swiotlb-xen: ensure we have a single callsite for xen_dma_map_page
[linux-2.6-block.git] / drivers / xen / swiotlb-xen.c
CommitLineData
b097186f
KRW
1/*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4 *
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * PV guests under Xen are running in an non-contiguous memory architecture.
17 *
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
22 *
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
33 *
34 */
35
283c0972
JP
36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37
2013288f 38#include <linux/memblock.h>
ea8c64ac 39#include <linux/dma-direct.h>
63c9744b 40#include <linux/export.h>
b097186f
KRW
41#include <xen/swiotlb-xen.h>
42#include <xen/page.h>
43#include <xen/xen-ops.h>
f4b2f07b 44#include <xen/hvc-console.h>
2b2b614d 45
83862ccf 46#include <asm/dma-mapping.h>
1b65c4e5 47#include <asm/xen/page-coherent.h>
e1d8f62a 48
2b2b614d 49#include <trace/events/swiotlb.h>
b097186f
KRW
50/*
51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53 * API.
54 */
55
56static char *xen_io_tlb_start, *xen_io_tlb_end;
57static unsigned long xen_io_tlb_nslabs;
58/*
59 * Quick lookup value of the bus address of the IOTLB.
60 */
61
b8b0f559 62static u64 start_dma_addr;
b097186f 63
e17b2f11 64/*
9435cce8 65 * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
e17b2f11
IC
66 * can be 32bit when dma_addr_t is 64bit leading to a loss in
67 * information if the shift is done before casting to 64bit.
68 */
6b42a7ea 69static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
b097186f 70{
9435cce8
JG
71 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
72 dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
e17b2f11 73
9435cce8 74 dma |= paddr & ~XEN_PAGE_MASK;
e17b2f11
IC
75
76 return dma;
b097186f
KRW
77}
78
6b42a7ea 79static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
b097186f 80{
9435cce8
JG
81 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
82 dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
e17b2f11
IC
83 phys_addr_t paddr = dma;
84
9435cce8 85 paddr |= baddr & ~XEN_PAGE_MASK;
e17b2f11
IC
86
87 return paddr;
b097186f
KRW
88}
89
6b42a7ea 90static inline dma_addr_t xen_virt_to_bus(void *address)
b097186f
KRW
91{
92 return xen_phys_to_bus(virt_to_phys(address));
93}
94
9435cce8 95static int check_pages_physically_contiguous(unsigned long xen_pfn,
b097186f
KRW
96 unsigned int offset,
97 size_t length)
98{
32e09870 99 unsigned long next_bfn;
b097186f
KRW
100 int i;
101 int nr_pages;
102
9435cce8
JG
103 next_bfn = pfn_to_bfn(xen_pfn);
104 nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
b097186f
KRW
105
106 for (i = 1; i < nr_pages; i++) {
9435cce8 107 if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
b097186f
KRW
108 return 0;
109 }
110 return 1;
111}
112
6b42a7ea 113static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
b097186f 114{
9435cce8
JG
115 unsigned long xen_pfn = XEN_PFN_DOWN(p);
116 unsigned int offset = p & ~XEN_PAGE_MASK;
b097186f 117
9435cce8 118 if (offset + size <= XEN_PAGE_SIZE)
b097186f 119 return 0;
9435cce8 120 if (check_pages_physically_contiguous(xen_pfn, offset, size))
b097186f
KRW
121 return 0;
122 return 1;
123}
124
125static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
126{
9435cce8
JG
127 unsigned long bfn = XEN_PFN_DOWN(dma_addr);
128 unsigned long xen_pfn = bfn_to_local_pfn(bfn);
129 phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
b097186f
KRW
130
131 /* If the address is outside our domain, it CAN
132 * have the same virtual address as another address
133 * in our domain. Therefore _only_ check address within our domain.
134 */
9435cce8 135 if (pfn_valid(PFN_DOWN(paddr))) {
b097186f
KRW
136 return paddr >= virt_to_phys(xen_io_tlb_start) &&
137 paddr < virt_to_phys(xen_io_tlb_end);
138 }
139 return 0;
140}
141
142static int max_dma_bits = 32;
143
144static int
145xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
146{
147 int i, rc;
148 int dma_bits;
69908907 149 dma_addr_t dma_handle;
1b65c4e5 150 phys_addr_t p = virt_to_phys(buf);
b097186f
KRW
151
152 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
153
154 i = 0;
155 do {
156 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
157
158 do {
159 rc = xen_create_contiguous_region(
1b65c4e5 160 p + (i << IO_TLB_SHIFT),
b097186f 161 get_order(slabs << IO_TLB_SHIFT),
69908907 162 dma_bits, &dma_handle);
b097186f
KRW
163 } while (rc && dma_bits++ < max_dma_bits);
164 if (rc)
165 return rc;
166
167 i += slabs;
168 } while (i < nslabs);
169 return 0;
170}
1cef36a5
KRW
171static unsigned long xen_set_nslabs(unsigned long nr_tbl)
172{
173 if (!nr_tbl) {
174 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
175 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
176 } else
177 xen_io_tlb_nslabs = nr_tbl;
b097186f 178
1cef36a5
KRW
179 return xen_io_tlb_nslabs << IO_TLB_SHIFT;
180}
b097186f 181
5bab7864
KRW
182enum xen_swiotlb_err {
183 XEN_SWIOTLB_UNKNOWN = 0,
184 XEN_SWIOTLB_ENOMEM,
185 XEN_SWIOTLB_EFIXUP
186};
187
188static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
189{
190 switch (err) {
191 case XEN_SWIOTLB_ENOMEM:
192 return "Cannot allocate Xen-SWIOTLB buffer\n";
193 case XEN_SWIOTLB_EFIXUP:
194 return "Failed to get contiguous memory for DMA from Xen!\n"\
195 "You either: don't have the permissions, do not have"\
196 " enough free memory under 4GB, or the hypervisor memory"\
197 " is too fragmented!";
198 default:
199 break;
200 }
201 return "";
202}
b8277600 203int __ref xen_swiotlb_init(int verbose, bool early)
b097186f 204{
b8277600 205 unsigned long bytes, order;
f4b2f07b 206 int rc = -ENOMEM;
5bab7864 207 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
f4b2f07b 208 unsigned int repeat = 3;
5f98ecdb 209
1cef36a5 210 xen_io_tlb_nslabs = swiotlb_nr_tbl();
f4b2f07b 211retry:
1cef36a5 212 bytes = xen_set_nslabs(xen_io_tlb_nslabs);
b8277600 213 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
b097186f
KRW
214 /*
215 * Get IO TLB memory from any location.
216 */
b8277600 217 if (early)
15c3c114
MR
218 xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
219 PAGE_SIZE);
b8277600
KRW
220 else {
221#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
222#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
223 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
8746515d 224 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
b8277600
KRW
225 if (xen_io_tlb_start)
226 break;
227 order--;
228 }
229 if (order != get_order(bytes)) {
283c0972
JP
230 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
231 (PAGE_SIZE << order) >> 20);
b8277600
KRW
232 xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
233 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
234 }
235 }
f4b2f07b 236 if (!xen_io_tlb_start) {
5bab7864 237 m_ret = XEN_SWIOTLB_ENOMEM;
f4b2f07b
KRW
238 goto error;
239 }
b097186f
KRW
240 xen_io_tlb_end = xen_io_tlb_start + bytes;
241 /*
242 * And replace that memory with pages under 4GB.
243 */
244 rc = xen_swiotlb_fixup(xen_io_tlb_start,
245 bytes,
246 xen_io_tlb_nslabs);
f4b2f07b 247 if (rc) {
b8277600 248 if (early)
2013288f
MR
249 memblock_free(__pa(xen_io_tlb_start),
250 PAGE_ALIGN(bytes));
b8277600
KRW
251 else {
252 free_pages((unsigned long)xen_io_tlb_start, order);
253 xen_io_tlb_start = NULL;
254 }
5bab7864 255 m_ret = XEN_SWIOTLB_EFIXUP;
b097186f 256 goto error;
f4b2f07b 257 }
b097186f 258 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
c468bdee 259 if (early) {
ac2cbab2
YL
260 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
261 verbose))
262 panic("Cannot allocate SWIOTLB buffer");
c468bdee
KRW
263 rc = 0;
264 } else
b8277600 265 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
7453c549
KRW
266
267 if (!rc)
268 swiotlb_set_max_segment(PAGE_SIZE);
269
b8277600 270 return rc;
b097186f 271error:
f4b2f07b
KRW
272 if (repeat--) {
273 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
274 (xen_io_tlb_nslabs >> 1));
283c0972
JP
275 pr_info("Lowering to %luMB\n",
276 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
f4b2f07b
KRW
277 goto retry;
278 }
283c0972 279 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
b8277600
KRW
280 if (early)
281 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
282 else
283 free_pages((unsigned long)xen_io_tlb_start, order);
284 return rc;
b097186f 285}
dceb1a68
CH
286
287static void *
b097186f 288xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
baa676fc 289 dma_addr_t *dma_handle, gfp_t flags,
00085f1e 290 unsigned long attrs)
b097186f
KRW
291{
292 void *ret;
293 int order = get_order(size);
294 u64 dma_mask = DMA_BIT_MASK(32);
6810df88
KRW
295 phys_addr_t phys;
296 dma_addr_t dev_addr;
b097186f
KRW
297
298 /*
299 * Ignore region specifiers - the kernel's ideas of
300 * pseudo-phys memory layout has nothing to do with the
301 * machine physical layout. We can't allocate highmem
302 * because we can't return a pointer to it.
303 */
304 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
305
7250f422
JJ
306 /* Convert the size to actually allocated. */
307 size = 1UL << (order + XEN_PAGE_SHIFT);
308
1b65c4e5
SS
309 /* On ARM this function returns an ioremap'ped virtual address for
310 * which virt_to_phys doesn't return the corresponding physical
311 * address. In fact on ARM virt_to_phys only works for kernel direct
312 * mapped RAM memory. Also see comment below.
313 */
314 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
b097186f 315
6810df88
KRW
316 if (!ret)
317 return ret;
318
b097186f 319 if (hwdev && hwdev->coherent_dma_mask)
038d07a2 320 dma_mask = hwdev->coherent_dma_mask;
b097186f 321
1b65c4e5
SS
322 /* At this point dma_handle is the physical address, next we are
323 * going to set it to the machine address.
324 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
325 * to *dma_handle. */
326 phys = *dma_handle;
6810df88
KRW
327 dev_addr = xen_phys_to_bus(phys);
328 if (((dev_addr + size - 1 <= dma_mask)) &&
329 !range_straddles_page_boundary(phys, size))
330 *dma_handle = dev_addr;
331 else {
1b65c4e5 332 if (xen_create_contiguous_region(phys, order,
69908907 333 fls64(dma_mask), dma_handle) != 0) {
1b65c4e5 334 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
b097186f
KRW
335 return NULL;
336 }
b097186f 337 }
6810df88 338 memset(ret, 0, size);
b097186f
KRW
339 return ret;
340}
b097186f 341
dceb1a68 342static void
b097186f 343xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
00085f1e 344 dma_addr_t dev_addr, unsigned long attrs)
b097186f
KRW
345{
346 int order = get_order(size);
6810df88
KRW
347 phys_addr_t phys;
348 u64 dma_mask = DMA_BIT_MASK(32);
b097186f 349
6810df88
KRW
350 if (hwdev && hwdev->coherent_dma_mask)
351 dma_mask = hwdev->coherent_dma_mask;
352
1b65c4e5
SS
353 /* do not use virt_to_phys because on ARM it doesn't return you the
354 * physical address */
355 phys = xen_bus_to_phys(dev_addr);
6810df88 356
7250f422
JJ
357 /* Convert the size to actually allocated. */
358 size = 1UL << (order + XEN_PAGE_SHIFT);
359
4855c92d 360 if (((dev_addr + size - 1 <= dma_mask)) ||
6810df88 361 range_straddles_page_boundary(phys, size))
1b65c4e5 362 xen_destroy_contiguous_region(phys, order);
6810df88 363
1b65c4e5 364 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
b097186f 365}
b097186f
KRW
366
367/*
368 * Map a single buffer of the indicated size for DMA in streaming mode. The
369 * physical address to use is returned.
370 *
371 * Once the device is given the dma address, the device owns this memory until
372 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
373 */
dceb1a68 374static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
b097186f
KRW
375 unsigned long offset, size_t size,
376 enum dma_data_direction dir,
00085f1e 377 unsigned long attrs)
b097186f 378{
e05ed4d1 379 phys_addr_t map, phys = page_to_phys(page) + offset;
b097186f 380 dma_addr_t dev_addr = xen_phys_to_bus(phys);
b097186f
KRW
381
382 BUG_ON(dir == DMA_NONE);
383 /*
384 * If the address happens to be in the device's DMA window,
385 * we can safely return the device addr and not worry about bounce
386 * buffering it.
387 */
388 if (dma_capable(dev, dev_addr, size) &&
a4dba130 389 !range_straddles_page_boundary(phys, size) &&
291be10f 390 !xen_arch_need_swiotlb(dev, phys, dev_addr) &&
063b8271
CH
391 swiotlb_force != SWIOTLB_FORCE)
392 goto done;
b097186f
KRW
393
394 /*
395 * Oh well, have to allocate and map a bounce buffer.
396 */
2b2b614d
ZK
397 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
398
0443fa00
AD
399 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
400 attrs);
b907e205 401 if (map == DMA_MAPPING_ERROR)
a4abe0ad 402 return DMA_MAPPING_ERROR;
b097186f 403
f1225ee4 404 dev_addr = xen_phys_to_bus(map);
b097186f
KRW
405
406 /*
407 * Ensure that the address returned is DMA'ble
408 */
063b8271
CH
409 if (unlikely(!dma_capable(dev, dev_addr, size))) {
410 swiotlb_tbl_unmap_single(dev, map, size, dir,
411 attrs | DMA_ATTR_SKIP_CPU_SYNC);
412 return DMA_MAPPING_ERROR;
413 }
76418421 414
063b8271
CH
415 page = pfn_to_page(map >> PAGE_SHIFT);
416 offset = map & ~PAGE_MASK;
417done:
418 /*
419 * we are not interested in the dma_addr returned by xen_dma_map_page,
420 * only in the potential cache flushes executed by the function.
421 */
422 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
423 return dev_addr;
b097186f 424}
b097186f
KRW
425
426/*
427 * Unmap a single streaming mode DMA translation. The dma_addr and size must
428 * match what was provided for in a previous xen_swiotlb_map_page call. All
429 * other usages are undefined.
430 *
431 * After this call, reads by the cpu to the buffer are guaranteed to see
432 * whatever the device wrote there.
433 */
434static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
6cf05463 435 size_t size, enum dma_data_direction dir,
00085f1e 436 unsigned long attrs)
b097186f
KRW
437{
438 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
439
440 BUG_ON(dir == DMA_NONE);
441
d6883e6f 442 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
6cf05463 443
b097186f 444 /* NOTE: We use dev_addr here, not paddr! */
68c60834 445 if (is_xen_swiotlb_buffer(dev_addr))
0443fa00 446 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
b097186f
KRW
447}
448
dceb1a68 449static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
b097186f 450 size_t size, enum dma_data_direction dir,
00085f1e 451 unsigned long attrs)
b097186f 452{
6cf05463 453 xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
b097186f 454}
b097186f 455
b097186f 456static void
2e12dcee
CH
457xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
458 size_t size, enum dma_data_direction dir)
b097186f 459{
2e12dcee 460 phys_addr_t paddr = xen_bus_to_phys(dma_addr);
b097186f 461
2e12dcee 462 xen_dma_sync_single_for_cpu(dev, dma_addr, size, dir);
6cf05463 463
2e12dcee
CH
464 if (is_xen_swiotlb_buffer(dma_addr))
465 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
b097186f
KRW
466}
467
2e12dcee
CH
468static void
469xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
470 size_t size, enum dma_data_direction dir)
b097186f 471{
2e12dcee 472 phys_addr_t paddr = xen_bus_to_phys(dma_addr);
b097186f 473
2e12dcee
CH
474 if (is_xen_swiotlb_buffer(dma_addr))
475 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
476
477 xen_dma_sync_single_for_device(dev, dma_addr, size, dir);
b097186f 478}
dceb1a68
CH
479
480/*
481 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
482 * concerning calls here are the same as for swiotlb_unmap_page() above.
483 */
484static void
aca351cc
CH
485xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
486 enum dma_data_direction dir, unsigned long attrs)
dceb1a68
CH
487{
488 struct scatterlist *sg;
489 int i;
490
491 BUG_ON(dir == DMA_NONE);
492
493 for_each_sg(sgl, sg, nelems, i)
494 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
495
496}
b097186f 497
dceb1a68 498static int
8b35d9fe 499xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
aca351cc 500 enum dma_data_direction dir, unsigned long attrs)
b097186f
KRW
501{
502 struct scatterlist *sg;
503 int i;
504
505 BUG_ON(dir == DMA_NONE);
506
507 for_each_sg(sgl, sg, nelems, i) {
8b35d9fe
CH
508 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
509 sg->offset, sg->length, dir, attrs);
510 if (sg->dma_address == DMA_MAPPING_ERROR)
511 goto out_unmap;
781575cd 512 sg_dma_len(sg) = sg->length;
b097186f 513 }
8b35d9fe 514
b097186f 515 return nelems;
8b35d9fe
CH
516out_unmap:
517 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
518 sg_dma_len(sgl) = 0;
519 return 0;
b097186f 520}
b097186f 521
b097186f 522static void
2e12dcee
CH
523xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
524 int nelems, enum dma_data_direction dir)
b097186f
KRW
525{
526 struct scatterlist *sg;
527 int i;
528
2e12dcee
CH
529 for_each_sg(sgl, sg, nelems, i) {
530 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
531 sg->length, dir);
532 }
b097186f 533}
b097186f 534
dceb1a68 535static void
2e12dcee 536xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
b097186f
KRW
537 int nelems, enum dma_data_direction dir)
538{
2e12dcee
CH
539 struct scatterlist *sg;
540 int i;
541
542 for_each_sg(sgl, sg, nelems, i) {
543 xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
544 sg->length, dir);
545 }
b097186f 546}
b097186f 547
b097186f
KRW
548/*
549 * Return whether the given device DMA address mask can be supported
550 * properly. For example, if your device can only drive the low 24-bits
551 * during bus mastering, then you would pass 0x00ffffff as the mask to
552 * this function.
553 */
dceb1a68 554static int
b097186f
KRW
555xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
556{
557 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
558}
eb1ddc00 559
7e91c7df
SS
560/*
561 * Create userspace mapping for the DMA-coherent memory.
562 * This function should be called with the pages from the current domain only,
563 * passing pages mapped from other domains would lead to memory corruption.
564 */
dceb1a68 565static int
7e91c7df
SS
566xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
567 void *cpu_addr, dma_addr_t dma_addr, size_t size,
568 unsigned long attrs)
569{
60d8cd57 570#ifdef CONFIG_ARM
d5ff5061
SS
571 if (xen_get_dma_ops(dev)->mmap)
572 return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
7e91c7df
SS
573 dma_addr, size, attrs);
574#endif
58b04406 575 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
7e91c7df 576}
69369f52
AA
577
578/*
579 * This function should be called with the pages from the current domain only,
580 * passing pages mapped from other domains would lead to memory corruption.
581 */
dceb1a68 582static int
69369f52
AA
583xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
584 void *cpu_addr, dma_addr_t handle, size_t size,
585 unsigned long attrs)
586{
60d8cd57 587#ifdef CONFIG_ARM
d5ff5061 588 if (xen_get_dma_ops(dev)->get_sgtable) {
69369f52
AA
589#if 0
590 /*
591 * This check verifies that the page belongs to the current domain and
592 * is not one mapped from another domain.
593 * This check is for debug only, and should not go to production build
594 */
595 unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
596 BUG_ON (!page_is_ram(bfn));
597#endif
d5ff5061 598 return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
69369f52
AA
599 handle, size, attrs);
600 }
601#endif
9406a49f 602 return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs);
69369f52 603}
dceb1a68
CH
604
605const struct dma_map_ops xen_swiotlb_dma_ops = {
606 .alloc = xen_swiotlb_alloc_coherent,
607 .free = xen_swiotlb_free_coherent,
608 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
609 .sync_single_for_device = xen_swiotlb_sync_single_for_device,
610 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
611 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
aca351cc
CH
612 .map_sg = xen_swiotlb_map_sg,
613 .unmap_sg = xen_swiotlb_unmap_sg,
dceb1a68
CH
614 .map_page = xen_swiotlb_map_page,
615 .unmap_page = xen_swiotlb_unmap_page,
616 .dma_supported = xen_swiotlb_dma_supported,
dceb1a68
CH
617 .mmap = xen_swiotlb_dma_mmap,
618 .get_sgtable = xen_swiotlb_get_sgtable,
619};