xhci: trace debug messages related to driver initialization and unload
[linux-2.6-block.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
3a7fa5be 29#include "xhci-trace.h"
66d4eadd 30
0ebbab37
SS
31/*
32 * Allocates a generic ring segment from the ring pool, sets the dma address,
33 * initializes the segment to zero, and sets the private next pointer to NULL.
34 *
35 * Section 4.11.1.1:
36 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 */
186a7ef1
AX
38static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
39 unsigned int cycle_state, gfp_t flags)
0ebbab37
SS
40{
41 struct xhci_segment *seg;
42 dma_addr_t dma;
186a7ef1 43 int i;
0ebbab37
SS
44
45 seg = kzalloc(sizeof *seg, flags);
46 if (!seg)
326b4810 47 return NULL;
0ebbab37
SS
48
49 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
50 if (!seg->trbs) {
51 kfree(seg);
326b4810 52 return NULL;
0ebbab37 53 }
0ebbab37 54
eb8ccd2b 55 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
186a7ef1
AX
56 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
57 if (cycle_state == 0) {
58 for (i = 0; i < TRBS_PER_SEGMENT; i++)
59 seg->trbs[i].link.control |= TRB_CYCLE;
60 }
0ebbab37
SS
61 seg->dma = dma;
62 seg->next = NULL;
63
64 return seg;
65}
66
67static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
68{
0ebbab37 69 if (seg->trbs) {
0ebbab37
SS
70 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71 seg->trbs = NULL;
72 }
0ebbab37
SS
73 kfree(seg);
74}
75
70d43601
AX
76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
78{
79 struct xhci_segment *seg;
80
81 seg = first->next;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
85 seg = next;
86 }
87 xhci_segment_free(xhci, first);
88}
89
0ebbab37
SS
90/*
91 * Make the prev segment point to the next segment.
92 *
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
96 */
97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
3b72fca0 98 struct xhci_segment *next, enum xhci_ring_type type)
0ebbab37
SS
99{
100 u32 val;
101
102 if (!prev || !next)
103 return;
104 prev->next = next;
3b72fca0 105 if (type != TYPE_EVENT) {
f5960b69
ME
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
0ebbab37
SS
108
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
b0567b3f 113 /* Always set the chain bit with 0.95 hardware */
7e393a83
AX
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
3b72fca0
AX
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
b0567b3f 118 val |= TRB_CHAIN;
28ccd296 119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 120 }
0ebbab37
SS
121}
122
8dfec614
AX
123/*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
130{
131 struct xhci_segment *next;
132
133 if (!ring || !first || !last)
134 return;
135
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
148 }
149}
150
0ebbab37 151/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 152void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37 153{
0e6c7f74 154 if (!ring)
0ebbab37 155 return;
70d43601
AX
156
157 if (ring->first_seg)
158 xhci_free_segments_for_ring(xhci, ring->first_seg);
159
0ebbab37
SS
160 kfree(ring);
161}
162
186a7ef1
AX
163static void xhci_initialize_ring_info(struct xhci_ring *ring,
164 unsigned int cycle_state)
74f9fe21
SS
165{
166 /* The ring is empty, so the enqueue pointer == dequeue pointer */
167 ring->enqueue = ring->first_seg->trbs;
168 ring->enq_seg = ring->first_seg;
169 ring->dequeue = ring->enqueue;
170 ring->deq_seg = ring->first_seg;
171 /* The ring is initialized to 0. The producer must write 1 to the cycle
172 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
173 * compare CCS to the cycle bit to check ownership, so CCS = 1.
186a7ef1
AX
174 *
175 * New rings are initialized with cycle state equal to 1; if we are
176 * handling ring expansion, set the cycle state equal to the old ring.
74f9fe21 177 */
186a7ef1 178 ring->cycle_state = cycle_state;
74f9fe21
SS
179 /* Not necessary for new rings, but needed for re-initialized rings */
180 ring->enq_updates = 0;
181 ring->deq_updates = 0;
b008df60
AX
182
183 /*
184 * Each segment has a link TRB, and leave an extra TRB for SW
185 * accounting purpose
186 */
187 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
74f9fe21
SS
188}
189
70d43601
AX
190/* Allocate segments and link them for a ring */
191static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
192 struct xhci_segment **first, struct xhci_segment **last,
186a7ef1
AX
193 unsigned int num_segs, unsigned int cycle_state,
194 enum xhci_ring_type type, gfp_t flags)
70d43601
AX
195{
196 struct xhci_segment *prev;
197
186a7ef1 198 prev = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601
AX
199 if (!prev)
200 return -ENOMEM;
201 num_segs--;
202
203 *first = prev;
204 while (num_segs > 0) {
205 struct xhci_segment *next;
206
186a7ef1 207 next = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601 208 if (!next) {
68e5254a
JW
209 prev = *first;
210 while (prev) {
211 next = prev->next;
212 xhci_segment_free(xhci, prev);
213 prev = next;
214 }
70d43601
AX
215 return -ENOMEM;
216 }
217 xhci_link_segments(xhci, prev, next, type);
218
219 prev = next;
220 num_segs--;
221 }
222 xhci_link_segments(xhci, prev, *first, type);
223 *last = prev;
224
225 return 0;
226}
227
0ebbab37
SS
228/**
229 * Create a new ring with zero or more segments.
230 *
231 * Link each segment together into a ring.
232 * Set the end flag and the cycle toggle bit on the last segment.
233 * See section 4.9.1 and figures 15 and 16.
234 */
235static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
186a7ef1
AX
236 unsigned int num_segs, unsigned int cycle_state,
237 enum xhci_ring_type type, gfp_t flags)
0ebbab37
SS
238{
239 struct xhci_ring *ring;
70d43601 240 int ret;
0ebbab37
SS
241
242 ring = kzalloc(sizeof *(ring), flags);
0ebbab37 243 if (!ring)
326b4810 244 return NULL;
0ebbab37 245
3fe4fe08 246 ring->num_segs = num_segs;
d0e96f5a 247 INIT_LIST_HEAD(&ring->td_list);
3b72fca0 248 ring->type = type;
0ebbab37
SS
249 if (num_segs == 0)
250 return ring;
251
70d43601 252 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
186a7ef1 253 &ring->last_seg, num_segs, cycle_state, type, flags);
70d43601 254 if (ret)
0ebbab37 255 goto fail;
0ebbab37 256
3b72fca0
AX
257 /* Only event ring does not use link TRB */
258 if (type != TYPE_EVENT) {
0ebbab37 259 /* See section 4.9.2.1 and 6.4.4.1 */
70d43601 260 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
f5960b69 261 cpu_to_le32(LINK_TOGGLE);
0ebbab37 262 }
186a7ef1 263 xhci_initialize_ring_info(ring, cycle_state);
0ebbab37
SS
264 return ring;
265
266fail:
68e5254a 267 kfree(ring);
326b4810 268 return NULL;
0ebbab37
SS
269}
270
412566bd
SS
271void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
272 struct xhci_virt_device *virt_dev,
273 unsigned int ep_index)
274{
275 int rings_cached;
276
277 rings_cached = virt_dev->num_rings_cached;
278 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
412566bd
SS
279 virt_dev->ring_cache[rings_cached] =
280 virt_dev->eps[ep_index].ring;
30f89ca0 281 virt_dev->num_rings_cached++;
412566bd
SS
282 xhci_dbg(xhci, "Cached old ring, "
283 "%d ring%s cached\n",
30f89ca0
SS
284 virt_dev->num_rings_cached,
285 (virt_dev->num_rings_cached > 1) ? "s" : "");
412566bd
SS
286 } else {
287 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
288 xhci_dbg(xhci, "Ring cache full (%d rings), "
289 "freeing ring\n",
290 virt_dev->num_rings_cached);
291 }
292 virt_dev->eps[ep_index].ring = NULL;
293}
294
74f9fe21
SS
295/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
296 * pointers to the beginning of the ring.
297 */
298static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
186a7ef1
AX
299 struct xhci_ring *ring, unsigned int cycle_state,
300 enum xhci_ring_type type)
74f9fe21
SS
301{
302 struct xhci_segment *seg = ring->first_seg;
186a7ef1
AX
303 int i;
304
74f9fe21
SS
305 do {
306 memset(seg->trbs, 0,
307 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
186a7ef1
AX
308 if (cycle_state == 0) {
309 for (i = 0; i < TRBS_PER_SEGMENT; i++)
310 seg->trbs[i].link.control |= TRB_CYCLE;
311 }
74f9fe21 312 /* All endpoint rings have link TRBs */
3b72fca0 313 xhci_link_segments(xhci, seg, seg->next, type);
74f9fe21
SS
314 seg = seg->next;
315 } while (seg != ring->first_seg);
3b72fca0 316 ring->type = type;
186a7ef1 317 xhci_initialize_ring_info(ring, cycle_state);
74f9fe21
SS
318 /* td list should be empty since all URBs have been cancelled,
319 * but just in case...
320 */
321 INIT_LIST_HEAD(&ring->td_list);
322}
323
8dfec614
AX
324/*
325 * Expand an existing ring.
326 * Look for a cached ring or allocate a new ring which has same segment numbers
327 * and link the two rings.
328 */
329int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
330 unsigned int num_trbs, gfp_t flags)
331{
332 struct xhci_segment *first;
333 struct xhci_segment *last;
334 unsigned int num_segs;
335 unsigned int num_segs_needed;
336 int ret;
337
338 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
339 (TRBS_PER_SEGMENT - 1);
340
341 /* Allocate number of segments we needed, or double the ring size */
342 num_segs = ring->num_segs > num_segs_needed ?
343 ring->num_segs : num_segs_needed;
344
345 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
346 num_segs, ring->cycle_state, ring->type, flags);
347 if (ret)
348 return -ENOMEM;
349
350 xhci_link_rings(xhci, ring, first, last, num_segs);
351 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
352 ring->num_segs);
353
354 return 0;
355}
356
d115b048
JY
357#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
358
326b4810 359static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
360 int type, gfp_t flags)
361{
29f9d54b
SS
362 struct xhci_container_ctx *ctx;
363
364 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
365 return NULL;
366
367 ctx = kzalloc(sizeof(*ctx), flags);
d115b048
JY
368 if (!ctx)
369 return NULL;
370
d115b048
JY
371 ctx->type = type;
372 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
373 if (type == XHCI_CTX_TYPE_INPUT)
374 ctx->size += CTX_SIZE(xhci->hcc_params);
375
376 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
025f880c
MN
377 if (!ctx->bytes) {
378 kfree(ctx);
379 return NULL;
380 }
d115b048
JY
381 memset(ctx->bytes, 0, ctx->size);
382 return ctx;
383}
384
326b4810 385static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
386 struct xhci_container_ctx *ctx)
387{
a1d78c16
SS
388 if (!ctx)
389 return;
d115b048
JY
390 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
391 kfree(ctx);
392}
393
394struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
395 struct xhci_container_ctx *ctx)
396{
92f8e767
SS
397 if (ctx->type != XHCI_CTX_TYPE_INPUT)
398 return NULL;
399
d115b048
JY
400 return (struct xhci_input_control_ctx *)ctx->bytes;
401}
402
403struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
404 struct xhci_container_ctx *ctx)
405{
406 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
407 return (struct xhci_slot_ctx *)ctx->bytes;
408
409 return (struct xhci_slot_ctx *)
410 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
411}
412
413struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
414 struct xhci_container_ctx *ctx,
415 unsigned int ep_index)
416{
417 /* increment ep index by offset of start of ep ctx array */
418 ep_index++;
419 if (ctx->type == XHCI_CTX_TYPE_INPUT)
420 ep_index++;
421
422 return (struct xhci_ep_ctx *)
423 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
424}
425
8df75f42
SS
426
427/***************** Streams structures manipulation *************************/
428
8212a49d 429static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
430 unsigned int num_stream_ctxs,
431 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
432{
433 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
434
435 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 436 dma_free_coherent(&pdev->dev,
8df75f42
SS
437 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
438 stream_ctx, dma);
439 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
440 return dma_pool_free(xhci->small_streams_pool,
441 stream_ctx, dma);
442 else
443 return dma_pool_free(xhci->medium_streams_pool,
444 stream_ctx, dma);
445}
446
447/*
448 * The stream context array for each endpoint with bulk streams enabled can
449 * vary in size, based on:
450 * - how many streams the endpoint supports,
451 * - the maximum primary stream array size the host controller supports,
452 * - and how many streams the device driver asks for.
453 *
454 * The stream context array must be a power of 2, and can be as small as
455 * 64 bytes or as large as 1MB.
456 */
8212a49d 457static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
458 unsigned int num_stream_ctxs, dma_addr_t *dma,
459 gfp_t mem_flags)
460{
461 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
462
463 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 464 return dma_alloc_coherent(&pdev->dev,
8df75f42 465 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
22d45f01 466 dma, mem_flags);
8df75f42
SS
467 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
468 return dma_pool_alloc(xhci->small_streams_pool,
469 mem_flags, dma);
470 else
471 return dma_pool_alloc(xhci->medium_streams_pool,
472 mem_flags, dma);
473}
474
e9df17eb
SS
475struct xhci_ring *xhci_dma_to_transfer_ring(
476 struct xhci_virt_ep *ep,
477 u64 address)
478{
479 if (ep->ep_state & EP_HAS_STREAMS)
480 return radix_tree_lookup(&ep->stream_info->trb_address_map,
eb8ccd2b 481 address >> TRB_SEGMENT_SHIFT);
e9df17eb
SS
482 return ep->ring;
483}
484
e9df17eb
SS
485struct xhci_ring *xhci_stream_id_to_ring(
486 struct xhci_virt_device *dev,
487 unsigned int ep_index,
488 unsigned int stream_id)
489{
490 struct xhci_virt_ep *ep = &dev->eps[ep_index];
491
492 if (stream_id == 0)
493 return ep->ring;
494 if (!ep->stream_info)
495 return NULL;
496
497 if (stream_id > ep->stream_info->num_streams)
498 return NULL;
499 return ep->stream_info->stream_rings[stream_id];
500}
501
8df75f42
SS
502/*
503 * Change an endpoint's internal structure so it supports stream IDs. The
504 * number of requested streams includes stream 0, which cannot be used by device
505 * drivers.
506 *
507 * The number of stream contexts in the stream context array may be bigger than
508 * the number of streams the driver wants to use. This is because the number of
509 * stream context array entries must be a power of two.
510 *
511 * We need a radix tree for mapping physical addresses of TRBs to which stream
512 * ID they belong to. We need to do this because the host controller won't tell
513 * us which stream ring the TRB came from. We could store the stream ID in an
514 * event data TRB, but that doesn't help us for the cancellation case, since the
515 * endpoint may stop before it reaches that event data TRB.
516 *
517 * The radix tree maps the upper portion of the TRB DMA address to a ring
518 * segment that has the same upper portion of DMA addresses. For example, say I
519 * have segments of size 1KB, that are always 64-byte aligned. A segment may
520 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
521 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
522 * pass the radix tree a key to get the right stream ID:
523 *
524 * 0x10c90fff >> 10 = 0x43243
525 * 0x10c912c0 >> 10 = 0x43244
526 * 0x10c91400 >> 10 = 0x43245
527 *
528 * Obviously, only those TRBs with DMA addresses that are within the segment
529 * will make the radix tree return the stream ID for that ring.
530 *
531 * Caveats for the radix tree:
532 *
533 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
534 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
535 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
536 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
537 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
538 * extended systems (where the DMA address can be bigger than 32-bits),
539 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
540 */
541struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
542 unsigned int num_stream_ctxs,
543 unsigned int num_streams, gfp_t mem_flags)
544{
545 struct xhci_stream_info *stream_info;
546 u32 cur_stream;
547 struct xhci_ring *cur_ring;
548 unsigned long key;
549 u64 addr;
550 int ret;
551
552 xhci_dbg(xhci, "Allocating %u streams and %u "
553 "stream context array entries.\n",
554 num_streams, num_stream_ctxs);
555 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
556 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
557 return NULL;
558 }
559 xhci->cmd_ring_reserved_trbs++;
560
561 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
562 if (!stream_info)
563 goto cleanup_trbs;
564
565 stream_info->num_streams = num_streams;
566 stream_info->num_stream_ctxs = num_stream_ctxs;
567
568 /* Initialize the array of virtual pointers to stream rings. */
569 stream_info->stream_rings = kzalloc(
570 sizeof(struct xhci_ring *)*num_streams,
571 mem_flags);
572 if (!stream_info->stream_rings)
573 goto cleanup_info;
574
575 /* Initialize the array of DMA addresses for stream rings for the HW. */
576 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
577 num_stream_ctxs, &stream_info->ctx_array_dma,
578 mem_flags);
579 if (!stream_info->stream_ctx_array)
580 goto cleanup_ctx;
581 memset(stream_info->stream_ctx_array, 0,
582 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
583
584 /* Allocate everything needed to free the stream rings later */
585 stream_info->free_streams_command =
586 xhci_alloc_command(xhci, true, true, mem_flags);
587 if (!stream_info->free_streams_command)
588 goto cleanup_ctx;
589
590 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
591
592 /* Allocate rings for all the streams that the driver will use,
593 * and add their segment DMA addresses to the radix tree.
594 * Stream 0 is reserved.
595 */
596 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
597 stream_info->stream_rings[cur_stream] =
2fdcd47b 598 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
8df75f42
SS
599 cur_ring = stream_info->stream_rings[cur_stream];
600 if (!cur_ring)
601 goto cleanup_rings;
e9df17eb 602 cur_ring->stream_id = cur_stream;
8df75f42
SS
603 /* Set deq ptr, cycle bit, and stream context type */
604 addr = cur_ring->first_seg->dma |
605 SCT_FOR_CTX(SCT_PRI_TR) |
606 cur_ring->cycle_state;
f5960b69
ME
607 stream_info->stream_ctx_array[cur_stream].stream_ring =
608 cpu_to_le64(addr);
8df75f42
SS
609 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
610 cur_stream, (unsigned long long) addr);
611
612 key = (unsigned long)
eb8ccd2b 613 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
8df75f42
SS
614 ret = radix_tree_insert(&stream_info->trb_address_map,
615 key, cur_ring);
616 if (ret) {
617 xhci_ring_free(xhci, cur_ring);
618 stream_info->stream_rings[cur_stream] = NULL;
619 goto cleanup_rings;
620 }
621 }
622 /* Leave the other unused stream ring pointers in the stream context
623 * array initialized to zero. This will cause the xHC to give us an
624 * error if the device asks for a stream ID we don't have setup (if it
625 * was any other way, the host controller would assume the ring is
626 * "empty" and wait forever for data to be queued to that stream ID).
627 */
8df75f42
SS
628
629 return stream_info;
630
631cleanup_rings:
632 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
633 cur_ring = stream_info->stream_rings[cur_stream];
634 if (cur_ring) {
635 addr = cur_ring->first_seg->dma;
636 radix_tree_delete(&stream_info->trb_address_map,
eb8ccd2b 637 addr >> TRB_SEGMENT_SHIFT);
8df75f42
SS
638 xhci_ring_free(xhci, cur_ring);
639 stream_info->stream_rings[cur_stream] = NULL;
640 }
641 }
642 xhci_free_command(xhci, stream_info->free_streams_command);
643cleanup_ctx:
644 kfree(stream_info->stream_rings);
645cleanup_info:
646 kfree(stream_info);
647cleanup_trbs:
648 xhci->cmd_ring_reserved_trbs--;
649 return NULL;
650}
651/*
652 * Sets the MaxPStreams field and the Linear Stream Array field.
653 * Sets the dequeue pointer to the stream context array.
654 */
655void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
656 struct xhci_ep_ctx *ep_ctx,
657 struct xhci_stream_info *stream_info)
658{
659 u32 max_primary_streams;
660 /* MaxPStreams is the number of stream context array entries, not the
661 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
662 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
663 */
664 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
3a7fa5be
XR
665 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
666 "Setting number of stream ctx array entries to %u",
8df75f42 667 1 << (max_primary_streams + 1));
28ccd296
ME
668 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
669 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
670 | EP_HAS_LSA);
671 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
672}
673
674/*
675 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
676 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
677 * not at the beginning of the ring).
678 */
679void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
680 struct xhci_ep_ctx *ep_ctx,
681 struct xhci_virt_ep *ep)
682{
683 dma_addr_t addr;
28ccd296 684 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 685 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 686 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
687}
688
689/* Frees all stream contexts associated with the endpoint,
690 *
691 * Caller should fix the endpoint context streams fields.
692 */
693void xhci_free_stream_info(struct xhci_hcd *xhci,
694 struct xhci_stream_info *stream_info)
695{
696 int cur_stream;
697 struct xhci_ring *cur_ring;
698 dma_addr_t addr;
699
700 if (!stream_info)
701 return;
702
703 for (cur_stream = 1; cur_stream < stream_info->num_streams;
704 cur_stream++) {
705 cur_ring = stream_info->stream_rings[cur_stream];
706 if (cur_ring) {
707 addr = cur_ring->first_seg->dma;
708 radix_tree_delete(&stream_info->trb_address_map,
eb8ccd2b 709 addr >> TRB_SEGMENT_SHIFT);
8df75f42
SS
710 xhci_ring_free(xhci, cur_ring);
711 stream_info->stream_rings[cur_stream] = NULL;
712 }
713 }
714 xhci_free_command(xhci, stream_info->free_streams_command);
715 xhci->cmd_ring_reserved_trbs--;
716 if (stream_info->stream_ctx_array)
717 xhci_free_stream_ctx(xhci,
718 stream_info->num_stream_ctxs,
719 stream_info->stream_ctx_array,
720 stream_info->ctx_array_dma);
721
722 if (stream_info)
723 kfree(stream_info->stream_rings);
724 kfree(stream_info);
725}
726
727
728/***************** Device context manipulation *************************/
729
6f5165cf
SS
730static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
731 struct xhci_virt_ep *ep)
732{
733 init_timer(&ep->stop_cmd_timer);
734 ep->stop_cmd_timer.data = (unsigned long) ep;
735 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
736 ep->xhci = xhci;
737}
738
839c817c
SS
739static void xhci_free_tt_info(struct xhci_hcd *xhci,
740 struct xhci_virt_device *virt_dev,
741 int slot_id)
742{
839c817c 743 struct list_head *tt_list_head;
46ed8f00
TI
744 struct xhci_tt_bw_info *tt_info, *next;
745 bool slot_found = false;
839c817c
SS
746
747 /* If the device never made it past the Set Address stage,
748 * it may not have the real_port set correctly.
749 */
750 if (virt_dev->real_port == 0 ||
751 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
752 xhci_dbg(xhci, "Bad real port.\n");
753 return;
754 }
755
756 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
46ed8f00
TI
757 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
758 /* Multi-TT hubs will have more than one entry */
759 if (tt_info->slot_id == slot_id) {
760 slot_found = true;
761 list_del(&tt_info->tt_list);
762 kfree(tt_info);
763 } else if (slot_found) {
839c817c 764 break;
46ed8f00 765 }
839c817c 766 }
839c817c
SS
767}
768
769int xhci_alloc_tt_info(struct xhci_hcd *xhci,
770 struct xhci_virt_device *virt_dev,
771 struct usb_device *hdev,
772 struct usb_tt *tt, gfp_t mem_flags)
773{
774 struct xhci_tt_bw_info *tt_info;
775 unsigned int num_ports;
776 int i, j;
777
778 if (!tt->multi)
779 num_ports = 1;
780 else
781 num_ports = hdev->maxchild;
782
783 for (i = 0; i < num_ports; i++, tt_info++) {
784 struct xhci_interval_bw_table *bw_table;
785
786 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
787 if (!tt_info)
788 goto free_tts;
789 INIT_LIST_HEAD(&tt_info->tt_list);
790 list_add(&tt_info->tt_list,
791 &xhci->rh_bw[virt_dev->real_port - 1].tts);
792 tt_info->slot_id = virt_dev->udev->slot_id;
793 if (tt->multi)
794 tt_info->ttport = i+1;
795 bw_table = &tt_info->bw_table;
796 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
797 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
798 }
799 return 0;
800
801free_tts:
802 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
803 return -ENOMEM;
804}
805
806
807/* All the xhci_tds in the ring's TD list should be freed at this point.
808 * Should be called with xhci->lock held if there is any chance the TT lists
809 * will be manipulated by the configure endpoint, allocate device, or update
810 * hub functions while this function is removing the TT entries from the list.
811 */
3ffbba95
SS
812void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
813{
814 struct xhci_virt_device *dev;
815 int i;
2e27980e 816 int old_active_eps = 0;
3ffbba95
SS
817
818 /* Slot ID 0 is reserved */
819 if (slot_id == 0 || !xhci->devs[slot_id])
820 return;
821
822 dev = xhci->devs[slot_id];
8e595a5d 823 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
824 if (!dev)
825 return;
826
2e27980e
SS
827 if (dev->tt_info)
828 old_active_eps = dev->tt_info->active_eps;
829
8df75f42 830 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
831 if (dev->eps[i].ring)
832 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
833 if (dev->eps[i].stream_info)
834 xhci_free_stream_info(xhci,
835 dev->eps[i].stream_info);
2e27980e
SS
836 /* Endpoints on the TT/root port lists should have been removed
837 * when usb_disable_device() was called for the device.
838 * We can't drop them anyway, because the udev might have gone
839 * away by this point, and we can't tell what speed it was.
840 */
841 if (!list_empty(&dev->eps[i].bw_endpoint_list))
842 xhci_warn(xhci, "Slot %u endpoint %u "
843 "not removed from BW list!\n",
844 slot_id, i);
8df75f42 845 }
839c817c
SS
846 /* If this is a hub, free the TT(s) from the TT list */
847 xhci_free_tt_info(xhci, dev, slot_id);
2e27980e
SS
848 /* If necessary, update the number of active TTs on this root port */
849 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
3ffbba95 850
74f9fe21
SS
851 if (dev->ring_cache) {
852 for (i = 0; i < dev->num_rings_cached; i++)
853 xhci_ring_free(xhci, dev->ring_cache[i]);
854 kfree(dev->ring_cache);
855 }
856
3ffbba95 857 if (dev->in_ctx)
d115b048 858 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 859 if (dev->out_ctx)
d115b048
JY
860 xhci_free_container_ctx(xhci, dev->out_ctx);
861
3ffbba95 862 kfree(xhci->devs[slot_id]);
326b4810 863 xhci->devs[slot_id] = NULL;
3ffbba95
SS
864}
865
866int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
867 struct usb_device *udev, gfp_t flags)
868{
3ffbba95 869 struct xhci_virt_device *dev;
63a0d9ab 870 int i;
3ffbba95
SS
871
872 /* Slot ID 0 is reserved */
873 if (slot_id == 0 || xhci->devs[slot_id]) {
874 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
875 return 0;
876 }
877
878 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
879 if (!xhci->devs[slot_id])
880 return 0;
881 dev = xhci->devs[slot_id];
882
d115b048
JY
883 /* Allocate the (output) device context that will be used in the HC. */
884 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
885 if (!dev->out_ctx)
886 goto fail;
d115b048 887
700e2052 888 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 889 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
890
891 /* Allocate the (input) device context for address device command */
d115b048 892 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
893 if (!dev->in_ctx)
894 goto fail;
d115b048 895
700e2052 896 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 897 (unsigned long long)dev->in_ctx->dma);
3ffbba95 898
6f5165cf
SS
899 /* Initialize the cancellation list and watchdog timers for each ep */
900 for (i = 0; i < 31; i++) {
901 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 902 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
2e27980e 903 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
6f5165cf 904 }
63a0d9ab 905
3ffbba95 906 /* Allocate endpoint 0 ring */
2fdcd47b 907 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
63a0d9ab 908 if (!dev->eps[0].ring)
3ffbba95
SS
909 goto fail;
910
74f9fe21
SS
911 /* Allocate pointers to the ring cache */
912 dev->ring_cache = kzalloc(
913 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
914 flags);
915 if (!dev->ring_cache)
916 goto fail;
917 dev->num_rings_cached = 0;
918
f94e0186 919 init_completion(&dev->cmd_completion);
913a8a34 920 INIT_LIST_HEAD(&dev->cmd_list);
64927730 921 dev->udev = udev;
f94e0186 922
28c2d2ef 923 /* Point to output device context in dcbaa. */
28ccd296 924 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 925 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
926 slot_id,
927 &xhci->dcbaa->dev_context_ptrs[slot_id],
f5960b69 928 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
929
930 return 1;
931fail:
932 xhci_free_virt_device(xhci, slot_id);
933 return 0;
934}
935
2d1ee590
SS
936void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
937 struct usb_device *udev)
938{
939 struct xhci_virt_device *virt_dev;
940 struct xhci_ep_ctx *ep0_ctx;
941 struct xhci_ring *ep_ring;
942
943 virt_dev = xhci->devs[udev->slot_id];
944 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
945 ep_ring = virt_dev->eps[0].ring;
946 /*
947 * FIXME we don't keep track of the dequeue pointer very well after a
948 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
949 * host to our enqueue pointer. This should only be called after a
950 * configured device has reset, so all control transfers should have
951 * been completed or cancelled before the reset.
952 */
28ccd296
ME
953 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
954 ep_ring->enqueue)
955 | ep_ring->cycle_state);
2d1ee590
SS
956}
957
f6ff0ac8
SS
958/*
959 * The xHCI roothub may have ports of differing speeds in any order in the port
960 * status registers. xhci->port_array provides an array of the port speed for
961 * each offset into the port status registers.
962 *
963 * The xHCI hardware wants to know the roothub port number that the USB device
964 * is attached to (or the roothub port its ancestor hub is attached to). All we
965 * know is the index of that port under either the USB 2.0 or the USB 3.0
966 * roothub, but that doesn't give us the real index into the HW port status
3f5eb141 967 * registers. Call xhci_find_raw_port_number() to get real index.
f6ff0ac8
SS
968 */
969static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
970 struct usb_device *udev)
971{
972 struct usb_device *top_dev;
3f5eb141
LT
973 struct usb_hcd *hcd;
974
975 if (udev->speed == USB_SPEED_SUPER)
976 hcd = xhci->shared_hcd;
977 else
978 hcd = xhci->main_hcd;
f6ff0ac8
SS
979
980 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
981 top_dev = top_dev->parent)
982 /* Found device below root hub */;
f6ff0ac8 983
3f5eb141 984 return xhci_find_raw_port_number(hcd, top_dev->portnum);
f6ff0ac8
SS
985}
986
3ffbba95
SS
987/* Setup an xHCI virtual device for a Set Address command */
988int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
989{
990 struct xhci_virt_device *dev;
991 struct xhci_ep_ctx *ep0_ctx;
d115b048 992 struct xhci_slot_ctx *slot_ctx;
f6ff0ac8 993 u32 port_num;
bd18fd5c 994 u32 max_packets;
f6ff0ac8 995 struct usb_device *top_dev;
3ffbba95
SS
996
997 dev = xhci->devs[udev->slot_id];
998 /* Slot ID 0 is reserved */
999 if (udev->slot_id == 0 || !dev) {
1000 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1001 udev->slot_id);
1002 return -EINVAL;
1003 }
d115b048 1004 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
d115b048 1005 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95 1006
3ffbba95 1007 /* 3) Only the control endpoint is valid - one endpoint context */
f5960b69 1008 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
3ffbba95
SS
1009 switch (udev->speed) {
1010 case USB_SPEED_SUPER:
f5960b69 1011 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
bd18fd5c 1012 max_packets = MAX_PACKET(512);
3ffbba95
SS
1013 break;
1014 case USB_SPEED_HIGH:
f5960b69 1015 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
bd18fd5c 1016 max_packets = MAX_PACKET(64);
3ffbba95 1017 break;
bd18fd5c 1018 /* USB core guesses at a 64-byte max packet first for FS devices */
3ffbba95 1019 case USB_SPEED_FULL:
f5960b69 1020 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
bd18fd5c 1021 max_packets = MAX_PACKET(64);
3ffbba95
SS
1022 break;
1023 case USB_SPEED_LOW:
f5960b69 1024 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
bd18fd5c 1025 max_packets = MAX_PACKET(8);
3ffbba95 1026 break;
551cdbbe 1027 case USB_SPEED_WIRELESS:
3ffbba95
SS
1028 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1029 return -EINVAL;
1030 break;
1031 default:
1032 /* Speed was set earlier, this shouldn't happen. */
bd18fd5c 1033 return -EINVAL;
3ffbba95
SS
1034 }
1035 /* Find the root hub port this device is under */
f6ff0ac8
SS
1036 port_num = xhci_find_real_port_number(xhci, udev);
1037 if (!port_num)
1038 return -EINVAL;
f5960b69 1039 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
f6ff0ac8 1040 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
1041 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1042 top_dev = top_dev->parent)
1043 /* Found device below root hub */;
fe30182c 1044 dev->fake_port = top_dev->portnum;
66381755 1045 dev->real_port = port_num;
f6ff0ac8 1046 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
fe30182c 1047 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
3ffbba95 1048
839c817c
SS
1049 /* Find the right bandwidth table that this device will be a part of.
1050 * If this is a full speed device attached directly to a root port (or a
1051 * decendent of one), it counts as a primary bandwidth domain, not a
1052 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1053 * will never be created for the HS root hub.
1054 */
1055 if (!udev->tt || !udev->tt->hub->parent) {
1056 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1057 } else {
1058 struct xhci_root_port_bw_info *rh_bw;
1059 struct xhci_tt_bw_info *tt_bw;
1060
1061 rh_bw = &xhci->rh_bw[port_num - 1];
1062 /* Find the right TT. */
1063 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1064 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1065 continue;
1066
1067 if (!dev->udev->tt->multi ||
1068 (udev->tt->multi &&
1069 tt_bw->ttport == dev->udev->ttport)) {
1070 dev->bw_table = &tt_bw->bw_table;
1071 dev->tt_info = tt_bw;
1072 break;
1073 }
1074 }
1075 if (!dev->tt_info)
1076 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1077 }
1078
aa1b13ef
SS
1079 /* Is this a LS/FS device under an external HS hub? */
1080 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
1081 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1082 (udev->ttport << 8));
07b6de10 1083 if (udev->tt->multi)
28ccd296 1084 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 1085 }
700e2052 1086 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
1087 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1088
1089 /* Step 4 - ring already allocated */
1090 /* Step 5 */
28ccd296 1091 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
bd18fd5c 1092
3ffbba95 1093 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
bd18fd5c
MN
1094 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1095 max_packets);
3ffbba95 1096
28ccd296
ME
1097 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1098 dev->eps[0].ring->cycle_state);
3ffbba95
SS
1099
1100 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1101
1102 return 0;
1103}
1104
dfa49c4a
DT
1105/*
1106 * Convert interval expressed as 2^(bInterval - 1) == interval into
1107 * straight exponent value 2^n == interval.
1108 *
1109 */
1110static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1111 struct usb_host_endpoint *ep)
1112{
1113 unsigned int interval;
1114
1115 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1116 if (interval != ep->desc.bInterval - 1)
1117 dev_warn(&udev->dev,
cd3c18ba 1118 "ep %#x - rounding interval to %d %sframes\n",
dfa49c4a 1119 ep->desc.bEndpointAddress,
cd3c18ba
DT
1120 1 << interval,
1121 udev->speed == USB_SPEED_FULL ? "" : "micro");
1122
1123 if (udev->speed == USB_SPEED_FULL) {
1124 /*
1125 * Full speed isoc endpoints specify interval in frames,
1126 * not microframes. We are using microframes everywhere,
1127 * so adjust accordingly.
1128 */
1129 interval += 3; /* 1 frame = 2^3 uframes */
1130 }
dfa49c4a
DT
1131
1132 return interval;
1133}
1134
1135/*
340a3504 1136 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
dfa49c4a
DT
1137 * microframes, rounded down to nearest power of 2.
1138 */
340a3504
SS
1139static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1140 struct usb_host_endpoint *ep, unsigned int desc_interval,
1141 unsigned int min_exponent, unsigned int max_exponent)
dfa49c4a
DT
1142{
1143 unsigned int interval;
1144
340a3504
SS
1145 interval = fls(desc_interval) - 1;
1146 interval = clamp_val(interval, min_exponent, max_exponent);
1147 if ((1 << interval) != desc_interval)
dfa49c4a
DT
1148 dev_warn(&udev->dev,
1149 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1150 ep->desc.bEndpointAddress,
1151 1 << interval,
340a3504 1152 desc_interval);
dfa49c4a
DT
1153
1154 return interval;
1155}
1156
340a3504
SS
1157static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1158 struct usb_host_endpoint *ep)
1159{
55c1945e
SS
1160 if (ep->desc.bInterval == 0)
1161 return 0;
340a3504
SS
1162 return xhci_microframes_to_exponent(udev, ep,
1163 ep->desc.bInterval, 0, 15);
1164}
1165
1166
1167static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1168 struct usb_host_endpoint *ep)
1169{
1170 return xhci_microframes_to_exponent(udev, ep,
1171 ep->desc.bInterval * 8, 3, 10);
1172}
1173
f94e0186
SS
1174/* Return the polling or NAK interval.
1175 *
1176 * The polling interval is expressed in "microframes". If xHCI's Interval field
1177 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1178 *
1179 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1180 * is set to 0.
1181 */
575688e1 1182static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1183 struct usb_host_endpoint *ep)
1184{
1185 unsigned int interval = 0;
1186
1187 switch (udev->speed) {
1188 case USB_SPEED_HIGH:
1189 /* Max NAK rate */
1190 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1191 usb_endpoint_xfer_bulk(&ep->desc)) {
340a3504 1192 interval = xhci_parse_microframe_interval(udev, ep);
dfa49c4a
DT
1193 break;
1194 }
f94e0186 1195 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1196
f94e0186
SS
1197 case USB_SPEED_SUPER:
1198 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1199 usb_endpoint_xfer_isoc(&ep->desc)) {
1200 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1201 }
1202 break;
dfa49c4a 1203
f94e0186 1204 case USB_SPEED_FULL:
b513d447 1205 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1206 interval = xhci_parse_exponent_interval(udev, ep);
1207 break;
1208 }
1209 /*
b513d447 1210 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1211 * since it uses the same rules as low speed interrupt
1212 * endpoints.
1213 */
1214
f94e0186
SS
1215 case USB_SPEED_LOW:
1216 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1217 usb_endpoint_xfer_isoc(&ep->desc)) {
1218
1219 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1220 }
1221 break;
dfa49c4a 1222
f94e0186
SS
1223 default:
1224 BUG();
1225 }
1226 return EP_INTERVAL(interval);
1227}
1228
c30c791c 1229/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1230 * High speed endpoint descriptors can define "the number of additional
1231 * transaction opportunities per microframe", but that goes in the Max Burst
1232 * endpoint context field.
1233 */
575688e1 1234static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1235 struct usb_host_endpoint *ep)
1236{
c30c791c
SS
1237 if (udev->speed != USB_SPEED_SUPER ||
1238 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1239 return 0;
842f1690 1240 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1241}
1242
575688e1 1243static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1244 struct usb_host_endpoint *ep)
1245{
1246 int in;
1247 u32 type;
1248
1249 in = usb_endpoint_dir_in(&ep->desc);
1250 if (usb_endpoint_xfer_control(&ep->desc)) {
1251 type = EP_TYPE(CTRL_EP);
1252 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1253 if (in)
1254 type = EP_TYPE(BULK_IN_EP);
1255 else
1256 type = EP_TYPE(BULK_OUT_EP);
1257 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1258 if (in)
1259 type = EP_TYPE(ISOC_IN_EP);
1260 else
1261 type = EP_TYPE(ISOC_OUT_EP);
1262 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1263 if (in)
1264 type = EP_TYPE(INT_IN_EP);
1265 else
1266 type = EP_TYPE(INT_OUT_EP);
1267 } else {
17d65554 1268 type = 0;
f94e0186
SS
1269 }
1270 return type;
1271}
1272
9238f25d
SS
1273/* Return the maximum endpoint service interval time (ESIT) payload.
1274 * Basically, this is the maxpacket size, multiplied by the burst size
1275 * and mult size.
1276 */
575688e1 1277static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1278 struct usb_device *udev,
1279 struct usb_host_endpoint *ep)
1280{
1281 int max_burst;
1282 int max_packet;
1283
1284 /* Only applies for interrupt or isochronous endpoints */
1285 if (usb_endpoint_xfer_control(&ep->desc) ||
1286 usb_endpoint_xfer_bulk(&ep->desc))
1287 return 0;
1288
842f1690 1289 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1290 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1291
29cc8897
KM
1292 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1293 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
9238f25d
SS
1294 /* A 0 in max burst means 1 transfer per ESIT */
1295 return max_packet * (max_burst + 1);
1296}
1297
8df75f42
SS
1298/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1299 * Drivers will have to call usb_alloc_streams() to do that.
1300 */
f94e0186
SS
1301int xhci_endpoint_init(struct xhci_hcd *xhci,
1302 struct xhci_virt_device *virt_dev,
1303 struct usb_device *udev,
f88ba78d
SS
1304 struct usb_host_endpoint *ep,
1305 gfp_t mem_flags)
f94e0186
SS
1306{
1307 unsigned int ep_index;
1308 struct xhci_ep_ctx *ep_ctx;
1309 struct xhci_ring *ep_ring;
1310 unsigned int max_packet;
1311 unsigned int max_burst;
3b72fca0 1312 enum xhci_ring_type type;
9238f25d 1313 u32 max_esit_payload;
17d65554 1314 u32 endpoint_type;
f94e0186
SS
1315
1316 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1317 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186 1318
17d65554
MN
1319 endpoint_type = xhci_get_endpoint_type(udev, ep);
1320 if (!endpoint_type)
1321 return -EINVAL;
1322 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1323
3b72fca0 1324 type = usb_endpoint_type(&ep->desc);
f94e0186 1325 /* Set up the endpoint ring */
8dfec614 1326 virt_dev->eps[ep_index].new_ring =
2fdcd47b 1327 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
74f9fe21
SS
1328 if (!virt_dev->eps[ep_index].new_ring) {
1329 /* Attempt to use the ring cache */
1330 if (virt_dev->num_rings_cached == 0)
1331 return -ENOMEM;
1332 virt_dev->eps[ep_index].new_ring =
1333 virt_dev->ring_cache[virt_dev->num_rings_cached];
1334 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1335 virt_dev->num_rings_cached--;
7e393a83 1336 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
186a7ef1 1337 1, type);
74f9fe21 1338 }
d18240db 1339 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1340 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1341 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1342
28ccd296
ME
1343 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1344 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1345
1346 /* FIXME dig Mult and streams info out of ep companion desc */
1347
47692d17 1348 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1349 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1350 */
f94e0186 1351 if (!usb_endpoint_xfer_isoc(&ep->desc))
17d65554 1352 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
f94e0186 1353 else
17d65554 1354 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
f94e0186
SS
1355
1356 /* Set the max packet size and max burst */
e4f47e36
AS
1357 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1358 max_burst = 0;
f94e0186
SS
1359 switch (udev->speed) {
1360 case USB_SPEED_SUPER:
b10de142 1361 /* dig out max burst from ep companion desc */
e4f47e36 1362 max_burst = ep->ss_ep_comp.bMaxBurst;
f94e0186
SS
1363 break;
1364 case USB_SPEED_HIGH:
e4f47e36
AS
1365 /* Some devices get this wrong */
1366 if (usb_endpoint_xfer_bulk(&ep->desc))
1367 max_packet = 512;
f94e0186
SS
1368 /* bits 11:12 specify the number of additional transaction
1369 * opportunities per microframe (USB 2.0, section 9.6.6)
1370 */
1371 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1372 usb_endpoint_xfer_int(&ep->desc)) {
29cc8897 1373 max_burst = (usb_endpoint_maxp(&ep->desc)
28ccd296 1374 & 0x1800) >> 11;
f94e0186 1375 }
e4f47e36 1376 break;
f94e0186
SS
1377 case USB_SPEED_FULL:
1378 case USB_SPEED_LOW:
f94e0186
SS
1379 break;
1380 default:
1381 BUG();
1382 }
e4f47e36
AS
1383 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1384 MAX_BURST(max_burst));
9238f25d 1385 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1386 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1387
1388 /*
1389 * XXX no idea how to calculate the average TRB buffer length for bulk
1390 * endpoints, as the driver gives us no clue how big each scatter gather
1391 * list entry (or buffer) is going to be.
1392 *
1393 * For isochronous and interrupt endpoints, we set it to the max
1394 * available, until we have new API in the USB core to allow drivers to
1395 * declare how much bandwidth they actually need.
1396 *
1397 * Normally, it would be calculated by taking the total of the buffer
1398 * lengths in the TD and then dividing by the number of TRBs in a TD,
1399 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1400 * use Event Data TRBs, and we don't chain in a link TRB on short
1401 * transfers, we're basically dividing by 1.
51eb01a7
AX
1402 *
1403 * xHCI 1.0 specification indicates that the Average TRB Length should
1404 * be set to 8 for control endpoints.
9238f25d 1405 */
51eb01a7
AX
1406 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1407 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1408 else
1409 ep_ctx->tx_info |=
1410 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1411
f94e0186
SS
1412 /* FIXME Debug endpoint context */
1413 return 0;
1414}
1415
1416void xhci_endpoint_zero(struct xhci_hcd *xhci,
1417 struct xhci_virt_device *virt_dev,
1418 struct usb_host_endpoint *ep)
1419{
1420 unsigned int ep_index;
1421 struct xhci_ep_ctx *ep_ctx;
1422
1423 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1424 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1425
1426 ep_ctx->ep_info = 0;
1427 ep_ctx->ep_info2 = 0;
8e595a5d 1428 ep_ctx->deq = 0;
f94e0186
SS
1429 ep_ctx->tx_info = 0;
1430 /* Don't free the endpoint ring until the set interface or configuration
1431 * request succeeds.
1432 */
1433}
1434
9af5d71d
SS
1435void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1436{
1437 bw_info->ep_interval = 0;
1438 bw_info->mult = 0;
1439 bw_info->num_packets = 0;
1440 bw_info->max_packet_size = 0;
1441 bw_info->type = 0;
1442 bw_info->max_esit_payload = 0;
1443}
1444
1445void xhci_update_bw_info(struct xhci_hcd *xhci,
1446 struct xhci_container_ctx *in_ctx,
1447 struct xhci_input_control_ctx *ctrl_ctx,
1448 struct xhci_virt_device *virt_dev)
1449{
1450 struct xhci_bw_info *bw_info;
1451 struct xhci_ep_ctx *ep_ctx;
1452 unsigned int ep_type;
1453 int i;
1454
1455 for (i = 1; i < 31; ++i) {
1456 bw_info = &virt_dev->eps[i].bw_info;
1457
1458 /* We can't tell what endpoint type is being dropped, but
1459 * unconditionally clearing the bandwidth info for non-periodic
1460 * endpoints should be harmless because the info will never be
1461 * set in the first place.
1462 */
1463 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1464 /* Dropped endpoint */
1465 xhci_clear_endpoint_bw_info(bw_info);
1466 continue;
1467 }
1468
1469 if (EP_IS_ADDED(ctrl_ctx, i)) {
1470 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1471 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1472
1473 /* Ignore non-periodic endpoints */
1474 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1475 ep_type != ISOC_IN_EP &&
1476 ep_type != INT_IN_EP)
1477 continue;
1478
1479 /* Added or changed endpoint */
1480 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1481 le32_to_cpu(ep_ctx->ep_info));
170c0263
SS
1482 /* Number of packets and mult are zero-based in the
1483 * input context, but we want one-based for the
1484 * interval table.
9af5d71d 1485 */
170c0263
SS
1486 bw_info->mult = CTX_TO_EP_MULT(
1487 le32_to_cpu(ep_ctx->ep_info)) + 1;
9af5d71d
SS
1488 bw_info->num_packets = CTX_TO_MAX_BURST(
1489 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1490 bw_info->max_packet_size = MAX_PACKET_DECODED(
1491 le32_to_cpu(ep_ctx->ep_info2));
1492 bw_info->type = ep_type;
1493 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1494 le32_to_cpu(ep_ctx->tx_info));
1495 }
1496 }
1497}
1498
f2217e8e
SS
1499/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1500 * Useful when you want to change one particular aspect of the endpoint and then
1501 * issue a configure endpoint command.
1502 */
1503void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1504 struct xhci_container_ctx *in_ctx,
1505 struct xhci_container_ctx *out_ctx,
1506 unsigned int ep_index)
f2217e8e
SS
1507{
1508 struct xhci_ep_ctx *out_ep_ctx;
1509 struct xhci_ep_ctx *in_ep_ctx;
1510
913a8a34
SS
1511 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1512 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1513
1514 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1515 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1516 in_ep_ctx->deq = out_ep_ctx->deq;
1517 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1518}
1519
1520/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1521 * Useful when you want to change one particular aspect of the endpoint and then
1522 * issue a configure endpoint command. Only the context entries field matters,
1523 * but we'll copy the whole thing anyway.
1524 */
913a8a34
SS
1525void xhci_slot_copy(struct xhci_hcd *xhci,
1526 struct xhci_container_ctx *in_ctx,
1527 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1528{
1529 struct xhci_slot_ctx *in_slot_ctx;
1530 struct xhci_slot_ctx *out_slot_ctx;
1531
913a8a34
SS
1532 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1533 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1534
1535 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1536 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1537 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1538 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1539}
1540
254c80a3
JY
1541/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1542static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1543{
1544 int i;
1545 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1546 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1547
d195fcff
XR
1548 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1549 "Allocating %d scratchpad buffers", num_sp);
254c80a3
JY
1550
1551 if (!num_sp)
1552 return 0;
1553
1554 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1555 if (!xhci->scratchpad)
1556 goto fail_sp;
1557
22d45f01 1558 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
254c80a3 1559 num_sp * sizeof(u64),
22d45f01 1560 &xhci->scratchpad->sp_dma, flags);
254c80a3
JY
1561 if (!xhci->scratchpad->sp_array)
1562 goto fail_sp2;
1563
1564 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1565 if (!xhci->scratchpad->sp_buffers)
1566 goto fail_sp3;
1567
1568 xhci->scratchpad->sp_dma_buffers =
1569 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1570
1571 if (!xhci->scratchpad->sp_dma_buffers)
1572 goto fail_sp4;
1573
28ccd296 1574 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1575 for (i = 0; i < num_sp; i++) {
1576 dma_addr_t dma;
22d45f01
SAS
1577 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1578 flags);
254c80a3
JY
1579 if (!buf)
1580 goto fail_sp5;
1581
1582 xhci->scratchpad->sp_array[i] = dma;
1583 xhci->scratchpad->sp_buffers[i] = buf;
1584 xhci->scratchpad->sp_dma_buffers[i] = dma;
1585 }
1586
1587 return 0;
1588
1589 fail_sp5:
1590 for (i = i - 1; i >= 0; i--) {
22d45f01 1591 dma_free_coherent(dev, xhci->page_size,
254c80a3
JY
1592 xhci->scratchpad->sp_buffers[i],
1593 xhci->scratchpad->sp_dma_buffers[i]);
1594 }
1595 kfree(xhci->scratchpad->sp_dma_buffers);
1596
1597 fail_sp4:
1598 kfree(xhci->scratchpad->sp_buffers);
1599
1600 fail_sp3:
22d45f01 1601 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1602 xhci->scratchpad->sp_array,
1603 xhci->scratchpad->sp_dma);
1604
1605 fail_sp2:
1606 kfree(xhci->scratchpad);
1607 xhci->scratchpad = NULL;
1608
1609 fail_sp:
1610 return -ENOMEM;
1611}
1612
1613static void scratchpad_free(struct xhci_hcd *xhci)
1614{
1615 int num_sp;
1616 int i;
1617 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1618
1619 if (!xhci->scratchpad)
1620 return;
1621
1622 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1623
1624 for (i = 0; i < num_sp; i++) {
22d45f01 1625 dma_free_coherent(&pdev->dev, xhci->page_size,
254c80a3
JY
1626 xhci->scratchpad->sp_buffers[i],
1627 xhci->scratchpad->sp_dma_buffers[i]);
1628 }
1629 kfree(xhci->scratchpad->sp_dma_buffers);
1630 kfree(xhci->scratchpad->sp_buffers);
22d45f01 1631 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
254c80a3
JY
1632 xhci->scratchpad->sp_array,
1633 xhci->scratchpad->sp_dma);
1634 kfree(xhci->scratchpad);
1635 xhci->scratchpad = NULL;
1636}
1637
913a8a34 1638struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1639 bool allocate_in_ctx, bool allocate_completion,
1640 gfp_t mem_flags)
913a8a34
SS
1641{
1642 struct xhci_command *command;
1643
1644 command = kzalloc(sizeof(*command), mem_flags);
1645 if (!command)
1646 return NULL;
1647
a1d78c16
SS
1648 if (allocate_in_ctx) {
1649 command->in_ctx =
1650 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1651 mem_flags);
1652 if (!command->in_ctx) {
1653 kfree(command);
1654 return NULL;
1655 }
06e18291 1656 }
913a8a34
SS
1657
1658 if (allocate_completion) {
1659 command->completion =
1660 kzalloc(sizeof(struct completion), mem_flags);
1661 if (!command->completion) {
1662 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1663 kfree(command);
913a8a34
SS
1664 return NULL;
1665 }
1666 init_completion(command->completion);
1667 }
1668
1669 command->status = 0;
1670 INIT_LIST_HEAD(&command->cmd_list);
1671 return command;
1672}
1673
8e51adcc
AX
1674void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1675{
2ffdea25
AX
1676 if (urb_priv) {
1677 kfree(urb_priv->td[0]);
1678 kfree(urb_priv);
8e51adcc 1679 }
8e51adcc
AX
1680}
1681
913a8a34
SS
1682void xhci_free_command(struct xhci_hcd *xhci,
1683 struct xhci_command *command)
1684{
1685 xhci_free_container_ctx(xhci,
1686 command->in_ctx);
1687 kfree(command->completion);
1688 kfree(command);
1689}
1690
66d4eadd
SS
1691void xhci_mem_cleanup(struct xhci_hcd *xhci)
1692{
0ebbab37 1693 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
9574323c 1694 struct dev_info *dev_info, *next;
b92cc66c 1695 struct xhci_cd *cur_cd, *next_cd;
9574323c 1696 unsigned long flags;
0ebbab37 1697 int size;
32f1d2c5 1698 int i, j, num_ports;
0ebbab37
SS
1699
1700 /* Free the Event Ring Segment Table and the actual Event Ring */
0ebbab37
SS
1701 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1702 if (xhci->erst.entries)
22d45f01 1703 dma_free_coherent(&pdev->dev, size,
0ebbab37
SS
1704 xhci->erst.entries, xhci->erst.erst_dma_addr);
1705 xhci->erst.entries = NULL;
d195fcff 1706 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
0ebbab37
SS
1707 if (xhci->event_ring)
1708 xhci_ring_free(xhci, xhci->event_ring);
1709 xhci->event_ring = NULL;
d195fcff 1710 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
0ebbab37 1711
dbc33303
SS
1712 if (xhci->lpm_command)
1713 xhci_free_command(xhci, xhci->lpm_command);
33b2831a 1714 xhci->cmd_ring_reserved_trbs = 0;
0ebbab37
SS
1715 if (xhci->cmd_ring)
1716 xhci_ring_free(xhci, xhci->cmd_ring);
1717 xhci->cmd_ring = NULL;
d195fcff 1718 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
b92cc66c
EF
1719 list_for_each_entry_safe(cur_cd, next_cd,
1720 &xhci->cancel_cmd_list, cancel_cmd_list) {
1721 list_del(&cur_cd->cancel_cmd_list);
1722 kfree(cur_cd);
1723 }
3ffbba95
SS
1724
1725 for (i = 1; i < MAX_HC_SLOTS; ++i)
1726 xhci_free_virt_device(xhci, i);
1727
0ebbab37
SS
1728 if (xhci->segment_pool)
1729 dma_pool_destroy(xhci->segment_pool);
1730 xhci->segment_pool = NULL;
d195fcff 1731 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
3ffbba95
SS
1732
1733 if (xhci->device_pool)
1734 dma_pool_destroy(xhci->device_pool);
1735 xhci->device_pool = NULL;
d195fcff 1736 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
3ffbba95 1737
8df75f42
SS
1738 if (xhci->small_streams_pool)
1739 dma_pool_destroy(xhci->small_streams_pool);
1740 xhci->small_streams_pool = NULL;
d195fcff
XR
1741 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1742 "Freed small stream array pool");
8df75f42
SS
1743
1744 if (xhci->medium_streams_pool)
1745 dma_pool_destroy(xhci->medium_streams_pool);
1746 xhci->medium_streams_pool = NULL;
d195fcff
XR
1747 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1748 "Freed medium stream array pool");
8df75f42 1749
a74588f9 1750 if (xhci->dcbaa)
22d45f01 1751 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
a74588f9
SS
1752 xhci->dcbaa, xhci->dcbaa->dma);
1753 xhci->dcbaa = NULL;
3ffbba95 1754
5294bea4 1755 scratchpad_free(xhci);
da6699ce 1756
9574323c
AX
1757 spin_lock_irqsave(&xhci->lock, flags);
1758 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1759 list_del(&dev_info->list);
1760 kfree(dev_info);
1761 }
1762 spin_unlock_irqrestore(&xhci->lock, flags);
1763
88696ae4
VM
1764 if (!xhci->rh_bw)
1765 goto no_bw;
1766
32f1d2c5
TI
1767 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1768 for (i = 0; i < num_ports; i++) {
1769 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1770 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1771 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1772 while (!list_empty(ep))
1773 list_del_init(ep->next);
f8a9e72d
ON
1774 }
1775 }
1776
32f1d2c5
TI
1777 for (i = 0; i < num_ports; i++) {
1778 struct xhci_tt_bw_info *tt, *n;
1779 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1780 list_del(&tt->tt_list);
1781 kfree(tt);
1782 }
f8a9e72d
ON
1783 }
1784
88696ae4 1785no_bw:
da6699ce
SS
1786 xhci->num_usb2_ports = 0;
1787 xhci->num_usb3_ports = 0;
f8a9e72d 1788 xhci->num_active_eps = 0;
da6699ce
SS
1789 kfree(xhci->usb2_ports);
1790 kfree(xhci->usb3_ports);
1791 kfree(xhci->port_array);
839c817c 1792 kfree(xhci->rh_bw);
b630d4b9 1793 kfree(xhci->ext_caps);
da6699ce 1794
66d4eadd
SS
1795 xhci->page_size = 0;
1796 xhci->page_shift = 0;
20b67cf5 1797 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1798 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1799}
1800
6648f29d
SS
1801static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1802 struct xhci_segment *input_seg,
1803 union xhci_trb *start_trb,
1804 union xhci_trb *end_trb,
1805 dma_addr_t input_dma,
1806 struct xhci_segment *result_seg,
1807 char *test_name, int test_number)
1808{
1809 unsigned long long start_dma;
1810 unsigned long long end_dma;
1811 struct xhci_segment *seg;
1812
1813 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1814 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1815
1816 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1817 if (seg != result_seg) {
1818 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1819 test_name, test_number);
1820 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1821 "input DMA 0x%llx\n",
1822 input_seg,
1823 (unsigned long long) input_dma);
1824 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1825 "ending TRB %p (0x%llx DMA)\n",
1826 start_trb, start_dma,
1827 end_trb, end_dma);
1828 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1829 result_seg, seg);
1830 return -1;
1831 }
1832 return 0;
1833}
1834
1835/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1836static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1837{
1838 struct {
1839 dma_addr_t input_dma;
1840 struct xhci_segment *result_seg;
1841 } simple_test_vector [] = {
1842 /* A zeroed DMA field should fail */
1843 { 0, NULL },
1844 /* One TRB before the ring start should fail */
1845 { xhci->event_ring->first_seg->dma - 16, NULL },
1846 /* One byte before the ring start should fail */
1847 { xhci->event_ring->first_seg->dma - 1, NULL },
1848 /* Starting TRB should succeed */
1849 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1850 /* Ending TRB should succeed */
1851 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1852 xhci->event_ring->first_seg },
1853 /* One byte after the ring end should fail */
1854 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1855 /* One TRB after the ring end should fail */
1856 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1857 /* An address of all ones should fail */
1858 { (dma_addr_t) (~0), NULL },
1859 };
1860 struct {
1861 struct xhci_segment *input_seg;
1862 union xhci_trb *start_trb;
1863 union xhci_trb *end_trb;
1864 dma_addr_t input_dma;
1865 struct xhci_segment *result_seg;
1866 } complex_test_vector [] = {
1867 /* Test feeding a valid DMA address from a different ring */
1868 { .input_seg = xhci->event_ring->first_seg,
1869 .start_trb = xhci->event_ring->first_seg->trbs,
1870 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1871 .input_dma = xhci->cmd_ring->first_seg->dma,
1872 .result_seg = NULL,
1873 },
1874 /* Test feeding a valid end TRB from a different ring */
1875 { .input_seg = xhci->event_ring->first_seg,
1876 .start_trb = xhci->event_ring->first_seg->trbs,
1877 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1878 .input_dma = xhci->cmd_ring->first_seg->dma,
1879 .result_seg = NULL,
1880 },
1881 /* Test feeding a valid start and end TRB from a different ring */
1882 { .input_seg = xhci->event_ring->first_seg,
1883 .start_trb = xhci->cmd_ring->first_seg->trbs,
1884 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1885 .input_dma = xhci->cmd_ring->first_seg->dma,
1886 .result_seg = NULL,
1887 },
1888 /* TRB in this ring, but after this TD */
1889 { .input_seg = xhci->event_ring->first_seg,
1890 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1891 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1892 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1893 .result_seg = NULL,
1894 },
1895 /* TRB in this ring, but before this TD */
1896 { .input_seg = xhci->event_ring->first_seg,
1897 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1898 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1899 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1900 .result_seg = NULL,
1901 },
1902 /* TRB in this ring, but after this wrapped TD */
1903 { .input_seg = xhci->event_ring->first_seg,
1904 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1905 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1906 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1907 .result_seg = NULL,
1908 },
1909 /* TRB in this ring, but before this wrapped TD */
1910 { .input_seg = xhci->event_ring->first_seg,
1911 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1912 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1913 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1914 .result_seg = NULL,
1915 },
1916 /* TRB not in this ring, and we have a wrapped TD */
1917 { .input_seg = xhci->event_ring->first_seg,
1918 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1919 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1920 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1921 .result_seg = NULL,
1922 },
1923 };
1924
1925 unsigned int num_tests;
1926 int i, ret;
1927
e10fa478 1928 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
1929 for (i = 0; i < num_tests; i++) {
1930 ret = xhci_test_trb_in_td(xhci,
1931 xhci->event_ring->first_seg,
1932 xhci->event_ring->first_seg->trbs,
1933 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1934 simple_test_vector[i].input_dma,
1935 simple_test_vector[i].result_seg,
1936 "Simple", i);
1937 if (ret < 0)
1938 return ret;
1939 }
1940
e10fa478 1941 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
1942 for (i = 0; i < num_tests; i++) {
1943 ret = xhci_test_trb_in_td(xhci,
1944 complex_test_vector[i].input_seg,
1945 complex_test_vector[i].start_trb,
1946 complex_test_vector[i].end_trb,
1947 complex_test_vector[i].input_dma,
1948 complex_test_vector[i].result_seg,
1949 "Complex", i);
1950 if (ret < 0)
1951 return ret;
1952 }
1953 xhci_dbg(xhci, "TRB math tests passed.\n");
1954 return 0;
1955}
1956
257d585a
SS
1957static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1958{
1959 u64 temp;
1960 dma_addr_t deq;
1961
1962 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1963 xhci->event_ring->dequeue);
1964 if (deq == 0 && !in_interrupt())
1965 xhci_warn(xhci, "WARN something wrong with SW event ring "
1966 "dequeue ptr.\n");
1967 /* Update HC event ring dequeue pointer */
1968 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1969 temp &= ERST_PTR_MASK;
1970 /* Don't clear the EHB bit (which is RW1C) because
1971 * there might be more events to service.
1972 */
1973 temp &= ~ERST_EHB;
d195fcff
XR
1974 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1975 "// Write event ring dequeue pointer, "
1976 "preserving EHB bit");
257d585a
SS
1977 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1978 &xhci->ir_set->erst_dequeue);
1979}
1980
da6699ce 1981static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
b630d4b9 1982 __le32 __iomem *addr, u8 major_revision, int max_caps)
da6699ce
SS
1983{
1984 u32 temp, port_offset, port_count;
1985 int i;
1986
1987 if (major_revision > 0x03) {
1988 xhci_warn(xhci, "Ignoring unknown port speed, "
1989 "Ext Cap %p, revision = 0x%x\n",
1990 addr, major_revision);
1991 /* Ignoring port protocol we can't understand. FIXME */
1992 return;
1993 }
1994
1995 /* Port offset and count in the third dword, see section 7.2 */
1996 temp = xhci_readl(xhci, addr + 2);
1997 port_offset = XHCI_EXT_PORT_OFF(temp);
1998 port_count = XHCI_EXT_PORT_COUNT(temp);
d195fcff
XR
1999 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2000 "Ext Cap %p, port offset = %u, "
2001 "count = %u, revision = 0x%x",
da6699ce
SS
2002 addr, port_offset, port_count, major_revision);
2003 /* Port count includes the current port offset */
2004 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2005 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2006 return;
fc71ff75 2007
b630d4b9
MN
2008 /* cache usb2 port capabilities */
2009 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2010 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2011
fc71ff75
AX
2012 /* Check the host's USB2 LPM capability */
2013 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2014 (temp & XHCI_L1C)) {
d195fcff
XR
2015 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2016 "xHCI 0.96: support USB2 software lpm");
fc71ff75
AX
2017 xhci->sw_lpm_support = 1;
2018 }
2019
2020 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
d195fcff
XR
2021 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2022 "xHCI 1.0: support USB2 software lpm");
fc71ff75
AX
2023 xhci->sw_lpm_support = 1;
2024 if (temp & XHCI_HLC) {
d195fcff
XR
2025 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2026 "xHCI 1.0: support USB2 hardware lpm");
fc71ff75
AX
2027 xhci->hw_lpm_support = 1;
2028 }
2029 }
2030
da6699ce
SS
2031 port_offset--;
2032 for (i = port_offset; i < (port_offset + port_count); i++) {
2033 /* Duplicate entry. Ignore the port if the revisions differ. */
2034 if (xhci->port_array[i] != 0) {
2035 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2036 " port %u\n", addr, i);
2037 xhci_warn(xhci, "Port was marked as USB %u, "
2038 "duplicated as USB %u\n",
2039 xhci->port_array[i], major_revision);
2040 /* Only adjust the roothub port counts if we haven't
2041 * found a similar duplicate.
2042 */
2043 if (xhci->port_array[i] != major_revision &&
22e04870 2044 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
2045 if (xhci->port_array[i] == 0x03)
2046 xhci->num_usb3_ports--;
2047 else
2048 xhci->num_usb2_ports--;
22e04870 2049 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
2050 }
2051 /* FIXME: Should we disable the port? */
f8bbeabc 2052 continue;
da6699ce
SS
2053 }
2054 xhci->port_array[i] = major_revision;
2055 if (major_revision == 0x03)
2056 xhci->num_usb3_ports++;
2057 else
2058 xhci->num_usb2_ports++;
2059 }
2060 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2061}
2062
2063/*
2064 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2065 * specify what speeds each port is supposed to be. We can't count on the port
2066 * speed bits in the PORTSC register being correct until a device is connected,
2067 * but we need to set up the two fake roothubs with the correct number of USB
2068 * 3.0 and USB 2.0 ports at host controller initialization time.
2069 */
2070static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2071{
b630d4b9
MN
2072 __le32 __iomem *addr, *tmp_addr;
2073 u32 offset, tmp_offset;
da6699ce 2074 unsigned int num_ports;
2e27980e 2075 int i, j, port_index;
b630d4b9 2076 int cap_count = 0;
da6699ce
SS
2077
2078 addr = &xhci->cap_regs->hcc_params;
2079 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2080 if (offset == 0) {
2081 xhci_err(xhci, "No Extended Capability registers, "
2082 "unable to set up roothub.\n");
2083 return -ENODEV;
2084 }
2085
2086 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2087 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2088 if (!xhci->port_array)
2089 return -ENOMEM;
2090
839c817c
SS
2091 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2092 if (!xhci->rh_bw)
2093 return -ENOMEM;
2e27980e
SS
2094 for (i = 0; i < num_ports; i++) {
2095 struct xhci_interval_bw_table *bw_table;
2096
839c817c 2097 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2e27980e
SS
2098 bw_table = &xhci->rh_bw[i].bw_table;
2099 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2100 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2101 }
839c817c 2102
da6699ce
SS
2103 /*
2104 * For whatever reason, the first capability offset is from the
2105 * capability register base, not from the HCCPARAMS register.
2106 * See section 5.3.6 for offset calculation.
2107 */
2108 addr = &xhci->cap_regs->hc_capbase + offset;
b630d4b9
MN
2109
2110 tmp_addr = addr;
2111 tmp_offset = offset;
2112
2113 /* count extended protocol capability entries for later caching */
2114 do {
2115 u32 cap_id;
2116 cap_id = xhci_readl(xhci, tmp_addr);
2117 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2118 cap_count++;
2119 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2120 tmp_addr += tmp_offset;
2121 } while (tmp_offset);
2122
2123 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2124 if (!xhci->ext_caps)
2125 return -ENOMEM;
2126
da6699ce
SS
2127 while (1) {
2128 u32 cap_id;
2129
2130 cap_id = xhci_readl(xhci, addr);
2131 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2132 xhci_add_in_port(xhci, num_ports, addr,
b630d4b9
MN
2133 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2134 cap_count);
da6699ce
SS
2135 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2136 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2137 == num_ports)
2138 break;
2139 /*
2140 * Once you're into the Extended Capabilities, the offset is
2141 * always relative to the register holding the offset.
2142 */
2143 addr += offset;
2144 }
2145
2146 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2147 xhci_warn(xhci, "No ports on the roothubs?\n");
2148 return -ENODEV;
2149 }
d195fcff
XR
2150 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2151 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
da6699ce 2152 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
2153
2154 /* Place limits on the number of roothub ports so that the hub
2155 * descriptors aren't longer than the USB core will allocate.
2156 */
2157 if (xhci->num_usb3_ports > 15) {
d195fcff
XR
2158 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2159 "Limiting USB 3.0 roothub ports to 15.");
d30b2a20
SS
2160 xhci->num_usb3_ports = 15;
2161 }
2162 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
d195fcff
XR
2163 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2164 "Limiting USB 2.0 roothub ports to %u.",
d30b2a20
SS
2165 USB_MAXCHILDREN);
2166 xhci->num_usb2_ports = USB_MAXCHILDREN;
2167 }
2168
da6699ce
SS
2169 /*
2170 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2171 * Not sure how the USB core will handle a hub with no ports...
2172 */
2173 if (xhci->num_usb2_ports) {
2174 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2175 xhci->num_usb2_ports, flags);
2176 if (!xhci->usb2_ports)
2177 return -ENOMEM;
2178
2179 port_index = 0;
f8bbeabc
SS
2180 for (i = 0; i < num_ports; i++) {
2181 if (xhci->port_array[i] == 0x03 ||
2182 xhci->port_array[i] == 0 ||
22e04870 2183 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
2184 continue;
2185
2186 xhci->usb2_ports[port_index] =
2187 &xhci->op_regs->port_status_base +
2188 NUM_PORT_REGS*i;
d195fcff
XR
2189 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2190 "USB 2.0 port at index %u, "
2191 "addr = %p", i,
f8bbeabc
SS
2192 xhci->usb2_ports[port_index]);
2193 port_index++;
d30b2a20
SS
2194 if (port_index == xhci->num_usb2_ports)
2195 break;
f8bbeabc 2196 }
da6699ce
SS
2197 }
2198 if (xhci->num_usb3_ports) {
2199 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2200 xhci->num_usb3_ports, flags);
2201 if (!xhci->usb3_ports)
2202 return -ENOMEM;
2203
2204 port_index = 0;
2205 for (i = 0; i < num_ports; i++)
2206 if (xhci->port_array[i] == 0x03) {
2207 xhci->usb3_ports[port_index] =
2208 &xhci->op_regs->port_status_base +
2209 NUM_PORT_REGS*i;
d195fcff
XR
2210 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2211 "USB 3.0 port at index %u, "
2212 "addr = %p", i,
da6699ce
SS
2213 xhci->usb3_ports[port_index]);
2214 port_index++;
d30b2a20
SS
2215 if (port_index == xhci->num_usb3_ports)
2216 break;
da6699ce
SS
2217 }
2218 }
2219 return 0;
2220}
6648f29d 2221
66d4eadd
SS
2222int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2223{
0ebbab37
SS
2224 dma_addr_t dma;
2225 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 2226 unsigned int val, val2;
8e595a5d 2227 u64 val_64;
0ebbab37 2228 struct xhci_segment *seg;
623bef9e 2229 u32 page_size, temp;
66d4eadd
SS
2230 int i;
2231
331de00a
SA
2232 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2233 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2234
66d4eadd 2235 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
d195fcff
XR
2236 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2237 "Supported page size register = 0x%x", page_size);
66d4eadd
SS
2238 for (i = 0; i < 16; i++) {
2239 if ((0x1 & page_size) != 0)
2240 break;
2241 page_size = page_size >> 1;
2242 }
2243 if (i < 16)
d195fcff
XR
2244 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245 "Supported page size of %iK", (1 << (i+12)) / 1024);
66d4eadd
SS
2246 else
2247 xhci_warn(xhci, "WARN: no supported page size\n");
2248 /* Use 4K pages, since that's common and the minimum the HC supports */
2249 xhci->page_shift = 12;
2250 xhci->page_size = 1 << xhci->page_shift;
d195fcff
XR
2251 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2252 "HCD page size set to %iK", xhci->page_size / 1024);
66d4eadd
SS
2253
2254 /*
2255 * Program the Number of Device Slots Enabled field in the CONFIG
2256 * register with the max value of slots the HC can handle.
2257 */
2258 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
d195fcff
XR
2259 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2260 "// xHC can handle at most %d device slots.", val);
66d4eadd
SS
2261 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2262 val |= (val2 & ~HCS_SLOTS_MASK);
d195fcff
XR
2263 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2264 "// Setting Max device slots reg = 0x%x.", val);
66d4eadd
SS
2265 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2266
a74588f9
SS
2267 /*
2268 * Section 5.4.8 - doorbell array must be
2269 * "physically contiguous and 64-byte (cache line) aligned".
2270 */
22d45f01
SAS
2271 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2272 GFP_KERNEL);
a74588f9
SS
2273 if (!xhci->dcbaa)
2274 goto fail;
2275 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2276 xhci->dcbaa->dma = dma;
d195fcff
XR
2277 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2278 "// Device context base array address = 0x%llx (DMA), %p (virt)",
700e2052 2279 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 2280 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 2281
0ebbab37
SS
2282 /*
2283 * Initialize the ring segment pool. The ring must be a contiguous
2284 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2285 * however, the command ring segment needs 64-byte aligned segments,
2286 * so we pick the greater alignment need.
2287 */
2288 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
eb8ccd2b 2289 TRB_SEGMENT_SIZE, 64, xhci->page_size);
d115b048 2290
3ffbba95 2291 /* See Table 46 and Note on Figure 55 */
3ffbba95 2292 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 2293 2112, 64, xhci->page_size);
3ffbba95 2294 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
2295 goto fail;
2296
8df75f42
SS
2297 /* Linear stream context arrays don't have any boundary restrictions,
2298 * and only need to be 16-byte aligned.
2299 */
2300 xhci->small_streams_pool =
2301 dma_pool_create("xHCI 256 byte stream ctx arrays",
2302 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2303 xhci->medium_streams_pool =
2304 dma_pool_create("xHCI 1KB stream ctx arrays",
2305 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2306 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
22d45f01 2307 * will be allocated with dma_alloc_coherent()
8df75f42
SS
2308 */
2309
2310 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2311 goto fail;
2312
0ebbab37 2313 /* Set up the command ring to have one segments for now. */
186a7ef1 2314 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
0ebbab37
SS
2315 if (!xhci->cmd_ring)
2316 goto fail;
d195fcff
XR
2317 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2318 "Allocated command ring at %p", xhci->cmd_ring);
2319 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
700e2052 2320 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2321
2322 /* Set the address in the Command Ring Control register */
8e595a5d
SS
2323 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2324 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2325 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2326 xhci->cmd_ring->cycle_state;
d195fcff
XR
2327 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2328 "// Setting command ring address to 0x%x", val);
8e595a5d 2329 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2330 xhci_dbg_cmd_ptrs(xhci);
2331
dbc33303
SS
2332 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2333 if (!xhci->lpm_command)
2334 goto fail;
2335
2336 /* Reserve one command ring TRB for disabling LPM.
2337 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2338 * disabling LPM, we only need to reserve one TRB for all devices.
2339 */
2340 xhci->cmd_ring_reserved_trbs++;
2341
0ebbab37
SS
2342 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2343 val &= DBOFF_MASK;
d195fcff
XR
2344 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2345 "// Doorbell array is located at offset 0x%x"
2346 " from cap regs base addr", val);
c50a00f8 2347 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2348 xhci_dbg_regs(xhci);
2349 xhci_print_run_regs(xhci);
2350 /* Set ir_set to interrupt register set 0 */
c50a00f8 2351 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2352
2353 /*
2354 * Event ring setup: Allocate a normal ring, but also setup
2355 * the event ring segment table (ERST). Section 4.9.3.
2356 */
d195fcff 2357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
186a7ef1 2358 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
7e393a83 2359 flags);
0ebbab37
SS
2360 if (!xhci->event_ring)
2361 goto fail;
6648f29d
SS
2362 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2363 goto fail;
0ebbab37 2364
22d45f01
SAS
2365 xhci->erst.entries = dma_alloc_coherent(dev,
2366 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2367 GFP_KERNEL);
0ebbab37
SS
2368 if (!xhci->erst.entries)
2369 goto fail;
d195fcff
XR
2370 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371 "// Allocated event ring segment table at 0x%llx",
700e2052 2372 (unsigned long long)dma);
0ebbab37
SS
2373
2374 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2375 xhci->erst.num_entries = ERST_NUM_SEGS;
2376 xhci->erst.erst_dma_addr = dma;
d195fcff
XR
2377 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2378 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
0ebbab37 2379 xhci->erst.num_entries,
700e2052
GKH
2380 xhci->erst.entries,
2381 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2382
2383 /* set ring base address and size for each segment table entry */
2384 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2385 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2386 entry->seg_addr = cpu_to_le64(seg->dma);
2387 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2388 entry->rsvd = 0;
2389 seg = seg->next;
2390 }
2391
2392 /* set ERST count with the number of entries in the segment table */
2393 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2394 val &= ERST_SIZE_MASK;
2395 val |= ERST_NUM_SEGS;
d195fcff
XR
2396 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
0ebbab37
SS
2398 val);
2399 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2400
d195fcff
XR
2401 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402 "// Set ERST entries to point to event ring.");
0ebbab37 2403 /* set the segment table base address */
d195fcff
XR
2404 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405 "// Set ERST base address for ir_set 0 = 0x%llx",
700e2052 2406 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
2407 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2408 val_64 &= ERST_PTR_MASK;
2409 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2410 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2411
2412 /* Set the event ring dequeue address */
23e3be11 2413 xhci_set_hc_event_deq(xhci);
d195fcff
XR
2414 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2415 "Wrote ERST address to ir_set 0.");
09ece30e 2416 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2417
2418 /*
2419 * XXX: Might need to set the Interrupter Moderation Register to
2420 * something other than the default (~1ms minimum between interrupts).
2421 * See section 5.5.1.2.
2422 */
3ffbba95
SS
2423 init_completion(&xhci->addr_dev);
2424 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2425 xhci->devs[i] = NULL;
f6ff0ac8 2426 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2427 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8
SS
2428 xhci->bus_state[1].resume_done[i] = 0;
2429 }
66d4eadd 2430
254c80a3
JY
2431 if (scratchpad_alloc(xhci, flags))
2432 goto fail;
da6699ce
SS
2433 if (xhci_setup_port_arrays(xhci, flags))
2434 goto fail;
254c80a3 2435
623bef9e
SS
2436 /* Enable USB 3.0 device notifications for function remote wake, which
2437 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2438 * U3 (device suspend).
2439 */
2440 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2441 temp &= ~DEV_NOTE_MASK;
2442 temp |= DEV_NOTE_FWAKE;
2443 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2444
66d4eadd 2445 return 0;
254c80a3 2446
66d4eadd
SS
2447fail:
2448 xhci_warn(xhci, "Couldn't initialize memory\n");
159e1fcc
SS
2449 xhci_halt(xhci);
2450 xhci_reset(xhci);
66d4eadd
SS
2451 xhci_mem_cleanup(xhci);
2452 return -ENOMEM;
2453}