Merge tag 'drm-misc-fixes-2021-11-25' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
52db59df 44#include <linux/pseudo_fs.h>
1da177e4 45
7c0f6ba6 46#include <linux/uaccess.h>
a538e3ff 47#include <linux/nospec.h>
1da177e4 48
68d70d03
AV
49#include "internal.h"
50
f3a2752a
CH
51#define KIOCB_KEY 0
52
4e179bca
KO
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
fa8a53c3
BL
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
4e179bca
KO
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
241cb28e 69 struct io_event io_events[];
4e179bca
KO
70}; /* 128 bytes + ring size */
71
a79d40e9
JA
72/*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76#define AIO_PLUG_THRESHOLD 2
77
4e179bca 78#define AIO_RING_PAGES 8
4e179bca 79
db446a08 80struct kioctx_table {
d0264c01
TH
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[];
db446a08
BL
84};
85
e1bdd5f2
KO
86struct kioctx_cpu {
87 unsigned reqs_available;
88};
89
dc48e56d
JA
90struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93};
94
4e179bca 95struct kioctx {
723be6e3 96 struct percpu_ref users;
36f55889 97 atomic_t dead;
4e179bca 98
e34ecee2
KO
99 struct percpu_ref reqs;
100
4e179bca 101 unsigned long user_id;
4e179bca 102
e1bdd5f2
KO
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
3e845ce0
KO
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
58c85dc2 114 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
115 * aio_setup_ring())
116 */
4e179bca
KO
117 unsigned max_reqs;
118
58c85dc2
KO
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
4e179bca 121
58c85dc2
KO
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
f729863a 128 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 129
e02ba72a
AP
130 /*
131 * signals when all in-flight requests are done
132 */
dc48e56d 133 struct ctx_rq_wait *rq_wait;
e02ba72a 134
4e23bcae 135 struct {
34e83fc6
KO
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
141 *
142 * We batch accesses to it with a percpu version.
34e83fc6
KO
143 */
144 atomic_t reqs_available;
4e23bcae
KO
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
58c85dc2
KO
152 struct {
153 struct mutex ring_lock;
4e23bcae
KO
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
58c85dc2
KO
156
157 struct {
158 unsigned tail;
d856f32a 159 unsigned completed_events;
58c85dc2 160 spinlock_t completion_lock;
4e23bcae 161 } ____cacheline_aligned_in_smp;
58c85dc2
KO
162
163 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 164 struct file *aio_ring_file;
db446a08
BL
165
166 unsigned id;
4e179bca
KO
167};
168
84c4e1f8
LT
169/*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
a3c0d439 173struct fsync_iocb {
a3c0d439 174 struct file *file;
84c4e1f8 175 struct work_struct work;
a3c0d439 176 bool datasync;
530f32fc 177 struct cred *creds;
a3c0d439
CH
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
af5c72b1 184 bool done;
bfe4037e
CH
185 bool cancelled;
186 struct wait_queue_entry wait;
187 struct work_struct work;
188};
189
84c4e1f8
LT
190/*
191 * NOTE! Each of the iocb union members has the file pointer
192 * as the first entry in their struct definition. So you can
193 * access the file pointer through any of the sub-structs,
194 * or directly as just 'ki_filp' in this struct.
195 */
04b2fa9f 196struct aio_kiocb {
54843f87 197 union {
84c4e1f8 198 struct file *ki_filp;
54843f87 199 struct kiocb rw;
a3c0d439 200 struct fsync_iocb fsync;
bfe4037e 201 struct poll_iocb poll;
54843f87 202 };
04b2fa9f
CH
203
204 struct kioctx *ki_ctx;
205 kiocb_cancel_fn *ki_cancel;
206
a9339b78 207 struct io_event ki_res;
04b2fa9f
CH
208
209 struct list_head ki_list; /* the aio core uses this
210 * for cancellation */
9018ccc4 211 refcount_t ki_refcnt;
04b2fa9f
CH
212
213 /*
214 * If the aio_resfd field of the userspace iocb is not zero,
215 * this is the underlying eventfd context to deliver events to.
216 */
217 struct eventfd_ctx *ki_eventfd;
218};
219
1da177e4 220/*------ sysctl variables----*/
d55b5fda
ZB
221static DEFINE_SPINLOCK(aio_nr_lock);
222unsigned long aio_nr; /* current system wide number of aio requests */
223unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
224/*----end sysctl variables---*/
225
e18b890b
CL
226static struct kmem_cache *kiocb_cachep;
227static struct kmem_cache *kioctx_cachep;
1da177e4 228
71ad7490
BL
229static struct vfsmount *aio_mnt;
230
231static const struct file_operations aio_ring_fops;
232static const struct address_space_operations aio_ctx_aops;
233
234static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
235{
71ad7490 236 struct file *file;
71ad7490 237 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
238 if (IS_ERR(inode))
239 return ERR_CAST(inode);
71ad7490
BL
240
241 inode->i_mapping->a_ops = &aio_ctx_aops;
242 inode->i_mapping->private_data = ctx;
243 inode->i_size = PAGE_SIZE * nr_pages;
244
d93aa9d8
AV
245 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
246 O_RDWR, &aio_ring_fops);
c9c554f2 247 if (IS_ERR(file))
71ad7490 248 iput(inode);
71ad7490
BL
249 return file;
250}
251
52db59df 252static int aio_init_fs_context(struct fs_context *fc)
71ad7490 253{
52db59df
DH
254 if (!init_pseudo(fc, AIO_RING_MAGIC))
255 return -ENOMEM;
256 fc->s_iflags |= SB_I_NOEXEC;
257 return 0;
71ad7490
BL
258}
259
1da177e4
LT
260/* aio_setup
261 * Creates the slab caches used by the aio routines, panic on
262 * failure as this is done early during the boot sequence.
263 */
264static int __init aio_setup(void)
265{
71ad7490
BL
266 static struct file_system_type aio_fs = {
267 .name = "aio",
52db59df 268 .init_fs_context = aio_init_fs_context,
71ad7490
BL
269 .kill_sb = kill_anon_super,
270 };
271 aio_mnt = kern_mount(&aio_fs);
272 if (IS_ERR(aio_mnt))
273 panic("Failed to create aio fs mount.");
274
04b2fa9f 275 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 276 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
277 return 0;
278}
385773e0 279__initcall(aio_setup);
1da177e4 280
5e9ae2e5
BL
281static void put_aio_ring_file(struct kioctx *ctx)
282{
283 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
284 struct address_space *i_mapping;
285
5e9ae2e5 286 if (aio_ring_file) {
45063097 287 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
288
289 /* Prevent further access to the kioctx from migratepages */
45063097 290 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
291 spin_lock(&i_mapping->private_lock);
292 i_mapping->private_data = NULL;
5e9ae2e5 293 ctx->aio_ring_file = NULL;
de04e769 294 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
295
296 fput(aio_ring_file);
297 }
298}
299
1da177e4
LT
300static void aio_free_ring(struct kioctx *ctx)
301{
36bc08cc 302 int i;
1da177e4 303
fa8a53c3
BL
304 /* Disconnect the kiotx from the ring file. This prevents future
305 * accesses to the kioctx from page migration.
306 */
307 put_aio_ring_file(ctx);
308
36bc08cc 309 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 310 struct page *page;
36bc08cc
GZ
311 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
312 page_count(ctx->ring_pages[i]));
8e321fef
BL
313 page = ctx->ring_pages[i];
314 if (!page)
315 continue;
316 ctx->ring_pages[i] = NULL;
317 put_page(page);
36bc08cc 318 }
1da177e4 319
ddb8c45b 320 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 321 kfree(ctx->ring_pages);
ddb8c45b
SL
322 ctx->ring_pages = NULL;
323 }
36bc08cc
GZ
324}
325
14d07113 326static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 327{
5477e70a 328 struct file *file = vma->vm_file;
e4a0d3e7
PE
329 struct mm_struct *mm = vma->vm_mm;
330 struct kioctx_table *table;
b2edffdd 331 int i, res = -EINVAL;
e4a0d3e7
PE
332
333 spin_lock(&mm->ioctx_lock);
334 rcu_read_lock();
335 table = rcu_dereference(mm->ioctx_table);
336 for (i = 0; i < table->nr; i++) {
337 struct kioctx *ctx;
338
d0264c01 339 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 340 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
341 if (!atomic_read(&ctx->dead)) {
342 ctx->user_id = ctx->mmap_base = vma->vm_start;
343 res = 0;
344 }
e4a0d3e7
PE
345 break;
346 }
347 }
348
349 rcu_read_unlock();
350 spin_unlock(&mm->ioctx_lock);
b2edffdd 351 return res;
e4a0d3e7
PE
352}
353
5477e70a
ON
354static const struct vm_operations_struct aio_ring_vm_ops = {
355 .mremap = aio_ring_mremap,
356#if IS_ENABLED(CONFIG_MMU)
357 .fault = filemap_fault,
358 .map_pages = filemap_map_pages,
359 .page_mkwrite = filemap_page_mkwrite,
360#endif
361};
362
363static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
364{
365 vma->vm_flags |= VM_DONTEXPAND;
366 vma->vm_ops = &aio_ring_vm_ops;
367 return 0;
368}
369
36bc08cc
GZ
370static const struct file_operations aio_ring_fops = {
371 .mmap = aio_ring_mmap,
372};
373
0c45355f 374#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
375static int aio_migratepage(struct address_space *mapping, struct page *new,
376 struct page *old, enum migrate_mode mode)
377{
5e9ae2e5 378 struct kioctx *ctx;
36bc08cc 379 unsigned long flags;
fa8a53c3 380 pgoff_t idx;
36bc08cc
GZ
381 int rc;
382
2916ecc0
JG
383 /*
384 * We cannot support the _NO_COPY case here, because copy needs to
385 * happen under the ctx->completion_lock. That does not work with the
386 * migration workflow of MIGRATE_SYNC_NO_COPY.
387 */
388 if (mode == MIGRATE_SYNC_NO_COPY)
389 return -EINVAL;
390
8e321fef
BL
391 rc = 0;
392
fa8a53c3 393 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
394 spin_lock(&mapping->private_lock);
395 ctx = mapping->private_data;
fa8a53c3
BL
396 if (!ctx) {
397 rc = -EINVAL;
398 goto out;
399 }
400
401 /* The ring_lock mutex. The prevents aio_read_events() from writing
402 * to the ring's head, and prevents page migration from mucking in
403 * a partially initialized kiotx.
404 */
405 if (!mutex_trylock(&ctx->ring_lock)) {
406 rc = -EAGAIN;
407 goto out;
408 }
409
410 idx = old->index;
411 if (idx < (pgoff_t)ctx->nr_pages) {
412 /* Make sure the old page hasn't already been changed */
413 if (ctx->ring_pages[idx] != old)
414 rc = -EAGAIN;
8e321fef
BL
415 } else
416 rc = -EINVAL;
8e321fef
BL
417
418 if (rc != 0)
fa8a53c3 419 goto out_unlock;
8e321fef 420
36bc08cc
GZ
421 /* Writeback must be complete */
422 BUG_ON(PageWriteback(old));
8e321fef 423 get_page(new);
36bc08cc 424
37109694 425 rc = migrate_page_move_mapping(mapping, new, old, 1);
36bc08cc 426 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 427 put_page(new);
fa8a53c3 428 goto out_unlock;
36bc08cc
GZ
429 }
430
fa8a53c3
BL
431 /* Take completion_lock to prevent other writes to the ring buffer
432 * while the old page is copied to the new. This prevents new
433 * events from being lost.
5e9ae2e5 434 */
fa8a53c3
BL
435 spin_lock_irqsave(&ctx->completion_lock, flags);
436 migrate_page_copy(new, old);
437 BUG_ON(ctx->ring_pages[idx] != old);
438 ctx->ring_pages[idx] = new;
439 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 440
fa8a53c3
BL
441 /* The old page is no longer accessible. */
442 put_page(old);
8e321fef 443
fa8a53c3
BL
444out_unlock:
445 mutex_unlock(&ctx->ring_lock);
446out:
447 spin_unlock(&mapping->private_lock);
36bc08cc 448 return rc;
1da177e4 449}
0c45355f 450#endif
1da177e4 451
36bc08cc 452static const struct address_space_operations aio_ctx_aops = {
835f252c 453 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 454#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 455 .migratepage = aio_migratepage,
0c45355f 456#endif
36bc08cc
GZ
457};
458
2a8a9867 459static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
460{
461 struct aio_ring *ring;
41003a7b 462 struct mm_struct *mm = current->mm;
3dc9acb6 463 unsigned long size, unused;
1da177e4 464 int nr_pages;
36bc08cc
GZ
465 int i;
466 struct file *file;
1da177e4
LT
467
468 /* Compensate for the ring buffer's head/tail overlap entry */
469 nr_events += 2; /* 1 is required, 2 for good luck */
470
471 size = sizeof(struct aio_ring);
472 size += sizeof(struct io_event) * nr_events;
1da177e4 473
36bc08cc 474 nr_pages = PFN_UP(size);
1da177e4
LT
475 if (nr_pages < 0)
476 return -EINVAL;
477
71ad7490 478 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
479 if (IS_ERR(file)) {
480 ctx->aio_ring_file = NULL;
fa8a53c3 481 return -ENOMEM;
36bc08cc
GZ
482 }
483
3dc9acb6
LT
484 ctx->aio_ring_file = file;
485 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
486 / sizeof(struct io_event);
487
488 ctx->ring_pages = ctx->internal_pages;
489 if (nr_pages > AIO_RING_PAGES) {
490 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
491 GFP_KERNEL);
492 if (!ctx->ring_pages) {
493 put_aio_ring_file(ctx);
494 return -ENOMEM;
495 }
496 }
497
36bc08cc
GZ
498 for (i = 0; i < nr_pages; i++) {
499 struct page *page;
45063097 500 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
501 i, GFP_HIGHUSER | __GFP_ZERO);
502 if (!page)
503 break;
504 pr_debug("pid(%d) page[%d]->count=%d\n",
505 current->pid, i, page_count(page));
506 SetPageUptodate(page);
36bc08cc 507 unlock_page(page);
3dc9acb6
LT
508
509 ctx->ring_pages[i] = page;
36bc08cc 510 }
3dc9acb6 511 ctx->nr_pages = i;
1da177e4 512
3dc9acb6
LT
513 if (unlikely(i != nr_pages)) {
514 aio_free_ring(ctx);
fa8a53c3 515 return -ENOMEM;
1da177e4
LT
516 }
517
58c85dc2
KO
518 ctx->mmap_size = nr_pages * PAGE_SIZE;
519 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 520
d8ed45c5 521 if (mmap_write_lock_killable(mm)) {
013373e8
MH
522 ctx->mmap_size = 0;
523 aio_free_ring(ctx);
524 return -EINTR;
525 }
526
45e55300
PC
527 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
528 PROT_READ | PROT_WRITE,
529 MAP_SHARED, 0, &unused, NULL);
d8ed45c5 530 mmap_write_unlock(mm);
58c85dc2 531 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 532 ctx->mmap_size = 0;
1da177e4 533 aio_free_ring(ctx);
fa8a53c3 534 return -ENOMEM;
1da177e4
LT
535 }
536
58c85dc2 537 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 538
58c85dc2
KO
539 ctx->user_id = ctx->mmap_base;
540 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 541
58c85dc2 542 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 543 ring->nr = nr_events; /* user copy */
db446a08 544 ring->id = ~0U;
1da177e4
LT
545 ring->head = ring->tail = 0;
546 ring->magic = AIO_RING_MAGIC;
547 ring->compat_features = AIO_RING_COMPAT_FEATURES;
548 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
549 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 550 kunmap_atomic(ring);
58c85dc2 551 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
552
553 return 0;
554}
555
1da177e4
LT
556#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
557#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
558#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
559
04b2fa9f 560void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 561{
54843f87 562 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
563 struct kioctx *ctx = req->ki_ctx;
564 unsigned long flags;
565
75321b50
CH
566 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
567 return;
0460fef2 568
75321b50
CH
569 spin_lock_irqsave(&ctx->ctx_lock, flags);
570 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 571 req->ki_cancel = cancel;
0460fef2
KO
572 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
573}
574EXPORT_SYMBOL(kiocb_set_cancel_fn);
575
a6d7cff4
TH
576/*
577 * free_ioctx() should be RCU delayed to synchronize against the RCU
578 * protected lookup_ioctx() and also needs process context to call
f729863a 579 * aio_free_ring(). Use rcu_work.
a6d7cff4 580 */
e34ecee2 581static void free_ioctx(struct work_struct *work)
36f55889 582{
f729863a
TH
583 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
584 free_rwork);
e34ecee2 585 pr_debug("freeing %p\n", ctx);
e1bdd5f2 586
e34ecee2 587 aio_free_ring(ctx);
e1bdd5f2 588 free_percpu(ctx->cpu);
9a1049da
TH
589 percpu_ref_exit(&ctx->reqs);
590 percpu_ref_exit(&ctx->users);
36f55889
KO
591 kmem_cache_free(kioctx_cachep, ctx);
592}
593
e34ecee2
KO
594static void free_ioctx_reqs(struct percpu_ref *ref)
595{
596 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
597
e02ba72a 598 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
599 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
600 complete(&ctx->rq_wait->comp);
e02ba72a 601
a6d7cff4 602 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
603 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
604 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
605}
606
36f55889
KO
607/*
608 * When this function runs, the kioctx has been removed from the "hash table"
609 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
610 * now it's safe to cancel any that need to be.
611 */
e34ecee2 612static void free_ioctx_users(struct percpu_ref *ref)
36f55889 613{
e34ecee2 614 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 615 struct aio_kiocb *req;
36f55889
KO
616
617 spin_lock_irq(&ctx->ctx_lock);
618
619 while (!list_empty(&ctx->active_reqs)) {
620 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 621 struct aio_kiocb, ki_list);
888933f8 622 req->ki_cancel(&req->rw);
4faa9996 623 list_del_init(&req->ki_list);
36f55889
KO
624 }
625
626 spin_unlock_irq(&ctx->ctx_lock);
627
e34ecee2
KO
628 percpu_ref_kill(&ctx->reqs);
629 percpu_ref_put(&ctx->reqs);
36f55889
KO
630}
631
db446a08
BL
632static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
633{
634 unsigned i, new_nr;
635 struct kioctx_table *table, *old;
636 struct aio_ring *ring;
637
638 spin_lock(&mm->ioctx_lock);
855ef0de 639 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
640
641 while (1) {
642 if (table)
643 for (i = 0; i < table->nr; i++)
d0264c01 644 if (!rcu_access_pointer(table->table[i])) {
db446a08 645 ctx->id = i;
d0264c01 646 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
647 spin_unlock(&mm->ioctx_lock);
648
fa8a53c3
BL
649 /* While kioctx setup is in progress,
650 * we are protected from page migration
651 * changes ring_pages by ->ring_lock.
652 */
db446a08
BL
653 ring = kmap_atomic(ctx->ring_pages[0]);
654 ring->id = ctx->id;
655 kunmap_atomic(ring);
656 return 0;
657 }
658
659 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
660 spin_unlock(&mm->ioctx_lock);
661
6446c4fb 662 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
db446a08
BL
663 if (!table)
664 return -ENOMEM;
665
666 table->nr = new_nr;
667
668 spin_lock(&mm->ioctx_lock);
855ef0de 669 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
670
671 if (!old) {
672 rcu_assign_pointer(mm->ioctx_table, table);
673 } else if (table->nr > old->nr) {
674 memcpy(table->table, old->table,
675 old->nr * sizeof(struct kioctx *));
676
677 rcu_assign_pointer(mm->ioctx_table, table);
678 kfree_rcu(old, rcu);
679 } else {
680 kfree(table);
681 table = old;
682 }
683 }
684}
685
e34ecee2
KO
686static void aio_nr_sub(unsigned nr)
687{
688 spin_lock(&aio_nr_lock);
689 if (WARN_ON(aio_nr - nr > aio_nr))
690 aio_nr = 0;
691 else
692 aio_nr -= nr;
693 spin_unlock(&aio_nr_lock);
694}
695
1da177e4
LT
696/* ioctx_alloc
697 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
698 */
699static struct kioctx *ioctx_alloc(unsigned nr_events)
700{
41003a7b 701 struct mm_struct *mm = current->mm;
1da177e4 702 struct kioctx *ctx;
e23754f8 703 int err = -ENOMEM;
1da177e4 704
2a8a9867
MFO
705 /*
706 * Store the original nr_events -- what userspace passed to io_setup(),
707 * for counting against the global limit -- before it changes.
708 */
709 unsigned int max_reqs = nr_events;
710
e1bdd5f2
KO
711 /*
712 * We keep track of the number of available ringbuffer slots, to prevent
713 * overflow (reqs_available), and we also use percpu counters for this.
714 *
715 * So since up to half the slots might be on other cpu's percpu counters
716 * and unavailable, double nr_events so userspace sees what they
717 * expected: additionally, we move req_batch slots to/from percpu
718 * counters at a time, so make sure that isn't 0:
719 */
720 nr_events = max(nr_events, num_possible_cpus() * 4);
721 nr_events *= 2;
722
1da177e4 723 /* Prevent overflows */
08397acd 724 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
725 pr_debug("ENOMEM: nr_events too high\n");
726 return ERR_PTR(-EINVAL);
727 }
728
2a8a9867 729 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
730 return ERR_PTR(-EAGAIN);
731
c3762229 732 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
733 if (!ctx)
734 return ERR_PTR(-ENOMEM);
735
2a8a9867 736 ctx->max_reqs = max_reqs;
1da177e4 737
1da177e4 738 spin_lock_init(&ctx->ctx_lock);
0460fef2 739 spin_lock_init(&ctx->completion_lock);
58c85dc2 740 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
741 /* Protect against page migration throughout kiotx setup by keeping
742 * the ring_lock mutex held until setup is complete. */
743 mutex_lock(&ctx->ring_lock);
1da177e4
LT
744 init_waitqueue_head(&ctx->wait);
745
746 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 747
2aad2a86 748 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
749 goto err;
750
2aad2a86 751 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
752 goto err;
753
e1bdd5f2
KO
754 ctx->cpu = alloc_percpu(struct kioctx_cpu);
755 if (!ctx->cpu)
e34ecee2 756 goto err;
1da177e4 757
2a8a9867 758 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 759 if (err < 0)
e34ecee2 760 goto err;
e1bdd5f2 761
34e83fc6 762 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 763 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
764 if (ctx->req_batch < 1)
765 ctx->req_batch = 1;
34e83fc6 766
1da177e4 767 /* limit the number of system wide aios */
9fa1cb39 768 spin_lock(&aio_nr_lock);
2a8a9867
MFO
769 if (aio_nr + ctx->max_reqs > aio_max_nr ||
770 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 771 spin_unlock(&aio_nr_lock);
e34ecee2 772 err = -EAGAIN;
d1b94327 773 goto err_ctx;
2dd542b7
AV
774 }
775 aio_nr += ctx->max_reqs;
9fa1cb39 776 spin_unlock(&aio_nr_lock);
1da177e4 777
1881686f
BL
778 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
779 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 780
da90382c
BL
781 err = ioctx_add_table(ctx, mm);
782 if (err)
e34ecee2 783 goto err_cleanup;
da90382c 784
fa8a53c3
BL
785 /* Release the ring_lock mutex now that all setup is complete. */
786 mutex_unlock(&ctx->ring_lock);
787
caf4167a 788 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 789 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
790 return ctx;
791
e34ecee2
KO
792err_cleanup:
793 aio_nr_sub(ctx->max_reqs);
d1b94327 794err_ctx:
deeb8525
AV
795 atomic_set(&ctx->dead, 1);
796 if (ctx->mmap_size)
797 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 798 aio_free_ring(ctx);
e34ecee2 799err:
fa8a53c3 800 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 801 free_percpu(ctx->cpu);
9a1049da
TH
802 percpu_ref_exit(&ctx->reqs);
803 percpu_ref_exit(&ctx->users);
1da177e4 804 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 805 pr_debug("error allocating ioctx %d\n", err);
e23754f8 806 return ERR_PTR(err);
1da177e4
LT
807}
808
36f55889
KO
809/* kill_ioctx
810 * Cancels all outstanding aio requests on an aio context. Used
811 * when the processes owning a context have all exited to encourage
812 * the rapid destruction of the kioctx.
813 */
fb2d4483 814static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 815 struct ctx_rq_wait *wait)
36f55889 816{
fa88b6f8 817 struct kioctx_table *table;
db446a08 818
b2edffdd
AV
819 spin_lock(&mm->ioctx_lock);
820 if (atomic_xchg(&ctx->dead, 1)) {
821 spin_unlock(&mm->ioctx_lock);
fa88b6f8 822 return -EINVAL;
b2edffdd 823 }
db446a08 824
855ef0de 825 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
826 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
827 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 828 spin_unlock(&mm->ioctx_lock);
4fcc712f 829
a6d7cff4 830 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 831 wake_up_all(&ctx->wait);
4fcc712f 832
fa88b6f8
BL
833 /*
834 * It'd be more correct to do this in free_ioctx(), after all
835 * the outstanding kiocbs have finished - but by then io_destroy
836 * has already returned, so io_setup() could potentially return
837 * -EAGAIN with no ioctxs actually in use (as far as userspace
838 * could tell).
839 */
840 aio_nr_sub(ctx->max_reqs);
4fcc712f 841
fa88b6f8
BL
842 if (ctx->mmap_size)
843 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 844
dc48e56d 845 ctx->rq_wait = wait;
fa88b6f8
BL
846 percpu_ref_kill(&ctx->users);
847 return 0;
1da177e4
LT
848}
849
36f55889
KO
850/*
851 * exit_aio: called when the last user of mm goes away. At this point, there is
852 * no way for any new requests to be submited or any of the io_* syscalls to be
853 * called on the context.
854 *
855 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
856 * them.
1da177e4 857 */
fc9b52cd 858void exit_aio(struct mm_struct *mm)
1da177e4 859{
4b70ac5f 860 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
861 struct ctx_rq_wait wait;
862 int i, skipped;
db446a08 863
4b70ac5f
ON
864 if (!table)
865 return;
db446a08 866
dc48e56d
JA
867 atomic_set(&wait.count, table->nr);
868 init_completion(&wait.comp);
869
870 skipped = 0;
4b70ac5f 871 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
872 struct kioctx *ctx =
873 rcu_dereference_protected(table->table[i], true);
abf137dd 874
dc48e56d
JA
875 if (!ctx) {
876 skipped++;
4b70ac5f 877 continue;
dc48e56d
JA
878 }
879
936af157 880 /*
4b70ac5f
ON
881 * We don't need to bother with munmap() here - exit_mmap(mm)
882 * is coming and it'll unmap everything. And we simply can't,
883 * this is not necessarily our ->mm.
884 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
885 * that it needs to unmap the area, just set it to 0.
936af157 886 */
58c85dc2 887 ctx->mmap_size = 0;
dc48e56d
JA
888 kill_ioctx(mm, ctx, &wait);
889 }
36f55889 890
dc48e56d 891 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 892 /* Wait until all IO for the context are done. */
dc48e56d 893 wait_for_completion(&wait.comp);
1da177e4 894 }
4b70ac5f
ON
895
896 RCU_INIT_POINTER(mm->ioctx_table, NULL);
897 kfree(table);
1da177e4
LT
898}
899
e1bdd5f2
KO
900static void put_reqs_available(struct kioctx *ctx, unsigned nr)
901{
902 struct kioctx_cpu *kcpu;
263782c1 903 unsigned long flags;
e1bdd5f2 904
263782c1 905 local_irq_save(flags);
be6fb451 906 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 907 kcpu->reqs_available += nr;
263782c1 908
e1bdd5f2
KO
909 while (kcpu->reqs_available >= ctx->req_batch * 2) {
910 kcpu->reqs_available -= ctx->req_batch;
911 atomic_add(ctx->req_batch, &ctx->reqs_available);
912 }
913
263782c1 914 local_irq_restore(flags);
e1bdd5f2
KO
915}
916
432c7997 917static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
918{
919 struct kioctx_cpu *kcpu;
920 bool ret = false;
263782c1 921 unsigned long flags;
e1bdd5f2 922
263782c1 923 local_irq_save(flags);
be6fb451 924 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
925 if (!kcpu->reqs_available) {
926 int old, avail = atomic_read(&ctx->reqs_available);
927
928 do {
929 if (avail < ctx->req_batch)
930 goto out;
931
932 old = avail;
933 avail = atomic_cmpxchg(&ctx->reqs_available,
934 avail, avail - ctx->req_batch);
935 } while (avail != old);
936
937 kcpu->reqs_available += ctx->req_batch;
938 }
939
940 ret = true;
941 kcpu->reqs_available--;
942out:
263782c1 943 local_irq_restore(flags);
e1bdd5f2
KO
944 return ret;
945}
946
d856f32a
BL
947/* refill_reqs_available
948 * Updates the reqs_available reference counts used for tracking the
949 * number of free slots in the completion ring. This can be called
950 * from aio_complete() (to optimistically update reqs_available) or
951 * from aio_get_req() (the we're out of events case). It must be
952 * called holding ctx->completion_lock.
953 */
954static void refill_reqs_available(struct kioctx *ctx, unsigned head,
955 unsigned tail)
956{
957 unsigned events_in_ring, completed;
958
959 /* Clamp head since userland can write to it. */
960 head %= ctx->nr_events;
961 if (head <= tail)
962 events_in_ring = tail - head;
963 else
964 events_in_ring = ctx->nr_events - (head - tail);
965
966 completed = ctx->completed_events;
967 if (events_in_ring < completed)
968 completed -= events_in_ring;
969 else
970 completed = 0;
971
972 if (!completed)
973 return;
974
975 ctx->completed_events -= completed;
976 put_reqs_available(ctx, completed);
977}
978
979/* user_refill_reqs_available
980 * Called to refill reqs_available when aio_get_req() encounters an
981 * out of space in the completion ring.
982 */
983static void user_refill_reqs_available(struct kioctx *ctx)
984{
985 spin_lock_irq(&ctx->completion_lock);
986 if (ctx->completed_events) {
987 struct aio_ring *ring;
988 unsigned head;
989
990 /* Access of ring->head may race with aio_read_events_ring()
991 * here, but that's okay since whether we read the old version
992 * or the new version, and either will be valid. The important
993 * part is that head cannot pass tail since we prevent
994 * aio_complete() from updating tail by holding
995 * ctx->completion_lock. Even if head is invalid, the check
996 * against ctx->completed_events below will make sure we do the
997 * safe/right thing.
998 */
999 ring = kmap_atomic(ctx->ring_pages[0]);
1000 head = ring->head;
1001 kunmap_atomic(ring);
1002
1003 refill_reqs_available(ctx, head, ctx->tail);
1004 }
1005
1006 spin_unlock_irq(&ctx->completion_lock);
1007}
1008
432c7997
CH
1009static bool get_reqs_available(struct kioctx *ctx)
1010{
1011 if (__get_reqs_available(ctx))
1012 return true;
1013 user_refill_reqs_available(ctx);
1014 return __get_reqs_available(ctx);
1015}
1016
1da177e4 1017/* aio_get_req
57282d8f
KO
1018 * Allocate a slot for an aio request.
1019 * Returns NULL if no requests are free.
b53119f1
LT
1020 *
1021 * The refcount is initialized to 2 - one for the async op completion,
1022 * one for the synchronous code that does this.
1da177e4 1023 */
04b2fa9f 1024static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1025{
04b2fa9f 1026 struct aio_kiocb *req;
a1c8eae7 1027
2bc4ca9b 1028 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1029 if (unlikely(!req))
432c7997 1030 return NULL;
1da177e4 1031
fa0ca2ae 1032 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1033 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1034 return NULL;
1035 }
1036
e34ecee2 1037 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1038 req->ki_ctx = ctx;
75321b50 1039 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1040 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1041 req->ki_eventfd = NULL;
080d676d 1042 return req;
1da177e4
LT
1043}
1044
d5470b59 1045static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1046{
db446a08 1047 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1048 struct mm_struct *mm = current->mm;
65c24491 1049 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1050 struct kioctx_table *table;
1051 unsigned id;
1052
1053 if (get_user(id, &ring->id))
1054 return NULL;
1da177e4 1055
abf137dd 1056 rcu_read_lock();
db446a08 1057 table = rcu_dereference(mm->ioctx_table);
abf137dd 1058
db446a08
BL
1059 if (!table || id >= table->nr)
1060 goto out;
1da177e4 1061
a538e3ff 1062 id = array_index_nospec(id, table->nr);
d0264c01 1063 ctx = rcu_dereference(table->table[id]);
f30d704f 1064 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1065 if (percpu_ref_tryget_live(&ctx->users))
1066 ret = ctx;
db446a08
BL
1067 }
1068out:
abf137dd 1069 rcu_read_unlock();
65c24491 1070 return ret;
1da177e4
LT
1071}
1072
b53119f1
LT
1073static inline void iocb_destroy(struct aio_kiocb *iocb)
1074{
74259703
AV
1075 if (iocb->ki_eventfd)
1076 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1077 if (iocb->ki_filp)
1078 fput(iocb->ki_filp);
1079 percpu_ref_put(&iocb->ki_ctx->reqs);
1080 kmem_cache_free(kiocb_cachep, iocb);
1081}
1082
1da177e4
LT
1083/* aio_complete
1084 * Called when the io request on the given iocb is complete.
1da177e4 1085 */
2bb874c0 1086static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1087{
1088 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1089 struct aio_ring *ring;
21b40200 1090 struct io_event *ev_page, *event;
d856f32a 1091 unsigned tail, pos, head;
1da177e4 1092 unsigned long flags;
1da177e4 1093
0460fef2
KO
1094 /*
1095 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1096 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1097 * pointer since we might be called from irq context.
1098 */
1099 spin_lock_irqsave(&ctx->completion_lock, flags);
1100
58c85dc2 1101 tail = ctx->tail;
21b40200
KO
1102 pos = tail + AIO_EVENTS_OFFSET;
1103
58c85dc2 1104 if (++tail >= ctx->nr_events)
4bf69b2a 1105 tail = 0;
1da177e4 1106
58c85dc2 1107 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1108 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1109
a9339b78 1110 *event = iocb->ki_res;
1da177e4 1111
21b40200 1112 kunmap_atomic(ev_page);
58c85dc2 1113 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1114
a9339b78
AV
1115 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1116 (void __user *)(unsigned long)iocb->ki_res.obj,
1117 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1118
1119 /* after flagging the request as done, we
1120 * must never even look at it again
1121 */
1122 smp_wmb(); /* make event visible before updating tail */
1123
58c85dc2 1124 ctx->tail = tail;
1da177e4 1125
58c85dc2 1126 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1127 head = ring->head;
21b40200 1128 ring->tail = tail;
e8e3c3d6 1129 kunmap_atomic(ring);
58c85dc2 1130 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1131
d856f32a
BL
1132 ctx->completed_events++;
1133 if (ctx->completed_events > 1)
1134 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1135 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1136
21b40200 1137 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1138
1139 /*
1140 * Check if the user asked us to deliver the result through an
1141 * eventfd. The eventfd_signal() function is safe to be called
1142 * from IRQ context.
1143 */
74259703 1144 if (iocb->ki_eventfd)
8d1c98b0
DL
1145 eventfd_signal(iocb->ki_eventfd, 1);
1146
6cb2a210
QB
1147 /*
1148 * We have to order our ring_info tail store above and test
1149 * of the wait list below outside the wait lock. This is
1150 * like in wake_up_bit() where clearing a bit has to be
1151 * ordered with the unlocked test.
1152 */
1153 smp_mb();
1154
1da177e4
LT
1155 if (waitqueue_active(&ctx->wait))
1156 wake_up(&ctx->wait);
2bb874c0
AV
1157}
1158
1159static inline void iocb_put(struct aio_kiocb *iocb)
1160{
1161 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1162 aio_complete(iocb);
1163 iocb_destroy(iocb);
1164 }
1da177e4
LT
1165}
1166
2be4e7de 1167/* aio_read_events_ring
a31ad380
KO
1168 * Pull an event off of the ioctx's event ring. Returns the number of
1169 * events fetched
1da177e4 1170 */
a31ad380
KO
1171static long aio_read_events_ring(struct kioctx *ctx,
1172 struct io_event __user *event, long nr)
1da177e4 1173{
1da177e4 1174 struct aio_ring *ring;
5ffac122 1175 unsigned head, tail, pos;
a31ad380
KO
1176 long ret = 0;
1177 int copy_ret;
1178
9c9ce763
DC
1179 /*
1180 * The mutex can block and wake us up and that will cause
1181 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1182 * and repeat. This should be rare enough that it doesn't cause
1183 * peformance issues. See the comment in read_events() for more detail.
1184 */
1185 sched_annotate_sleep();
58c85dc2 1186 mutex_lock(&ctx->ring_lock);
1da177e4 1187
fa8a53c3 1188 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1189 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1190 head = ring->head;
5ffac122 1191 tail = ring->tail;
a31ad380
KO
1192 kunmap_atomic(ring);
1193
2ff396be
JM
1194 /*
1195 * Ensure that once we've read the current tail pointer, that
1196 * we also see the events that were stored up to the tail.
1197 */
1198 smp_rmb();
1199
5ffac122 1200 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1201
5ffac122 1202 if (head == tail)
1da177e4
LT
1203 goto out;
1204
edfbbf38
BL
1205 head %= ctx->nr_events;
1206 tail %= ctx->nr_events;
1207
a31ad380
KO
1208 while (ret < nr) {
1209 long avail;
1210 struct io_event *ev;
1211 struct page *page;
1212
5ffac122
KO
1213 avail = (head <= tail ? tail : ctx->nr_events) - head;
1214 if (head == tail)
a31ad380
KO
1215 break;
1216
a31ad380 1217 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1218 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1219 pos %= AIO_EVENTS_PER_PAGE;
1220
d2988bd4
AV
1221 avail = min(avail, nr - ret);
1222 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1223
a31ad380
KO
1224 ev = kmap(page);
1225 copy_ret = copy_to_user(event + ret, ev + pos,
1226 sizeof(*ev) * avail);
1227 kunmap(page);
1228
1229 if (unlikely(copy_ret)) {
1230 ret = -EFAULT;
1231 goto out;
1232 }
1233
1234 ret += avail;
1235 head += avail;
58c85dc2 1236 head %= ctx->nr_events;
1da177e4 1237 }
1da177e4 1238
58c85dc2 1239 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1240 ring->head = head;
91d80a84 1241 kunmap_atomic(ring);
58c85dc2 1242 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1243
5ffac122 1244 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1245out:
58c85dc2 1246 mutex_unlock(&ctx->ring_lock);
a31ad380 1247
1da177e4
LT
1248 return ret;
1249}
1250
a31ad380
KO
1251static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1252 struct io_event __user *event, long *i)
1da177e4 1253{
a31ad380 1254 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1255
a31ad380
KO
1256 if (ret > 0)
1257 *i += ret;
1da177e4 1258
a31ad380
KO
1259 if (unlikely(atomic_read(&ctx->dead)))
1260 ret = -EINVAL;
1da177e4 1261
a31ad380
KO
1262 if (!*i)
1263 *i = ret;
1da177e4 1264
a31ad380 1265 return ret < 0 || *i >= min_nr;
1da177e4
LT
1266}
1267
a31ad380 1268static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1269 struct io_event __user *event,
fa2e62a5 1270 ktime_t until)
1da177e4 1271{
a31ad380 1272 long ret = 0;
1da177e4 1273
a31ad380
KO
1274 /*
1275 * Note that aio_read_events() is being called as the conditional - i.e.
1276 * we're calling it after prepare_to_wait() has set task state to
1277 * TASK_INTERRUPTIBLE.
1278 *
1279 * But aio_read_events() can block, and if it blocks it's going to flip
1280 * the task state back to TASK_RUNNING.
1281 *
1282 * This should be ok, provided it doesn't flip the state back to
1283 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1284 * will only happen if the mutex_lock() call blocks, and we then find
1285 * the ringbuffer empty. So in practice we should be ok, but it's
1286 * something to be aware of when touching this code.
1287 */
2456e855 1288 if (until == 0)
5f785de5
FZ
1289 aio_read_events(ctx, min_nr, nr, event, &ret);
1290 else
1291 wait_event_interruptible_hrtimeout(ctx->wait,
1292 aio_read_events(ctx, min_nr, nr, event, &ret),
1293 until);
a31ad380 1294 return ret;
1da177e4
LT
1295}
1296
1da177e4
LT
1297/* sys_io_setup:
1298 * Create an aio_context capable of receiving at least nr_events.
1299 * ctxp must not point to an aio_context that already exists, and
1300 * must be initialized to 0 prior to the call. On successful
1301 * creation of the aio_context, *ctxp is filled in with the resulting
1302 * handle. May fail with -EINVAL if *ctxp is not initialized,
1303 * if the specified nr_events exceeds internal limits. May fail
1304 * with -EAGAIN if the specified nr_events exceeds the user's limit
1305 * of available events. May fail with -ENOMEM if insufficient kernel
1306 * resources are available. May fail with -EFAULT if an invalid
1307 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1308 * implemented.
1309 */
002c8976 1310SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1311{
1312 struct kioctx *ioctx = NULL;
1313 unsigned long ctx;
1314 long ret;
1315
1316 ret = get_user(ctx, ctxp);
1317 if (unlikely(ret))
1318 goto out;
1319
1320 ret = -EINVAL;
d55b5fda 1321 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1322 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1323 ctx, nr_events);
1da177e4
LT
1324 goto out;
1325 }
1326
1327 ioctx = ioctx_alloc(nr_events);
1328 ret = PTR_ERR(ioctx);
1329 if (!IS_ERR(ioctx)) {
1330 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1331 if (ret)
e02ba72a 1332 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1333 percpu_ref_put(&ioctx->users);
1da177e4
LT
1334 }
1335
1336out:
1337 return ret;
1338}
1339
c00d2c7e
AV
1340#ifdef CONFIG_COMPAT
1341COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1342{
1343 struct kioctx *ioctx = NULL;
1344 unsigned long ctx;
1345 long ret;
1346
1347 ret = get_user(ctx, ctx32p);
1348 if (unlikely(ret))
1349 goto out;
1350
1351 ret = -EINVAL;
1352 if (unlikely(ctx || nr_events == 0)) {
1353 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1354 ctx, nr_events);
1355 goto out;
1356 }
1357
1358 ioctx = ioctx_alloc(nr_events);
1359 ret = PTR_ERR(ioctx);
1360 if (!IS_ERR(ioctx)) {
1361 /* truncating is ok because it's a user address */
1362 ret = put_user((u32)ioctx->user_id, ctx32p);
1363 if (ret)
1364 kill_ioctx(current->mm, ioctx, NULL);
1365 percpu_ref_put(&ioctx->users);
1366 }
1367
1368out:
1369 return ret;
1370}
1371#endif
1372
1da177e4
LT
1373/* sys_io_destroy:
1374 * Destroy the aio_context specified. May cancel any outstanding
1375 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1376 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1377 * is invalid.
1378 */
002c8976 1379SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1380{
1381 struct kioctx *ioctx = lookup_ioctx(ctx);
1382 if (likely(NULL != ioctx)) {
dc48e56d 1383 struct ctx_rq_wait wait;
fb2d4483 1384 int ret;
e02ba72a 1385
dc48e56d
JA
1386 init_completion(&wait.comp);
1387 atomic_set(&wait.count, 1);
1388
e02ba72a
AP
1389 /* Pass requests_done to kill_ioctx() where it can be set
1390 * in a thread-safe way. If we try to set it here then we have
1391 * a race condition if two io_destroy() called simultaneously.
1392 */
dc48e56d 1393 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1394 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1395
1396 /* Wait until all IO for the context are done. Otherwise kernel
1397 * keep using user-space buffers even if user thinks the context
1398 * is destroyed.
1399 */
fb2d4483 1400 if (!ret)
dc48e56d 1401 wait_for_completion(&wait.comp);
e02ba72a 1402
fb2d4483 1403 return ret;
1da177e4 1404 }
acd88d4e 1405 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1406 return -EINVAL;
1407}
1408
3c96c7f4
AV
1409static void aio_remove_iocb(struct aio_kiocb *iocb)
1410{
1411 struct kioctx *ctx = iocb->ki_ctx;
1412 unsigned long flags;
1413
1414 spin_lock_irqsave(&ctx->ctx_lock, flags);
1415 list_del(&iocb->ki_list);
1416 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1417}
1418
6b19b766 1419static void aio_complete_rw(struct kiocb *kiocb, long res)
54843f87
CH
1420{
1421 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1422
3c96c7f4
AV
1423 if (!list_empty_careful(&iocb->ki_list))
1424 aio_remove_iocb(iocb);
1425
54843f87
CH
1426 if (kiocb->ki_flags & IOCB_WRITE) {
1427 struct inode *inode = file_inode(kiocb->ki_filp);
1428
1429 /*
1430 * Tell lockdep we inherited freeze protection from submission
1431 * thread.
1432 */
1433 if (S_ISREG(inode->i_mode))
1434 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1435 file_end_write(kiocb->ki_filp);
1436 }
1437
2bb874c0 1438 iocb->ki_res.res = res;
6b19b766 1439 iocb->ki_res.res2 = 0;
2bb874c0 1440 iocb_put(iocb);
54843f87
CH
1441}
1442
88a6f18b 1443static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1444{
1445 int ret;
1446
54843f87 1447 req->ki_complete = aio_complete_rw;
ec51f8ee 1448 req->private = NULL;
54843f87
CH
1449 req->ki_pos = iocb->aio_offset;
1450 req->ki_flags = iocb_flags(req->ki_filp);
1451 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1452 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1453 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1454 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1455 /*
1456 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1457 * aio_reqprio is interpreted as an I/O scheduling
1458 * class and priority.
1459 */
1460 ret = ioprio_check_cap(iocb->aio_reqprio);
1461 if (ret) {
9a6d9a62 1462 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1463 return ret;
d9a08a9e
AM
1464 }
1465
1466 req->ki_ioprio = iocb->aio_reqprio;
1467 } else
76dc8913 1468 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1469
54843f87
CH
1470 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1471 if (unlikely(ret))
84c4e1f8 1472 return ret;
154989e4
CH
1473
1474 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1475 return 0;
54843f87
CH
1476}
1477
87e5e6da
JA
1478static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1479 struct iovec **iovec, bool vectored, bool compat,
1480 struct iov_iter *iter)
eed4e51f 1481{
89319d31
CH
1482 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1483 size_t len = iocb->aio_nbytes;
1484
1485 if (!vectored) {
1486 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1487 *iovec = NULL;
1488 return ret;
1489 }
89cd35c5
CH
1490
1491 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
eed4e51f
BP
1492}
1493
9061d14a 1494static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1495{
1496 switch (ret) {
1497 case -EIOCBQUEUED:
9061d14a 1498 break;
89319d31
CH
1499 case -ERESTARTSYS:
1500 case -ERESTARTNOINTR:
1501 case -ERESTARTNOHAND:
1502 case -ERESTART_RESTARTBLOCK:
1503 /*
1504 * There's no easy way to restart the syscall since other AIO's
1505 * may be already running. Just fail this IO with EINTR.
1506 */
1507 ret = -EINTR;
df561f66 1508 fallthrough;
89319d31 1509 default:
6b19b766 1510 req->ki_complete(req, ret);
89319d31
CH
1511 }
1512}
1513
958c13ce 1514static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1515 bool vectored, bool compat)
1da177e4 1516{
00fefb9c 1517 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1518 struct iov_iter iter;
54843f87 1519 struct file *file;
958c13ce 1520 int ret;
1da177e4 1521
54843f87
CH
1522 ret = aio_prep_rw(req, iocb);
1523 if (ret)
1524 return ret;
1525 file = req->ki_filp;
89319d31 1526 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1527 return -EBADF;
54843f87 1528 ret = -EINVAL;
89319d31 1529 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1530 return -EINVAL;
73a7075e 1531
89319d31 1532 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1533 if (ret < 0)
84c4e1f8 1534 return ret;
89319d31
CH
1535 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1536 if (!ret)
9061d14a 1537 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1538 kfree(iovec);
1539 return ret;
1540}
73a7075e 1541
958c13ce 1542static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1543 bool vectored, bool compat)
89319d31 1544{
89319d31
CH
1545 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1546 struct iov_iter iter;
54843f87 1547 struct file *file;
958c13ce 1548 int ret;
41ef4eb8 1549
54843f87
CH
1550 ret = aio_prep_rw(req, iocb);
1551 if (ret)
1552 return ret;
1553 file = req->ki_filp;
1554
89319d31 1555 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1556 return -EBADF;
89319d31 1557 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1558 return -EINVAL;
1da177e4 1559
89319d31 1560 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1561 if (ret < 0)
84c4e1f8 1562 return ret;
89319d31
CH
1563 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1564 if (!ret) {
70fe2f48 1565 /*
92ce4728 1566 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1567 * which will be released by another thread in
1568 * aio_complete_rw(). Fool lockdep by telling it the lock got
1569 * released so that it doesn't complain about the held lock when
1570 * we return to userspace.
70fe2f48 1571 */
92ce4728 1572 if (S_ISREG(file_inode(file)->i_mode)) {
8a3c84b6 1573 sb_start_write(file_inode(file)->i_sb);
a12f1ae6 1574 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1575 }
1576 req->ki_flags |= IOCB_WRITE;
9061d14a 1577 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1578 }
89319d31
CH
1579 kfree(iovec);
1580 return ret;
1da177e4
LT
1581}
1582
a3c0d439
CH
1583static void aio_fsync_work(struct work_struct *work)
1584{
2bb874c0 1585 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
530f32fc 1586 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1587
2bb874c0 1588 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
530f32fc
MS
1589 revert_creds(old_cred);
1590 put_cred(iocb->fsync.creds);
2bb874c0 1591 iocb_put(iocb);
a3c0d439
CH
1592}
1593
88a6f18b
JA
1594static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1595 bool datasync)
a3c0d439
CH
1596{
1597 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1598 iocb->aio_rw_flags))
1599 return -EINVAL;
a11e1d43 1600
84c4e1f8 1601 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1602 return -EINVAL;
a3c0d439 1603
530f32fc
MS
1604 req->creds = prepare_creds();
1605 if (!req->creds)
1606 return -ENOMEM;
1607
a3c0d439
CH
1608 req->datasync = datasync;
1609 INIT_WORK(&req->work, aio_fsync_work);
1610 schedule_work(&req->work);
9061d14a 1611 return 0;
a3c0d439
CH
1612}
1613
01d7a356
JA
1614static void aio_poll_put_work(struct work_struct *work)
1615{
1616 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1617 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1618
1619 iocb_put(iocb);
1620}
1621
bfe4037e
CH
1622static void aio_poll_complete_work(struct work_struct *work)
1623{
1624 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1625 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1626 struct poll_table_struct pt = { ._key = req->events };
1627 struct kioctx *ctx = iocb->ki_ctx;
1628 __poll_t mask = 0;
1629
1630 if (!READ_ONCE(req->cancelled))
1631 mask = vfs_poll(req->file, &pt) & req->events;
1632
1633 /*
1634 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1635 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1636 * synchronize with them. In the cancellation case the list_del_init
1637 * itself is not actually needed, but harmless so we keep it in to
1638 * avoid further branches in the fast path.
1639 */
1640 spin_lock_irq(&ctx->ctx_lock);
1641 if (!mask && !READ_ONCE(req->cancelled)) {
1642 add_wait_queue(req->head, &req->wait);
1643 spin_unlock_irq(&ctx->ctx_lock);
1644 return;
1645 }
1646 list_del_init(&iocb->ki_list);
af5c72b1
AV
1647 iocb->ki_res.res = mangle_poll(mask);
1648 req->done = true;
bfe4037e
CH
1649 spin_unlock_irq(&ctx->ctx_lock);
1650
af5c72b1 1651 iocb_put(iocb);
bfe4037e
CH
1652}
1653
1654/* assumes we are called with irqs disabled */
1655static int aio_poll_cancel(struct kiocb *iocb)
1656{
1657 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1658 struct poll_iocb *req = &aiocb->poll;
1659
1660 spin_lock(&req->head->lock);
1661 WRITE_ONCE(req->cancelled, true);
1662 if (!list_empty(&req->wait.entry)) {
1663 list_del_init(&req->wait.entry);
1664 schedule_work(&aiocb->poll.work);
1665 }
1666 spin_unlock(&req->head->lock);
1667
1668 return 0;
1669}
1670
1671static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1672 void *key)
1673{
1674 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1675 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1676 __poll_t mask = key_to_poll(key);
d3d6a18d 1677 unsigned long flags;
bfe4037e 1678
bfe4037e 1679 /* for instances that support it check for an event match first: */
af5c72b1
AV
1680 if (mask && !(mask & req->events))
1681 return 0;
e8693bcf 1682
af5c72b1
AV
1683 list_del_init(&req->wait.entry);
1684
1685 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
01d7a356
JA
1686 struct kioctx *ctx = iocb->ki_ctx;
1687
d3d6a18d
BVA
1688 /*
1689 * Try to complete the iocb inline if we can. Use
1690 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1691 * call this function with IRQs disabled and because IRQs
1692 * have to be disabled before ctx_lock is obtained.
1693 */
af5c72b1
AV
1694 list_del(&iocb->ki_list);
1695 iocb->ki_res.res = mangle_poll(mask);
1696 req->done = true;
b542e383 1697 if (iocb->ki_eventfd && eventfd_signal_allowed()) {
01d7a356
JA
1698 iocb = NULL;
1699 INIT_WORK(&req->work, aio_poll_put_work);
1700 schedule_work(&req->work);
1701 }
1702 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1703 if (iocb)
1704 iocb_put(iocb);
af5c72b1
AV
1705 } else {
1706 schedule_work(&req->work);
e8693bcf 1707 }
bfe4037e
CH
1708 return 1;
1709}
1710
1711struct aio_poll_table {
1712 struct poll_table_struct pt;
1713 struct aio_kiocb *iocb;
1714 int error;
1715};
1716
1717static void
1718aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1719 struct poll_table_struct *p)
1720{
1721 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1722
1723 /* multiple wait queues per file are not supported */
1724 if (unlikely(pt->iocb->poll.head)) {
1725 pt->error = -EINVAL;
1726 return;
1727 }
1728
1729 pt->error = 0;
1730 pt->iocb->poll.head = head;
1731 add_wait_queue(head, &pt->iocb->poll.wait);
1732}
1733
958c13ce 1734static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1735{
1736 struct kioctx *ctx = aiocb->ki_ctx;
1737 struct poll_iocb *req = &aiocb->poll;
1738 struct aio_poll_table apt;
af5c72b1 1739 bool cancel = false;
bfe4037e
CH
1740 __poll_t mask;
1741
1742 /* reject any unknown events outside the normal event mask. */
1743 if ((u16)iocb->aio_buf != iocb->aio_buf)
1744 return -EINVAL;
1745 /* reject fields that are not defined for poll */
1746 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1747 return -EINVAL;
1748
1749 INIT_WORK(&req->work, aio_poll_complete_work);
1750 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1751
2bc4ca9b 1752 req->head = NULL;
af5c72b1 1753 req->done = false;
2bc4ca9b
JA
1754 req->cancelled = false;
1755
bfe4037e
CH
1756 apt.pt._qproc = aio_poll_queue_proc;
1757 apt.pt._key = req->events;
1758 apt.iocb = aiocb;
1759 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1760
1761 /* initialized the list so that we can do list_empty checks */
1762 INIT_LIST_HEAD(&req->wait.entry);
1763 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1764
bfe4037e 1765 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1766 spin_lock_irq(&ctx->ctx_lock);
af5c72b1
AV
1767 if (likely(req->head)) {
1768 spin_lock(&req->head->lock);
1769 if (unlikely(list_empty(&req->wait.entry))) {
1770 if (apt.error)
1771 cancel = true;
1772 apt.error = 0;
1773 mask = 0;
1774 }
1775 if (mask || apt.error) {
1776 list_del_init(&req->wait.entry);
1777 } else if (cancel) {
1778 WRITE_ONCE(req->cancelled, true);
1779 } else if (!req->done) { /* actually waiting for an event */
1780 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1781 aiocb->ki_cancel = aio_poll_cancel;
1782 }
1783 spin_unlock(&req->head->lock);
1784 }
1785 if (mask) { /* no async, we'd stolen it */
1786 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1787 apt.error = 0;
bfe4037e 1788 }
bfe4037e 1789 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1790 if (mask)
af5c72b1
AV
1791 iocb_put(aiocb);
1792 return apt.error;
bfe4037e
CH
1793}
1794
88a6f18b 1795static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1796 struct iocb __user *user_iocb, struct aio_kiocb *req,
1797 bool compat)
1da177e4 1798{
84c4e1f8 1799 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1800 if (unlikely(!req->ki_filp))
7316b49c 1801 return -EBADF;
84c4e1f8 1802
88a6f18b 1803 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1804 struct eventfd_ctx *eventfd;
9c3060be
DL
1805 /*
1806 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1807 * instance of the file* now. The file descriptor must be
1808 * an eventfd() fd, and will be signaled for each completed
1809 * event using the eventfd_signal() function.
1810 */
74259703 1811 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1812 if (IS_ERR(eventfd))
18bfb9c6 1813 return PTR_ERR(eventfd);
7316b49c 1814
74259703 1815 req->ki_eventfd = eventfd;
9830f4be
GR
1816 }
1817
7316b49c 1818 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1819 pr_debug("EFAULT: aio_key\n");
7316b49c 1820 return -EFAULT;
1da177e4
LT
1821 }
1822
a9339b78
AV
1823 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1824 req->ki_res.data = iocb->aio_data;
1825 req->ki_res.res = 0;
1826 req->ki_res.res2 = 0;
1da177e4 1827
88a6f18b 1828 switch (iocb->aio_lio_opcode) {
89319d31 1829 case IOCB_CMD_PREAD:
7316b49c 1830 return aio_read(&req->rw, iocb, false, compat);
89319d31 1831 case IOCB_CMD_PWRITE:
7316b49c 1832 return aio_write(&req->rw, iocb, false, compat);
89319d31 1833 case IOCB_CMD_PREADV:
7316b49c 1834 return aio_read(&req->rw, iocb, true, compat);
89319d31 1835 case IOCB_CMD_PWRITEV:
7316b49c 1836 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 1837 case IOCB_CMD_FSYNC:
7316b49c 1838 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 1839 case IOCB_CMD_FDSYNC:
7316b49c 1840 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 1841 case IOCB_CMD_POLL:
7316b49c 1842 return aio_poll(req, iocb);
89319d31 1843 default:
88a6f18b 1844 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 1845 return -EINVAL;
89319d31 1846 }
1da177e4
LT
1847}
1848
88a6f18b
JA
1849static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1850 bool compat)
1851{
7316b49c 1852 struct aio_kiocb *req;
88a6f18b 1853 struct iocb iocb;
7316b49c 1854 int err;
88a6f18b
JA
1855
1856 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1857 return -EFAULT;
1858
7316b49c
AV
1859 /* enforce forwards compatibility on users */
1860 if (unlikely(iocb.aio_reserved2)) {
1861 pr_debug("EINVAL: reserve field set\n");
1862 return -EINVAL;
1863 }
1864
1865 /* prevent overflows */
1866 if (unlikely(
1867 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1868 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1869 ((ssize_t)iocb.aio_nbytes < 0)
1870 )) {
1871 pr_debug("EINVAL: overflow check\n");
1872 return -EINVAL;
1873 }
1874
1875 req = aio_get_req(ctx);
1876 if (unlikely(!req))
1877 return -EAGAIN;
1878
1879 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1880
1881 /* Done with the synchronous reference */
1882 iocb_put(req);
1883
1884 /*
1885 * If err is 0, we'd either done aio_complete() ourselves or have
1886 * arranged for that to be done asynchronously. Anything non-zero
1887 * means that we need to destroy req ourselves.
1888 */
1889 if (unlikely(err)) {
1890 iocb_destroy(req);
1891 put_reqs_available(ctx, 1);
1892 }
1893 return err;
88a6f18b
JA
1894}
1895
67ba049f
AV
1896/* sys_io_submit:
1897 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1898 * the number of iocbs queued. May return -EINVAL if the aio_context
1899 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1900 * *iocbpp[0] is not properly initialized, if the operation specified
1901 * is invalid for the file descriptor in the iocb. May fail with
1902 * -EFAULT if any of the data structures point to invalid data. May
1903 * fail with -EBADF if the file descriptor specified in the first
1904 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1905 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1906 * fail with -ENOSYS if not implemented.
1907 */
1908SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1909 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1910{
1911 struct kioctx *ctx;
1912 long ret = 0;
080d676d 1913 int i = 0;
9f5b9425 1914 struct blk_plug plug;
1da177e4
LT
1915
1916 if (unlikely(nr < 0))
1917 return -EINVAL;
1918
1da177e4
LT
1919 ctx = lookup_ioctx(ctx_id);
1920 if (unlikely(!ctx)) {
caf4167a 1921 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1922 return -EINVAL;
1923 }
1924
1da92779
AV
1925 if (nr > ctx->nr_events)
1926 nr = ctx->nr_events;
1927
a79d40e9
JA
1928 if (nr > AIO_PLUG_THRESHOLD)
1929 blk_start_plug(&plug);
67ba049f 1930 for (i = 0; i < nr; i++) {
1da177e4 1931 struct iocb __user *user_iocb;
1da177e4 1932
67ba049f 1933 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1934 ret = -EFAULT;
1935 break;
1936 }
1937
67ba049f 1938 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1939 if (ret)
1940 break;
1941 }
a79d40e9
JA
1942 if (nr > AIO_PLUG_THRESHOLD)
1943 blk_finish_plug(&plug);
1da177e4 1944
723be6e3 1945 percpu_ref_put(&ctx->users);
1da177e4
LT
1946 return i ? i : ret;
1947}
1948
c00d2c7e 1949#ifdef CONFIG_COMPAT
c00d2c7e 1950COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1951 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1952{
67ba049f
AV
1953 struct kioctx *ctx;
1954 long ret = 0;
1955 int i = 0;
1956 struct blk_plug plug;
c00d2c7e
AV
1957
1958 if (unlikely(nr < 0))
1959 return -EINVAL;
1960
67ba049f
AV
1961 ctx = lookup_ioctx(ctx_id);
1962 if (unlikely(!ctx)) {
1963 pr_debug("EINVAL: invalid context id\n");
1964 return -EINVAL;
1965 }
1966
1da92779
AV
1967 if (nr > ctx->nr_events)
1968 nr = ctx->nr_events;
1969
a79d40e9
JA
1970 if (nr > AIO_PLUG_THRESHOLD)
1971 blk_start_plug(&plug);
67ba049f
AV
1972 for (i = 0; i < nr; i++) {
1973 compat_uptr_t user_iocb;
1974
1975 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1976 ret = -EFAULT;
1977 break;
1978 }
1979
1980 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1981 if (ret)
1982 break;
1983 }
a79d40e9
JA
1984 if (nr > AIO_PLUG_THRESHOLD)
1985 blk_finish_plug(&plug);
67ba049f
AV
1986
1987 percpu_ref_put(&ctx->users);
1988 return i ? i : ret;
c00d2c7e
AV
1989}
1990#endif
1991
1da177e4
LT
1992/* sys_io_cancel:
1993 * Attempts to cancel an iocb previously passed to io_submit. If
1994 * the operation is successfully cancelled, the resulting event is
1995 * copied into the memory pointed to by result without being placed
1996 * into the completion queue and 0 is returned. May fail with
1997 * -EFAULT if any of the data structures pointed to are invalid.
1998 * May fail with -EINVAL if aio_context specified by ctx_id is
1999 * invalid. May fail with -EAGAIN if the iocb specified was not
2000 * cancelled. Will fail with -ENOSYS if not implemented.
2001 */
002c8976
HC
2002SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2003 struct io_event __user *, result)
1da177e4 2004{
1da177e4 2005 struct kioctx *ctx;
04b2fa9f 2006 struct aio_kiocb *kiocb;
888933f8 2007 int ret = -EINVAL;
1da177e4 2008 u32 key;
a9339b78 2009 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2010
f3a2752a 2011 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2012 return -EFAULT;
f3a2752a
CH
2013 if (unlikely(key != KIOCB_KEY))
2014 return -EINVAL;
1da177e4
LT
2015
2016 ctx = lookup_ioctx(ctx_id);
2017 if (unlikely(!ctx))
2018 return -EINVAL;
2019
2020 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2021 /* TODO: use a hash or array, this sucks. */
2022 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2023 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2024 ret = kiocb->ki_cancel(&kiocb->rw);
2025 list_del_init(&kiocb->ki_list);
2026 break;
2027 }
888933f8 2028 }
1da177e4
LT
2029 spin_unlock_irq(&ctx->ctx_lock);
2030
906b973c 2031 if (!ret) {
bec68faa
KO
2032 /*
2033 * The result argument is no longer used - the io_event is
2034 * always delivered via the ring buffer. -EINPROGRESS indicates
2035 * cancellation is progress:
906b973c 2036 */
bec68faa 2037 ret = -EINPROGRESS;
906b973c 2038 }
1da177e4 2039
723be6e3 2040 percpu_ref_put(&ctx->users);
1da177e4
LT
2041
2042 return ret;
2043}
2044
fa2e62a5
DD
2045static long do_io_getevents(aio_context_t ctx_id,
2046 long min_nr,
2047 long nr,
2048 struct io_event __user *events,
2049 struct timespec64 *ts)
2050{
2051 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2052 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2053 long ret = -EINVAL;
2054
2055 if (likely(ioctx)) {
2056 if (likely(min_nr <= nr && min_nr >= 0))
2057 ret = read_events(ioctx, min_nr, nr, events, until);
2058 percpu_ref_put(&ioctx->users);
2059 }
2060
2061 return ret;
2062}
2063
1da177e4
LT
2064/* io_getevents:
2065 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2066 * the completion queue for the aio_context specified by ctx_id. If
2067 * it succeeds, the number of read events is returned. May fail with
2068 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2069 * out of range, if timeout is out of range. May fail with -EFAULT
2070 * if any of the memory specified is invalid. May return 0 or
2071 * < min_nr if the timeout specified by timeout has elapsed
2072 * before sufficient events are available, where timeout == NULL
2073 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2074 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2075 */
3ca47e95 2076#ifdef CONFIG_64BIT
7a35397f 2077
002c8976
HC
2078SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2079 long, min_nr,
2080 long, nr,
2081 struct io_event __user *, events,
7a35397f 2082 struct __kernel_timespec __user *, timeout)
1da177e4 2083{
fa2e62a5 2084 struct timespec64 ts;
7a074e96
CH
2085 int ret;
2086
2087 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2088 return -EFAULT;
2089
2090 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2091 if (!ret && signal_pending(current))
2092 ret = -EINTR;
2093 return ret;
2094}
1da177e4 2095
7a35397f
DD
2096#endif
2097
9ba546c0
CH
2098struct __aio_sigset {
2099 const sigset_t __user *sigmask;
2100 size_t sigsetsize;
2101};
2102
7a074e96
CH
2103SYSCALL_DEFINE6(io_pgetevents,
2104 aio_context_t, ctx_id,
2105 long, min_nr,
2106 long, nr,
2107 struct io_event __user *, events,
7a35397f 2108 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2109 const struct __aio_sigset __user *, usig)
2110{
2111 struct __aio_sigset ksig = { NULL, };
7a074e96 2112 struct timespec64 ts;
97abc889 2113 bool interrupted;
7a074e96
CH
2114 int ret;
2115
2116 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2117 return -EFAULT;
2118
2119 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2120 return -EFAULT;
2121
b772434b 2122 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2123 if (ret)
2124 return ret;
7a074e96
CH
2125
2126 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2127
2128 interrupted = signal_pending(current);
b772434b 2129 restore_saved_sigmask_unless(interrupted);
97abc889 2130 if (interrupted && !ret)
7a35397f 2131 ret = -ERESTARTNOHAND;
7a074e96 2132
7a35397f
DD
2133 return ret;
2134}
2135
2136#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2137
2138SYSCALL_DEFINE6(io_pgetevents_time32,
2139 aio_context_t, ctx_id,
2140 long, min_nr,
2141 long, nr,
2142 struct io_event __user *, events,
2143 struct old_timespec32 __user *, timeout,
2144 const struct __aio_sigset __user *, usig)
2145{
2146 struct __aio_sigset ksig = { NULL, };
7a35397f 2147 struct timespec64 ts;
97abc889 2148 bool interrupted;
7a35397f
DD
2149 int ret;
2150
2151 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2152 return -EFAULT;
2153
2154 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2155 return -EFAULT;
2156
ded653cc 2157
b772434b 2158 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2159 if (ret)
2160 return ret;
7a074e96
CH
2161
2162 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2163
2164 interrupted = signal_pending(current);
b772434b 2165 restore_saved_sigmask_unless(interrupted);
97abc889 2166 if (interrupted && !ret)
854a6ed5 2167 ret = -ERESTARTNOHAND;
fa2e62a5 2168
7a074e96 2169 return ret;
1da177e4 2170}
c00d2c7e 2171
7a35397f
DD
2172#endif
2173
2174#if defined(CONFIG_COMPAT_32BIT_TIME)
2175
8dabe724
AB
2176SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2177 __s32, min_nr,
2178 __s32, nr,
2179 struct io_event __user *, events,
2180 struct old_timespec32 __user *, timeout)
c00d2c7e 2181{
fa2e62a5 2182 struct timespec64 t;
7a074e96
CH
2183 int ret;
2184
9afc5eee 2185 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2186 return -EFAULT;
2187
2188 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2189 if (!ret && signal_pending(current))
2190 ret = -EINTR;
2191 return ret;
2192}
2193
7a35397f
DD
2194#endif
2195
2196#ifdef CONFIG_COMPAT
c00d2c7e 2197
7a074e96 2198struct __compat_aio_sigset {
97eba80f 2199 compat_uptr_t sigmask;
7a074e96
CH
2200 compat_size_t sigsetsize;
2201};
2202
7a35397f
DD
2203#if defined(CONFIG_COMPAT_32BIT_TIME)
2204
7a074e96
CH
2205COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2206 compat_aio_context_t, ctx_id,
2207 compat_long_t, min_nr,
2208 compat_long_t, nr,
2209 struct io_event __user *, events,
9afc5eee 2210 struct old_timespec32 __user *, timeout,
7a074e96
CH
2211 const struct __compat_aio_sigset __user *, usig)
2212{
97eba80f 2213 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2214 struct timespec64 t;
97abc889 2215 bool interrupted;
7a074e96
CH
2216 int ret;
2217
9afc5eee 2218 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2219 return -EFAULT;
2220
2221 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2222 return -EFAULT;
2223
97eba80f 2224 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2225 if (ret)
2226 return ret;
c00d2c7e 2227
7a074e96 2228 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2229
2230 interrupted = signal_pending(current);
b772434b 2231 restore_saved_sigmask_unless(interrupted);
97abc889 2232 if (interrupted && !ret)
854a6ed5 2233 ret = -ERESTARTNOHAND;
fa2e62a5 2234
7a074e96 2235 return ret;
c00d2c7e 2236}
7a35397f
DD
2237
2238#endif
2239
2240COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2241 compat_aio_context_t, ctx_id,
2242 compat_long_t, min_nr,
2243 compat_long_t, nr,
2244 struct io_event __user *, events,
2245 struct __kernel_timespec __user *, timeout,
2246 const struct __compat_aio_sigset __user *, usig)
2247{
97eba80f 2248 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2249 struct timespec64 t;
97abc889 2250 bool interrupted;
7a35397f
DD
2251 int ret;
2252
2253 if (timeout && get_timespec64(&t, timeout))
2254 return -EFAULT;
2255
2256 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2257 return -EFAULT;
2258
97eba80f 2259 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2260 if (ret)
2261 return ret;
2262
2263 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2264
2265 interrupted = signal_pending(current);
b772434b 2266 restore_saved_sigmask_unless(interrupted);
97abc889 2267 if (interrupted && !ret)
7a35397f 2268 ret = -ERESTARTNOHAND;
fa2e62a5 2269
7a074e96 2270 return ret;
c00d2c7e
AV
2271}
2272#endif