watchdog: octeon: convert to WATCHDOG_CORE API
[linux-2.6-block.git] / drivers / watchdog / octeon-wdt-main.c
CommitLineData
4c076fb4
DD
1/*
2 * Octeon Watchdog driver
3 *
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5 *
3d588c93
AK
6 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
7 *
4c076fb4
DD
8 * Some parts derived from wdt.c
9 *
10 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11 * All Rights Reserved.
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 *
18 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19 * warranty for any of this software. This material is provided
20 * "AS-IS" and at no charge.
21 *
22 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file "COPYING" in the main directory of this archive
26 * for more details.
27 *
28 *
29 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30 * For most systems this is less than 10 seconds, so to allow for
31 * software to request longer watchdog heartbeats, we maintain software
32 * counters to count multiples of the base rate. If the system locks
33 * up in such a manner that we can not run the software counters, the
34 * only result is a watchdog reset sooner than was requested. But
35 * that is OK, because in this case userspace would likely not be able
36 * to do anything anyhow.
37 *
38 * The hardware watchdog interval we call the period. The OCTEON
39 * watchdog goes through several stages, after the first period an
40 * irq is asserted, then if it is not reset, after the next period NMI
41 * is asserted, then after an additional period a chip wide soft reset.
42 * So for the software counters, we reset watchdog after each period
43 * and decrement the counter. But for the last two periods we need to
44 * let the watchdog progress to the NMI stage so we disable the irq
45 * and let it proceed. Once in the NMI, we print the register state
46 * to the serial port and then wait for the reset.
47 *
48 * A watchdog is maintained for each CPU in the system, that way if
49 * one CPU suffers a lockup, we also get a register dump and reset.
50 * The userspace ping resets the watchdog on all CPUs.
51 *
52 * Before userspace opens the watchdog device, we still run the
53 * watchdogs to catch any lockups that may be kernel related.
54 *
55 */
56
27c766aa
JP
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
4c076fb4
DD
59#include <linux/miscdevice.h>
60#include <linux/interrupt.h>
61#include <linux/watchdog.h>
62#include <linux/cpumask.h>
63#include <linux/bitops.h>
64#include <linux/kernel.h>
65#include <linux/module.h>
66#include <linux/string.h>
67#include <linux/delay.h>
68#include <linux/cpu.h>
69#include <linux/smp.h>
70#include <linux/fs.h>
ca4d3e67 71#include <linux/irq.h>
4c076fb4
DD
72
73#include <asm/mipsregs.h>
74#include <asm/uasm.h>
75
76#include <asm/octeon/octeon.h>
77
78/* The count needed to achieve timeout_sec. */
79static unsigned int timeout_cnt;
80
81/* The maximum period supported. */
82static unsigned int max_timeout_sec;
83
84/* The current period. */
85static unsigned int timeout_sec;
86
87/* Set to non-zero when userspace countdown mode active */
88static int do_coundown;
89static unsigned int countdown_reset;
90static unsigned int per_cpu_countdown[NR_CPUS];
91
92static cpumask_t irq_enabled_cpus;
93
94#define WD_TIMO 60 /* Default heartbeat = 60 seconds */
95
96static int heartbeat = WD_TIMO;
97module_param(heartbeat, int, S_IRUGO);
98MODULE_PARM_DESC(heartbeat,
99 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
100 __MODULE_STRING(WD_TIMO) ")");
101
86a1e189
WVS
102static bool nowayout = WATCHDOG_NOWAYOUT;
103module_param(nowayout, bool, S_IRUGO);
4c076fb4
DD
104MODULE_PARM_DESC(nowayout,
105 "Watchdog cannot be stopped once started (default="
106 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
107
4c076fb4
DD
108static u32 __initdata nmi_stage1_insns[64];
109/* We need one branch and therefore one relocation per target label. */
110static struct uasm_label __initdata labels[5];
111static struct uasm_reloc __initdata relocs[5];
112
113enum lable_id {
114 label_enter_bootloader = 1
115};
116
117/* Some CP0 registers */
118#define K0 26
119#define C0_CVMMEMCTL 11, 7
120#define C0_STATUS 12, 0
121#define C0_EBASE 15, 1
122#define C0_DESAVE 31, 0
123
124void octeon_wdt_nmi_stage2(void);
125
126static void __init octeon_wdt_build_stage1(void)
127{
128 int i;
129 int len;
130 u32 *p = nmi_stage1_insns;
131#ifdef CONFIG_HOTPLUG_CPU
132 struct uasm_label *l = labels;
133 struct uasm_reloc *r = relocs;
134#endif
135
136 /*
137 * For the next few instructions running the debugger may
138 * cause corruption of k0 in the saved registers. Since we're
139 * about to crash, nobody probably cares.
140 *
141 * Save K0 into the debug scratch register
142 */
143 uasm_i_dmtc0(&p, K0, C0_DESAVE);
144
145 uasm_i_mfc0(&p, K0, C0_STATUS);
146#ifdef CONFIG_HOTPLUG_CPU
f64988f1
AK
147 if (octeon_bootloader_entry_addr)
148 uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
149 label_enter_bootloader);
4c076fb4
DD
150#endif
151 /* Force 64-bit addressing enabled */
152 uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
153 uasm_i_mtc0(&p, K0, C0_STATUS);
154
155#ifdef CONFIG_HOTPLUG_CPU
f64988f1
AK
156 if (octeon_bootloader_entry_addr) {
157 uasm_i_mfc0(&p, K0, C0_EBASE);
158 /* Coreid number in K0 */
159 uasm_i_andi(&p, K0, K0, 0xf);
160 /* 8 * coreid in bits 16-31 */
161 uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
162 uasm_i_ori(&p, K0, K0, 0x8001);
163 uasm_i_dsll_safe(&p, K0, K0, 16);
164 uasm_i_ori(&p, K0, K0, 0x0700);
165 uasm_i_drotr_safe(&p, K0, K0, 32);
166 /*
167 * Should result in: 0x8001,0700,0000,8*coreid which is
168 * CVMX_CIU_WDOGX(coreid) - 0x0500
169 *
170 * Now ld K0, CVMX_CIU_WDOGX(coreid)
171 */
172 uasm_i_ld(&p, K0, 0x500, K0);
173 /*
174 * If bit one set handle the NMI as a watchdog event.
175 * otherwise transfer control to bootloader.
176 */
177 uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
178 uasm_i_nop(&p);
179 }
4c076fb4
DD
180#endif
181
182 /* Clear Dcache so cvmseg works right. */
183 uasm_i_cache(&p, 1, 0, 0);
184
185 /* Use K0 to do a read/modify/write of CVMMEMCTL */
186 uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
187 /* Clear out the size of CVMSEG */
188 uasm_i_dins(&p, K0, 0, 0, 6);
189 /* Set CVMSEG to its largest value */
190 uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
191 /* Store the CVMMEMCTL value */
192 uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
193
194 /* Load the address of the second stage handler */
195 UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
196 uasm_i_jr(&p, K0);
197 uasm_i_dmfc0(&p, K0, C0_DESAVE);
198
199#ifdef CONFIG_HOTPLUG_CPU
f64988f1
AK
200 if (octeon_bootloader_entry_addr) {
201 uasm_build_label(&l, p, label_enter_bootloader);
202 /* Jump to the bootloader and restore K0 */
203 UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
204 uasm_i_jr(&p, K0);
205 uasm_i_dmfc0(&p, K0, C0_DESAVE);
206 }
4c076fb4
DD
207#endif
208 uasm_resolve_relocs(relocs, labels);
209
210 len = (int)(p - nmi_stage1_insns);
27c766aa 211 pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
4c076fb4
DD
212
213 pr_debug("\t.set push\n");
214 pr_debug("\t.set noreorder\n");
215 for (i = 0; i < len; i++)
216 pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
217 pr_debug("\t.set pop\n");
218
219 if (len > 32)
220 panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
221}
222
223static int cpu2core(int cpu)
224{
225#ifdef CONFIG_SMP
226 return cpu_logical_map(cpu);
227#else
228 return cvmx_get_core_num();
229#endif
230}
231
232static int core2cpu(int coreid)
233{
234#ifdef CONFIG_SMP
235 return cpu_number_map(coreid);
236#else
237 return 0;
238#endif
239}
240
241/**
242 * Poke the watchdog when an interrupt is received
243 *
244 * @cpl:
245 * @dev_id:
246 *
247 * Returns
248 */
249static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
250{
251 unsigned int core = cvmx_get_core_num();
252 int cpu = core2cpu(core);
253
254 if (do_coundown) {
255 if (per_cpu_countdown[cpu] > 0) {
256 /* We're alive, poke the watchdog */
257 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
258 per_cpu_countdown[cpu]--;
259 } else {
260 /* Bad news, you are about to reboot. */
261 disable_irq_nosync(cpl);
262 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
263 }
264 } else {
265 /* Not open, just ping away... */
266 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
267 }
268 return IRQ_HANDLED;
269}
270
271/* From setup.c */
272extern int prom_putchar(char c);
273
274/**
275 * Write a string to the uart
276 *
277 * @str: String to write
278 */
279static void octeon_wdt_write_string(const char *str)
280{
281 /* Just loop writing one byte at a time */
282 while (*str)
283 prom_putchar(*str++);
284}
285
286/**
287 * Write a hex number out of the uart
288 *
289 * @value: Number to display
290 * @digits: Number of digits to print (1 to 16)
291 */
292static void octeon_wdt_write_hex(u64 value, int digits)
293{
294 int d;
295 int v;
296 for (d = 0; d < digits; d++) {
297 v = (value >> ((digits - d - 1) * 4)) & 0xf;
298 if (v >= 10)
299 prom_putchar('a' + v - 10);
300 else
301 prom_putchar('0' + v);
302 }
303}
304
305const char *reg_name[] = {
306 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
307 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
308 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
309 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
310};
311
312/**
313 * NMI stage 3 handler. NMIs are handled in the following manner:
314 * 1) The first NMI handler enables CVMSEG and transfers from
315 * the bootbus region into normal memory. It is careful to not
316 * destroy any registers.
317 * 2) The second stage handler uses CVMSEG to save the registers
318 * and create a stack for C code. It then calls the third level
319 * handler with one argument, a pointer to the register values.
320 * 3) The third, and final, level handler is the following C
321 * function that prints out some useful infomration.
322 *
323 * @reg: Pointer to register state before the NMI
324 */
325void octeon_wdt_nmi_stage3(u64 reg[32])
326{
327 u64 i;
328
329 unsigned int coreid = cvmx_get_core_num();
330 /*
331 * Save status and cause early to get them before any changes
332 * might happen.
333 */
334 u64 cp0_cause = read_c0_cause();
335 u64 cp0_status = read_c0_status();
336 u64 cp0_error_epc = read_c0_errorepc();
337 u64 cp0_epc = read_c0_epc();
338
339 /* Delay so output from all cores output is not jumbled together. */
340 __delay(100000000ull * coreid);
341
342 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
343 octeon_wdt_write_hex(coreid, 1);
344 octeon_wdt_write_string(" ***\r\n");
345 for (i = 0; i < 32; i++) {
346 octeon_wdt_write_string("\t");
347 octeon_wdt_write_string(reg_name[i]);
348 octeon_wdt_write_string("\t0x");
349 octeon_wdt_write_hex(reg[i], 16);
350 if (i & 1)
351 octeon_wdt_write_string("\r\n");
352 }
353 octeon_wdt_write_string("\terr_epc\t0x");
354 octeon_wdt_write_hex(cp0_error_epc, 16);
355
356 octeon_wdt_write_string("\tepc\t0x");
357 octeon_wdt_write_hex(cp0_epc, 16);
358 octeon_wdt_write_string("\r\n");
359
360 octeon_wdt_write_string("\tstatus\t0x");
361 octeon_wdt_write_hex(cp0_status, 16);
362 octeon_wdt_write_string("\tcause\t0x");
363 octeon_wdt_write_hex(cp0_cause, 16);
364 octeon_wdt_write_string("\r\n");
365
366 octeon_wdt_write_string("\tsum0\t0x");
367 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
368 octeon_wdt_write_string("\ten0\t0x");
369 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
370 octeon_wdt_write_string("\r\n");
371
372 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
373}
374
375static void octeon_wdt_disable_interrupt(int cpu)
376{
377 unsigned int core;
378 unsigned int irq;
379 union cvmx_ciu_wdogx ciu_wdog;
380
381 core = cpu2core(cpu);
382
383 irq = OCTEON_IRQ_WDOG0 + core;
384
385 /* Poke the watchdog to clear out its state */
386 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
387
388 /* Disable the hardware. */
389 ciu_wdog.u64 = 0;
390 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
391
392 free_irq(irq, octeon_wdt_poke_irq);
393}
394
395static void octeon_wdt_setup_interrupt(int cpu)
396{
397 unsigned int core;
398 unsigned int irq;
399 union cvmx_ciu_wdogx ciu_wdog;
400
401 core = cpu2core(cpu);
402
403 /* Disable it before doing anything with the interrupts. */
404 ciu_wdog.u64 = 0;
405 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
406
407 per_cpu_countdown[cpu] = countdown_reset;
408
409 irq = OCTEON_IRQ_WDOG0 + core;
410
411 if (request_irq(irq, octeon_wdt_poke_irq,
47bfd058 412 IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
4c076fb4
DD
413 panic("octeon_wdt: Couldn't obtain irq %d", irq);
414
415 cpumask_set_cpu(cpu, &irq_enabled_cpus);
416
417 /* Poke the watchdog to clear out its state */
418 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
419
420 /* Finally enable the watchdog now that all handlers are installed */
421 ciu_wdog.u64 = 0;
422 ciu_wdog.s.len = timeout_cnt;
423 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
424 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
425}
426
427static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
428 unsigned long action, void *hcpu)
429{
430 unsigned int cpu = (unsigned long)hcpu;
431
432 switch (action) {
433 case CPU_DOWN_PREPARE:
434 octeon_wdt_disable_interrupt(cpu);
435 break;
436 case CPU_ONLINE:
437 case CPU_DOWN_FAILED:
438 octeon_wdt_setup_interrupt(cpu);
439 break;
440 default:
441 break;
442 }
443 return NOTIFY_OK;
444}
445
3d588c93 446static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
4c076fb4
DD
447{
448 int cpu;
449 int coreid;
450
451 for_each_online_cpu(cpu) {
452 coreid = cpu2core(cpu);
453 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
454 per_cpu_countdown[cpu] = countdown_reset;
455 if ((countdown_reset || !do_coundown) &&
456 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
457 /* We have to enable the irq */
458 int irq = OCTEON_IRQ_WDOG0 + coreid;
459 enable_irq(irq);
460 cpumask_set_cpu(cpu, &irq_enabled_cpus);
461 }
462 }
3d588c93 463 return 0;
4c076fb4
DD
464}
465
466static void octeon_wdt_calc_parameters(int t)
467{
468 unsigned int periods;
469
470 timeout_sec = max_timeout_sec;
471
472
473 /*
474 * Find the largest interrupt period, that can evenly divide
475 * the requested heartbeat time.
476 */
477 while ((t % timeout_sec) != 0)
478 timeout_sec--;
479
480 periods = t / timeout_sec;
481
482 /*
483 * The last two periods are after the irq is disabled, and
484 * then to the nmi, so we subtract them off.
485 */
486
487 countdown_reset = periods > 2 ? periods - 2 : 0;
488 heartbeat = t;
468ffde4 489 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
4c076fb4
DD
490}
491
3d588c93
AK
492static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
493 unsigned int t)
4c076fb4
DD
494{
495 int cpu;
496 int coreid;
497 union cvmx_ciu_wdogx ciu_wdog;
498
499 if (t <= 0)
500 return -1;
501
502 octeon_wdt_calc_parameters(t);
503
504 for_each_online_cpu(cpu) {
505 coreid = cpu2core(cpu);
506 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
507 ciu_wdog.u64 = 0;
508 ciu_wdog.s.len = timeout_cnt;
509 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
510 cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
511 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
512 }
3d588c93 513 octeon_wdt_ping(wdog); /* Get the irqs back on. */
4c076fb4
DD
514 return 0;
515}
516
3d588c93 517static int octeon_wdt_start(struct watchdog_device *wdog)
4c076fb4 518{
3d588c93 519 octeon_wdt_ping(wdog);
4c076fb4 520 do_coundown = 1;
3d588c93 521 return 0;
4c076fb4
DD
522}
523
3d588c93 524static int octeon_wdt_stop(struct watchdog_device *wdog)
4c076fb4 525{
3d588c93
AK
526 do_coundown = 0;
527 octeon_wdt_ping(wdog);
4c076fb4
DD
528 return 0;
529}
530
3d588c93
AK
531static struct notifier_block octeon_wdt_cpu_notifier = {
532 .notifier_call = octeon_wdt_cpu_callback,
4c076fb4
DD
533};
534
3d588c93
AK
535static const struct watchdog_info octeon_wdt_info = {
536 .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
537 .identity = "OCTEON",
4c076fb4
DD
538};
539
3d588c93
AK
540static const struct watchdog_ops octeon_wdt_ops = {
541 .owner = THIS_MODULE,
542 .start = octeon_wdt_start,
543 .stop = octeon_wdt_stop,
544 .ping = octeon_wdt_ping,
545 .set_timeout = octeon_wdt_set_timeout,
4c076fb4
DD
546};
547
3d588c93
AK
548static struct watchdog_device octeon_wdt = {
549 .info = &octeon_wdt_info,
550 .ops = &octeon_wdt_ops,
551};
4c076fb4
DD
552
553/**
554 * Module/ driver initialization.
555 *
556 * Returns Zero on success
557 */
558static int __init octeon_wdt_init(void)
559{
560 int i;
561 int ret;
562 int cpu;
563 u64 *ptr;
564
565 /*
566 * Watchdog time expiration length = The 16 bits of LEN
567 * represent the most significant bits of a 24 bit decrementer
568 * that decrements every 256 cycles.
569 *
570 * Try for a timeout of 5 sec, if that fails a smaller number
571 * of even seconds,
572 */
573 max_timeout_sec = 6;
574 do {
575 max_timeout_sec--;
468ffde4 576 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
4c076fb4
DD
577 } while (timeout_cnt > 65535);
578
579 BUG_ON(timeout_cnt == 0);
580
581 octeon_wdt_calc_parameters(heartbeat);
582
27c766aa 583 pr_info("Initial granularity %d Sec\n", timeout_sec);
4c076fb4 584
3d588c93
AK
585 octeon_wdt.timeout = timeout_sec;
586 octeon_wdt.max_timeout = UINT_MAX;
587
588 watchdog_set_nowayout(&octeon_wdt, nowayout);
589
590 ret = watchdog_register_device(&octeon_wdt);
4c076fb4 591 if (ret) {
3d588c93
AK
592 pr_err("watchdog_register_device() failed: %d\n", ret);
593 return ret;
4c076fb4
DD
594 }
595
596 /* Build the NMI handler ... */
597 octeon_wdt_build_stage1();
598
599 /* ... and install it. */
600 ptr = (u64 *) nmi_stage1_insns;
601 for (i = 0; i < 16; i++) {
602 cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
603 cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
604 }
605 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
606
607 cpumask_clear(&irq_enabled_cpus);
608
99c3bf36 609 cpu_notifier_register_begin();
4c076fb4
DD
610 for_each_online_cpu(cpu)
611 octeon_wdt_setup_interrupt(cpu);
612
99c3bf36
SB
613 __register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
614 cpu_notifier_register_done();
615
3d588c93 616 return 0;
4c076fb4
DD
617}
618
619/**
620 * Module / driver shutdown
621 */
622static void __exit octeon_wdt_cleanup(void)
623{
624 int cpu;
625
3d588c93 626 watchdog_unregister_device(&octeon_wdt);
4c076fb4 627
99c3bf36
SB
628 cpu_notifier_register_begin();
629 __unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
4c076fb4
DD
630
631 for_each_online_cpu(cpu) {
632 int core = cpu2core(cpu);
633 /* Disable the watchdog */
634 cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
635 /* Free the interrupt handler */
636 free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
637 }
99c3bf36
SB
638
639 cpu_notifier_register_done();
640
4c076fb4
DD
641 /*
642 * Disable the boot-bus memory, the code it points to is soon
643 * to go missing.
644 */
645 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
646}
647
648MODULE_LICENSE("GPL");
649MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
650MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
651module_init(octeon_wdt_init);
652module_exit(octeon_wdt_cleanup);