Merge tag 'efi-fixes-for-v6.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
e1bdd5f2 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/timer.h>
33#include <linux/aio.h>
34#include <linux/highmem.h>
35#include <linux/workqueue.h>
36#include <linux/security.h>
9c3060be 37#include <linux/eventfd.h>
cfb1e33e 38#include <linux/blkdev.h>
9d85cba7 39#include <linux/compat.h>
36bc08cc
GZ
40#include <linux/migrate.h>
41#include <linux/ramfs.h>
723be6e3 42#include <linux/percpu-refcount.h>
71ad7490 43#include <linux/mount.h>
52db59df 44#include <linux/pseudo_fs.h>
1da177e4 45
7c0f6ba6 46#include <linux/uaccess.h>
a538e3ff 47#include <linux/nospec.h>
1da177e4 48
68d70d03
AV
49#include "internal.h"
50
f3a2752a
CH
51#define KIOCB_KEY 0
52
4e179bca
KO
53#define AIO_RING_MAGIC 0xa10a10a1
54#define AIO_RING_COMPAT_FEATURES 1
55#define AIO_RING_INCOMPAT_FEATURES 0
56struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
fa8a53c3
BL
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
4e179bca
KO
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
241cb28e 69 struct io_event io_events[];
4e179bca
KO
70}; /* 128 bytes + ring size */
71
a79d40e9
JA
72/*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76#define AIO_PLUG_THRESHOLD 2
77
4e179bca 78#define AIO_RING_PAGES 8
4e179bca 79
db446a08 80struct kioctx_table {
d0264c01
TH
81 struct rcu_head rcu;
82 unsigned nr;
db7fcc88 83 struct kioctx __rcu *table[] __counted_by(nr);
db446a08
BL
84};
85
e1bdd5f2
KO
86struct kioctx_cpu {
87 unsigned reqs_available;
88};
89
dc48e56d
JA
90struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93};
94
4e179bca 95struct kioctx {
723be6e3 96 struct percpu_ref users;
36f55889 97 atomic_t dead;
4e179bca 98
e34ecee2
KO
99 struct percpu_ref reqs;
100
4e179bca 101 unsigned long user_id;
4e179bca 102
e1bdd5f2
KO
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
3e845ce0
KO
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
58c85dc2 114 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
115 * aio_setup_ring())
116 */
4e179bca
KO
117 unsigned max_reqs;
118
58c85dc2
KO
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
4e179bca 121
58c85dc2
KO
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
16594e60 125 struct folio **ring_folios;
58c85dc2
KO
126 long nr_pages;
127
f729863a 128 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 129
e02ba72a
AP
130 /*
131 * signals when all in-flight requests are done
132 */
dc48e56d 133 struct ctx_rq_wait *rq_wait;
e02ba72a 134
4e23bcae 135 struct {
34e83fc6
KO
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
141 *
142 * We batch accesses to it with a percpu version.
34e83fc6
KO
143 */
144 atomic_t reqs_available;
4e23bcae
KO
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
58c85dc2
KO
152 struct {
153 struct mutex ring_lock;
4e23bcae
KO
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
58c85dc2
KO
156
157 struct {
158 unsigned tail;
d856f32a 159 unsigned completed_events;
58c85dc2 160 spinlock_t completion_lock;
4e23bcae 161 } ____cacheline_aligned_in_smp;
58c85dc2 162
16594e60 163 struct folio *internal_folios[AIO_RING_PAGES];
36bc08cc 164 struct file *aio_ring_file;
db446a08
BL
165
166 unsigned id;
4e179bca
KO
167};
168
84c4e1f8
LT
169/*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
a3c0d439 173struct fsync_iocb {
a3c0d439 174 struct file *file;
84c4e1f8 175 struct work_struct work;
a3c0d439 176 bool datasync;
530f32fc 177 struct cred *creds;
a3c0d439
CH
178};
179
bfe4037e
CH
180struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
bfe4037e 184 bool cancelled;
363bee27
EB
185 bool work_scheduled;
186 bool work_need_resched;
bfe4037e
CH
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
84c4e1f8
LT
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
04b2fa9f 197struct aio_kiocb {
54843f87 198 union {
84c4e1f8 199 struct file *ki_filp;
54843f87 200 struct kiocb rw;
a3c0d439 201 struct fsync_iocb fsync;
bfe4037e 202 struct poll_iocb poll;
54843f87 203 };
04b2fa9f
CH
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
a9339b78 208 struct io_event ki_res;
04b2fa9f
CH
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda 222static DEFINE_SPINLOCK(aio_nr_lock);
86b12b6c
XN
223static unsigned long aio_nr; /* current system wide number of aio requests */
224static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4 225/*----end sysctl variables---*/
86b12b6c
XN
226#ifdef CONFIG_SYSCTL
227static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
86b12b6c
XN
242};
243
244static void __init aio_sysctl_init(void)
245{
246 register_sysctl_init("fs", aio_sysctls);
247}
248#else
249#define aio_sysctl_init() do { } while (0)
250#endif
1da177e4 251
e18b890b
CL
252static struct kmem_cache *kiocb_cachep;
253static struct kmem_cache *kioctx_cachep;
1da177e4 254
71ad7490
BL
255static struct vfsmount *aio_mnt;
256
257static const struct file_operations aio_ring_fops;
258static const struct address_space_operations aio_ctx_aops;
259
260static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261{
71ad7490 262 struct file *file;
71ad7490 263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
264 if (IS_ERR(inode))
265 return ERR_CAST(inode);
71ad7490
BL
266
267 inode->i_mapping->a_ops = &aio_ctx_aops;
600f111e 268 inode->i_mapping->i_private_data = ctx;
71ad7490
BL
269 inode->i_size = PAGE_SIZE * nr_pages;
270
d93aa9d8
AV
271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 O_RDWR, &aio_ring_fops);
c9c554f2 273 if (IS_ERR(file))
71ad7490 274 iput(inode);
71ad7490
BL
275 return file;
276}
277
52db59df 278static int aio_init_fs_context(struct fs_context *fc)
71ad7490 279{
52db59df
DH
280 if (!init_pseudo(fc, AIO_RING_MAGIC))
281 return -ENOMEM;
282 fc->s_iflags |= SB_I_NOEXEC;
283 return 0;
71ad7490
BL
284}
285
1da177e4
LT
286/* aio_setup
287 * Creates the slab caches used by the aio routines, panic on
288 * failure as this is done early during the boot sequence.
289 */
290static int __init aio_setup(void)
291{
71ad7490
BL
292 static struct file_system_type aio_fs = {
293 .name = "aio",
52db59df 294 .init_fs_context = aio_init_fs_context,
71ad7490
BL
295 .kill_sb = kill_anon_super,
296 };
297 aio_mnt = kern_mount(&aio_fs);
298 if (IS_ERR(aio_mnt))
299 panic("Failed to create aio fs mount.");
300
04b2fa9f 301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86b12b6c 303 aio_sysctl_init();
1da177e4
LT
304 return 0;
305}
385773e0 306__initcall(aio_setup);
1da177e4 307
5e9ae2e5
BL
308static void put_aio_ring_file(struct kioctx *ctx)
309{
310 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
311 struct address_space *i_mapping;
312
5e9ae2e5 313 if (aio_ring_file) {
45063097 314 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
315
316 /* Prevent further access to the kioctx from migratepages */
45063097 317 i_mapping = aio_ring_file->f_mapping;
600f111e
MWO
318 spin_lock(&i_mapping->i_private_lock);
319 i_mapping->i_private_data = NULL;
5e9ae2e5 320 ctx->aio_ring_file = NULL;
600f111e 321 spin_unlock(&i_mapping->i_private_lock);
5e9ae2e5
BL
322
323 fput(aio_ring_file);
324 }
325}
326
1da177e4
LT
327static void aio_free_ring(struct kioctx *ctx)
328{
36bc08cc 329 int i;
1da177e4 330
fa8a53c3
BL
331 /* Disconnect the kiotx from the ring file. This prevents future
332 * accesses to the kioctx from page migration.
333 */
334 put_aio_ring_file(ctx);
335
36bc08cc 336 for (i = 0; i < ctx->nr_pages; i++) {
16594e60 337 struct folio *folio = ctx->ring_folios[i];
5ea0a355
KW
338
339 if (!folio)
8e321fef 340 continue;
5ea0a355
KW
341
342 pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
343 folio_ref_count(folio));
16594e60 344 ctx->ring_folios[i] = NULL;
5ea0a355 345 folio_put(folio);
36bc08cc 346 }
1da177e4 347
16594e60
KW
348 if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) {
349 kfree(ctx->ring_folios);
350 ctx->ring_folios = NULL;
ddb8c45b 351 }
36bc08cc
GZ
352}
353
14d07113 354static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 355{
5477e70a 356 struct file *file = vma->vm_file;
e4a0d3e7
PE
357 struct mm_struct *mm = vma->vm_mm;
358 struct kioctx_table *table;
b2edffdd 359 int i, res = -EINVAL;
e4a0d3e7
PE
360
361 spin_lock(&mm->ioctx_lock);
362 rcu_read_lock();
363 table = rcu_dereference(mm->ioctx_table);
81e9d6f8
SJ
364 if (!table)
365 goto out_unlock;
366
e4a0d3e7
PE
367 for (i = 0; i < table->nr; i++) {
368 struct kioctx *ctx;
369
d0264c01 370 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 371 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
372 if (!atomic_read(&ctx->dead)) {
373 ctx->user_id = ctx->mmap_base = vma->vm_start;
374 res = 0;
375 }
e4a0d3e7
PE
376 break;
377 }
378 }
379
81e9d6f8 380out_unlock:
e4a0d3e7
PE
381 rcu_read_unlock();
382 spin_unlock(&mm->ioctx_lock);
b2edffdd 383 return res;
e4a0d3e7
PE
384}
385
5477e70a
ON
386static const struct vm_operations_struct aio_ring_vm_ops = {
387 .mremap = aio_ring_mremap,
388#if IS_ENABLED(CONFIG_MMU)
389 .fault = filemap_fault,
390 .map_pages = filemap_map_pages,
391 .page_mkwrite = filemap_page_mkwrite,
392#endif
393};
394
395static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396{
1c71222e 397 vm_flags_set(vma, VM_DONTEXPAND);
5477e70a
ON
398 vma->vm_ops = &aio_ring_vm_ops;
399 return 0;
400}
401
36bc08cc
GZ
402static const struct file_operations aio_ring_fops = {
403 .mmap = aio_ring_mmap,
404};
405
0c45355f 406#if IS_ENABLED(CONFIG_MIGRATION)
3648951c
MWO
407static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 struct folio *src, enum migrate_mode mode)
36bc08cc 409{
5e9ae2e5 410 struct kioctx *ctx;
36bc08cc 411 unsigned long flags;
fa8a53c3 412 pgoff_t idx;
36bc08cc
GZ
413 int rc;
414
2916ecc0
JG
415 /*
416 * We cannot support the _NO_COPY case here, because copy needs to
417 * happen under the ctx->completion_lock. That does not work with the
418 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 */
420 if (mode == MIGRATE_SYNC_NO_COPY)
421 return -EINVAL;
422
8e321fef
BL
423 rc = 0;
424
600f111e
MWO
425 /* mapping->i_private_lock here protects against the kioctx teardown. */
426 spin_lock(&mapping->i_private_lock);
427 ctx = mapping->i_private_data;
fa8a53c3
BL
428 if (!ctx) {
429 rc = -EINVAL;
430 goto out;
431 }
432
433 /* The ring_lock mutex. The prevents aio_read_events() from writing
434 * to the ring's head, and prevents page migration from mucking in
435 * a partially initialized kiotx.
436 */
437 if (!mutex_trylock(&ctx->ring_lock)) {
438 rc = -EAGAIN;
439 goto out;
440 }
441
3648951c 442 idx = src->index;
fa8a53c3 443 if (idx < (pgoff_t)ctx->nr_pages) {
3648951c 444 /* Make sure the old folio hasn't already been changed */
16594e60 445 if (ctx->ring_folios[idx] != src)
fa8a53c3 446 rc = -EAGAIN;
8e321fef
BL
447 } else
448 rc = -EINVAL;
8e321fef
BL
449
450 if (rc != 0)
fa8a53c3 451 goto out_unlock;
8e321fef 452
36bc08cc 453 /* Writeback must be complete */
3648951c
MWO
454 BUG_ON(folio_test_writeback(src));
455 folio_get(dst);
36bc08cc 456
3648951c 457 rc = folio_migrate_mapping(mapping, dst, src, 1);
36bc08cc 458 if (rc != MIGRATEPAGE_SUCCESS) {
3648951c 459 folio_put(dst);
fa8a53c3 460 goto out_unlock;
36bc08cc
GZ
461 }
462
fa8a53c3 463 /* Take completion_lock to prevent other writes to the ring buffer
3648951c 464 * while the old folio is copied to the new. This prevents new
fa8a53c3 465 * events from being lost.
5e9ae2e5 466 */
fa8a53c3 467 spin_lock_irqsave(&ctx->completion_lock, flags);
3648951c 468 folio_migrate_copy(dst, src);
16594e60
KW
469 BUG_ON(ctx->ring_folios[idx] != src);
470 ctx->ring_folios[idx] = dst;
fa8a53c3 471 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 472
3648951c
MWO
473 /* The old folio is no longer accessible. */
474 folio_put(src);
8e321fef 475
fa8a53c3
BL
476out_unlock:
477 mutex_unlock(&ctx->ring_lock);
478out:
600f111e 479 spin_unlock(&mapping->i_private_lock);
36bc08cc 480 return rc;
1da177e4 481}
3648951c
MWO
482#else
483#define aio_migrate_folio NULL
0c45355f 484#endif
1da177e4 485
36bc08cc 486static const struct address_space_operations aio_ctx_aops = {
46de8b97 487 .dirty_folio = noop_dirty_folio,
3648951c 488 .migrate_folio = aio_migrate_folio,
36bc08cc
GZ
489};
490
2a8a9867 491static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
492{
493 struct aio_ring *ring;
41003a7b 494 struct mm_struct *mm = current->mm;
3dc9acb6 495 unsigned long size, unused;
1da177e4 496 int nr_pages;
36bc08cc
GZ
497 int i;
498 struct file *file;
1da177e4
LT
499
500 /* Compensate for the ring buffer's head/tail overlap entry */
501 nr_events += 2; /* 1 is required, 2 for good luck */
502
503 size = sizeof(struct aio_ring);
504 size += sizeof(struct io_event) * nr_events;
1da177e4 505
36bc08cc 506 nr_pages = PFN_UP(size);
1da177e4
LT
507 if (nr_pages < 0)
508 return -EINVAL;
509
71ad7490 510 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
511 if (IS_ERR(file)) {
512 ctx->aio_ring_file = NULL;
fa8a53c3 513 return -ENOMEM;
36bc08cc
GZ
514 }
515
3dc9acb6
LT
516 ctx->aio_ring_file = file;
517 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 / sizeof(struct io_event);
519
16594e60 520 ctx->ring_folios = ctx->internal_folios;
3dc9acb6 521 if (nr_pages > AIO_RING_PAGES) {
16594e60
KW
522 ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *),
523 GFP_KERNEL);
524 if (!ctx->ring_folios) {
3dc9acb6
LT
525 put_aio_ring_file(ctx);
526 return -ENOMEM;
527 }
528 }
529
36bc08cc 530 for (i = 0; i < nr_pages; i++) {
75a07b55
KW
531 struct folio *folio;
532
533 folio = __filemap_get_folio(file->f_mapping, i,
534 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
535 GFP_USER | __GFP_ZERO);
536 if (IS_ERR(folio))
36bc08cc 537 break;
3dc9acb6 538
75a07b55
KW
539 pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
540 folio_ref_count(folio));
541 folio_end_read(folio, true);
542
16594e60 543 ctx->ring_folios[i] = folio;
36bc08cc 544 }
3dc9acb6 545 ctx->nr_pages = i;
1da177e4 546
3dc9acb6
LT
547 if (unlikely(i != nr_pages)) {
548 aio_free_ring(ctx);
fa8a53c3 549 return -ENOMEM;
1da177e4
LT
550 }
551
58c85dc2
KO
552 ctx->mmap_size = nr_pages * PAGE_SIZE;
553 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 554
d8ed45c5 555 if (mmap_write_lock_killable(mm)) {
013373e8
MH
556 ctx->mmap_size = 0;
557 aio_free_ring(ctx);
558 return -EINTR;
559 }
560
45e55300
PC
561 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
562 PROT_READ | PROT_WRITE,
592b5fad 563 MAP_SHARED, 0, 0, &unused, NULL);
d8ed45c5 564 mmap_write_unlock(mm);
58c85dc2 565 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 566 ctx->mmap_size = 0;
1da177e4 567 aio_free_ring(ctx);
fa8a53c3 568 return -ENOMEM;
1da177e4
LT
569 }
570
58c85dc2 571 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 572
58c85dc2
KO
573 ctx->user_id = ctx->mmap_base;
574 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 575
16594e60 576 ring = folio_address(ctx->ring_folios[0]);
1da177e4 577 ring->nr = nr_events; /* user copy */
db446a08 578 ring->id = ~0U;
1da177e4
LT
579 ring->head = ring->tail = 0;
580 ring->magic = AIO_RING_MAGIC;
581 ring->compat_features = AIO_RING_COMPAT_FEATURES;
582 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
583 ring->header_length = sizeof(struct aio_ring);
16594e60 584 flush_dcache_folio(ctx->ring_folios[0]);
1da177e4
LT
585
586 return 0;
587}
588
1da177e4
LT
589#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
590#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
591#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
592
04b2fa9f 593void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 594{
961ebd12
BVA
595 struct aio_kiocb *req;
596 struct kioctx *ctx;
0460fef2
KO
597 unsigned long flags;
598
b820de74
BVA
599 /*
600 * kiocb didn't come from aio or is neither a read nor a write, hence
601 * ignore it.
602 */
603 if (!(iocb->ki_flags & IOCB_AIO_RW))
604 return;
605
961ebd12
BVA
606 req = container_of(iocb, struct aio_kiocb, rw);
607
75321b50
CH
608 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
609 return;
0460fef2 610
961ebd12
BVA
611 ctx = req->ki_ctx;
612
75321b50
CH
613 spin_lock_irqsave(&ctx->ctx_lock, flags);
614 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 615 req->ki_cancel = cancel;
0460fef2
KO
616 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
617}
618EXPORT_SYMBOL(kiocb_set_cancel_fn);
619
a6d7cff4
TH
620/*
621 * free_ioctx() should be RCU delayed to synchronize against the RCU
622 * protected lookup_ioctx() and also needs process context to call
f729863a 623 * aio_free_ring(). Use rcu_work.
a6d7cff4 624 */
e34ecee2 625static void free_ioctx(struct work_struct *work)
36f55889 626{
f729863a
TH
627 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
628 free_rwork);
e34ecee2 629 pr_debug("freeing %p\n", ctx);
e1bdd5f2 630
e34ecee2 631 aio_free_ring(ctx);
e1bdd5f2 632 free_percpu(ctx->cpu);
9a1049da
TH
633 percpu_ref_exit(&ctx->reqs);
634 percpu_ref_exit(&ctx->users);
36f55889
KO
635 kmem_cache_free(kioctx_cachep, ctx);
636}
637
e34ecee2
KO
638static void free_ioctx_reqs(struct percpu_ref *ref)
639{
640 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
641
e02ba72a 642 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
643 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
644 complete(&ctx->rq_wait->comp);
e02ba72a 645
a6d7cff4 646 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
647 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
648 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
649}
650
36f55889
KO
651/*
652 * When this function runs, the kioctx has been removed from the "hash table"
653 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
654 * now it's safe to cancel any that need to be.
655 */
e34ecee2 656static void free_ioctx_users(struct percpu_ref *ref)
36f55889 657{
e34ecee2 658 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 659 struct aio_kiocb *req;
36f55889
KO
660
661 spin_lock_irq(&ctx->ctx_lock);
662
663 while (!list_empty(&ctx->active_reqs)) {
664 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 665 struct aio_kiocb, ki_list);
888933f8 666 req->ki_cancel(&req->rw);
4faa9996 667 list_del_init(&req->ki_list);
36f55889
KO
668 }
669
670 spin_unlock_irq(&ctx->ctx_lock);
671
e34ecee2
KO
672 percpu_ref_kill(&ctx->reqs);
673 percpu_ref_put(&ctx->reqs);
36f55889
KO
674}
675
db446a08
BL
676static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
677{
678 unsigned i, new_nr;
679 struct kioctx_table *table, *old;
680 struct aio_ring *ring;
681
682 spin_lock(&mm->ioctx_lock);
855ef0de 683 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
684
685 while (1) {
686 if (table)
687 for (i = 0; i < table->nr; i++)
d0264c01 688 if (!rcu_access_pointer(table->table[i])) {
db446a08 689 ctx->id = i;
d0264c01 690 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
691 spin_unlock(&mm->ioctx_lock);
692
fa8a53c3
BL
693 /* While kioctx setup is in progress,
694 * we are protected from page migration
16594e60 695 * changes ring_folios by ->ring_lock.
fa8a53c3 696 */
16594e60 697 ring = folio_address(ctx->ring_folios[0]);
db446a08 698 ring->id = ctx->id;
db446a08
BL
699 return 0;
700 }
701
702 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
703 spin_unlock(&mm->ioctx_lock);
704
6446c4fb 705 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
db446a08
BL
706 if (!table)
707 return -ENOMEM;
708
709 table->nr = new_nr;
710
711 spin_lock(&mm->ioctx_lock);
855ef0de 712 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
713
714 if (!old) {
715 rcu_assign_pointer(mm->ioctx_table, table);
716 } else if (table->nr > old->nr) {
717 memcpy(table->table, old->table,
718 old->nr * sizeof(struct kioctx *));
719
720 rcu_assign_pointer(mm->ioctx_table, table);
721 kfree_rcu(old, rcu);
722 } else {
723 kfree(table);
724 table = old;
725 }
726 }
727}
728
e34ecee2
KO
729static void aio_nr_sub(unsigned nr)
730{
731 spin_lock(&aio_nr_lock);
732 if (WARN_ON(aio_nr - nr > aio_nr))
733 aio_nr = 0;
734 else
735 aio_nr -= nr;
736 spin_unlock(&aio_nr_lock);
737}
738
1da177e4
LT
739/* ioctx_alloc
740 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
741 */
742static struct kioctx *ioctx_alloc(unsigned nr_events)
743{
41003a7b 744 struct mm_struct *mm = current->mm;
1da177e4 745 struct kioctx *ctx;
e23754f8 746 int err = -ENOMEM;
1da177e4 747
2a8a9867
MFO
748 /*
749 * Store the original nr_events -- what userspace passed to io_setup(),
750 * for counting against the global limit -- before it changes.
751 */
752 unsigned int max_reqs = nr_events;
753
e1bdd5f2
KO
754 /*
755 * We keep track of the number of available ringbuffer slots, to prevent
756 * overflow (reqs_available), and we also use percpu counters for this.
757 *
758 * So since up to half the slots might be on other cpu's percpu counters
759 * and unavailable, double nr_events so userspace sees what they
760 * expected: additionally, we move req_batch slots to/from percpu
761 * counters at a time, so make sure that isn't 0:
762 */
763 nr_events = max(nr_events, num_possible_cpus() * 4);
764 nr_events *= 2;
765
1da177e4 766 /* Prevent overflows */
08397acd 767 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
768 pr_debug("ENOMEM: nr_events too high\n");
769 return ERR_PTR(-EINVAL);
770 }
771
2a8a9867 772 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
773 return ERR_PTR(-EAGAIN);
774
c3762229 775 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
776 if (!ctx)
777 return ERR_PTR(-ENOMEM);
778
2a8a9867 779 ctx->max_reqs = max_reqs;
1da177e4 780
1da177e4 781 spin_lock_init(&ctx->ctx_lock);
0460fef2 782 spin_lock_init(&ctx->completion_lock);
58c85dc2 783 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
784 /* Protect against page migration throughout kiotx setup by keeping
785 * the ring_lock mutex held until setup is complete. */
786 mutex_lock(&ctx->ring_lock);
1da177e4
LT
787 init_waitqueue_head(&ctx->wait);
788
789 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 790
2aad2a86 791 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
792 goto err;
793
2aad2a86 794 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
795 goto err;
796
e1bdd5f2
KO
797 ctx->cpu = alloc_percpu(struct kioctx_cpu);
798 if (!ctx->cpu)
e34ecee2 799 goto err;
1da177e4 800
2a8a9867 801 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 802 if (err < 0)
e34ecee2 803 goto err;
e1bdd5f2 804
34e83fc6 805 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 806 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
807 if (ctx->req_batch < 1)
808 ctx->req_batch = 1;
34e83fc6 809
1da177e4 810 /* limit the number of system wide aios */
9fa1cb39 811 spin_lock(&aio_nr_lock);
2a8a9867
MFO
812 if (aio_nr + ctx->max_reqs > aio_max_nr ||
813 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 814 spin_unlock(&aio_nr_lock);
e34ecee2 815 err = -EAGAIN;
d1b94327 816 goto err_ctx;
2dd542b7
AV
817 }
818 aio_nr += ctx->max_reqs;
9fa1cb39 819 spin_unlock(&aio_nr_lock);
1da177e4 820
1881686f
BL
821 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
822 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 823
da90382c
BL
824 err = ioctx_add_table(ctx, mm);
825 if (err)
e34ecee2 826 goto err_cleanup;
da90382c 827
fa8a53c3
BL
828 /* Release the ring_lock mutex now that all setup is complete. */
829 mutex_unlock(&ctx->ring_lock);
830
caf4167a 831 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 832 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
833 return ctx;
834
e34ecee2
KO
835err_cleanup:
836 aio_nr_sub(ctx->max_reqs);
d1b94327 837err_ctx:
deeb8525
AV
838 atomic_set(&ctx->dead, 1);
839 if (ctx->mmap_size)
840 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 841 aio_free_ring(ctx);
e34ecee2 842err:
fa8a53c3 843 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 844 free_percpu(ctx->cpu);
9a1049da
TH
845 percpu_ref_exit(&ctx->reqs);
846 percpu_ref_exit(&ctx->users);
1da177e4 847 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 848 pr_debug("error allocating ioctx %d\n", err);
e23754f8 849 return ERR_PTR(err);
1da177e4
LT
850}
851
36f55889
KO
852/* kill_ioctx
853 * Cancels all outstanding aio requests on an aio context. Used
854 * when the processes owning a context have all exited to encourage
855 * the rapid destruction of the kioctx.
856 */
fb2d4483 857static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 858 struct ctx_rq_wait *wait)
36f55889 859{
fa88b6f8 860 struct kioctx_table *table;
db446a08 861
b2edffdd
AV
862 spin_lock(&mm->ioctx_lock);
863 if (atomic_xchg(&ctx->dead, 1)) {
864 spin_unlock(&mm->ioctx_lock);
fa88b6f8 865 return -EINVAL;
b2edffdd 866 }
db446a08 867
855ef0de 868 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
869 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
870 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 871 spin_unlock(&mm->ioctx_lock);
4fcc712f 872
a6d7cff4 873 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 874 wake_up_all(&ctx->wait);
4fcc712f 875
fa88b6f8
BL
876 /*
877 * It'd be more correct to do this in free_ioctx(), after all
878 * the outstanding kiocbs have finished - but by then io_destroy
879 * has already returned, so io_setup() could potentially return
880 * -EAGAIN with no ioctxs actually in use (as far as userspace
881 * could tell).
882 */
883 aio_nr_sub(ctx->max_reqs);
4fcc712f 884
fa88b6f8
BL
885 if (ctx->mmap_size)
886 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 887
dc48e56d 888 ctx->rq_wait = wait;
fa88b6f8
BL
889 percpu_ref_kill(&ctx->users);
890 return 0;
1da177e4
LT
891}
892
36f55889
KO
893/*
894 * exit_aio: called when the last user of mm goes away. At this point, there is
895 * no way for any new requests to be submited or any of the io_* syscalls to be
896 * called on the context.
897 *
898 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
899 * them.
1da177e4 900 */
fc9b52cd 901void exit_aio(struct mm_struct *mm)
1da177e4 902{
4b70ac5f 903 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
904 struct ctx_rq_wait wait;
905 int i, skipped;
db446a08 906
4b70ac5f
ON
907 if (!table)
908 return;
db446a08 909
dc48e56d
JA
910 atomic_set(&wait.count, table->nr);
911 init_completion(&wait.comp);
912
913 skipped = 0;
4b70ac5f 914 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
915 struct kioctx *ctx =
916 rcu_dereference_protected(table->table[i], true);
abf137dd 917
dc48e56d
JA
918 if (!ctx) {
919 skipped++;
4b70ac5f 920 continue;
dc48e56d
JA
921 }
922
936af157 923 /*
4b70ac5f
ON
924 * We don't need to bother with munmap() here - exit_mmap(mm)
925 * is coming and it'll unmap everything. And we simply can't,
926 * this is not necessarily our ->mm.
927 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
928 * that it needs to unmap the area, just set it to 0.
936af157 929 */
58c85dc2 930 ctx->mmap_size = 0;
dc48e56d
JA
931 kill_ioctx(mm, ctx, &wait);
932 }
36f55889 933
dc48e56d 934 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 935 /* Wait until all IO for the context are done. */
dc48e56d 936 wait_for_completion(&wait.comp);
1da177e4 937 }
4b70ac5f
ON
938
939 RCU_INIT_POINTER(mm->ioctx_table, NULL);
940 kfree(table);
1da177e4
LT
941}
942
e1bdd5f2
KO
943static void put_reqs_available(struct kioctx *ctx, unsigned nr)
944{
945 struct kioctx_cpu *kcpu;
263782c1 946 unsigned long flags;
e1bdd5f2 947
263782c1 948 local_irq_save(flags);
be6fb451 949 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 950 kcpu->reqs_available += nr;
263782c1 951
e1bdd5f2
KO
952 while (kcpu->reqs_available >= ctx->req_batch * 2) {
953 kcpu->reqs_available -= ctx->req_batch;
954 atomic_add(ctx->req_batch, &ctx->reqs_available);
955 }
956
263782c1 957 local_irq_restore(flags);
e1bdd5f2
KO
958}
959
432c7997 960static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
961{
962 struct kioctx_cpu *kcpu;
963 bool ret = false;
263782c1 964 unsigned long flags;
e1bdd5f2 965
263782c1 966 local_irq_save(flags);
be6fb451 967 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 968 if (!kcpu->reqs_available) {
38ace0d5 969 int avail = atomic_read(&ctx->reqs_available);
e1bdd5f2
KO
970
971 do {
972 if (avail < ctx->req_batch)
973 goto out;
38ace0d5
UB
974 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
975 &avail, avail - ctx->req_batch));
e1bdd5f2
KO
976
977 kcpu->reqs_available += ctx->req_batch;
978 }
979
980 ret = true;
981 kcpu->reqs_available--;
982out:
263782c1 983 local_irq_restore(flags);
e1bdd5f2
KO
984 return ret;
985}
986
d856f32a
BL
987/* refill_reqs_available
988 * Updates the reqs_available reference counts used for tracking the
989 * number of free slots in the completion ring. This can be called
990 * from aio_complete() (to optimistically update reqs_available) or
991 * from aio_get_req() (the we're out of events case). It must be
992 * called holding ctx->completion_lock.
993 */
994static void refill_reqs_available(struct kioctx *ctx, unsigned head,
995 unsigned tail)
996{
997 unsigned events_in_ring, completed;
998
999 /* Clamp head since userland can write to it. */
1000 head %= ctx->nr_events;
1001 if (head <= tail)
1002 events_in_ring = tail - head;
1003 else
1004 events_in_ring = ctx->nr_events - (head - tail);
1005
1006 completed = ctx->completed_events;
1007 if (events_in_ring < completed)
1008 completed -= events_in_ring;
1009 else
1010 completed = 0;
1011
1012 if (!completed)
1013 return;
1014
1015 ctx->completed_events -= completed;
1016 put_reqs_available(ctx, completed);
1017}
1018
1019/* user_refill_reqs_available
1020 * Called to refill reqs_available when aio_get_req() encounters an
1021 * out of space in the completion ring.
1022 */
1023static void user_refill_reqs_available(struct kioctx *ctx)
1024{
1025 spin_lock_irq(&ctx->completion_lock);
1026 if (ctx->completed_events) {
1027 struct aio_ring *ring;
1028 unsigned head;
1029
1030 /* Access of ring->head may race with aio_read_events_ring()
1031 * here, but that's okay since whether we read the old version
1032 * or the new version, and either will be valid. The important
1033 * part is that head cannot pass tail since we prevent
1034 * aio_complete() from updating tail by holding
1035 * ctx->completion_lock. Even if head is invalid, the check
1036 * against ctx->completed_events below will make sure we do the
1037 * safe/right thing.
1038 */
16594e60 1039 ring = folio_address(ctx->ring_folios[0]);
d856f32a 1040 head = ring->head;
d856f32a
BL
1041
1042 refill_reqs_available(ctx, head, ctx->tail);
1043 }
1044
1045 spin_unlock_irq(&ctx->completion_lock);
1046}
1047
432c7997
CH
1048static bool get_reqs_available(struct kioctx *ctx)
1049{
1050 if (__get_reqs_available(ctx))
1051 return true;
1052 user_refill_reqs_available(ctx);
1053 return __get_reqs_available(ctx);
1054}
1055
1da177e4 1056/* aio_get_req
57282d8f
KO
1057 * Allocate a slot for an aio request.
1058 * Returns NULL if no requests are free.
b53119f1
LT
1059 *
1060 * The refcount is initialized to 2 - one for the async op completion,
1061 * one for the synchronous code that does this.
1da177e4 1062 */
04b2fa9f 1063static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1064{
04b2fa9f 1065 struct aio_kiocb *req;
a1c8eae7 1066
2bc4ca9b 1067 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1068 if (unlikely(!req))
432c7997 1069 return NULL;
1da177e4 1070
fa0ca2ae 1071 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1072 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1073 return NULL;
1074 }
1075
e34ecee2 1076 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1077 req->ki_ctx = ctx;
75321b50 1078 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1079 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1080 req->ki_eventfd = NULL;
080d676d 1081 return req;
1da177e4
LT
1082}
1083
d5470b59 1084static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1085{
db446a08 1086 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1087 struct mm_struct *mm = current->mm;
65c24491 1088 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1089 struct kioctx_table *table;
1090 unsigned id;
1091
1092 if (get_user(id, &ring->id))
1093 return NULL;
1da177e4 1094
abf137dd 1095 rcu_read_lock();
db446a08 1096 table = rcu_dereference(mm->ioctx_table);
abf137dd 1097
db446a08
BL
1098 if (!table || id >= table->nr)
1099 goto out;
1da177e4 1100
a538e3ff 1101 id = array_index_nospec(id, table->nr);
d0264c01 1102 ctx = rcu_dereference(table->table[id]);
f30d704f 1103 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1104 if (percpu_ref_tryget_live(&ctx->users))
1105 ret = ctx;
db446a08
BL
1106 }
1107out:
abf137dd 1108 rcu_read_unlock();
65c24491 1109 return ret;
1da177e4
LT
1110}
1111
b53119f1
LT
1112static inline void iocb_destroy(struct aio_kiocb *iocb)
1113{
74259703
AV
1114 if (iocb->ki_eventfd)
1115 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1116 if (iocb->ki_filp)
1117 fput(iocb->ki_filp);
1118 percpu_ref_put(&iocb->ki_ctx->reqs);
1119 kmem_cache_free(kiocb_cachep, iocb);
1120}
1121
71eb6b6b
KO
1122struct aio_waiter {
1123 struct wait_queue_entry w;
1124 size_t min_nr;
1125};
1126
1da177e4
LT
1127/* aio_complete
1128 * Called when the io request on the given iocb is complete.
1da177e4 1129 */
2bb874c0 1130static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1131{
1132 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1133 struct aio_ring *ring;
21b40200 1134 struct io_event *ev_page, *event;
71eb6b6b 1135 unsigned tail, pos, head, avail;
1da177e4 1136 unsigned long flags;
1da177e4 1137
0460fef2
KO
1138 /*
1139 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1140 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1141 * pointer since we might be called from irq context.
1142 */
1143 spin_lock_irqsave(&ctx->completion_lock, flags);
1144
58c85dc2 1145 tail = ctx->tail;
21b40200
KO
1146 pos = tail + AIO_EVENTS_OFFSET;
1147
58c85dc2 1148 if (++tail >= ctx->nr_events)
4bf69b2a 1149 tail = 0;
1da177e4 1150
16594e60 1151 ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1152 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1153
a9339b78 1154 *event = iocb->ki_res;
1da177e4 1155
16594e60 1156 flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1157
a9339b78
AV
1158 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1159 (void __user *)(unsigned long)iocb->ki_res.obj,
1160 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1161
1162 /* after flagging the request as done, we
1163 * must never even look at it again
1164 */
1165 smp_wmb(); /* make event visible before updating tail */
1166
58c85dc2 1167 ctx->tail = tail;
1da177e4 1168
16594e60 1169 ring = folio_address(ctx->ring_folios[0]);
d856f32a 1170 head = ring->head;
21b40200 1171 ring->tail = tail;
16594e60 1172 flush_dcache_folio(ctx->ring_folios[0]);
1da177e4 1173
d856f32a
BL
1174 ctx->completed_events++;
1175 if (ctx->completed_events > 1)
1176 refill_reqs_available(ctx, head, tail);
71eb6b6b
KO
1177
1178 avail = tail > head
1179 ? tail - head
1180 : tail + ctx->nr_events - head;
0460fef2
KO
1181 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1182
21b40200 1183 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1184
1185 /*
1186 * Check if the user asked us to deliver the result through an
1187 * eventfd. The eventfd_signal() function is safe to be called
1188 * from IRQ context.
1189 */
74259703 1190 if (iocb->ki_eventfd)
3652117f 1191 eventfd_signal(iocb->ki_eventfd);
8d1c98b0 1192
6cb2a210
QB
1193 /*
1194 * We have to order our ring_info tail store above and test
1195 * of the wait list below outside the wait lock. This is
1196 * like in wake_up_bit() where clearing a bit has to be
1197 * ordered with the unlocked test.
1198 */
1199 smp_mb();
1200
71eb6b6b
KO
1201 if (waitqueue_active(&ctx->wait)) {
1202 struct aio_waiter *curr, *next;
1203 unsigned long flags;
1204
1205 spin_lock_irqsave(&ctx->wait.lock, flags);
1206 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1207 if (avail >= curr->min_nr) {
71eb6b6b 1208 wake_up_process(curr->w.private);
caeb4b0a 1209 list_del_init_careful(&curr->w.entry);
71eb6b6b
KO
1210 }
1211 spin_unlock_irqrestore(&ctx->wait.lock, flags);
1212 }
2bb874c0
AV
1213}
1214
1215static inline void iocb_put(struct aio_kiocb *iocb)
1216{
1217 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1218 aio_complete(iocb);
1219 iocb_destroy(iocb);
1220 }
1da177e4
LT
1221}
1222
2be4e7de 1223/* aio_read_events_ring
a31ad380
KO
1224 * Pull an event off of the ioctx's event ring. Returns the number of
1225 * events fetched
1da177e4 1226 */
a31ad380
KO
1227static long aio_read_events_ring(struct kioctx *ctx,
1228 struct io_event __user *event, long nr)
1da177e4 1229{
1da177e4 1230 struct aio_ring *ring;
5ffac122 1231 unsigned head, tail, pos;
a31ad380
KO
1232 long ret = 0;
1233 int copy_ret;
1234
9c9ce763
DC
1235 /*
1236 * The mutex can block and wake us up and that will cause
1237 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1238 * and repeat. This should be rare enough that it doesn't cause
1239 * peformance issues. See the comment in read_events() for more detail.
1240 */
1241 sched_annotate_sleep();
58c85dc2 1242 mutex_lock(&ctx->ring_lock);
1da177e4 1243
16594e60
KW
1244 /* Access to ->ring_folios here is protected by ctx->ring_lock. */
1245 ring = folio_address(ctx->ring_folios[0]);
a31ad380 1246 head = ring->head;
5ffac122 1247 tail = ring->tail;
a31ad380 1248
2ff396be
JM
1249 /*
1250 * Ensure that once we've read the current tail pointer, that
1251 * we also see the events that were stored up to the tail.
1252 */
1253 smp_rmb();
1254
5ffac122 1255 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1256
5ffac122 1257 if (head == tail)
1da177e4
LT
1258 goto out;
1259
edfbbf38
BL
1260 head %= ctx->nr_events;
1261 tail %= ctx->nr_events;
1262
a31ad380
KO
1263 while (ret < nr) {
1264 long avail;
1265 struct io_event *ev;
16594e60 1266 struct folio *folio;
a31ad380 1267
5ffac122
KO
1268 avail = (head <= tail ? tail : ctx->nr_events) - head;
1269 if (head == tail)
a31ad380
KO
1270 break;
1271
a31ad380 1272 pos = head + AIO_EVENTS_OFFSET;
16594e60 1273 folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1274 pos %= AIO_EVENTS_PER_PAGE;
1275
d2988bd4
AV
1276 avail = min(avail, nr - ret);
1277 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1278
16594e60 1279 ev = folio_address(folio);
a31ad380
KO
1280 copy_ret = copy_to_user(event + ret, ev + pos,
1281 sizeof(*ev) * avail);
a31ad380
KO
1282
1283 if (unlikely(copy_ret)) {
1284 ret = -EFAULT;
1285 goto out;
1286 }
1287
1288 ret += avail;
1289 head += avail;
58c85dc2 1290 head %= ctx->nr_events;
1da177e4 1291 }
1da177e4 1292
16594e60 1293 ring = folio_address(ctx->ring_folios[0]);
a31ad380 1294 ring->head = head;
16594e60 1295 flush_dcache_folio(ctx->ring_folios[0]);
a31ad380 1296
5ffac122 1297 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1298out:
58c85dc2 1299 mutex_unlock(&ctx->ring_lock);
a31ad380 1300
1da177e4
LT
1301 return ret;
1302}
1303
a31ad380
KO
1304static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1305 struct io_event __user *event, long *i)
1da177e4 1306{
a31ad380 1307 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1308
a31ad380
KO
1309 if (ret > 0)
1310 *i += ret;
1da177e4 1311
a31ad380
KO
1312 if (unlikely(atomic_read(&ctx->dead)))
1313 ret = -EINVAL;
1da177e4 1314
a31ad380
KO
1315 if (!*i)
1316 *i = ret;
1da177e4 1317
a31ad380 1318 return ret < 0 || *i >= min_nr;
1da177e4
LT
1319}
1320
a31ad380 1321static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1322 struct io_event __user *event,
fa2e62a5 1323 ktime_t until)
1da177e4 1324{
71eb6b6b
KO
1325 struct hrtimer_sleeper t;
1326 struct aio_waiter w;
1327 long ret = 0, ret2 = 0;
1da177e4 1328
a31ad380
KO
1329 /*
1330 * Note that aio_read_events() is being called as the conditional - i.e.
1331 * we're calling it after prepare_to_wait() has set task state to
1332 * TASK_INTERRUPTIBLE.
1333 *
1334 * But aio_read_events() can block, and if it blocks it's going to flip
1335 * the task state back to TASK_RUNNING.
1336 *
1337 * This should be ok, provided it doesn't flip the state back to
1338 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1339 * will only happen if the mutex_lock() call blocks, and we then find
1340 * the ringbuffer empty. So in practice we should be ok, but it's
1341 * something to be aware of when touching this code.
1342 */
71eb6b6b
KO
1343 aio_read_events(ctx, min_nr, nr, event, &ret);
1344 if (until == 0 || ret < 0 || ret >= min_nr)
1345 return ret;
1346
1347 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1348 if (until != KTIME_MAX) {
1349 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1350 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1351 }
1352
1353 init_wait(&w.w);
1354
1355 while (1) {
1356 unsigned long nr_got = ret;
1357
1358 w.min_nr = min_nr - ret;
1359
1360 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1361 if (!ret2 && !t.task)
1362 ret2 = -ETIME;
1363
1364 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1365 break;
1366
1367 if (nr_got == ret)
1368 schedule();
1369 }
1370
1371 finish_wait(&ctx->wait, &w.w);
1372 hrtimer_cancel(&t.timer);
1373 destroy_hrtimer_on_stack(&t.timer);
1374
a31ad380 1375 return ret;
1da177e4
LT
1376}
1377
1da177e4
LT
1378/* sys_io_setup:
1379 * Create an aio_context capable of receiving at least nr_events.
1380 * ctxp must not point to an aio_context that already exists, and
1381 * must be initialized to 0 prior to the call. On successful
1382 * creation of the aio_context, *ctxp is filled in with the resulting
1383 * handle. May fail with -EINVAL if *ctxp is not initialized,
1384 * if the specified nr_events exceeds internal limits. May fail
1385 * with -EAGAIN if the specified nr_events exceeds the user's limit
1386 * of available events. May fail with -ENOMEM if insufficient kernel
1387 * resources are available. May fail with -EFAULT if an invalid
1388 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1389 * implemented.
1390 */
002c8976 1391SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1392{
1393 struct kioctx *ioctx = NULL;
1394 unsigned long ctx;
1395 long ret;
1396
1397 ret = get_user(ctx, ctxp);
1398 if (unlikely(ret))
1399 goto out;
1400
1401 ret = -EINVAL;
d55b5fda 1402 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1403 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1404 ctx, nr_events);
1da177e4
LT
1405 goto out;
1406 }
1407
1408 ioctx = ioctx_alloc(nr_events);
1409 ret = PTR_ERR(ioctx);
1410 if (!IS_ERR(ioctx)) {
1411 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1412 if (ret)
e02ba72a 1413 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1414 percpu_ref_put(&ioctx->users);
1da177e4
LT
1415 }
1416
1417out:
1418 return ret;
1419}
1420
c00d2c7e
AV
1421#ifdef CONFIG_COMPAT
1422COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1423{
1424 struct kioctx *ioctx = NULL;
1425 unsigned long ctx;
1426 long ret;
1427
1428 ret = get_user(ctx, ctx32p);
1429 if (unlikely(ret))
1430 goto out;
1431
1432 ret = -EINVAL;
1433 if (unlikely(ctx || nr_events == 0)) {
1434 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1435 ctx, nr_events);
1436 goto out;
1437 }
1438
1439 ioctx = ioctx_alloc(nr_events);
1440 ret = PTR_ERR(ioctx);
1441 if (!IS_ERR(ioctx)) {
1442 /* truncating is ok because it's a user address */
1443 ret = put_user((u32)ioctx->user_id, ctx32p);
1444 if (ret)
1445 kill_ioctx(current->mm, ioctx, NULL);
1446 percpu_ref_put(&ioctx->users);
1447 }
1448
1449out:
1450 return ret;
1451}
1452#endif
1453
1da177e4
LT
1454/* sys_io_destroy:
1455 * Destroy the aio_context specified. May cancel any outstanding
1456 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1457 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1458 * is invalid.
1459 */
002c8976 1460SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1461{
1462 struct kioctx *ioctx = lookup_ioctx(ctx);
1463 if (likely(NULL != ioctx)) {
dc48e56d 1464 struct ctx_rq_wait wait;
fb2d4483 1465 int ret;
e02ba72a 1466
dc48e56d
JA
1467 init_completion(&wait.comp);
1468 atomic_set(&wait.count, 1);
1469
e02ba72a
AP
1470 /* Pass requests_done to kill_ioctx() where it can be set
1471 * in a thread-safe way. If we try to set it here then we have
1472 * a race condition if two io_destroy() called simultaneously.
1473 */
dc48e56d 1474 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1475 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1476
1477 /* Wait until all IO for the context are done. Otherwise kernel
1478 * keep using user-space buffers even if user thinks the context
1479 * is destroyed.
1480 */
fb2d4483 1481 if (!ret)
dc48e56d 1482 wait_for_completion(&wait.comp);
e02ba72a 1483
fb2d4483 1484 return ret;
1da177e4 1485 }
acd88d4e 1486 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1487 return -EINVAL;
1488}
1489
3c96c7f4
AV
1490static void aio_remove_iocb(struct aio_kiocb *iocb)
1491{
1492 struct kioctx *ctx = iocb->ki_ctx;
1493 unsigned long flags;
1494
1495 spin_lock_irqsave(&ctx->ctx_lock, flags);
1496 list_del(&iocb->ki_list);
1497 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1498}
1499
6b19b766 1500static void aio_complete_rw(struct kiocb *kiocb, long res)
54843f87
CH
1501{
1502 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1503
3c96c7f4
AV
1504 if (!list_empty_careful(&iocb->ki_list))
1505 aio_remove_iocb(iocb);
1506
54843f87
CH
1507 if (kiocb->ki_flags & IOCB_WRITE) {
1508 struct inode *inode = file_inode(kiocb->ki_filp);
1509
54843f87 1510 if (S_ISREG(inode->i_mode))
8c3cfa80 1511 kiocb_end_write(kiocb);
54843f87
CH
1512 }
1513
2bb874c0 1514 iocb->ki_res.res = res;
6b19b766 1515 iocb->ki_res.res2 = 0;
2bb874c0 1516 iocb_put(iocb);
54843f87
CH
1517}
1518
88a6f18b 1519static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1520{
1521 int ret;
1522
54843f87 1523 req->ki_complete = aio_complete_rw;
ec51f8ee 1524 req->private = NULL;
54843f87 1525 req->ki_pos = iocb->aio_offset;
b820de74 1526 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
54843f87
CH
1527 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1528 req->ki_flags |= IOCB_EVENTFD;
d9a08a9e
AM
1529 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1530 /*
1531 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1532 * aio_reqprio is interpreted as an I/O scheduling
1533 * class and priority.
1534 */
1535 ret = ioprio_check_cap(iocb->aio_reqprio);
1536 if (ret) {
9a6d9a62 1537 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1538 return ret;
d9a08a9e
AM
1539 }
1540
1541 req->ki_ioprio = iocb->aio_reqprio;
1542 } else
76dc8913 1543 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1544
54843f87
CH
1545 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1546 if (unlikely(ret))
84c4e1f8 1547 return ret;
154989e4
CH
1548
1549 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1550 return 0;
54843f87
CH
1551}
1552
87e5e6da
JA
1553static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1554 struct iovec **iovec, bool vectored, bool compat,
1555 struct iov_iter *iter)
eed4e51f 1556{
89319d31
CH
1557 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1558 size_t len = iocb->aio_nbytes;
1559
1560 if (!vectored) {
9fd7874c 1561 ssize_t ret = import_ubuf(rw, buf, len, iter);
89319d31
CH
1562 *iovec = NULL;
1563 return ret;
1564 }
89cd35c5
CH
1565
1566 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
eed4e51f
BP
1567}
1568
9061d14a 1569static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1570{
1571 switch (ret) {
1572 case -EIOCBQUEUED:
9061d14a 1573 break;
89319d31
CH
1574 case -ERESTARTSYS:
1575 case -ERESTARTNOINTR:
1576 case -ERESTARTNOHAND:
1577 case -ERESTART_RESTARTBLOCK:
1578 /*
1579 * There's no easy way to restart the syscall since other AIO's
1580 * may be already running. Just fail this IO with EINTR.
1581 */
1582 ret = -EINTR;
df561f66 1583 fallthrough;
89319d31 1584 default:
6b19b766 1585 req->ki_complete(req, ret);
89319d31
CH
1586 }
1587}
1588
958c13ce 1589static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1590 bool vectored, bool compat)
1da177e4 1591{
00fefb9c 1592 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1593 struct iov_iter iter;
54843f87 1594 struct file *file;
958c13ce 1595 int ret;
1da177e4 1596
54843f87
CH
1597 ret = aio_prep_rw(req, iocb);
1598 if (ret)
1599 return ret;
1600 file = req->ki_filp;
89319d31 1601 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1602 return -EBADF;
89319d31 1603 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1604 return -EINVAL;
73a7075e 1605
de4eda9d 1606 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1607 if (ret < 0)
84c4e1f8 1608 return ret;
89319d31
CH
1609 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1610 if (!ret)
7c98f7cb 1611 aio_rw_done(req, file->f_op->read_iter(req, &iter));
89319d31
CH
1612 kfree(iovec);
1613 return ret;
1614}
73a7075e 1615
958c13ce 1616static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1617 bool vectored, bool compat)
89319d31 1618{
89319d31
CH
1619 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1620 struct iov_iter iter;
54843f87 1621 struct file *file;
958c13ce 1622 int ret;
41ef4eb8 1623
54843f87
CH
1624 ret = aio_prep_rw(req, iocb);
1625 if (ret)
1626 return ret;
1627 file = req->ki_filp;
1628
89319d31 1629 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1630 return -EBADF;
89319d31 1631 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1632 return -EINVAL;
1da177e4 1633
de4eda9d 1634 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1635 if (ret < 0)
84c4e1f8 1636 return ret;
89319d31
CH
1637 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1638 if (!ret) {
8c3cfa80
AG
1639 if (S_ISREG(file_inode(file)->i_mode))
1640 kiocb_start_write(req);
92ce4728 1641 req->ki_flags |= IOCB_WRITE;
7c98f7cb 1642 aio_rw_done(req, file->f_op->write_iter(req, &iter));
41ef4eb8 1643 }
89319d31
CH
1644 kfree(iovec);
1645 return ret;
1da177e4
LT
1646}
1647
a3c0d439
CH
1648static void aio_fsync_work(struct work_struct *work)
1649{
2bb874c0 1650 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
530f32fc 1651 const struct cred *old_cred = override_creds(iocb->fsync.creds);
a3c0d439 1652
2bb874c0 1653 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
530f32fc
MS
1654 revert_creds(old_cred);
1655 put_cred(iocb->fsync.creds);
2bb874c0 1656 iocb_put(iocb);
a3c0d439
CH
1657}
1658
88a6f18b
JA
1659static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1660 bool datasync)
a3c0d439
CH
1661{
1662 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1663 iocb->aio_rw_flags))
1664 return -EINVAL;
a11e1d43 1665
84c4e1f8 1666 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1667 return -EINVAL;
a3c0d439 1668
530f32fc
MS
1669 req->creds = prepare_creds();
1670 if (!req->creds)
1671 return -ENOMEM;
1672
a3c0d439
CH
1673 req->datasync = datasync;
1674 INIT_WORK(&req->work, aio_fsync_work);
1675 schedule_work(&req->work);
9061d14a 1676 return 0;
a3c0d439
CH
1677}
1678
01d7a356
JA
1679static void aio_poll_put_work(struct work_struct *work)
1680{
1681 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1682 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1683
1684 iocb_put(iocb);
1685}
1686
50252e4b
EB
1687/*
1688 * Safely lock the waitqueue which the request is on, synchronizing with the
1689 * case where the ->poll() provider decides to free its waitqueue early.
1690 *
1691 * Returns true on success, meaning that req->head->lock was locked, req->wait
1692 * is on req->head, and an RCU read lock was taken. Returns false if the
1693 * request was already removed from its waitqueue (which might no longer exist).
1694 */
1695static bool poll_iocb_lock_wq(struct poll_iocb *req)
1696{
1697 wait_queue_head_t *head;
1698
1699 /*
1700 * While we hold the waitqueue lock and the waitqueue is nonempty,
1701 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1702 * lock in the first place can race with the waitqueue being freed.
1703 *
1704 * We solve this as eventpoll does: by taking advantage of the fact that
1705 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1706 * we enter rcu_read_lock() and see that the pointer to the queue is
1707 * non-NULL, we can then lock it without the memory being freed out from
1708 * under us, then check whether the request is still on the queue.
1709 *
1710 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1711 * case the caller deletes the entry from the queue, leaving it empty.
1712 * In that case, only RCU prevents the queue memory from being freed.
1713 */
1714 rcu_read_lock();
1715 head = smp_load_acquire(&req->head);
1716 if (head) {
1717 spin_lock(&head->lock);
1718 if (!list_empty(&req->wait.entry))
1719 return true;
1720 spin_unlock(&head->lock);
1721 }
1722 rcu_read_unlock();
1723 return false;
1724}
1725
1726static void poll_iocb_unlock_wq(struct poll_iocb *req)
1727{
1728 spin_unlock(&req->head->lock);
1729 rcu_read_unlock();
1730}
1731
bfe4037e
CH
1732static void aio_poll_complete_work(struct work_struct *work)
1733{
1734 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1735 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1736 struct poll_table_struct pt = { ._key = req->events };
1737 struct kioctx *ctx = iocb->ki_ctx;
1738 __poll_t mask = 0;
1739
1740 if (!READ_ONCE(req->cancelled))
1741 mask = vfs_poll(req->file, &pt) & req->events;
1742
1743 /*
1744 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1745 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1746 * synchronize with them. In the cancellation case the list_del_init
1747 * itself is not actually needed, but harmless so we keep it in to
1748 * avoid further branches in the fast path.
1749 */
1750 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1751 if (poll_iocb_lock_wq(req)) {
1752 if (!mask && !READ_ONCE(req->cancelled)) {
1753 /*
1754 * The request isn't actually ready to be completed yet.
1755 * Reschedule completion if another wakeup came in.
1756 */
1757 if (req->work_need_resched) {
1758 schedule_work(&req->work);
1759 req->work_need_resched = false;
1760 } else {
1761 req->work_scheduled = false;
1762 }
1763 poll_iocb_unlock_wq(req);
1764 spin_unlock_irq(&ctx->ctx_lock);
1765 return;
363bee27 1766 }
50252e4b
EB
1767 list_del_init(&req->wait.entry);
1768 poll_iocb_unlock_wq(req);
1769 } /* else, POLLFREE has freed the waitqueue, so we must complete */
bfe4037e 1770 list_del_init(&iocb->ki_list);
af5c72b1 1771 iocb->ki_res.res = mangle_poll(mask);
bfe4037e
CH
1772 spin_unlock_irq(&ctx->ctx_lock);
1773
af5c72b1 1774 iocb_put(iocb);
bfe4037e
CH
1775}
1776
1777/* assumes we are called with irqs disabled */
1778static int aio_poll_cancel(struct kiocb *iocb)
1779{
1780 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1781 struct poll_iocb *req = &aiocb->poll;
1782
50252e4b
EB
1783 if (poll_iocb_lock_wq(req)) {
1784 WRITE_ONCE(req->cancelled, true);
1785 if (!req->work_scheduled) {
1786 schedule_work(&aiocb->poll.work);
1787 req->work_scheduled = true;
1788 }
1789 poll_iocb_unlock_wq(req);
1790 } /* else, the request was force-cancelled by POLLFREE already */
bfe4037e
CH
1791
1792 return 0;
1793}
1794
1795static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1796 void *key)
1797{
1798 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1799 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1800 __poll_t mask = key_to_poll(key);
d3d6a18d 1801 unsigned long flags;
bfe4037e 1802
bfe4037e 1803 /* for instances that support it check for an event match first: */
af5c72b1
AV
1804 if (mask && !(mask & req->events))
1805 return 0;
e8693bcf 1806
363bee27
EB
1807 /*
1808 * Complete the request inline if possible. This requires that three
1809 * conditions be met:
1810 * 1. An event mask must have been passed. If a plain wakeup was done
1811 * instead, then mask == 0 and we have to call vfs_poll() to get
1812 * the events, so inline completion isn't possible.
1813 * 2. The completion work must not have already been scheduled.
1814 * 3. ctx_lock must not be busy. We have to use trylock because we
1815 * already hold the waitqueue lock, so this inverts the normal
1816 * locking order. Use irqsave/irqrestore because not all
1817 * filesystems (e.g. fuse) call this function with IRQs disabled,
1818 * yet IRQs have to be disabled before ctx_lock is obtained.
1819 */
1820 if (mask && !req->work_scheduled &&
1821 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
01d7a356
JA
1822 struct kioctx *ctx = iocb->ki_ctx;
1823
363bee27 1824 list_del_init(&req->wait.entry);
af5c72b1
AV
1825 list_del(&iocb->ki_list);
1826 iocb->ki_res.res = mangle_poll(mask);
4b374986 1827 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
01d7a356
JA
1828 iocb = NULL;
1829 INIT_WORK(&req->work, aio_poll_put_work);
1830 schedule_work(&req->work);
1831 }
1832 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1833 if (iocb)
1834 iocb_put(iocb);
af5c72b1 1835 } else {
363bee27
EB
1836 /*
1837 * Schedule the completion work if needed. If it was already
1838 * scheduled, record that another wakeup came in.
1839 *
1840 * Don't remove the request from the waitqueue here, as it might
1841 * not actually be complete yet (we won't know until vfs_poll()
50252e4b
EB
1842 * is called), and we must not miss any wakeups. POLLFREE is an
1843 * exception to this; see below.
363bee27
EB
1844 */
1845 if (req->work_scheduled) {
1846 req->work_need_resched = true;
1847 } else {
1848 schedule_work(&req->work);
1849 req->work_scheduled = true;
1850 }
50252e4b
EB
1851
1852 /*
1853 * If the waitqueue is being freed early but we can't complete
1854 * the request inline, we have to tear down the request as best
1855 * we can. That means immediately removing the request from its
1856 * waitqueue and preventing all further accesses to the
1857 * waitqueue via the request. We also need to schedule the
1858 * completion work (done above). Also mark the request as
1859 * cancelled, to potentially skip an unneeded call to ->poll().
1860 */
1861 if (mask & POLLFREE) {
1862 WRITE_ONCE(req->cancelled, true);
1863 list_del_init(&req->wait.entry);
1864
1865 /*
1866 * Careful: this *must* be the last step, since as soon
1867 * as req->head is NULL'ed out, the request can be
1868 * completed and freed, since aio_poll_complete_work()
1869 * will no longer need to take the waitqueue lock.
1870 */
1871 smp_store_release(&req->head, NULL);
1872 }
e8693bcf 1873 }
bfe4037e
CH
1874 return 1;
1875}
1876
1877struct aio_poll_table {
1878 struct poll_table_struct pt;
1879 struct aio_kiocb *iocb;
50252e4b 1880 bool queued;
bfe4037e
CH
1881 int error;
1882};
1883
1884static void
1885aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1886 struct poll_table_struct *p)
1887{
1888 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1889
1890 /* multiple wait queues per file are not supported */
50252e4b 1891 if (unlikely(pt->queued)) {
bfe4037e
CH
1892 pt->error = -EINVAL;
1893 return;
1894 }
1895
50252e4b 1896 pt->queued = true;
bfe4037e
CH
1897 pt->error = 0;
1898 pt->iocb->poll.head = head;
1899 add_wait_queue(head, &pt->iocb->poll.wait);
1900}
1901
958c13ce 1902static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1903{
1904 struct kioctx *ctx = aiocb->ki_ctx;
1905 struct poll_iocb *req = &aiocb->poll;
1906 struct aio_poll_table apt;
af5c72b1 1907 bool cancel = false;
bfe4037e
CH
1908 __poll_t mask;
1909
1910 /* reject any unknown events outside the normal event mask. */
1911 if ((u16)iocb->aio_buf != iocb->aio_buf)
1912 return -EINVAL;
1913 /* reject fields that are not defined for poll */
1914 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1915 return -EINVAL;
1916
1917 INIT_WORK(&req->work, aio_poll_complete_work);
1918 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1919
2bc4ca9b 1920 req->head = NULL;
2bc4ca9b 1921 req->cancelled = false;
363bee27
EB
1922 req->work_scheduled = false;
1923 req->work_need_resched = false;
2bc4ca9b 1924
bfe4037e
CH
1925 apt.pt._qproc = aio_poll_queue_proc;
1926 apt.pt._key = req->events;
1927 apt.iocb = aiocb;
50252e4b 1928 apt.queued = false;
bfe4037e
CH
1929 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1930
1931 /* initialized the list so that we can do list_empty checks */
1932 INIT_LIST_HEAD(&req->wait.entry);
1933 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1934
bfe4037e 1935 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1936 spin_lock_irq(&ctx->ctx_lock);
50252e4b
EB
1937 if (likely(apt.queued)) {
1938 bool on_queue = poll_iocb_lock_wq(req);
1939
1940 if (!on_queue || req->work_scheduled) {
363bee27
EB
1941 /*
1942 * aio_poll_wake() already either scheduled the async
1943 * completion work, or completed the request inline.
1944 */
1945 if (apt.error) /* unsupported case: multiple queues */
af5c72b1
AV
1946 cancel = true;
1947 apt.error = 0;
1948 mask = 0;
1949 }
1950 if (mask || apt.error) {
363bee27 1951 /* Steal to complete synchronously. */
af5c72b1
AV
1952 list_del_init(&req->wait.entry);
1953 } else if (cancel) {
363bee27 1954 /* Cancel if possible (may be too late though). */
af5c72b1 1955 WRITE_ONCE(req->cancelled, true);
50252e4b 1956 } else if (on_queue) {
363bee27
EB
1957 /*
1958 * Actually waiting for an event, so add the request to
1959 * active_reqs so that it can be cancelled if needed.
1960 */
af5c72b1
AV
1961 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1962 aiocb->ki_cancel = aio_poll_cancel;
1963 }
50252e4b
EB
1964 if (on_queue)
1965 poll_iocb_unlock_wq(req);
af5c72b1
AV
1966 }
1967 if (mask) { /* no async, we'd stolen it */
1968 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1969 apt.error = 0;
bfe4037e 1970 }
bfe4037e 1971 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1972 if (mask)
af5c72b1
AV
1973 iocb_put(aiocb);
1974 return apt.error;
bfe4037e
CH
1975}
1976
88a6f18b 1977static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1978 struct iocb __user *user_iocb, struct aio_kiocb *req,
1979 bool compat)
1da177e4 1980{
84c4e1f8 1981 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1982 if (unlikely(!req->ki_filp))
7316b49c 1983 return -EBADF;
84c4e1f8 1984
88a6f18b 1985 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1986 struct eventfd_ctx *eventfd;
9c3060be
DL
1987 /*
1988 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1989 * instance of the file* now. The file descriptor must be
1990 * an eventfd() fd, and will be signaled for each completed
1991 * event using the eventfd_signal() function.
1992 */
74259703 1993 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1994 if (IS_ERR(eventfd))
18bfb9c6 1995 return PTR_ERR(eventfd);
7316b49c 1996
74259703 1997 req->ki_eventfd = eventfd;
9830f4be
GR
1998 }
1999
7316b49c 2000 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 2001 pr_debug("EFAULT: aio_key\n");
7316b49c 2002 return -EFAULT;
1da177e4
LT
2003 }
2004
a9339b78
AV
2005 req->ki_res.obj = (u64)(unsigned long)user_iocb;
2006 req->ki_res.data = iocb->aio_data;
2007 req->ki_res.res = 0;
2008 req->ki_res.res2 = 0;
1da177e4 2009
88a6f18b 2010 switch (iocb->aio_lio_opcode) {
89319d31 2011 case IOCB_CMD_PREAD:
7316b49c 2012 return aio_read(&req->rw, iocb, false, compat);
89319d31 2013 case IOCB_CMD_PWRITE:
7316b49c 2014 return aio_write(&req->rw, iocb, false, compat);
89319d31 2015 case IOCB_CMD_PREADV:
7316b49c 2016 return aio_read(&req->rw, iocb, true, compat);
89319d31 2017 case IOCB_CMD_PWRITEV:
7316b49c 2018 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 2019 case IOCB_CMD_FSYNC:
7316b49c 2020 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 2021 case IOCB_CMD_FDSYNC:
7316b49c 2022 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 2023 case IOCB_CMD_POLL:
7316b49c 2024 return aio_poll(req, iocb);
89319d31 2025 default:
88a6f18b 2026 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 2027 return -EINVAL;
89319d31 2028 }
1da177e4
LT
2029}
2030
88a6f18b
JA
2031static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2032 bool compat)
2033{
7316b49c 2034 struct aio_kiocb *req;
88a6f18b 2035 struct iocb iocb;
7316b49c 2036 int err;
88a6f18b
JA
2037
2038 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2039 return -EFAULT;
2040
7316b49c
AV
2041 /* enforce forwards compatibility on users */
2042 if (unlikely(iocb.aio_reserved2)) {
2043 pr_debug("EINVAL: reserve field set\n");
2044 return -EINVAL;
2045 }
2046
2047 /* prevent overflows */
2048 if (unlikely(
2049 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2050 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2051 ((ssize_t)iocb.aio_nbytes < 0)
2052 )) {
2053 pr_debug("EINVAL: overflow check\n");
2054 return -EINVAL;
2055 }
2056
2057 req = aio_get_req(ctx);
2058 if (unlikely(!req))
2059 return -EAGAIN;
2060
2061 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2062
2063 /* Done with the synchronous reference */
2064 iocb_put(req);
2065
2066 /*
2067 * If err is 0, we'd either done aio_complete() ourselves or have
2068 * arranged for that to be done asynchronously. Anything non-zero
2069 * means that we need to destroy req ourselves.
2070 */
2071 if (unlikely(err)) {
2072 iocb_destroy(req);
2073 put_reqs_available(ctx, 1);
2074 }
2075 return err;
88a6f18b
JA
2076}
2077
67ba049f
AV
2078/* sys_io_submit:
2079 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2080 * the number of iocbs queued. May return -EINVAL if the aio_context
2081 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2082 * *iocbpp[0] is not properly initialized, if the operation specified
2083 * is invalid for the file descriptor in the iocb. May fail with
2084 * -EFAULT if any of the data structures point to invalid data. May
2085 * fail with -EBADF if the file descriptor specified in the first
2086 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2087 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2088 * fail with -ENOSYS if not implemented.
2089 */
2090SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2091 struct iocb __user * __user *, iocbpp)
1da177e4
LT
2092{
2093 struct kioctx *ctx;
2094 long ret = 0;
080d676d 2095 int i = 0;
9f5b9425 2096 struct blk_plug plug;
1da177e4
LT
2097
2098 if (unlikely(nr < 0))
2099 return -EINVAL;
2100
1da177e4
LT
2101 ctx = lookup_ioctx(ctx_id);
2102 if (unlikely(!ctx)) {
caf4167a 2103 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
2104 return -EINVAL;
2105 }
2106
1da92779
AV
2107 if (nr > ctx->nr_events)
2108 nr = ctx->nr_events;
2109
a79d40e9
JA
2110 if (nr > AIO_PLUG_THRESHOLD)
2111 blk_start_plug(&plug);
67ba049f 2112 for (i = 0; i < nr; i++) {
1da177e4 2113 struct iocb __user *user_iocb;
1da177e4 2114
67ba049f 2115 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
2116 ret = -EFAULT;
2117 break;
2118 }
2119
67ba049f 2120 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
2121 if (ret)
2122 break;
2123 }
a79d40e9
JA
2124 if (nr > AIO_PLUG_THRESHOLD)
2125 blk_finish_plug(&plug);
1da177e4 2126
723be6e3 2127 percpu_ref_put(&ctx->users);
1da177e4
LT
2128 return i ? i : ret;
2129}
2130
c00d2c7e 2131#ifdef CONFIG_COMPAT
c00d2c7e 2132COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 2133 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 2134{
67ba049f
AV
2135 struct kioctx *ctx;
2136 long ret = 0;
2137 int i = 0;
2138 struct blk_plug plug;
c00d2c7e
AV
2139
2140 if (unlikely(nr < 0))
2141 return -EINVAL;
2142
67ba049f
AV
2143 ctx = lookup_ioctx(ctx_id);
2144 if (unlikely(!ctx)) {
2145 pr_debug("EINVAL: invalid context id\n");
2146 return -EINVAL;
2147 }
2148
1da92779
AV
2149 if (nr > ctx->nr_events)
2150 nr = ctx->nr_events;
2151
a79d40e9
JA
2152 if (nr > AIO_PLUG_THRESHOLD)
2153 blk_start_plug(&plug);
67ba049f
AV
2154 for (i = 0; i < nr; i++) {
2155 compat_uptr_t user_iocb;
2156
2157 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2158 ret = -EFAULT;
2159 break;
2160 }
2161
2162 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2163 if (ret)
2164 break;
2165 }
a79d40e9
JA
2166 if (nr > AIO_PLUG_THRESHOLD)
2167 blk_finish_plug(&plug);
67ba049f
AV
2168
2169 percpu_ref_put(&ctx->users);
2170 return i ? i : ret;
c00d2c7e
AV
2171}
2172#endif
2173
1da177e4 2174/* sys_io_cancel:
28468cbe
BVA
2175 * Attempts to cancel an iocb previously passed to io_submit. If
2176 * the operation is successfully cancelled, the resulting event is
2177 * copied into the memory pointed to by result without being placed
2178 * into the completion queue and 0 is returned. May fail with
2179 * -EFAULT if any of the data structures pointed to are invalid.
2180 * May fail with -EINVAL if aio_context specified by ctx_id is
2181 * invalid. May fail with -EAGAIN if the iocb specified was not
2182 * cancelled. Will fail with -ENOSYS if not implemented.
1da177e4 2183 */
002c8976
HC
2184SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2185 struct io_event __user *, result)
1da177e4 2186{
1da177e4 2187 struct kioctx *ctx;
04b2fa9f 2188 struct aio_kiocb *kiocb;
888933f8 2189 int ret = -EINVAL;
1da177e4 2190 u32 key;
a9339b78 2191 u64 obj = (u64)(unsigned long)iocb;
1da177e4 2192
f3a2752a 2193 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 2194 return -EFAULT;
f3a2752a
CH
2195 if (unlikely(key != KIOCB_KEY))
2196 return -EINVAL;
1da177e4
LT
2197
2198 ctx = lookup_ioctx(ctx_id);
2199 if (unlikely(!ctx))
2200 return -EINVAL;
2201
2202 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2203 /* TODO: use a hash or array, this sucks. */
2204 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2205 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2206 ret = kiocb->ki_cancel(&kiocb->rw);
2207 list_del_init(&kiocb->ki_list);
2208 break;
2209 }
888933f8 2210 }
1da177e4
LT
2211 spin_unlock_irq(&ctx->ctx_lock);
2212
28468cbe
BVA
2213 if (!ret) {
2214 /*
2215 * The result argument is no longer used - the io_event is
2216 * always delivered via the ring buffer. -EINPROGRESS indicates
2217 * cancellation is progress:
2218 */
2219 ret = -EINPROGRESS;
2220 }
1da177e4 2221
723be6e3 2222 percpu_ref_put(&ctx->users);
1da177e4
LT
2223
2224 return ret;
2225}
2226
fa2e62a5
DD
2227static long do_io_getevents(aio_context_t ctx_id,
2228 long min_nr,
2229 long nr,
2230 struct io_event __user *events,
2231 struct timespec64 *ts)
2232{
2233 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2234 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2235 long ret = -EINVAL;
2236
2237 if (likely(ioctx)) {
2238 if (likely(min_nr <= nr && min_nr >= 0))
2239 ret = read_events(ioctx, min_nr, nr, events, until);
2240 percpu_ref_put(&ioctx->users);
2241 }
2242
2243 return ret;
2244}
2245
1da177e4
LT
2246/* io_getevents:
2247 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2248 * the completion queue for the aio_context specified by ctx_id. If
2249 * it succeeds, the number of read events is returned. May fail with
2250 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2251 * out of range, if timeout is out of range. May fail with -EFAULT
2252 * if any of the memory specified is invalid. May return 0 or
2253 * < min_nr if the timeout specified by timeout has elapsed
2254 * before sufficient events are available, where timeout == NULL
2255 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2256 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2257 */
3ca47e95 2258#ifdef CONFIG_64BIT
7a35397f 2259
002c8976
HC
2260SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2261 long, min_nr,
2262 long, nr,
2263 struct io_event __user *, events,
7a35397f 2264 struct __kernel_timespec __user *, timeout)
1da177e4 2265{
fa2e62a5 2266 struct timespec64 ts;
7a074e96
CH
2267 int ret;
2268
2269 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2270 return -EFAULT;
2271
2272 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2273 if (!ret && signal_pending(current))
2274 ret = -EINTR;
2275 return ret;
2276}
1da177e4 2277
7a35397f
DD
2278#endif
2279
9ba546c0
CH
2280struct __aio_sigset {
2281 const sigset_t __user *sigmask;
2282 size_t sigsetsize;
2283};
2284
7a074e96
CH
2285SYSCALL_DEFINE6(io_pgetevents,
2286 aio_context_t, ctx_id,
2287 long, min_nr,
2288 long, nr,
2289 struct io_event __user *, events,
7a35397f 2290 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2291 const struct __aio_sigset __user *, usig)
2292{
2293 struct __aio_sigset ksig = { NULL, };
7a074e96 2294 struct timespec64 ts;
97abc889 2295 bool interrupted;
7a074e96
CH
2296 int ret;
2297
2298 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2299 return -EFAULT;
2300
2301 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2302 return -EFAULT;
2303
b772434b 2304 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2305 if (ret)
2306 return ret;
7a074e96
CH
2307
2308 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2309
2310 interrupted = signal_pending(current);
b772434b 2311 restore_saved_sigmask_unless(interrupted);
97abc889 2312 if (interrupted && !ret)
7a35397f 2313 ret = -ERESTARTNOHAND;
7a074e96 2314
7a35397f
DD
2315 return ret;
2316}
2317
2318#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2319
2320SYSCALL_DEFINE6(io_pgetevents_time32,
2321 aio_context_t, ctx_id,
2322 long, min_nr,
2323 long, nr,
2324 struct io_event __user *, events,
2325 struct old_timespec32 __user *, timeout,
2326 const struct __aio_sigset __user *, usig)
2327{
2328 struct __aio_sigset ksig = { NULL, };
7a35397f 2329 struct timespec64 ts;
97abc889 2330 bool interrupted;
7a35397f
DD
2331 int ret;
2332
2333 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2334 return -EFAULT;
2335
2336 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2337 return -EFAULT;
2338
ded653cc 2339
b772434b 2340 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2341 if (ret)
2342 return ret;
7a074e96
CH
2343
2344 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2345
2346 interrupted = signal_pending(current);
b772434b 2347 restore_saved_sigmask_unless(interrupted);
97abc889 2348 if (interrupted && !ret)
854a6ed5 2349 ret = -ERESTARTNOHAND;
fa2e62a5 2350
7a074e96 2351 return ret;
1da177e4 2352}
c00d2c7e 2353
7a35397f
DD
2354#endif
2355
2356#if defined(CONFIG_COMPAT_32BIT_TIME)
2357
8dabe724
AB
2358SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2359 __s32, min_nr,
2360 __s32, nr,
2361 struct io_event __user *, events,
2362 struct old_timespec32 __user *, timeout)
c00d2c7e 2363{
fa2e62a5 2364 struct timespec64 t;
7a074e96
CH
2365 int ret;
2366
9afc5eee 2367 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2368 return -EFAULT;
2369
2370 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2371 if (!ret && signal_pending(current))
2372 ret = -EINTR;
2373 return ret;
2374}
2375
7a35397f
DD
2376#endif
2377
2378#ifdef CONFIG_COMPAT
c00d2c7e 2379
7a074e96 2380struct __compat_aio_sigset {
97eba80f 2381 compat_uptr_t sigmask;
7a074e96
CH
2382 compat_size_t sigsetsize;
2383};
2384
7a35397f
DD
2385#if defined(CONFIG_COMPAT_32BIT_TIME)
2386
7a074e96
CH
2387COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2388 compat_aio_context_t, ctx_id,
2389 compat_long_t, min_nr,
2390 compat_long_t, nr,
2391 struct io_event __user *, events,
9afc5eee 2392 struct old_timespec32 __user *, timeout,
7a074e96
CH
2393 const struct __compat_aio_sigset __user *, usig)
2394{
97eba80f 2395 struct __compat_aio_sigset ksig = { 0, };
7a074e96 2396 struct timespec64 t;
97abc889 2397 bool interrupted;
7a074e96
CH
2398 int ret;
2399
9afc5eee 2400 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2401 return -EFAULT;
2402
2403 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2404 return -EFAULT;
2405
97eba80f 2406 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
ded653cc
DD
2407 if (ret)
2408 return ret;
c00d2c7e 2409
7a074e96 2410 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2411
2412 interrupted = signal_pending(current);
b772434b 2413 restore_saved_sigmask_unless(interrupted);
97abc889 2414 if (interrupted && !ret)
854a6ed5 2415 ret = -ERESTARTNOHAND;
fa2e62a5 2416
7a074e96 2417 return ret;
c00d2c7e 2418}
7a35397f
DD
2419
2420#endif
2421
2422COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2423 compat_aio_context_t, ctx_id,
2424 compat_long_t, min_nr,
2425 compat_long_t, nr,
2426 struct io_event __user *, events,
2427 struct __kernel_timespec __user *, timeout,
2428 const struct __compat_aio_sigset __user *, usig)
2429{
97eba80f 2430 struct __compat_aio_sigset ksig = { 0, };
7a35397f 2431 struct timespec64 t;
97abc889 2432 bool interrupted;
7a35397f
DD
2433 int ret;
2434
2435 if (timeout && get_timespec64(&t, timeout))
2436 return -EFAULT;
2437
2438 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2439 return -EFAULT;
2440
97eba80f 2441 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
7a35397f
DD
2442 if (ret)
2443 return ret;
2444
2445 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2446
2447 interrupted = signal_pending(current);
b772434b 2448 restore_saved_sigmask_unless(interrupted);
97abc889 2449 if (interrupted && !ret)
7a35397f 2450 ret = -ERESTARTNOHAND;
fa2e62a5 2451
7a074e96 2452 return ret;
c00d2c7e
AV
2453}
2454#endif