-sysfs'
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
caf4167a
KO
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/syscalls.h>
b9d128f1 20#include <linux/backing-dev.h>
027445c3 21#include <linux/uio.h>
1da177e4 22
1da177e4
LT
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
3d2d827f 28#include <linux/mmu_context.h>
e1bdd5f2 29#include <linux/percpu.h>
1da177e4
LT
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
9c3060be 36#include <linux/eventfd.h>
cfb1e33e 37#include <linux/blkdev.h>
9d85cba7 38#include <linux/compat.h>
36bc08cc
GZ
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
723be6e3 41#include <linux/percpu-refcount.h>
71ad7490 42#include <linux/mount.h>
1da177e4
LT
43
44#include <asm/kmap_types.h>
45#include <asm/uaccess.h>
1da177e4 46
68d70d03
AV
47#include "internal.h"
48
4e179bca
KO
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
fa8a53c3
BL
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
4e179bca
KO
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
4e179bca 69
db446a08
BL
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74};
75
e1bdd5f2
KO
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
4e179bca 80struct kioctx {
723be6e3 81 struct percpu_ref users;
36f55889 82 atomic_t dead;
4e179bca 83
e34ecee2
KO
84 struct percpu_ref reqs;
85
4e179bca 86 unsigned long user_id;
4e179bca 87
e1bdd5f2
KO
88 struct __percpu kioctx_cpu *cpu;
89
90 /*
91 * For percpu reqs_available, number of slots we move to/from global
92 * counter at a time:
93 */
94 unsigned req_batch;
3e845ce0
KO
95 /*
96 * This is what userspace passed to io_setup(), it's not used for
97 * anything but counting against the global max_reqs quota.
98 *
58c85dc2 99 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
100 * aio_setup_ring())
101 */
4e179bca
KO
102 unsigned max_reqs;
103
58c85dc2
KO
104 /* Size of ringbuffer, in units of struct io_event */
105 unsigned nr_events;
4e179bca 106
58c85dc2
KO
107 unsigned long mmap_base;
108 unsigned long mmap_size;
109
110 struct page **ring_pages;
111 long nr_pages;
112
723be6e3 113 struct work_struct free_work;
4e23bcae 114
e02ba72a
AP
115 /*
116 * signals when all in-flight requests are done
117 */
118 struct completion *requests_done;
119
4e23bcae 120 struct {
34e83fc6
KO
121 /*
122 * This counts the number of available slots in the ringbuffer,
123 * so we avoid overflowing it: it's decremented (if positive)
124 * when allocating a kiocb and incremented when the resulting
125 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
126 *
127 * We batch accesses to it with a percpu version.
34e83fc6
KO
128 */
129 atomic_t reqs_available;
4e23bcae
KO
130 } ____cacheline_aligned_in_smp;
131
132 struct {
133 spinlock_t ctx_lock;
134 struct list_head active_reqs; /* used for cancellation */
135 } ____cacheline_aligned_in_smp;
136
58c85dc2
KO
137 struct {
138 struct mutex ring_lock;
4e23bcae
KO
139 wait_queue_head_t wait;
140 } ____cacheline_aligned_in_smp;
58c85dc2
KO
141
142 struct {
143 unsigned tail;
d856f32a 144 unsigned completed_events;
58c85dc2 145 spinlock_t completion_lock;
4e23bcae 146 } ____cacheline_aligned_in_smp;
58c85dc2
KO
147
148 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 149 struct file *aio_ring_file;
db446a08
BL
150
151 unsigned id;
4e179bca
KO
152};
153
1da177e4 154/*------ sysctl variables----*/
d55b5fda
ZB
155static DEFINE_SPINLOCK(aio_nr_lock);
156unsigned long aio_nr; /* current system wide number of aio requests */
157unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
158/*----end sysctl variables---*/
159
e18b890b
CL
160static struct kmem_cache *kiocb_cachep;
161static struct kmem_cache *kioctx_cachep;
1da177e4 162
71ad7490
BL
163static struct vfsmount *aio_mnt;
164
165static const struct file_operations aio_ring_fops;
166static const struct address_space_operations aio_ctx_aops;
167
168static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
169{
170 struct qstr this = QSTR_INIT("[aio]", 5);
171 struct file *file;
172 struct path path;
173 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
174 if (IS_ERR(inode))
175 return ERR_CAST(inode);
71ad7490
BL
176
177 inode->i_mapping->a_ops = &aio_ctx_aops;
178 inode->i_mapping->private_data = ctx;
179 inode->i_size = PAGE_SIZE * nr_pages;
180
181 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
182 if (!path.dentry) {
183 iput(inode);
184 return ERR_PTR(-ENOMEM);
185 }
186 path.mnt = mntget(aio_mnt);
187
188 d_instantiate(path.dentry, inode);
189 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
190 if (IS_ERR(file)) {
191 path_put(&path);
192 return file;
193 }
194
195 file->f_flags = O_RDWR;
71ad7490
BL
196 return file;
197}
198
199static struct dentry *aio_mount(struct file_system_type *fs_type,
200 int flags, const char *dev_name, void *data)
201{
202 static const struct dentry_operations ops = {
203 .d_dname = simple_dname,
204 };
8dc4379e 205 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
71ad7490
BL
206}
207
1da177e4
LT
208/* aio_setup
209 * Creates the slab caches used by the aio routines, panic on
210 * failure as this is done early during the boot sequence.
211 */
212static int __init aio_setup(void)
213{
71ad7490
BL
214 static struct file_system_type aio_fs = {
215 .name = "aio",
216 .mount = aio_mount,
217 .kill_sb = kill_anon_super,
218 };
219 aio_mnt = kern_mount(&aio_fs);
220 if (IS_ERR(aio_mnt))
221 panic("Failed to create aio fs mount.");
222
0a31bd5f
CL
223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4 225
caf4167a 226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
1da177e4
LT
227
228 return 0;
229}
385773e0 230__initcall(aio_setup);
1da177e4 231
5e9ae2e5
BL
232static void put_aio_ring_file(struct kioctx *ctx)
233{
234 struct file *aio_ring_file = ctx->aio_ring_file;
235 if (aio_ring_file) {
236 truncate_setsize(aio_ring_file->f_inode, 0);
237
238 /* Prevent further access to the kioctx from migratepages */
239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 ctx->aio_ring_file = NULL;
242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243
244 fput(aio_ring_file);
245 }
246}
247
1da177e4
LT
248static void aio_free_ring(struct kioctx *ctx)
249{
36bc08cc 250 int i;
1da177e4 251
fa8a53c3
BL
252 /* Disconnect the kiotx from the ring file. This prevents future
253 * accesses to the kioctx from page migration.
254 */
255 put_aio_ring_file(ctx);
256
36bc08cc 257 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 258 struct page *page;
36bc08cc
GZ
259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 page_count(ctx->ring_pages[i]));
8e321fef
BL
261 page = ctx->ring_pages[i];
262 if (!page)
263 continue;
264 ctx->ring_pages[i] = NULL;
265 put_page(page);
36bc08cc 266 }
1da177e4 267
ddb8c45b 268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 269 kfree(ctx->ring_pages);
ddb8c45b
SL
270 ctx->ring_pages = NULL;
271 }
36bc08cc
GZ
272}
273
274static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275{
e4a0d3e7 276 vma->vm_flags |= VM_DONTEXPAND;
36bc08cc
GZ
277 vma->vm_ops = &generic_file_vm_ops;
278 return 0;
279}
280
b2edffdd 281static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
e4a0d3e7
PE
282{
283 struct mm_struct *mm = vma->vm_mm;
284 struct kioctx_table *table;
b2edffdd 285 int i, res = -EINVAL;
e4a0d3e7
PE
286
287 spin_lock(&mm->ioctx_lock);
288 rcu_read_lock();
289 table = rcu_dereference(mm->ioctx_table);
290 for (i = 0; i < table->nr; i++) {
291 struct kioctx *ctx;
292
293 ctx = table->table[i];
294 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
295 if (!atomic_read(&ctx->dead)) {
296 ctx->user_id = ctx->mmap_base = vma->vm_start;
297 res = 0;
298 }
e4a0d3e7
PE
299 break;
300 }
301 }
302
303 rcu_read_unlock();
304 spin_unlock(&mm->ioctx_lock);
b2edffdd 305 return res;
e4a0d3e7
PE
306}
307
36bc08cc
GZ
308static const struct file_operations aio_ring_fops = {
309 .mmap = aio_ring_mmap,
e4a0d3e7 310 .mremap = aio_ring_remap,
36bc08cc
GZ
311};
312
0c45355f 313#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
314static int aio_migratepage(struct address_space *mapping, struct page *new,
315 struct page *old, enum migrate_mode mode)
316{
5e9ae2e5 317 struct kioctx *ctx;
36bc08cc 318 unsigned long flags;
fa8a53c3 319 pgoff_t idx;
36bc08cc
GZ
320 int rc;
321
8e321fef
BL
322 rc = 0;
323
fa8a53c3 324 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
325 spin_lock(&mapping->private_lock);
326 ctx = mapping->private_data;
fa8a53c3
BL
327 if (!ctx) {
328 rc = -EINVAL;
329 goto out;
330 }
331
332 /* The ring_lock mutex. The prevents aio_read_events() from writing
333 * to the ring's head, and prevents page migration from mucking in
334 * a partially initialized kiotx.
335 */
336 if (!mutex_trylock(&ctx->ring_lock)) {
337 rc = -EAGAIN;
338 goto out;
339 }
340
341 idx = old->index;
342 if (idx < (pgoff_t)ctx->nr_pages) {
343 /* Make sure the old page hasn't already been changed */
344 if (ctx->ring_pages[idx] != old)
345 rc = -EAGAIN;
8e321fef
BL
346 } else
347 rc = -EINVAL;
8e321fef
BL
348
349 if (rc != 0)
fa8a53c3 350 goto out_unlock;
8e321fef 351
36bc08cc
GZ
352 /* Writeback must be complete */
353 BUG_ON(PageWriteback(old));
8e321fef 354 get_page(new);
36bc08cc 355
8e321fef 356 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 357 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 358 put_page(new);
fa8a53c3 359 goto out_unlock;
36bc08cc
GZ
360 }
361
fa8a53c3
BL
362 /* Take completion_lock to prevent other writes to the ring buffer
363 * while the old page is copied to the new. This prevents new
364 * events from being lost.
5e9ae2e5 365 */
fa8a53c3
BL
366 spin_lock_irqsave(&ctx->completion_lock, flags);
367 migrate_page_copy(new, old);
368 BUG_ON(ctx->ring_pages[idx] != old);
369 ctx->ring_pages[idx] = new;
370 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 371
fa8a53c3
BL
372 /* The old page is no longer accessible. */
373 put_page(old);
8e321fef 374
fa8a53c3
BL
375out_unlock:
376 mutex_unlock(&ctx->ring_lock);
377out:
378 spin_unlock(&mapping->private_lock);
36bc08cc 379 return rc;
1da177e4 380}
0c45355f 381#endif
1da177e4 382
36bc08cc 383static const struct address_space_operations aio_ctx_aops = {
835f252c 384 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 385#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 386 .migratepage = aio_migratepage,
0c45355f 387#endif
36bc08cc
GZ
388};
389
1da177e4
LT
390static int aio_setup_ring(struct kioctx *ctx)
391{
392 struct aio_ring *ring;
1da177e4 393 unsigned nr_events = ctx->max_reqs;
41003a7b 394 struct mm_struct *mm = current->mm;
3dc9acb6 395 unsigned long size, unused;
1da177e4 396 int nr_pages;
36bc08cc
GZ
397 int i;
398 struct file *file;
1da177e4
LT
399
400 /* Compensate for the ring buffer's head/tail overlap entry */
401 nr_events += 2; /* 1 is required, 2 for good luck */
402
403 size = sizeof(struct aio_ring);
404 size += sizeof(struct io_event) * nr_events;
1da177e4 405
36bc08cc 406 nr_pages = PFN_UP(size);
1da177e4
LT
407 if (nr_pages < 0)
408 return -EINVAL;
409
71ad7490 410 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
411 if (IS_ERR(file)) {
412 ctx->aio_ring_file = NULL;
fa8a53c3 413 return -ENOMEM;
36bc08cc
GZ
414 }
415
3dc9acb6
LT
416 ctx->aio_ring_file = file;
417 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
418 / sizeof(struct io_event);
419
420 ctx->ring_pages = ctx->internal_pages;
421 if (nr_pages > AIO_RING_PAGES) {
422 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
423 GFP_KERNEL);
424 if (!ctx->ring_pages) {
425 put_aio_ring_file(ctx);
426 return -ENOMEM;
427 }
428 }
429
36bc08cc
GZ
430 for (i = 0; i < nr_pages; i++) {
431 struct page *page;
432 page = find_or_create_page(file->f_inode->i_mapping,
433 i, GFP_HIGHUSER | __GFP_ZERO);
434 if (!page)
435 break;
436 pr_debug("pid(%d) page[%d]->count=%d\n",
437 current->pid, i, page_count(page));
438 SetPageUptodate(page);
36bc08cc 439 unlock_page(page);
3dc9acb6
LT
440
441 ctx->ring_pages[i] = page;
36bc08cc 442 }
3dc9acb6 443 ctx->nr_pages = i;
1da177e4 444
3dc9acb6
LT
445 if (unlikely(i != nr_pages)) {
446 aio_free_ring(ctx);
fa8a53c3 447 return -ENOMEM;
1da177e4
LT
448 }
449
58c85dc2
KO
450 ctx->mmap_size = nr_pages * PAGE_SIZE;
451 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 452
41003a7b 453 down_write(&mm->mmap_sem);
36bc08cc
GZ
454 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
455 PROT_READ | PROT_WRITE,
3dc9acb6
LT
456 MAP_SHARED, 0, &unused);
457 up_write(&mm->mmap_sem);
58c85dc2 458 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 459 ctx->mmap_size = 0;
1da177e4 460 aio_free_ring(ctx);
fa8a53c3 461 return -ENOMEM;
1da177e4
LT
462 }
463
58c85dc2 464 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 465
58c85dc2
KO
466 ctx->user_id = ctx->mmap_base;
467 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 468
58c85dc2 469 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 470 ring->nr = nr_events; /* user copy */
db446a08 471 ring->id = ~0U;
1da177e4
LT
472 ring->head = ring->tail = 0;
473 ring->magic = AIO_RING_MAGIC;
474 ring->compat_features = AIO_RING_COMPAT_FEATURES;
475 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
476 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 477 kunmap_atomic(ring);
58c85dc2 478 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
479
480 return 0;
481}
482
1da177e4
LT
483#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
484#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
485#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
486
0460fef2
KO
487void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
488{
489 struct kioctx *ctx = req->ki_ctx;
490 unsigned long flags;
491
492 spin_lock_irqsave(&ctx->ctx_lock, flags);
493
494 if (!req->ki_list.next)
495 list_add(&req->ki_list, &ctx->active_reqs);
496
497 req->ki_cancel = cancel;
498
499 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
500}
501EXPORT_SYMBOL(kiocb_set_cancel_fn);
502
d52a8f9e 503static int kiocb_cancel(struct kiocb *kiocb)
906b973c 504{
0460fef2 505 kiocb_cancel_fn *old, *cancel;
906b973c 506
0460fef2
KO
507 /*
508 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
509 * actually has a cancel function, hence the cmpxchg()
510 */
511
512 cancel = ACCESS_ONCE(kiocb->ki_cancel);
513 do {
514 if (!cancel || cancel == KIOCB_CANCELLED)
57282d8f 515 return -EINVAL;
906b973c 516
0460fef2
KO
517 old = cancel;
518 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
519 } while (cancel != old);
906b973c 520
57282d8f 521 return cancel(kiocb);
906b973c
KO
522}
523
e34ecee2 524static void free_ioctx(struct work_struct *work)
36f55889 525{
e34ecee2 526 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
e1bdd5f2 527
e34ecee2 528 pr_debug("freeing %p\n", ctx);
e1bdd5f2 529
e34ecee2 530 aio_free_ring(ctx);
e1bdd5f2 531 free_percpu(ctx->cpu);
9a1049da
TH
532 percpu_ref_exit(&ctx->reqs);
533 percpu_ref_exit(&ctx->users);
36f55889
KO
534 kmem_cache_free(kioctx_cachep, ctx);
535}
536
e34ecee2
KO
537static void free_ioctx_reqs(struct percpu_ref *ref)
538{
539 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
540
e02ba72a
AP
541 /* At this point we know that there are no any in-flight requests */
542 if (ctx->requests_done)
543 complete(ctx->requests_done);
544
e34ecee2
KO
545 INIT_WORK(&ctx->free_work, free_ioctx);
546 schedule_work(&ctx->free_work);
547}
548
36f55889
KO
549/*
550 * When this function runs, the kioctx has been removed from the "hash table"
551 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
552 * now it's safe to cancel any that need to be.
553 */
e34ecee2 554static void free_ioctx_users(struct percpu_ref *ref)
36f55889 555{
e34ecee2 556 struct kioctx *ctx = container_of(ref, struct kioctx, users);
36f55889
KO
557 struct kiocb *req;
558
559 spin_lock_irq(&ctx->ctx_lock);
560
561 while (!list_empty(&ctx->active_reqs)) {
562 req = list_first_entry(&ctx->active_reqs,
563 struct kiocb, ki_list);
564
565 list_del_init(&req->ki_list);
d52a8f9e 566 kiocb_cancel(req);
36f55889
KO
567 }
568
569 spin_unlock_irq(&ctx->ctx_lock);
570
e34ecee2
KO
571 percpu_ref_kill(&ctx->reqs);
572 percpu_ref_put(&ctx->reqs);
36f55889
KO
573}
574
db446a08
BL
575static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
576{
577 unsigned i, new_nr;
578 struct kioctx_table *table, *old;
579 struct aio_ring *ring;
580
581 spin_lock(&mm->ioctx_lock);
855ef0de 582 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
583
584 while (1) {
585 if (table)
586 for (i = 0; i < table->nr; i++)
587 if (!table->table[i]) {
588 ctx->id = i;
589 table->table[i] = ctx;
590 spin_unlock(&mm->ioctx_lock);
591
fa8a53c3
BL
592 /* While kioctx setup is in progress,
593 * we are protected from page migration
594 * changes ring_pages by ->ring_lock.
595 */
db446a08
BL
596 ring = kmap_atomic(ctx->ring_pages[0]);
597 ring->id = ctx->id;
598 kunmap_atomic(ring);
599 return 0;
600 }
601
602 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
603 spin_unlock(&mm->ioctx_lock);
604
605 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
606 new_nr, GFP_KERNEL);
607 if (!table)
608 return -ENOMEM;
609
610 table->nr = new_nr;
611
612 spin_lock(&mm->ioctx_lock);
855ef0de 613 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
614
615 if (!old) {
616 rcu_assign_pointer(mm->ioctx_table, table);
617 } else if (table->nr > old->nr) {
618 memcpy(table->table, old->table,
619 old->nr * sizeof(struct kioctx *));
620
621 rcu_assign_pointer(mm->ioctx_table, table);
622 kfree_rcu(old, rcu);
623 } else {
624 kfree(table);
625 table = old;
626 }
627 }
628}
629
e34ecee2
KO
630static void aio_nr_sub(unsigned nr)
631{
632 spin_lock(&aio_nr_lock);
633 if (WARN_ON(aio_nr - nr > aio_nr))
634 aio_nr = 0;
635 else
636 aio_nr -= nr;
637 spin_unlock(&aio_nr_lock);
638}
639
1da177e4
LT
640/* ioctx_alloc
641 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
642 */
643static struct kioctx *ioctx_alloc(unsigned nr_events)
644{
41003a7b 645 struct mm_struct *mm = current->mm;
1da177e4 646 struct kioctx *ctx;
e23754f8 647 int err = -ENOMEM;
1da177e4 648
e1bdd5f2
KO
649 /*
650 * We keep track of the number of available ringbuffer slots, to prevent
651 * overflow (reqs_available), and we also use percpu counters for this.
652 *
653 * So since up to half the slots might be on other cpu's percpu counters
654 * and unavailable, double nr_events so userspace sees what they
655 * expected: additionally, we move req_batch slots to/from percpu
656 * counters at a time, so make sure that isn't 0:
657 */
658 nr_events = max(nr_events, num_possible_cpus() * 4);
659 nr_events *= 2;
660
1da177e4
LT
661 /* Prevent overflows */
662 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
663 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
664 pr_debug("ENOMEM: nr_events too high\n");
665 return ERR_PTR(-EINVAL);
666 }
667
4cd81c3d 668 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
1da177e4
LT
669 return ERR_PTR(-EAGAIN);
670
c3762229 671 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
672 if (!ctx)
673 return ERR_PTR(-ENOMEM);
674
1da177e4 675 ctx->max_reqs = nr_events;
1da177e4 676
1da177e4 677 spin_lock_init(&ctx->ctx_lock);
0460fef2 678 spin_lock_init(&ctx->completion_lock);
58c85dc2 679 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
680 /* Protect against page migration throughout kiotx setup by keeping
681 * the ring_lock mutex held until setup is complete. */
682 mutex_lock(&ctx->ring_lock);
1da177e4
LT
683 init_waitqueue_head(&ctx->wait);
684
685 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 686
2aad2a86 687 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
688 goto err;
689
2aad2a86 690 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
691 goto err;
692
e1bdd5f2
KO
693 ctx->cpu = alloc_percpu(struct kioctx_cpu);
694 if (!ctx->cpu)
e34ecee2 695 goto err;
1da177e4 696
fa8a53c3
BL
697 err = aio_setup_ring(ctx);
698 if (err < 0)
e34ecee2 699 goto err;
e1bdd5f2 700
34e83fc6 701 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 702 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
703 if (ctx->req_batch < 1)
704 ctx->req_batch = 1;
34e83fc6 705
1da177e4 706 /* limit the number of system wide aios */
9fa1cb39 707 spin_lock(&aio_nr_lock);
4cd81c3d 708 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
2dd542b7 709 aio_nr + nr_events < aio_nr) {
9fa1cb39 710 spin_unlock(&aio_nr_lock);
e34ecee2 711 err = -EAGAIN;
d1b94327 712 goto err_ctx;
2dd542b7
AV
713 }
714 aio_nr += ctx->max_reqs;
9fa1cb39 715 spin_unlock(&aio_nr_lock);
1da177e4 716
1881686f
BL
717 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
718 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 719
da90382c
BL
720 err = ioctx_add_table(ctx, mm);
721 if (err)
e34ecee2 722 goto err_cleanup;
da90382c 723
fa8a53c3
BL
724 /* Release the ring_lock mutex now that all setup is complete. */
725 mutex_unlock(&ctx->ring_lock);
726
caf4167a 727 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 728 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
729 return ctx;
730
e34ecee2
KO
731err_cleanup:
732 aio_nr_sub(ctx->max_reqs);
d1b94327 733err_ctx:
deeb8525
AV
734 atomic_set(&ctx->dead, 1);
735 if (ctx->mmap_size)
736 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 737 aio_free_ring(ctx);
e34ecee2 738err:
fa8a53c3 739 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 740 free_percpu(ctx->cpu);
9a1049da
TH
741 percpu_ref_exit(&ctx->reqs);
742 percpu_ref_exit(&ctx->users);
1da177e4 743 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 744 pr_debug("error allocating ioctx %d\n", err);
e23754f8 745 return ERR_PTR(err);
1da177e4
LT
746}
747
36f55889
KO
748/* kill_ioctx
749 * Cancels all outstanding aio requests on an aio context. Used
750 * when the processes owning a context have all exited to encourage
751 * the rapid destruction of the kioctx.
752 */
fb2d4483 753static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
e02ba72a 754 struct completion *requests_done)
36f55889 755{
fa88b6f8 756 struct kioctx_table *table;
db446a08 757
b2edffdd
AV
758 spin_lock(&mm->ioctx_lock);
759 if (atomic_xchg(&ctx->dead, 1)) {
760 spin_unlock(&mm->ioctx_lock);
fa88b6f8 761 return -EINVAL;
b2edffdd 762 }
db446a08 763
855ef0de 764 table = rcu_dereference_raw(mm->ioctx_table);
fa88b6f8
BL
765 WARN_ON(ctx != table->table[ctx->id]);
766 table->table[ctx->id] = NULL;
fa88b6f8 767 spin_unlock(&mm->ioctx_lock);
4fcc712f 768
fa88b6f8
BL
769 /* percpu_ref_kill() will do the necessary call_rcu() */
770 wake_up_all(&ctx->wait);
4fcc712f 771
fa88b6f8
BL
772 /*
773 * It'd be more correct to do this in free_ioctx(), after all
774 * the outstanding kiocbs have finished - but by then io_destroy
775 * has already returned, so io_setup() could potentially return
776 * -EAGAIN with no ioctxs actually in use (as far as userspace
777 * could tell).
778 */
779 aio_nr_sub(ctx->max_reqs);
4fcc712f 780
fa88b6f8
BL
781 if (ctx->mmap_size)
782 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 783
fa88b6f8
BL
784 ctx->requests_done = requests_done;
785 percpu_ref_kill(&ctx->users);
786 return 0;
1da177e4
LT
787}
788
789/* wait_on_sync_kiocb:
790 * Waits on the given sync kiocb to complete.
791 */
57282d8f 792ssize_t wait_on_sync_kiocb(struct kiocb *req)
1da177e4 793{
57282d8f 794 while (!req->ki_ctx) {
1da177e4 795 set_current_state(TASK_UNINTERRUPTIBLE);
57282d8f 796 if (req->ki_ctx)
1da177e4 797 break;
41d10da3 798 io_schedule();
1da177e4
LT
799 }
800 __set_current_state(TASK_RUNNING);
57282d8f 801 return req->ki_user_data;
1da177e4 802}
385773e0 803EXPORT_SYMBOL(wait_on_sync_kiocb);
1da177e4 804
36f55889
KO
805/*
806 * exit_aio: called when the last user of mm goes away. At this point, there is
807 * no way for any new requests to be submited or any of the io_* syscalls to be
808 * called on the context.
809 *
810 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
811 * them.
1da177e4 812 */
fc9b52cd 813void exit_aio(struct mm_struct *mm)
1da177e4 814{
4b70ac5f
ON
815 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
816 int i;
db446a08 817
4b70ac5f
ON
818 if (!table)
819 return;
db446a08 820
4b70ac5f
ON
821 for (i = 0; i < table->nr; ++i) {
822 struct kioctx *ctx = table->table[i];
6098b45b
GZ
823 struct completion requests_done =
824 COMPLETION_INITIALIZER_ONSTACK(requests_done);
abf137dd 825
4b70ac5f
ON
826 if (!ctx)
827 continue;
936af157 828 /*
4b70ac5f
ON
829 * We don't need to bother with munmap() here - exit_mmap(mm)
830 * is coming and it'll unmap everything. And we simply can't,
831 * this is not necessarily our ->mm.
832 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
833 * that it needs to unmap the area, just set it to 0.
936af157 834 */
58c85dc2 835 ctx->mmap_size = 0;
6098b45b 836 kill_ioctx(mm, ctx, &requests_done);
36f55889 837
6098b45b
GZ
838 /* Wait until all IO for the context are done. */
839 wait_for_completion(&requests_done);
1da177e4 840 }
4b70ac5f
ON
841
842 RCU_INIT_POINTER(mm->ioctx_table, NULL);
843 kfree(table);
1da177e4
LT
844}
845
e1bdd5f2
KO
846static void put_reqs_available(struct kioctx *ctx, unsigned nr)
847{
848 struct kioctx_cpu *kcpu;
263782c1 849 unsigned long flags;
e1bdd5f2 850
263782c1 851 local_irq_save(flags);
be6fb451 852 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 853 kcpu->reqs_available += nr;
263782c1 854
e1bdd5f2
KO
855 while (kcpu->reqs_available >= ctx->req_batch * 2) {
856 kcpu->reqs_available -= ctx->req_batch;
857 atomic_add(ctx->req_batch, &ctx->reqs_available);
858 }
859
263782c1 860 local_irq_restore(flags);
e1bdd5f2
KO
861}
862
863static bool get_reqs_available(struct kioctx *ctx)
864{
865 struct kioctx_cpu *kcpu;
866 bool ret = false;
263782c1 867 unsigned long flags;
e1bdd5f2 868
263782c1 869 local_irq_save(flags);
be6fb451 870 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
871 if (!kcpu->reqs_available) {
872 int old, avail = atomic_read(&ctx->reqs_available);
873
874 do {
875 if (avail < ctx->req_batch)
876 goto out;
877
878 old = avail;
879 avail = atomic_cmpxchg(&ctx->reqs_available,
880 avail, avail - ctx->req_batch);
881 } while (avail != old);
882
883 kcpu->reqs_available += ctx->req_batch;
884 }
885
886 ret = true;
887 kcpu->reqs_available--;
888out:
263782c1 889 local_irq_restore(flags);
e1bdd5f2
KO
890 return ret;
891}
892
d856f32a
BL
893/* refill_reqs_available
894 * Updates the reqs_available reference counts used for tracking the
895 * number of free slots in the completion ring. This can be called
896 * from aio_complete() (to optimistically update reqs_available) or
897 * from aio_get_req() (the we're out of events case). It must be
898 * called holding ctx->completion_lock.
899 */
900static void refill_reqs_available(struct kioctx *ctx, unsigned head,
901 unsigned tail)
902{
903 unsigned events_in_ring, completed;
904
905 /* Clamp head since userland can write to it. */
906 head %= ctx->nr_events;
907 if (head <= tail)
908 events_in_ring = tail - head;
909 else
910 events_in_ring = ctx->nr_events - (head - tail);
911
912 completed = ctx->completed_events;
913 if (events_in_ring < completed)
914 completed -= events_in_ring;
915 else
916 completed = 0;
917
918 if (!completed)
919 return;
920
921 ctx->completed_events -= completed;
922 put_reqs_available(ctx, completed);
923}
924
925/* user_refill_reqs_available
926 * Called to refill reqs_available when aio_get_req() encounters an
927 * out of space in the completion ring.
928 */
929static void user_refill_reqs_available(struct kioctx *ctx)
930{
931 spin_lock_irq(&ctx->completion_lock);
932 if (ctx->completed_events) {
933 struct aio_ring *ring;
934 unsigned head;
935
936 /* Access of ring->head may race with aio_read_events_ring()
937 * here, but that's okay since whether we read the old version
938 * or the new version, and either will be valid. The important
939 * part is that head cannot pass tail since we prevent
940 * aio_complete() from updating tail by holding
941 * ctx->completion_lock. Even if head is invalid, the check
942 * against ctx->completed_events below will make sure we do the
943 * safe/right thing.
944 */
945 ring = kmap_atomic(ctx->ring_pages[0]);
946 head = ring->head;
947 kunmap_atomic(ring);
948
949 refill_reqs_available(ctx, head, ctx->tail);
950 }
951
952 spin_unlock_irq(&ctx->completion_lock);
953}
954
1da177e4 955/* aio_get_req
57282d8f
KO
956 * Allocate a slot for an aio request.
957 * Returns NULL if no requests are free.
1da177e4 958 */
a1c8eae7 959static inline struct kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 960{
a1c8eae7
KO
961 struct kiocb *req;
962
d856f32a
BL
963 if (!get_reqs_available(ctx)) {
964 user_refill_reqs_available(ctx);
965 if (!get_reqs_available(ctx))
966 return NULL;
967 }
a1c8eae7 968
0460fef2 969 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 970 if (unlikely(!req))
a1c8eae7 971 goto out_put;
1da177e4 972
e34ecee2
KO
973 percpu_ref_get(&ctx->reqs);
974
1da177e4 975 req->ki_ctx = ctx;
080d676d 976 return req;
a1c8eae7 977out_put:
e1bdd5f2 978 put_reqs_available(ctx, 1);
a1c8eae7 979 return NULL;
1da177e4
LT
980}
981
11599eba 982static void kiocb_free(struct kiocb *req)
1da177e4 983{
1d98ebfc
KO
984 if (req->ki_filp)
985 fput(req->ki_filp);
13389010
DL
986 if (req->ki_eventfd != NULL)
987 eventfd_ctx_put(req->ki_eventfd);
1da177e4 988 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
989}
990
d5470b59 991static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 992{
db446a08 993 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 994 struct mm_struct *mm = current->mm;
65c24491 995 struct kioctx *ctx, *ret = NULL;
db446a08
BL
996 struct kioctx_table *table;
997 unsigned id;
998
999 if (get_user(id, &ring->id))
1000 return NULL;
1da177e4 1001
abf137dd 1002 rcu_read_lock();
db446a08 1003 table = rcu_dereference(mm->ioctx_table);
abf137dd 1004
db446a08
BL
1005 if (!table || id >= table->nr)
1006 goto out;
1da177e4 1007
db446a08 1008 ctx = table->table[id];
f30d704f 1009 if (ctx && ctx->user_id == ctx_id) {
db446a08
BL
1010 percpu_ref_get(&ctx->users);
1011 ret = ctx;
1012 }
1013out:
abf137dd 1014 rcu_read_unlock();
65c24491 1015 return ret;
1da177e4
LT
1016}
1017
1da177e4
LT
1018/* aio_complete
1019 * Called when the io request on the given iocb is complete.
1da177e4 1020 */
2d68449e 1021void aio_complete(struct kiocb *iocb, long res, long res2)
1da177e4
LT
1022{
1023 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1024 struct aio_ring *ring;
21b40200 1025 struct io_event *ev_page, *event;
d856f32a 1026 unsigned tail, pos, head;
1da177e4 1027 unsigned long flags;
1da177e4 1028
20dcae32
ZB
1029 /*
1030 * Special case handling for sync iocbs:
1031 * - events go directly into the iocb for fast handling
1032 * - the sync task with the iocb in its stack holds the single iocb
1033 * ref, no other paths have a way to get another ref
1034 * - the sync task helpfully left a reference to itself in the iocb
1da177e4
LT
1035 */
1036 if (is_sync_kiocb(iocb)) {
1da177e4 1037 iocb->ki_user_data = res;
57282d8f
KO
1038 smp_wmb();
1039 iocb->ki_ctx = ERR_PTR(-EXDEV);
1da177e4 1040 wake_up_process(iocb->ki_obj.tsk);
2d68449e 1041 return;
1da177e4
LT
1042 }
1043
0460fef2
KO
1044 if (iocb->ki_list.next) {
1045 unsigned long flags;
1046
1047 spin_lock_irqsave(&ctx->ctx_lock, flags);
1048 list_del(&iocb->ki_list);
1049 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1050 }
11599eba 1051
0460fef2
KO
1052 /*
1053 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1054 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1055 * pointer since we might be called from irq context.
1056 */
1057 spin_lock_irqsave(&ctx->completion_lock, flags);
1058
58c85dc2 1059 tail = ctx->tail;
21b40200
KO
1060 pos = tail + AIO_EVENTS_OFFSET;
1061
58c85dc2 1062 if (++tail >= ctx->nr_events)
4bf69b2a 1063 tail = 0;
1da177e4 1064
58c85dc2 1065 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1066 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1067
1da177e4
LT
1068 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1069 event->data = iocb->ki_user_data;
1070 event->res = res;
1071 event->res2 = res2;
1072
21b40200 1073 kunmap_atomic(ev_page);
58c85dc2 1074 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1075
1076 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
caf4167a
KO
1077 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1078 res, res2);
1da177e4
LT
1079
1080 /* after flagging the request as done, we
1081 * must never even look at it again
1082 */
1083 smp_wmb(); /* make event visible before updating tail */
1084
58c85dc2 1085 ctx->tail = tail;
1da177e4 1086
58c85dc2 1087 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1088 head = ring->head;
21b40200 1089 ring->tail = tail;
e8e3c3d6 1090 kunmap_atomic(ring);
58c85dc2 1091 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1092
d856f32a
BL
1093 ctx->completed_events++;
1094 if (ctx->completed_events > 1)
1095 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1096 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1097
21b40200 1098 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1099
1100 /*
1101 * Check if the user asked us to deliver the result through an
1102 * eventfd. The eventfd_signal() function is safe to be called
1103 * from IRQ context.
1104 */
87c3a86e 1105 if (iocb->ki_eventfd != NULL)
8d1c98b0
DL
1106 eventfd_signal(iocb->ki_eventfd, 1);
1107
1da177e4 1108 /* everything turned out well, dispose of the aiocb. */
57282d8f 1109 kiocb_free(iocb);
1da177e4 1110
6cb2a210
QB
1111 /*
1112 * We have to order our ring_info tail store above and test
1113 * of the wait list below outside the wait lock. This is
1114 * like in wake_up_bit() where clearing a bit has to be
1115 * ordered with the unlocked test.
1116 */
1117 smp_mb();
1118
1da177e4
LT
1119 if (waitqueue_active(&ctx->wait))
1120 wake_up(&ctx->wait);
1121
e34ecee2 1122 percpu_ref_put(&ctx->reqs);
1da177e4 1123}
385773e0 1124EXPORT_SYMBOL(aio_complete);
1da177e4 1125
2be4e7de 1126/* aio_read_events_ring
a31ad380
KO
1127 * Pull an event off of the ioctx's event ring. Returns the number of
1128 * events fetched
1da177e4 1129 */
a31ad380
KO
1130static long aio_read_events_ring(struct kioctx *ctx,
1131 struct io_event __user *event, long nr)
1da177e4 1132{
1da177e4 1133 struct aio_ring *ring;
5ffac122 1134 unsigned head, tail, pos;
a31ad380
KO
1135 long ret = 0;
1136 int copy_ret;
1137
9c9ce763
DC
1138 /*
1139 * The mutex can block and wake us up and that will cause
1140 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1141 * and repeat. This should be rare enough that it doesn't cause
1142 * peformance issues. See the comment in read_events() for more detail.
1143 */
1144 sched_annotate_sleep();
58c85dc2 1145 mutex_lock(&ctx->ring_lock);
1da177e4 1146
fa8a53c3 1147 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1148 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1149 head = ring->head;
5ffac122 1150 tail = ring->tail;
a31ad380
KO
1151 kunmap_atomic(ring);
1152
2ff396be
JM
1153 /*
1154 * Ensure that once we've read the current tail pointer, that
1155 * we also see the events that were stored up to the tail.
1156 */
1157 smp_rmb();
1158
5ffac122 1159 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1160
5ffac122 1161 if (head == tail)
1da177e4
LT
1162 goto out;
1163
edfbbf38
BL
1164 head %= ctx->nr_events;
1165 tail %= ctx->nr_events;
1166
a31ad380
KO
1167 while (ret < nr) {
1168 long avail;
1169 struct io_event *ev;
1170 struct page *page;
1171
5ffac122
KO
1172 avail = (head <= tail ? tail : ctx->nr_events) - head;
1173 if (head == tail)
a31ad380
KO
1174 break;
1175
1176 avail = min(avail, nr - ret);
1177 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1178 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1179
1180 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1181 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1182 pos %= AIO_EVENTS_PER_PAGE;
1183
1184 ev = kmap(page);
1185 copy_ret = copy_to_user(event + ret, ev + pos,
1186 sizeof(*ev) * avail);
1187 kunmap(page);
1188
1189 if (unlikely(copy_ret)) {
1190 ret = -EFAULT;
1191 goto out;
1192 }
1193
1194 ret += avail;
1195 head += avail;
58c85dc2 1196 head %= ctx->nr_events;
1da177e4 1197 }
1da177e4 1198
58c85dc2 1199 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1200 ring->head = head;
91d80a84 1201 kunmap_atomic(ring);
58c85dc2 1202 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1203
5ffac122 1204 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1205out:
58c85dc2 1206 mutex_unlock(&ctx->ring_lock);
a31ad380 1207
1da177e4
LT
1208 return ret;
1209}
1210
a31ad380
KO
1211static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1212 struct io_event __user *event, long *i)
1da177e4 1213{
a31ad380 1214 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1215
a31ad380
KO
1216 if (ret > 0)
1217 *i += ret;
1da177e4 1218
a31ad380
KO
1219 if (unlikely(atomic_read(&ctx->dead)))
1220 ret = -EINVAL;
1da177e4 1221
a31ad380
KO
1222 if (!*i)
1223 *i = ret;
1da177e4 1224
a31ad380 1225 return ret < 0 || *i >= min_nr;
1da177e4
LT
1226}
1227
a31ad380 1228static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4
LT
1229 struct io_event __user *event,
1230 struct timespec __user *timeout)
1231{
a31ad380
KO
1232 ktime_t until = { .tv64 = KTIME_MAX };
1233 long ret = 0;
1da177e4 1234
1da177e4
LT
1235 if (timeout) {
1236 struct timespec ts;
a31ad380 1237
1da177e4 1238 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
a31ad380 1239 return -EFAULT;
1da177e4 1240
a31ad380 1241 until = timespec_to_ktime(ts);
1da177e4
LT
1242 }
1243
a31ad380
KO
1244 /*
1245 * Note that aio_read_events() is being called as the conditional - i.e.
1246 * we're calling it after prepare_to_wait() has set task state to
1247 * TASK_INTERRUPTIBLE.
1248 *
1249 * But aio_read_events() can block, and if it blocks it's going to flip
1250 * the task state back to TASK_RUNNING.
1251 *
1252 * This should be ok, provided it doesn't flip the state back to
1253 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1254 * will only happen if the mutex_lock() call blocks, and we then find
1255 * the ringbuffer empty. So in practice we should be ok, but it's
1256 * something to be aware of when touching this code.
1257 */
5f785de5
FZ
1258 if (until.tv64 == 0)
1259 aio_read_events(ctx, min_nr, nr, event, &ret);
1260 else
1261 wait_event_interruptible_hrtimeout(ctx->wait,
1262 aio_read_events(ctx, min_nr, nr, event, &ret),
1263 until);
1da177e4 1264
a31ad380
KO
1265 if (!ret && signal_pending(current))
1266 ret = -EINTR;
1da177e4 1267
a31ad380 1268 return ret;
1da177e4
LT
1269}
1270
1da177e4
LT
1271/* sys_io_setup:
1272 * Create an aio_context capable of receiving at least nr_events.
1273 * ctxp must not point to an aio_context that already exists, and
1274 * must be initialized to 0 prior to the call. On successful
1275 * creation of the aio_context, *ctxp is filled in with the resulting
1276 * handle. May fail with -EINVAL if *ctxp is not initialized,
1277 * if the specified nr_events exceeds internal limits. May fail
1278 * with -EAGAIN if the specified nr_events exceeds the user's limit
1279 * of available events. May fail with -ENOMEM if insufficient kernel
1280 * resources are available. May fail with -EFAULT if an invalid
1281 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1282 * implemented.
1283 */
002c8976 1284SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1285{
1286 struct kioctx *ioctx = NULL;
1287 unsigned long ctx;
1288 long ret;
1289
1290 ret = get_user(ctx, ctxp);
1291 if (unlikely(ret))
1292 goto out;
1293
1294 ret = -EINVAL;
d55b5fda 1295 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1296 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1297 ctx, nr_events);
1da177e4
LT
1298 goto out;
1299 }
1300
1301 ioctx = ioctx_alloc(nr_events);
1302 ret = PTR_ERR(ioctx);
1303 if (!IS_ERR(ioctx)) {
1304 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1305 if (ret)
e02ba72a 1306 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1307 percpu_ref_put(&ioctx->users);
1da177e4
LT
1308 }
1309
1310out:
1311 return ret;
1312}
1313
1314/* sys_io_destroy:
1315 * Destroy the aio_context specified. May cancel any outstanding
1316 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1317 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1318 * is invalid.
1319 */
002c8976 1320SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1321{
1322 struct kioctx *ioctx = lookup_ioctx(ctx);
1323 if (likely(NULL != ioctx)) {
e02ba72a
AP
1324 struct completion requests_done =
1325 COMPLETION_INITIALIZER_ONSTACK(requests_done);
fb2d4483 1326 int ret;
e02ba72a
AP
1327
1328 /* Pass requests_done to kill_ioctx() where it can be set
1329 * in a thread-safe way. If we try to set it here then we have
1330 * a race condition if two io_destroy() called simultaneously.
1331 */
fb2d4483 1332 ret = kill_ioctx(current->mm, ioctx, &requests_done);
723be6e3 1333 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1334
1335 /* Wait until all IO for the context are done. Otherwise kernel
1336 * keep using user-space buffers even if user thinks the context
1337 * is destroyed.
1338 */
fb2d4483
BL
1339 if (!ret)
1340 wait_for_completion(&requests_done);
e02ba72a 1341
fb2d4483 1342 return ret;
1da177e4 1343 }
acd88d4e 1344 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1345 return -EINVAL;
1346}
1347
41ef4eb8
KO
1348typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1349 unsigned long, loff_t);
293bc982 1350typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
41ef4eb8 1351
8bc92afc
KO
1352static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1353 int rw, char __user *buf,
1354 unsigned long *nr_segs,
1355 struct iovec **iovec,
1356 bool compat)
eed4e51f
BP
1357{
1358 ssize_t ret;
1359
8bc92afc 1360 *nr_segs = kiocb->ki_nbytes;
41ef4eb8 1361
9d85cba7
JM
1362#ifdef CONFIG_COMPAT
1363 if (compat)
41ef4eb8 1364 ret = compat_rw_copy_check_uvector(rw,
8bc92afc 1365 (struct compat_iovec __user *)buf,
00fefb9c 1366 *nr_segs, UIO_FASTIOV, *iovec, iovec);
9d85cba7
JM
1367 else
1368#endif
41ef4eb8 1369 ret = rw_copy_check_uvector(rw,
8bc92afc 1370 (struct iovec __user *)buf,
00fefb9c 1371 *nr_segs, UIO_FASTIOV, *iovec, iovec);
eed4e51f 1372 if (ret < 0)
41ef4eb8 1373 return ret;
a70b52ec 1374
41ef4eb8 1375 /* ki_nbytes now reflect bytes instead of segs */
eed4e51f 1376 kiocb->ki_nbytes = ret;
41ef4eb8 1377 return 0;
eed4e51f
BP
1378}
1379
8bc92afc
KO
1380static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1381 int rw, char __user *buf,
1382 unsigned long *nr_segs,
1383 struct iovec *iovec)
eed4e51f 1384{
8bc92afc 1385 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
41ef4eb8 1386 return -EFAULT;
a70b52ec 1387
8bc92afc
KO
1388 iovec->iov_base = buf;
1389 iovec->iov_len = kiocb->ki_nbytes;
1390 *nr_segs = 1;
eed4e51f
BP
1391 return 0;
1392}
1393
1da177e4 1394/*
2be4e7de
GZ
1395 * aio_run_iocb:
1396 * Performs the initial checks and io submission.
1da177e4 1397 */
8bc92afc
KO
1398static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1399 char __user *buf, bool compat)
1da177e4 1400{
41ef4eb8
KO
1401 struct file *file = req->ki_filp;
1402 ssize_t ret;
8bc92afc 1403 unsigned long nr_segs;
41ef4eb8
KO
1404 int rw;
1405 fmode_t mode;
1406 aio_rw_op *rw_op;
293bc982 1407 rw_iter_op *iter_op;
00fefb9c 1408 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1409 struct iov_iter iter;
1da177e4 1410
8bc92afc 1411 switch (opcode) {
1da177e4 1412 case IOCB_CMD_PREAD:
eed4e51f 1413 case IOCB_CMD_PREADV:
41ef4eb8
KO
1414 mode = FMODE_READ;
1415 rw = READ;
1416 rw_op = file->f_op->aio_read;
293bc982 1417 iter_op = file->f_op->read_iter;
41ef4eb8
KO
1418 goto rw_common;
1419
1420 case IOCB_CMD_PWRITE:
eed4e51f 1421 case IOCB_CMD_PWRITEV:
41ef4eb8
KO
1422 mode = FMODE_WRITE;
1423 rw = WRITE;
1424 rw_op = file->f_op->aio_write;
293bc982 1425 iter_op = file->f_op->write_iter;
41ef4eb8
KO
1426 goto rw_common;
1427rw_common:
1428 if (unlikely(!(file->f_mode & mode)))
1429 return -EBADF;
1430
293bc982 1431 if (!rw_op && !iter_op)
41ef4eb8
KO
1432 return -EINVAL;
1433
8bc92afc
KO
1434 ret = (opcode == IOCB_CMD_PREADV ||
1435 opcode == IOCB_CMD_PWRITEV)
1436 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1437 &iovec, compat)
1438 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1439 iovec);
754320d6
LY
1440 if (!ret)
1441 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
8bc92afc 1442 if (ret < 0) {
00fefb9c 1443 if (iovec != inline_vecs)
8bc92afc 1444 kfree(iovec);
41ef4eb8 1445 return ret;
8bc92afc 1446 }
41ef4eb8
KO
1447
1448 req->ki_nbytes = ret;
41ef4eb8 1449
73a7075e
KO
1450 /* XXX: move/kill - rw_verify_area()? */
1451 /* This matches the pread()/pwrite() logic */
1452 if (req->ki_pos < 0) {
1453 ret = -EINVAL;
1454 break;
1455 }
1456
1457 if (rw == WRITE)
1458 file_start_write(file);
1459
293bc982
AV
1460 if (iter_op) {
1461 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1462 ret = iter_op(req, &iter);
1463 } else {
1464 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1465 }
73a7075e
KO
1466
1467 if (rw == WRITE)
1468 file_end_write(file);
1da177e4 1469 break;
41ef4eb8 1470
1da177e4 1471 case IOCB_CMD_FDSYNC:
41ef4eb8
KO
1472 if (!file->f_op->aio_fsync)
1473 return -EINVAL;
1474
1475 ret = file->f_op->aio_fsync(req, 1);
1da177e4 1476 break;
41ef4eb8 1477
1da177e4 1478 case IOCB_CMD_FSYNC:
41ef4eb8
KO
1479 if (!file->f_op->aio_fsync)
1480 return -EINVAL;
1481
1482 ret = file->f_op->aio_fsync(req, 0);
1da177e4 1483 break;
41ef4eb8 1484
1da177e4 1485 default:
caf4167a 1486 pr_debug("EINVAL: no operation provided\n");
41ef4eb8 1487 return -EINVAL;
1da177e4
LT
1488 }
1489
00fefb9c 1490 if (iovec != inline_vecs)
8bc92afc
KO
1491 kfree(iovec);
1492
41ef4eb8
KO
1493 if (ret != -EIOCBQUEUED) {
1494 /*
1495 * There's no easy way to restart the syscall since other AIO's
1496 * may be already running. Just fail this IO with EINTR.
1497 */
1498 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1499 ret == -ERESTARTNOHAND ||
1500 ret == -ERESTART_RESTARTBLOCK))
1501 ret = -EINTR;
1502 aio_complete(req, ret, 0);
1503 }
1da177e4
LT
1504
1505 return 0;
1506}
1507
d5470b59 1508static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
a1c8eae7 1509 struct iocb *iocb, bool compat)
1da177e4
LT
1510{
1511 struct kiocb *req;
1da177e4
LT
1512 ssize_t ret;
1513
1514 /* enforce forwards compatibility on users */
9c3060be 1515 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
caf4167a 1516 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1517 return -EINVAL;
1518 }
1519
1520 /* prevent overflows */
1521 if (unlikely(
1522 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1523 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1524 ((ssize_t)iocb->aio_nbytes < 0)
1525 )) {
acd88d4e 1526 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1527 return -EINVAL;
1528 }
1529
41ef4eb8 1530 req = aio_get_req(ctx);
1d98ebfc 1531 if (unlikely(!req))
1da177e4 1532 return -EAGAIN;
1d98ebfc
KO
1533
1534 req->ki_filp = fget(iocb->aio_fildes);
1535 if (unlikely(!req->ki_filp)) {
1536 ret = -EBADF;
1537 goto out_put_req;
1da177e4 1538 }
1d98ebfc 1539
9c3060be
DL
1540 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1541 /*
1542 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1543 * instance of the file* now. The file descriptor must be
1544 * an eventfd() fd, and will be signaled for each completed
1545 * event using the eventfd_signal() function.
1546 */
13389010 1547 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
801678c5 1548 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1549 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1550 req->ki_eventfd = NULL;
9c3060be
DL
1551 goto out_put_req;
1552 }
1553 }
1da177e4 1554
8a660890 1555 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1556 if (unlikely(ret)) {
caf4167a 1557 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1558 goto out_put_req;
1559 }
1560
1561 req->ki_obj.user = user_iocb;
1562 req->ki_user_data = iocb->aio_data;
1563 req->ki_pos = iocb->aio_offset;
73a7075e 1564 req->ki_nbytes = iocb->aio_nbytes;
1da177e4 1565
8bc92afc
KO
1566 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1567 (char __user *)(unsigned long)iocb->aio_buf,
1568 compat);
41003a7b 1569 if (ret)
7137c6bd 1570 goto out_put_req;
41003a7b 1571
1da177e4 1572 return 0;
1da177e4 1573out_put_req:
e1bdd5f2 1574 put_reqs_available(ctx, 1);
e34ecee2 1575 percpu_ref_put(&ctx->reqs);
57282d8f 1576 kiocb_free(req);
1da177e4
LT
1577 return ret;
1578}
1579
9d85cba7
JM
1580long do_io_submit(aio_context_t ctx_id, long nr,
1581 struct iocb __user *__user *iocbpp, bool compat)
1da177e4
LT
1582{
1583 struct kioctx *ctx;
1584 long ret = 0;
080d676d 1585 int i = 0;
9f5b9425 1586 struct blk_plug plug;
1da177e4
LT
1587
1588 if (unlikely(nr < 0))
1589 return -EINVAL;
1590
75e1c70f
JM
1591 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1592 nr = LONG_MAX/sizeof(*iocbpp);
1593
1da177e4
LT
1594 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1595 return -EFAULT;
1596
1597 ctx = lookup_ioctx(ctx_id);
1598 if (unlikely(!ctx)) {
caf4167a 1599 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1600 return -EINVAL;
1601 }
1602
9f5b9425
SL
1603 blk_start_plug(&plug);
1604
1da177e4
LT
1605 /*
1606 * AKPM: should this return a partial result if some of the IOs were
1607 * successfully submitted?
1608 */
1609 for (i=0; i<nr; i++) {
1610 struct iocb __user *user_iocb;
1611 struct iocb tmp;
1612
1613 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1614 ret = -EFAULT;
1615 break;
1616 }
1617
1618 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1619 ret = -EFAULT;
1620 break;
1621 }
1622
a1c8eae7 1623 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1da177e4
LT
1624 if (ret)
1625 break;
1626 }
9f5b9425 1627 blk_finish_plug(&plug);
1da177e4 1628
723be6e3 1629 percpu_ref_put(&ctx->users);
1da177e4
LT
1630 return i ? i : ret;
1631}
1632
9d85cba7
JM
1633/* sys_io_submit:
1634 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1635 * the number of iocbs queued. May return -EINVAL if the aio_context
1636 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1637 * *iocbpp[0] is not properly initialized, if the operation specified
1638 * is invalid for the file descriptor in the iocb. May fail with
1639 * -EFAULT if any of the data structures point to invalid data. May
1640 * fail with -EBADF if the file descriptor specified in the first
1641 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1642 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1643 * fail with -ENOSYS if not implemented.
1644 */
1645SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1646 struct iocb __user * __user *, iocbpp)
1647{
1648 return do_io_submit(ctx_id, nr, iocbpp, 0);
1649}
1650
1da177e4
LT
1651/* lookup_kiocb
1652 * Finds a given iocb for cancellation.
1da177e4 1653 */
25ee7e38
AB
1654static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1655 u32 key)
1da177e4
LT
1656{
1657 struct list_head *pos;
d00689af
ZB
1658
1659 assert_spin_locked(&ctx->ctx_lock);
1660
8a660890
KO
1661 if (key != KIOCB_KEY)
1662 return NULL;
1663
1da177e4
LT
1664 /* TODO: use a hash or array, this sucks. */
1665 list_for_each(pos, &ctx->active_reqs) {
1666 struct kiocb *kiocb = list_kiocb(pos);
8a660890 1667 if (kiocb->ki_obj.user == iocb)
1da177e4
LT
1668 return kiocb;
1669 }
1670 return NULL;
1671}
1672
1673/* sys_io_cancel:
1674 * Attempts to cancel an iocb previously passed to io_submit. If
1675 * the operation is successfully cancelled, the resulting event is
1676 * copied into the memory pointed to by result without being placed
1677 * into the completion queue and 0 is returned. May fail with
1678 * -EFAULT if any of the data structures pointed to are invalid.
1679 * May fail with -EINVAL if aio_context specified by ctx_id is
1680 * invalid. May fail with -EAGAIN if the iocb specified was not
1681 * cancelled. Will fail with -ENOSYS if not implemented.
1682 */
002c8976
HC
1683SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1684 struct io_event __user *, result)
1da177e4 1685{
1da177e4
LT
1686 struct kioctx *ctx;
1687 struct kiocb *kiocb;
1688 u32 key;
1689 int ret;
1690
1691 ret = get_user(key, &iocb->aio_key);
1692 if (unlikely(ret))
1693 return -EFAULT;
1694
1695 ctx = lookup_ioctx(ctx_id);
1696 if (unlikely(!ctx))
1697 return -EINVAL;
1698
1699 spin_lock_irq(&ctx->ctx_lock);
906b973c 1700
1da177e4 1701 kiocb = lookup_kiocb(ctx, iocb, key);
906b973c 1702 if (kiocb)
d52a8f9e 1703 ret = kiocb_cancel(kiocb);
906b973c
KO
1704 else
1705 ret = -EINVAL;
1706
1da177e4
LT
1707 spin_unlock_irq(&ctx->ctx_lock);
1708
906b973c 1709 if (!ret) {
bec68faa
KO
1710 /*
1711 * The result argument is no longer used - the io_event is
1712 * always delivered via the ring buffer. -EINPROGRESS indicates
1713 * cancellation is progress:
906b973c 1714 */
bec68faa 1715 ret = -EINPROGRESS;
906b973c 1716 }
1da177e4 1717
723be6e3 1718 percpu_ref_put(&ctx->users);
1da177e4
LT
1719
1720 return ret;
1721}
1722
1723/* io_getevents:
1724 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
1725 * the completion queue for the aio_context specified by ctx_id. If
1726 * it succeeds, the number of read events is returned. May fail with
1727 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1728 * out of range, if timeout is out of range. May fail with -EFAULT
1729 * if any of the memory specified is invalid. May return 0 or
1730 * < min_nr if the timeout specified by timeout has elapsed
1731 * before sufficient events are available, where timeout == NULL
1732 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 1733 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 1734 */
002c8976
HC
1735SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1736 long, min_nr,
1737 long, nr,
1738 struct io_event __user *, events,
1739 struct timespec __user *, timeout)
1da177e4
LT
1740{
1741 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1742 long ret = -EINVAL;
1743
1744 if (likely(ioctx)) {
2e410255 1745 if (likely(min_nr <= nr && min_nr >= 0))
1da177e4 1746 ret = read_events(ioctx, min_nr, nr, events, timeout);
723be6e3 1747 percpu_ref_put(&ioctx->users);
1da177e4 1748 }
1da177e4
LT
1749 return ret;
1750}