USB: s3c-hsotg: Fix interrupt cleaning code
[linux-block.git] / drivers / usb / gadget / s3c-hsotg.c
CommitLineData
5b7d70c6
BD
1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13*/
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/delay.h>
24#include <linux/io.h>
5a0e3ad6 25#include <linux/slab.h>
e50bf385 26#include <linux/clk.h>
5b7d70c6
BD
27
28#include <linux/usb/ch9.h>
29#include <linux/usb/gadget.h>
30
31#include <mach/map.h>
32
33#include <plat/regs-usb-hsotg-phy.h>
34#include <plat/regs-usb-hsotg.h>
f9fed7cd 35#include <mach/regs-sys.h>
5b7d70c6 36#include <plat/udc-hs.h>
4d47166c 37#include <plat/cpu.h>
5b7d70c6
BD
38
39#define DMA_ADDR_INVALID (~((dma_addr_t)0))
40
41/* EP0_MPS_LIMIT
42 *
43 * Unfortunately there seems to be a limit of the amount of data that can
25985edc
LDM
44 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
45 * packets (which practically means 1 packet and 63 bytes of data) when the
5b7d70c6
BD
46 * MPS is set to 64.
47 *
48 * This means if we are wanting to move >127 bytes of data, we need to
49 * split the transactions up, but just doing one packet at a time does
50 * not work (this may be an implicit DATA0 PID on first packet of the
51 * transaction) and doing 2 packets is outside the controller's limits.
52 *
53 * If we try to lower the MPS size for EP0, then no transfers work properly
54 * for EP0, and the system will fail basic enumeration. As no cause for this
55 * has currently been found, we cannot support any large IN transfers for
56 * EP0.
57 */
58#define EP0_MPS_LIMIT 64
59
60struct s3c_hsotg;
61struct s3c_hsotg_req;
62
63/**
64 * struct s3c_hsotg_ep - driver endpoint definition.
65 * @ep: The gadget layer representation of the endpoint.
66 * @name: The driver generated name for the endpoint.
67 * @queue: Queue of requests for this endpoint.
68 * @parent: Reference back to the parent device structure.
69 * @req: The current request that the endpoint is processing. This is
70 * used to indicate an request has been loaded onto the endpoint
71 * and has yet to be completed (maybe due to data move, or simply
72 * awaiting an ack from the core all the data has been completed).
73 * @debugfs: File entry for debugfs file for this endpoint.
74 * @lock: State lock to protect contents of endpoint.
75 * @dir_in: Set to true if this endpoint is of the IN direction, which
76 * means that it is sending data to the Host.
77 * @index: The index for the endpoint registers.
78 * @name: The name array passed to the USB core.
79 * @halted: Set if the endpoint has been halted.
80 * @periodic: Set if this is a periodic ep, such as Interrupt
81 * @sent_zlp: Set if we've sent a zero-length packet.
82 * @total_data: The total number of data bytes done.
83 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
84 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
85 * @last_load: The offset of data for the last start of request.
86 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
87 *
88 * This is the driver's state for each registered enpoint, allowing it
89 * to keep track of transactions that need doing. Each endpoint has a
90 * lock to protect the state, to try and avoid using an overall lock
91 * for the host controller as much as possible.
92 *
93 * For periodic IN endpoints, we have fifo_size and fifo_load to try
94 * and keep track of the amount of data in the periodic FIFO for each
95 * of these as we don't have a status register that tells us how much
e7a9ff54
BD
96 * is in each of them. (note, this may actually be useless information
97 * as in shared-fifo mode periodic in acts like a single-frame packet
98 * buffer than a fifo)
5b7d70c6
BD
99 */
100struct s3c_hsotg_ep {
101 struct usb_ep ep;
102 struct list_head queue;
103 struct s3c_hsotg *parent;
104 struct s3c_hsotg_req *req;
105 struct dentry *debugfs;
106
107 spinlock_t lock;
108
109 unsigned long total_data;
110 unsigned int size_loaded;
111 unsigned int last_load;
112 unsigned int fifo_load;
113 unsigned short fifo_size;
114
115 unsigned char dir_in;
116 unsigned char index;
117
118 unsigned int halted:1;
119 unsigned int periodic:1;
120 unsigned int sent_zlp:1;
121
122 char name[10];
123};
124
125#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
126
127/**
128 * struct s3c_hsotg - driver state.
129 * @dev: The parent device supplied to the probe function
130 * @driver: USB gadget driver
131 * @plat: The platform specific configuration data.
132 * @regs: The memory area mapped for accessing registers.
133 * @regs_res: The resource that was allocated when claiming register space.
134 * @irq: The IRQ number we are using
10aebc77 135 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
5b7d70c6
BD
136 * @debug_root: root directrory for debugfs.
137 * @debug_file: main status file for debugfs.
138 * @debug_fifo: FIFO status file for debugfs.
139 * @ep0_reply: Request used for ep0 reply.
140 * @ep0_buff: Buffer for EP0 reply data, if needed.
141 * @ctrl_buff: Buffer for EP0 control requests.
142 * @ctrl_req: Request for EP0 control packets.
143 * @eps: The endpoints being supplied to the gadget framework
144 */
145struct s3c_hsotg {
146 struct device *dev;
147 struct usb_gadget_driver *driver;
148 struct s3c_hsotg_plat *plat;
149
150 void __iomem *regs;
151 struct resource *regs_res;
152 int irq;
31ee04de 153 struct clk *clk;
5b7d70c6 154
10aebc77
BD
155 unsigned int dedicated_fifos:1;
156
5b7d70c6
BD
157 struct dentry *debug_root;
158 struct dentry *debug_file;
159 struct dentry *debug_fifo;
160
161 struct usb_request *ep0_reply;
162 struct usb_request *ctrl_req;
163 u8 ep0_buff[8];
164 u8 ctrl_buff[8];
165
166 struct usb_gadget gadget;
167 struct s3c_hsotg_ep eps[];
168};
169
170/**
171 * struct s3c_hsotg_req - data transfer request
172 * @req: The USB gadget request
173 * @queue: The list of requests for the endpoint this is queued for.
174 * @in_progress: Has already had size/packets written to core
175 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
176 */
177struct s3c_hsotg_req {
178 struct usb_request req;
179 struct list_head queue;
180 unsigned char in_progress;
181 unsigned char mapped;
182};
183
184/* conversion functions */
185static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
186{
187 return container_of(req, struct s3c_hsotg_req, req);
188}
189
190static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
191{
192 return container_of(ep, struct s3c_hsotg_ep, ep);
193}
194
195static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
196{
197 return container_of(gadget, struct s3c_hsotg, gadget);
198}
199
200static inline void __orr32(void __iomem *ptr, u32 val)
201{
202 writel(readl(ptr) | val, ptr);
203}
204
205static inline void __bic32(void __iomem *ptr, u32 val)
206{
207 writel(readl(ptr) & ~val, ptr);
208}
209
210/* forward decleration of functions */
211static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
212
213/**
214 * using_dma - return the DMA status of the driver.
215 * @hsotg: The driver state.
216 *
217 * Return true if we're using DMA.
218 *
219 * Currently, we have the DMA support code worked into everywhere
220 * that needs it, but the AMBA DMA implementation in the hardware can
221 * only DMA from 32bit aligned addresses. This means that gadgets such
222 * as the CDC Ethernet cannot work as they often pass packets which are
223 * not 32bit aligned.
224 *
225 * Unfortunately the choice to use DMA or not is global to the controller
226 * and seems to be only settable when the controller is being put through
227 * a core reset. This means we either need to fix the gadgets to take
228 * account of DMA alignment, or add bounce buffers (yuerk).
229 *
230 * Until this issue is sorted out, we always return 'false'.
231 */
232static inline bool using_dma(struct s3c_hsotg *hsotg)
233{
234 return false; /* support is not complete */
235}
236
237/**
238 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
239 * @hsotg: The device state
240 * @ints: A bitmask of the interrupts to enable
241 */
242static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
243{
244 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
245 u32 new_gsintmsk;
246
247 new_gsintmsk = gsintmsk | ints;
248
249 if (new_gsintmsk != gsintmsk) {
250 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
251 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
252 }
253}
254
255/**
256 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
257 * @hsotg: The device state
258 * @ints: A bitmask of the interrupts to enable
259 */
260static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
261{
262 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
263 u32 new_gsintmsk;
264
265 new_gsintmsk = gsintmsk & ~ints;
266
267 if (new_gsintmsk != gsintmsk)
268 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
269}
270
271/**
272 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
273 * @hsotg: The device state
274 * @ep: The endpoint index
275 * @dir_in: True if direction is in.
276 * @en: The enable value, true to enable
277 *
278 * Set or clear the mask for an individual endpoint's interrupt
279 * request.
280 */
281static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
282 unsigned int ep, unsigned int dir_in,
283 unsigned int en)
284{
285 unsigned long flags;
286 u32 bit = 1 << ep;
287 u32 daint;
288
289 if (!dir_in)
290 bit <<= 16;
291
292 local_irq_save(flags);
293 daint = readl(hsotg->regs + S3C_DAINTMSK);
294 if (en)
295 daint |= bit;
296 else
297 daint &= ~bit;
298 writel(daint, hsotg->regs + S3C_DAINTMSK);
299 local_irq_restore(flags);
300}
301
302/**
303 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
304 * @hsotg: The device instance.
305 */
306static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
307{
0f002d20
BD
308 unsigned int ep;
309 unsigned int addr;
310 unsigned int size;
1703a6d3 311 int timeout;
0f002d20
BD
312 u32 val;
313
5b7d70c6
BD
314 /* the ryu 2.6.24 release ahs
315 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
316 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
317 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
318 hsotg->regs + S3C_GNPTXFSIZ);
319 */
320
6d091ee7 321 /* set FIFO sizes to 2048/1024 */
5b7d70c6
BD
322
323 writel(2048, hsotg->regs + S3C_GRXFSIZ);
324 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
6d091ee7 325 S3C_GNPTXFSIZ_NPTxFDep(1024),
5b7d70c6 326 hsotg->regs + S3C_GNPTXFSIZ);
0f002d20
BD
327
328 /* arange all the rest of the TX FIFOs, as some versions of this
329 * block have overlapping default addresses. This also ensures
330 * that if the settings have been changed, then they are set to
331 * known values. */
332
333 /* start at the end of the GNPTXFSIZ, rounded up */
334 addr = 2048 + 1024;
335 size = 768;
336
337 /* currently we allocate TX FIFOs for all possible endpoints,
338 * and assume that they are all the same size. */
339
340 for (ep = 0; ep <= 15; ep++) {
341 val = addr;
342 val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
343 addr += size;
344
345 writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
346 }
1703a6d3
BD
347
348 /* according to p428 of the design guide, we need to ensure that
349 * all fifos are flushed before continuing */
350
351 writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
352 S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
353
354 /* wait until the fifos are both flushed */
355 timeout = 100;
356 while (1) {
357 val = readl(hsotg->regs + S3C_GRSTCTL);
358
359 if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
360 break;
361
362 if (--timeout == 0) {
363 dev_err(hsotg->dev,
364 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
365 __func__, val);
366 }
367
368 udelay(1);
369 }
370
371 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
5b7d70c6
BD
372}
373
374/**
375 * @ep: USB endpoint to allocate request for.
376 * @flags: Allocation flags
377 *
378 * Allocate a new USB request structure appropriate for the specified endpoint
379 */
0978f8c5
MB
380static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
381 gfp_t flags)
5b7d70c6
BD
382{
383 struct s3c_hsotg_req *req;
384
385 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
386 if (!req)
387 return NULL;
388
389 INIT_LIST_HEAD(&req->queue);
390
391 req->req.dma = DMA_ADDR_INVALID;
392 return &req->req;
393}
394
395/**
396 * is_ep_periodic - return true if the endpoint is in periodic mode.
397 * @hs_ep: The endpoint to query.
398 *
399 * Returns true if the endpoint is in periodic mode, meaning it is being
400 * used for an Interrupt or ISO transfer.
401 */
402static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
403{
404 return hs_ep->periodic;
405}
406
407/**
408 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
409 * @hsotg: The device state.
410 * @hs_ep: The endpoint for the request
411 * @hs_req: The request being processed.
412 *
413 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
414 * of a request to ensure the buffer is ready for access by the caller.
415*/
416static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
417 struct s3c_hsotg_ep *hs_ep,
418 struct s3c_hsotg_req *hs_req)
419{
420 struct usb_request *req = &hs_req->req;
421 enum dma_data_direction dir;
422
423 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
424
425 /* ignore this if we're not moving any data */
426 if (hs_req->req.length == 0)
427 return;
428
429 if (hs_req->mapped) {
430 /* we mapped this, so unmap and remove the dma */
431
432 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
433
434 req->dma = DMA_ADDR_INVALID;
435 hs_req->mapped = 0;
436 } else {
5b520259 437 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
438 }
439}
440
441/**
442 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
443 * @hsotg: The controller state.
444 * @hs_ep: The endpoint we're going to write for.
445 * @hs_req: The request to write data for.
446 *
447 * This is called when the TxFIFO has some space in it to hold a new
448 * transmission and we have something to give it. The actual setup of
449 * the data size is done elsewhere, so all we have to do is to actually
450 * write the data.
451 *
452 * The return value is zero if there is more space (or nothing was done)
453 * otherwise -ENOSPC is returned if the FIFO space was used up.
454 *
455 * This routine is only needed for PIO
456*/
457static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
458 struct s3c_hsotg_ep *hs_ep,
459 struct s3c_hsotg_req *hs_req)
460{
461 bool periodic = is_ep_periodic(hs_ep);
462 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
463 int buf_pos = hs_req->req.actual;
464 int to_write = hs_ep->size_loaded;
465 void *data;
466 int can_write;
467 int pkt_round;
468
469 to_write -= (buf_pos - hs_ep->last_load);
470
471 /* if there's nothing to write, get out early */
472 if (to_write == 0)
473 return 0;
474
10aebc77 475 if (periodic && !hsotg->dedicated_fifos) {
5b7d70c6
BD
476 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
477 int size_left;
478 int size_done;
479
480 /* work out how much data was loaded so we can calculate
481 * how much data is left in the fifo. */
482
483 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
484
e7a9ff54
BD
485 /* if shared fifo, we cannot write anything until the
486 * previous data has been completely sent.
487 */
488 if (hs_ep->fifo_load != 0) {
489 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
490 return -ENOSPC;
491 }
492
5b7d70c6
BD
493 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
494 __func__, size_left,
495 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
496
497 /* how much of the data has moved */
498 size_done = hs_ep->size_loaded - size_left;
499
500 /* how much data is left in the fifo */
501 can_write = hs_ep->fifo_load - size_done;
502 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
503 __func__, can_write);
504
505 can_write = hs_ep->fifo_size - can_write;
506 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
507 __func__, can_write);
508
509 if (can_write <= 0) {
510 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
511 return -ENOSPC;
512 }
10aebc77
BD
513 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
514 can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
515
516 can_write &= 0xffff;
517 can_write *= 4;
5b7d70c6
BD
518 } else {
519 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
520 dev_dbg(hsotg->dev,
521 "%s: no queue slots available (0x%08x)\n",
522 __func__, gnptxsts);
523
524 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
525 return -ENOSPC;
526 }
527
528 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
679f9b7c 529 can_write *= 4; /* fifo size is in 32bit quantities. */
5b7d70c6
BD
530 }
531
532 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
533 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
534
535 /* limit to 512 bytes of data, it seems at least on the non-periodic
536 * FIFO, requests of >512 cause the endpoint to get stuck with a
537 * fragment of the end of the transfer in it.
538 */
539 if (can_write > 512)
540 can_write = 512;
541
03e10e5a
BD
542 /* limit the write to one max-packet size worth of data, but allow
543 * the transfer to return that it did not run out of fifo space
544 * doing it. */
545 if (to_write > hs_ep->ep.maxpacket) {
546 to_write = hs_ep->ep.maxpacket;
547
548 s3c_hsotg_en_gsint(hsotg,
549 periodic ? S3C_GINTSTS_PTxFEmp :
550 S3C_GINTSTS_NPTxFEmp);
551 }
552
5b7d70c6
BD
553 /* see if we can write data */
554
555 if (to_write > can_write) {
556 to_write = can_write;
557 pkt_round = to_write % hs_ep->ep.maxpacket;
558
559 /* Not sure, but we probably shouldn't be writing partial
560 * packets into the FIFO, so round the write down to an
561 * exact number of packets.
562 *
563 * Note, we do not currently check to see if we can ever
564 * write a full packet or not to the FIFO.
565 */
566
567 if (pkt_round)
568 to_write -= pkt_round;
569
570 /* enable correct FIFO interrupt to alert us when there
571 * is more room left. */
572
573 s3c_hsotg_en_gsint(hsotg,
574 periodic ? S3C_GINTSTS_PTxFEmp :
575 S3C_GINTSTS_NPTxFEmp);
576 }
577
578 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
579 to_write, hs_req->req.length, can_write, buf_pos);
580
581 if (to_write <= 0)
582 return -ENOSPC;
583
584 hs_req->req.actual = buf_pos + to_write;
585 hs_ep->total_data += to_write;
586
587 if (periodic)
588 hs_ep->fifo_load += to_write;
589
590 to_write = DIV_ROUND_UP(to_write, 4);
591 data = hs_req->req.buf + buf_pos;
592
593 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
594
595 return (to_write >= can_write) ? -ENOSPC : 0;
596}
597
598/**
599 * get_ep_limit - get the maximum data legnth for this endpoint
600 * @hs_ep: The endpoint
601 *
602 * Return the maximum data that can be queued in one go on a given endpoint
603 * so that transfers that are too long can be split.
604 */
605static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
606{
607 int index = hs_ep->index;
608 unsigned maxsize;
609 unsigned maxpkt;
610
611 if (index != 0) {
612 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
613 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
614 } else {
b05ca580 615 maxsize = 64+64;
5b7d70c6 616 if (hs_ep->dir_in) {
5b7d70c6
BD
617 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
618 } else {
5b7d70c6
BD
619 maxpkt = 2;
620 }
621 }
622
623 /* we made the constant loading easier above by using +1 */
624 maxpkt--;
625 maxsize--;
626
627 /* constrain by packet count if maxpkts*pktsize is greater
628 * than the length register size. */
629
630 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
631 maxsize = maxpkt * hs_ep->ep.maxpacket;
632
633 return maxsize;
634}
635
636/**
637 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
638 * @hsotg: The controller state.
639 * @hs_ep: The endpoint to process a request for
640 * @hs_req: The request to start.
641 * @continuing: True if we are doing more for the current request.
642 *
643 * Start the given request running by setting the endpoint registers
644 * appropriately, and writing any data to the FIFOs.
645 */
646static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
647 struct s3c_hsotg_ep *hs_ep,
648 struct s3c_hsotg_req *hs_req,
649 bool continuing)
650{
651 struct usb_request *ureq = &hs_req->req;
652 int index = hs_ep->index;
653 int dir_in = hs_ep->dir_in;
654 u32 epctrl_reg;
655 u32 epsize_reg;
656 u32 epsize;
657 u32 ctrl;
658 unsigned length;
659 unsigned packets;
660 unsigned maxreq;
661
662 if (index != 0) {
663 if (hs_ep->req && !continuing) {
664 dev_err(hsotg->dev, "%s: active request\n", __func__);
665 WARN_ON(1);
666 return;
667 } else if (hs_ep->req != hs_req && continuing) {
668 dev_err(hsotg->dev,
669 "%s: continue different req\n", __func__);
670 WARN_ON(1);
671 return;
672 }
673 }
674
675 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
676 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
677
678 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
679 __func__, readl(hsotg->regs + epctrl_reg), index,
680 hs_ep->dir_in ? "in" : "out");
681
682 length = ureq->length - ureq->actual;
683
684 if (0)
685 dev_dbg(hsotg->dev,
686 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
687 ureq->buf, length, ureq->dma,
688 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
689
690 maxreq = get_ep_limit(hs_ep);
691 if (length > maxreq) {
692 int round = maxreq % hs_ep->ep.maxpacket;
693
694 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
695 __func__, length, maxreq, round);
696
697 /* round down to multiple of packets */
698 if (round)
699 maxreq -= round;
700
701 length = maxreq;
702 }
703
704 if (length)
705 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
706 else
707 packets = 1; /* send one packet if length is zero. */
708
709 if (dir_in && index != 0)
710 epsize = S3C_DxEPTSIZ_MC(1);
711 else
712 epsize = 0;
713
714 if (index != 0 && ureq->zero) {
715 /* test for the packets being exactly right for the
716 * transfer */
717
718 if (length == (packets * hs_ep->ep.maxpacket))
719 packets++;
720 }
721
722 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
723 epsize |= S3C_DxEPTSIZ_XferSize(length);
724
725 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
726 __func__, packets, length, ureq->length, epsize, epsize_reg);
727
728 /* store the request as the current one we're doing */
729 hs_ep->req = hs_req;
730
731 /* write size / packets */
732 writel(epsize, hsotg->regs + epsize_reg);
733
734 ctrl = readl(hsotg->regs + epctrl_reg);
735
736 if (ctrl & S3C_DxEPCTL_Stall) {
737 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
738
739 /* not sure what we can do here, if it is EP0 then we should
740 * get this cleared once the endpoint has transmitted the
741 * STALL packet, otherwise it needs to be cleared by the
742 * host.
743 */
744 }
745
746 if (using_dma(hsotg)) {
747 unsigned int dma_reg;
748
749 /* write DMA address to control register, buffer already
750 * synced by s3c_hsotg_ep_queue(). */
751
752 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
753 writel(ureq->dma, hsotg->regs + dma_reg);
754
755 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
756 __func__, ureq->dma, dma_reg);
757 }
758
759 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
760 ctrl |= S3C_DxEPCTL_USBActEp;
761 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
762
763 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
764 writel(ctrl, hsotg->regs + epctrl_reg);
765
766 /* set these, it seems that DMA support increments past the end
767 * of the packet buffer so we need to calculate the length from
768 * this information. */
769 hs_ep->size_loaded = length;
770 hs_ep->last_load = ureq->actual;
771
772 if (dir_in && !using_dma(hsotg)) {
773 /* set these anyway, we may need them for non-periodic in */
774 hs_ep->fifo_load = 0;
775
776 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
777 }
778
779 /* clear the INTknTXFEmpMsk when we start request, more as a aide
780 * to debugging to see what is going on. */
781 if (dir_in)
782 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
783 hsotg->regs + S3C_DIEPINT(index));
784
785 /* Note, trying to clear the NAK here causes problems with transmit
25985edc 786 * on the S3C6400 ending up with the TXFIFO becoming full. */
5b7d70c6
BD
787
788 /* check ep is enabled */
789 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
790 dev_warn(hsotg->dev,
791 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
792 index, readl(hsotg->regs + epctrl_reg));
793
794 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
795 __func__, readl(hsotg->regs + epctrl_reg));
796}
797
798/**
799 * s3c_hsotg_map_dma - map the DMA memory being used for the request
800 * @hsotg: The device state.
801 * @hs_ep: The endpoint the request is on.
802 * @req: The request being processed.
803 *
804 * We've been asked to queue a request, so ensure that the memory buffer
805 * is correctly setup for DMA. If we've been passed an extant DMA address
806 * then ensure the buffer has been synced to memory. If our buffer has no
807 * DMA memory, then we map the memory and mark our request to allow us to
808 * cleanup on completion.
809*/
810static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
811 struct s3c_hsotg_ep *hs_ep,
812 struct usb_request *req)
813{
814 enum dma_data_direction dir;
815 struct s3c_hsotg_req *hs_req = our_req(req);
816
817 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
818
819 /* if the length is zero, ignore the DMA data */
820 if (hs_req->req.length == 0)
821 return 0;
822
823 if (req->dma == DMA_ADDR_INVALID) {
824 dma_addr_t dma;
825
826 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
827
828 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
829 goto dma_error;
830
831 if (dma & 3) {
832 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
833 __func__);
834
835 dma_unmap_single(hsotg->dev, dma, req->length, dir);
836 return -EINVAL;
837 }
838
839 hs_req->mapped = 1;
840 req->dma = dma;
841 } else {
5b520259 842 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
5b7d70c6
BD
843 hs_req->mapped = 0;
844 }
845
846 return 0;
847
848dma_error:
849 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
850 __func__, req->buf, req->length);
851
852 return -EIO;
853}
854
855static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
856 gfp_t gfp_flags)
857{
858 struct s3c_hsotg_req *hs_req = our_req(req);
859 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
860 struct s3c_hsotg *hs = hs_ep->parent;
861 unsigned long irqflags;
862 bool first;
863
864 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
865 ep->name, req, req->length, req->buf, req->no_interrupt,
866 req->zero, req->short_not_ok);
867
868 /* initialise status of the request */
869 INIT_LIST_HEAD(&hs_req->queue);
870 req->actual = 0;
871 req->status = -EINPROGRESS;
872
873 /* if we're using DMA, sync the buffers as necessary */
874 if (using_dma(hs)) {
875 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
876 if (ret)
877 return ret;
878 }
879
880 spin_lock_irqsave(&hs_ep->lock, irqflags);
881
882 first = list_empty(&hs_ep->queue);
883 list_add_tail(&hs_req->queue, &hs_ep->queue);
884
885 if (first)
886 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
887
888 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
889
890 return 0;
891}
892
893static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
894 struct usb_request *req)
895{
896 struct s3c_hsotg_req *hs_req = our_req(req);
897
898 kfree(hs_req);
899}
900
901/**
902 * s3c_hsotg_complete_oursetup - setup completion callback
903 * @ep: The endpoint the request was on.
904 * @req: The request completed.
905 *
906 * Called on completion of any requests the driver itself
907 * submitted that need cleaning up.
908 */
909static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
910 struct usb_request *req)
911{
912 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
913 struct s3c_hsotg *hsotg = hs_ep->parent;
914
915 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
916
917 s3c_hsotg_ep_free_request(ep, req);
918}
919
920/**
921 * ep_from_windex - convert control wIndex value to endpoint
922 * @hsotg: The driver state.
923 * @windex: The control request wIndex field (in host order).
924 *
925 * Convert the given wIndex into a pointer to an driver endpoint
926 * structure, or return NULL if it is not a valid endpoint.
927*/
928static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
929 u32 windex)
930{
931 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
932 int dir = (windex & USB_DIR_IN) ? 1 : 0;
933 int idx = windex & 0x7F;
934
935 if (windex >= 0x100)
936 return NULL;
937
938 if (idx > S3C_HSOTG_EPS)
939 return NULL;
940
941 if (idx && ep->dir_in != dir)
942 return NULL;
943
944 return ep;
945}
946
947/**
948 * s3c_hsotg_send_reply - send reply to control request
949 * @hsotg: The device state
950 * @ep: Endpoint 0
951 * @buff: Buffer for request
952 * @length: Length of reply.
953 *
954 * Create a request and queue it on the given endpoint. This is useful as
955 * an internal method of sending replies to certain control requests, etc.
956 */
957static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
958 struct s3c_hsotg_ep *ep,
959 void *buff,
960 int length)
961{
962 struct usb_request *req;
963 int ret;
964
965 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
966
967 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
968 hsotg->ep0_reply = req;
969 if (!req) {
970 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
971 return -ENOMEM;
972 }
973
974 req->buf = hsotg->ep0_buff;
975 req->length = length;
976 req->zero = 1; /* always do zero-length final transfer */
977 req->complete = s3c_hsotg_complete_oursetup;
978
979 if (length)
980 memcpy(req->buf, buff, length);
981 else
982 ep->sent_zlp = 1;
983
984 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
985 if (ret) {
986 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
987 return ret;
988 }
989
990 return 0;
991}
992
993/**
994 * s3c_hsotg_process_req_status - process request GET_STATUS
995 * @hsotg: The device state
996 * @ctrl: USB control request
997 */
998static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
999 struct usb_ctrlrequest *ctrl)
1000{
1001 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1002 struct s3c_hsotg_ep *ep;
1003 __le16 reply;
1004 int ret;
1005
1006 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1007
1008 if (!ep0->dir_in) {
1009 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1010 return -EINVAL;
1011 }
1012
1013 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1014 case USB_RECIP_DEVICE:
1015 reply = cpu_to_le16(0); /* bit 0 => self powered,
1016 * bit 1 => remote wakeup */
1017 break;
1018
1019 case USB_RECIP_INTERFACE:
1020 /* currently, the data result should be zero */
1021 reply = cpu_to_le16(0);
1022 break;
1023
1024 case USB_RECIP_ENDPOINT:
1025 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1026 if (!ep)
1027 return -ENOENT;
1028
1029 reply = cpu_to_le16(ep->halted ? 1 : 0);
1030 break;
1031
1032 default:
1033 return 0;
1034 }
1035
1036 if (le16_to_cpu(ctrl->wLength) != 2)
1037 return -EINVAL;
1038
1039 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1040 if (ret) {
1041 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1042 return ret;
1043 }
1044
1045 return 1;
1046}
1047
1048static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1049
1050/**
1051 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1052 * @hsotg: The device state
1053 * @ctrl: USB control request
1054 */
1055static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1056 struct usb_ctrlrequest *ctrl)
1057{
1058 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1059 struct s3c_hsotg_ep *ep;
1060
1061 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1062 __func__, set ? "SET" : "CLEAR");
1063
1064 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1065 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1066 if (!ep) {
1067 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1068 __func__, le16_to_cpu(ctrl->wIndex));
1069 return -ENOENT;
1070 }
1071
1072 switch (le16_to_cpu(ctrl->wValue)) {
1073 case USB_ENDPOINT_HALT:
1074 s3c_hsotg_ep_sethalt(&ep->ep, set);
1075 break;
1076
1077 default:
1078 return -ENOENT;
1079 }
1080 } else
1081 return -ENOENT; /* currently only deal with endpoint */
1082
1083 return 1;
1084}
1085
1086/**
1087 * s3c_hsotg_process_control - process a control request
1088 * @hsotg: The device state
1089 * @ctrl: The control request received
1090 *
1091 * The controller has received the SETUP phase of a control request, and
1092 * needs to work out what to do next (and whether to pass it on to the
1093 * gadget driver).
1094 */
1095static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1096 struct usb_ctrlrequest *ctrl)
1097{
1098 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1099 int ret = 0;
1100 u32 dcfg;
1101
1102 ep0->sent_zlp = 0;
1103
1104 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1105 ctrl->bRequest, ctrl->bRequestType,
1106 ctrl->wValue, ctrl->wLength);
1107
1108 /* record the direction of the request, for later use when enquing
1109 * packets onto EP0. */
1110
1111 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1112 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1113
1114 /* if we've no data with this request, then the last part of the
1115 * transaction is going to implicitly be IN. */
1116 if (ctrl->wLength == 0)
1117 ep0->dir_in = 1;
1118
1119 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1120 switch (ctrl->bRequest) {
1121 case USB_REQ_SET_ADDRESS:
1122 dcfg = readl(hsotg->regs + S3C_DCFG);
1123 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1124 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1125 writel(dcfg, hsotg->regs + S3C_DCFG);
1126
1127 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1128
1129 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1130 return;
1131
1132 case USB_REQ_GET_STATUS:
1133 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1134 break;
1135
1136 case USB_REQ_CLEAR_FEATURE:
1137 case USB_REQ_SET_FEATURE:
1138 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1139 break;
1140 }
1141 }
1142
1143 /* as a fallback, try delivering it to the driver to deal with */
1144
1145 if (ret == 0 && hsotg->driver) {
1146 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1147 if (ret < 0)
1148 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1149 }
1150
1151 if (ret > 0) {
1152 if (!ep0->dir_in) {
1153 /* need to generate zlp in reply or take data */
1154 /* todo - deal with any data we might be sent? */
1155 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1156 }
1157 }
1158
1159 /* the request is either unhandlable, or is not formatted correctly
1160 * so respond with a STALL for the status stage to indicate failure.
1161 */
1162
1163 if (ret < 0) {
1164 u32 reg;
1165 u32 ctrl;
1166
1167 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1168 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1169
1170 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1171 * taken effect, so no need to clear later. */
1172
1173 ctrl = readl(hsotg->regs + reg);
1174 ctrl |= S3C_DxEPCTL_Stall;
1175 ctrl |= S3C_DxEPCTL_CNAK;
1176 writel(ctrl, hsotg->regs + reg);
1177
1178 dev_dbg(hsotg->dev,
25985edc 1179 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
5b7d70c6
BD
1180 ctrl, reg, readl(hsotg->regs + reg));
1181
25985edc 1182 /* don't believe we need to anything more to get the EP
5b7d70c6
BD
1183 * to reply with a STALL packet */
1184 }
1185}
1186
1187static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1188
1189/**
1190 * s3c_hsotg_complete_setup - completion of a setup transfer
1191 * @ep: The endpoint the request was on.
1192 * @req: The request completed.
1193 *
1194 * Called on completion of any requests the driver itself submitted for
1195 * EP0 setup packets
1196 */
1197static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1198 struct usb_request *req)
1199{
1200 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1201 struct s3c_hsotg *hsotg = hs_ep->parent;
1202
1203 if (req->status < 0) {
1204 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1205 return;
1206 }
1207
1208 if (req->actual == 0)
1209 s3c_hsotg_enqueue_setup(hsotg);
1210 else
1211 s3c_hsotg_process_control(hsotg, req->buf);
1212}
1213
1214/**
1215 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1216 * @hsotg: The device state.
1217 *
1218 * Enqueue a request on EP0 if necessary to received any SETUP packets
1219 * received from the host.
1220 */
1221static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1222{
1223 struct usb_request *req = hsotg->ctrl_req;
1224 struct s3c_hsotg_req *hs_req = our_req(req);
1225 int ret;
1226
1227 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1228
1229 req->zero = 0;
1230 req->length = 8;
1231 req->buf = hsotg->ctrl_buff;
1232 req->complete = s3c_hsotg_complete_setup;
1233
1234 if (!list_empty(&hs_req->queue)) {
1235 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1236 return;
1237 }
1238
1239 hsotg->eps[0].dir_in = 0;
1240
1241 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1242 if (ret < 0) {
1243 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1244 /* Don't think there's much we can do other than watch the
1245 * driver fail. */
1246 }
1247}
1248
1249/**
1250 * get_ep_head - return the first request on the endpoint
1251 * @hs_ep: The controller endpoint to get
1252 *
1253 * Get the first request on the endpoint.
1254*/
1255static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1256{
1257 if (list_empty(&hs_ep->queue))
1258 return NULL;
1259
1260 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1261}
1262
1263/**
1264 * s3c_hsotg_complete_request - complete a request given to us
1265 * @hsotg: The device state.
1266 * @hs_ep: The endpoint the request was on.
1267 * @hs_req: The request to complete.
1268 * @result: The result code (0 => Ok, otherwise errno)
1269 *
1270 * The given request has finished, so call the necessary completion
1271 * if it has one and then look to see if we can start a new request
1272 * on the endpoint.
1273 *
1274 * Note, expects the ep to already be locked as appropriate.
1275*/
1276static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1277 struct s3c_hsotg_ep *hs_ep,
1278 struct s3c_hsotg_req *hs_req,
1279 int result)
1280{
1281 bool restart;
1282
1283 if (!hs_req) {
1284 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1285 return;
1286 }
1287
1288 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1289 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1290
1291 /* only replace the status if we've not already set an error
1292 * from a previous transaction */
1293
1294 if (hs_req->req.status == -EINPROGRESS)
1295 hs_req->req.status = result;
1296
1297 hs_ep->req = NULL;
1298 list_del_init(&hs_req->queue);
1299
1300 if (using_dma(hsotg))
1301 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1302
1303 /* call the complete request with the locks off, just in case the
1304 * request tries to queue more work for this endpoint. */
1305
1306 if (hs_req->req.complete) {
1307 spin_unlock(&hs_ep->lock);
1308 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1309 spin_lock(&hs_ep->lock);
1310 }
1311
1312 /* Look to see if there is anything else to do. Note, the completion
1313 * of the previous request may have caused a new request to be started
1314 * so be careful when doing this. */
1315
1316 if (!hs_ep->req && result >= 0) {
1317 restart = !list_empty(&hs_ep->queue);
1318 if (restart) {
1319 hs_req = get_ep_head(hs_ep);
1320 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1321 }
1322 }
1323}
1324
1325/**
1326 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1327 * @hsotg: The device state.
1328 * @hs_ep: The endpoint the request was on.
1329 * @hs_req: The request to complete.
1330 * @result: The result code (0 => Ok, otherwise errno)
1331 *
1332 * See s3c_hsotg_complete_request(), but called with the endpoint's
1333 * lock held.
1334*/
1335static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1336 struct s3c_hsotg_ep *hs_ep,
1337 struct s3c_hsotg_req *hs_req,
1338 int result)
1339{
1340 unsigned long flags;
1341
1342 spin_lock_irqsave(&hs_ep->lock, flags);
1343 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1344 spin_unlock_irqrestore(&hs_ep->lock, flags);
1345}
1346
1347/**
1348 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1349 * @hsotg: The device state.
1350 * @ep_idx: The endpoint index for the data
1351 * @size: The size of data in the fifo, in bytes
1352 *
1353 * The FIFO status shows there is data to read from the FIFO for a given
1354 * endpoint, so sort out whether we need to read the data into a request
1355 * that has been made for that endpoint.
1356 */
1357static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1358{
1359 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1360 struct s3c_hsotg_req *hs_req = hs_ep->req;
1361 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1362 int to_read;
1363 int max_req;
1364 int read_ptr;
1365
1366 if (!hs_req) {
1367 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1368 int ptr;
1369
1370 dev_warn(hsotg->dev,
1371 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1372 __func__, size, ep_idx, epctl);
1373
1374 /* dump the data from the FIFO, we've nothing we can do */
1375 for (ptr = 0; ptr < size; ptr += 4)
1376 (void)readl(fifo);
1377
1378 return;
1379 }
1380
1381 spin_lock(&hs_ep->lock);
1382
1383 to_read = size;
1384 read_ptr = hs_req->req.actual;
1385 max_req = hs_req->req.length - read_ptr;
1386
a33e7136
BD
1387 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1388 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1389
5b7d70c6
BD
1390 if (to_read > max_req) {
1391 /* more data appeared than we where willing
1392 * to deal with in this request.
1393 */
1394
1395 /* currently we don't deal this */
1396 WARN_ON_ONCE(1);
1397 }
1398
5b7d70c6
BD
1399 hs_ep->total_data += to_read;
1400 hs_req->req.actual += to_read;
1401 to_read = DIV_ROUND_UP(to_read, 4);
1402
1403 /* note, we might over-write the buffer end by 3 bytes depending on
1404 * alignment of the data. */
1405 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1406
1407 spin_unlock(&hs_ep->lock);
1408}
1409
1410/**
1411 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1412 * @hsotg: The device instance
1413 * @req: The request currently on this endpoint
1414 *
1415 * Generate a zero-length IN packet request for terminating a SETUP
1416 * transaction.
1417 *
1418 * Note, since we don't write any data to the TxFIFO, then it is
25985edc 1419 * currently believed that we do not need to wait for any space in
5b7d70c6
BD
1420 * the TxFIFO.
1421 */
1422static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1423 struct s3c_hsotg_req *req)
1424{
1425 u32 ctrl;
1426
1427 if (!req) {
1428 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1429 return;
1430 }
1431
1432 if (req->req.length == 0) {
1433 hsotg->eps[0].sent_zlp = 1;
1434 s3c_hsotg_enqueue_setup(hsotg);
1435 return;
1436 }
1437
1438 hsotg->eps[0].dir_in = 1;
1439 hsotg->eps[0].sent_zlp = 1;
1440
1441 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1442
1443 /* issue a zero-sized packet to terminate this */
1444 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1445 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1446
1447 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1448 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1449 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1450 ctrl |= S3C_DxEPCTL_USBActEp;
1451 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1452}
1453
1454/**
1455 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1456 * @hsotg: The device instance
1457 * @epnum: The endpoint received from
1458 * @was_setup: Set if processing a SetupDone event.
1459 *
1460 * The RXFIFO has delivered an OutDone event, which means that the data
1461 * transfer for an OUT endpoint has been completed, either by a short
1462 * packet or by the finish of a transfer.
1463*/
1464static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1465 int epnum, bool was_setup)
1466{
a33e7136 1467 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
5b7d70c6
BD
1468 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1469 struct s3c_hsotg_req *hs_req = hs_ep->req;
1470 struct usb_request *req = &hs_req->req;
a33e7136 1471 unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
5b7d70c6
BD
1472 int result = 0;
1473
1474 if (!hs_req) {
1475 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1476 return;
1477 }
1478
1479 if (using_dma(hsotg)) {
5b7d70c6 1480 unsigned size_done;
5b7d70c6
BD
1481
1482 /* Calculate the size of the transfer by checking how much
1483 * is left in the endpoint size register and then working it
1484 * out from the amount we loaded for the transfer.
1485 *
1486 * We need to do this as DMA pointers are always 32bit aligned
1487 * so may overshoot/undershoot the transfer.
1488 */
1489
5b7d70c6
BD
1490 size_done = hs_ep->size_loaded - size_left;
1491 size_done += hs_ep->last_load;
1492
1493 req->actual = size_done;
1494 }
1495
a33e7136
BD
1496 /* if there is more request to do, schedule new transfer */
1497 if (req->actual < req->length && size_left == 0) {
1498 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1499 return;
1500 }
1501
5b7d70c6
BD
1502 if (req->actual < req->length && req->short_not_ok) {
1503 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1504 __func__, req->actual, req->length);
1505
1506 /* todo - what should we return here? there's no one else
1507 * even bothering to check the status. */
1508 }
1509
1510 if (epnum == 0) {
1511 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1512 s3c_hsotg_send_zlp(hsotg, hs_req);
1513 }
1514
1515 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1516}
1517
1518/**
1519 * s3c_hsotg_read_frameno - read current frame number
1520 * @hsotg: The device instance
1521 *
1522 * Return the current frame number
1523*/
1524static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1525{
1526 u32 dsts;
1527
1528 dsts = readl(hsotg->regs + S3C_DSTS);
1529 dsts &= S3C_DSTS_SOFFN_MASK;
1530 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1531
1532 return dsts;
1533}
1534
1535/**
1536 * s3c_hsotg_handle_rx - RX FIFO has data
1537 * @hsotg: The device instance
1538 *
1539 * The IRQ handler has detected that the RX FIFO has some data in it
1540 * that requires processing, so find out what is in there and do the
1541 * appropriate read.
1542 *
25985edc 1543 * The RXFIFO is a true FIFO, the packets coming out are still in packet
5b7d70c6
BD
1544 * chunks, so if you have x packets received on an endpoint you'll get x
1545 * FIFO events delivered, each with a packet's worth of data in it.
1546 *
1547 * When using DMA, we should not be processing events from the RXFIFO
1548 * as the actual data should be sent to the memory directly and we turn
1549 * on the completion interrupts to get notifications of transfer completion.
1550 */
0978f8c5 1551static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
5b7d70c6
BD
1552{
1553 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1554 u32 epnum, status, size;
1555
1556 WARN_ON(using_dma(hsotg));
1557
1558 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1559 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1560
1561 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1562 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1563
1564 if (1)
1565 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1566 __func__, grxstsr, size, epnum);
1567
1568#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1569
1570 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1571 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1572 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1573 break;
1574
1575 case __status(S3C_GRXSTS_PktSts_OutDone):
1576 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1577 s3c_hsotg_read_frameno(hsotg));
1578
1579 if (!using_dma(hsotg))
1580 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1581 break;
1582
1583 case __status(S3C_GRXSTS_PktSts_SetupDone):
1584 dev_dbg(hsotg->dev,
1585 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1586 s3c_hsotg_read_frameno(hsotg),
1587 readl(hsotg->regs + S3C_DOEPCTL(0)));
1588
1589 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1590 break;
1591
1592 case __status(S3C_GRXSTS_PktSts_OutRX):
1593 s3c_hsotg_rx_data(hsotg, epnum, size);
1594 break;
1595
1596 case __status(S3C_GRXSTS_PktSts_SetupRX):
1597 dev_dbg(hsotg->dev,
1598 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1599 s3c_hsotg_read_frameno(hsotg),
1600 readl(hsotg->regs + S3C_DOEPCTL(0)));
1601
1602 s3c_hsotg_rx_data(hsotg, epnum, size);
1603 break;
1604
1605 default:
1606 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1607 __func__, grxstsr);
1608
1609 s3c_hsotg_dump(hsotg);
1610 break;
1611 }
1612}
1613
1614/**
1615 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1616 * @mps: The maximum packet size in bytes.
1617*/
1618static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1619{
1620 switch (mps) {
1621 case 64:
1622 return S3C_D0EPCTL_MPS_64;
1623 case 32:
1624 return S3C_D0EPCTL_MPS_32;
1625 case 16:
1626 return S3C_D0EPCTL_MPS_16;
1627 case 8:
1628 return S3C_D0EPCTL_MPS_8;
1629 }
1630
1631 /* bad max packet size, warn and return invalid result */
1632 WARN_ON(1);
1633 return (u32)-1;
1634}
1635
1636/**
1637 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1638 * @hsotg: The driver state.
1639 * @ep: The index number of the endpoint
1640 * @mps: The maximum packet size in bytes
1641 *
1642 * Configure the maximum packet size for the given endpoint, updating
1643 * the hardware control registers to reflect this.
1644 */
1645static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1646 unsigned int ep, unsigned int mps)
1647{
1648 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1649 void __iomem *regs = hsotg->regs;
1650 u32 mpsval;
1651 u32 reg;
1652
1653 if (ep == 0) {
1654 /* EP0 is a special case */
1655 mpsval = s3c_hsotg_ep0_mps(mps);
1656 if (mpsval > 3)
1657 goto bad_mps;
1658 } else {
1659 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1660 goto bad_mps;
1661
1662 mpsval = mps;
1663 }
1664
1665 hs_ep->ep.maxpacket = mps;
1666
1667 /* update both the in and out endpoint controldir_ registers, even
1668 * if one of the directions may not be in use. */
1669
1670 reg = readl(regs + S3C_DIEPCTL(ep));
1671 reg &= ~S3C_DxEPCTL_MPS_MASK;
1672 reg |= mpsval;
1673 writel(reg, regs + S3C_DIEPCTL(ep));
1674
1675 reg = readl(regs + S3C_DOEPCTL(ep));
1676 reg &= ~S3C_DxEPCTL_MPS_MASK;
1677 reg |= mpsval;
1678 writel(reg, regs + S3C_DOEPCTL(ep));
1679
1680 return;
1681
1682bad_mps:
1683 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1684}
1685
1686
1687/**
1688 * s3c_hsotg_trytx - check to see if anything needs transmitting
1689 * @hsotg: The driver state
1690 * @hs_ep: The driver endpoint to check.
1691 *
1692 * Check to see if there is a request that has data to send, and if so
1693 * make an attempt to write data into the FIFO.
1694 */
1695static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1696 struct s3c_hsotg_ep *hs_ep)
1697{
1698 struct s3c_hsotg_req *hs_req = hs_ep->req;
1699
1700 if (!hs_ep->dir_in || !hs_req)
1701 return 0;
1702
1703 if (hs_req->req.actual < hs_req->req.length) {
1704 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1705 hs_ep->index);
1706 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1707 }
1708
1709 return 0;
1710}
1711
1712/**
1713 * s3c_hsotg_complete_in - complete IN transfer
1714 * @hsotg: The device state.
1715 * @hs_ep: The endpoint that has just completed.
1716 *
1717 * An IN transfer has been completed, update the transfer's state and then
1718 * call the relevant completion routines.
1719 */
1720static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1721 struct s3c_hsotg_ep *hs_ep)
1722{
1723 struct s3c_hsotg_req *hs_req = hs_ep->req;
1724 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1725 int size_left, size_done;
1726
1727 if (!hs_req) {
1728 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1729 return;
1730 }
1731
1732 /* Calculate the size of the transfer by checking how much is left
1733 * in the endpoint size register and then working it out from
1734 * the amount we loaded for the transfer.
1735 *
1736 * We do this even for DMA, as the transfer may have incremented
1737 * past the end of the buffer (DMA transfers are always 32bit
1738 * aligned).
1739 */
1740
1741 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1742
1743 size_done = hs_ep->size_loaded - size_left;
1744 size_done += hs_ep->last_load;
1745
1746 if (hs_req->req.actual != size_done)
1747 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1748 __func__, hs_req->req.actual, size_done);
1749
1750 hs_req->req.actual = size_done;
1751
1752 /* if we did all of the transfer, and there is more data left
1753 * around, then try restarting the rest of the request */
1754
1755 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1756 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1757 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1758 } else
1759 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1760}
1761
1762/**
1763 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1764 * @hsotg: The driver state
1765 * @idx: The index for the endpoint (0..15)
1766 * @dir_in: Set if this is an IN endpoint
1767 *
1768 * Process and clear any interrupt pending for an individual endpoint
1769*/
1770static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1771 int dir_in)
1772{
1773 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1774 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1775 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1776 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1777 u32 ints;
5b7d70c6
BD
1778
1779 ints = readl(hsotg->regs + epint_reg);
1780
a3395f0d
AT
1781 /* Clear endpoint interrupts */
1782 writel(ints, hsotg->regs + epint_reg);
1783
5b7d70c6
BD
1784 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1785 __func__, idx, dir_in ? "in" : "out", ints);
1786
1787 if (ints & S3C_DxEPINT_XferCompl) {
1788 dev_dbg(hsotg->dev,
1789 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1790 __func__, readl(hsotg->regs + epctl_reg),
1791 readl(hsotg->regs + epsiz_reg));
1792
1793 /* we get OutDone from the FIFO, so we only need to look
1794 * at completing IN requests here */
1795 if (dir_in) {
1796 s3c_hsotg_complete_in(hsotg, hs_ep);
1797
c9a64ea8 1798 if (idx == 0 && !hs_ep->req)
5b7d70c6
BD
1799 s3c_hsotg_enqueue_setup(hsotg);
1800 } else if (using_dma(hsotg)) {
1801 /* We're using DMA, we need to fire an OutDone here
1802 * as we ignore the RXFIFO. */
1803
1804 s3c_hsotg_handle_outdone(hsotg, idx, false);
1805 }
5b7d70c6
BD
1806 }
1807
a3395f0d 1808 if (ints & S3C_DxEPINT_EPDisbld)
5b7d70c6 1809 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
5b7d70c6 1810
a3395f0d 1811 if (ints & S3C_DxEPINT_AHBErr)
5b7d70c6 1812 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
5b7d70c6
BD
1813
1814 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1815 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1816
1817 if (using_dma(hsotg) && idx == 0) {
1818 /* this is the notification we've received a
1819 * setup packet. In non-DMA mode we'd get this
1820 * from the RXFIFO, instead we need to process
1821 * the setup here. */
1822
1823 if (dir_in)
1824 WARN_ON_ONCE(1);
1825 else
1826 s3c_hsotg_handle_outdone(hsotg, 0, true);
1827 }
5b7d70c6
BD
1828 }
1829
a3395f0d 1830 if (ints & S3C_DxEPINT_Back2BackSetup)
5b7d70c6 1831 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
5b7d70c6
BD
1832
1833 if (dir_in) {
1834 /* not sure if this is important, but we'll clear it anyway
1835 */
1836 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1837 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1838 __func__, idx);
5b7d70c6
BD
1839 }
1840
1841 /* this probably means something bad is happening */
1842 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1843 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1844 __func__, idx);
5b7d70c6 1845 }
10aebc77
BD
1846
1847 /* FIFO has space or is empty (see GAHBCFG) */
1848 if (hsotg->dedicated_fifos &&
1849 ints & S3C_DIEPMSK_TxFIFOEmpty) {
1850 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1851 __func__, idx);
1852 s3c_hsotg_trytx(hsotg, hs_ep);
10aebc77 1853 }
5b7d70c6 1854 }
5b7d70c6
BD
1855}
1856
1857/**
1858 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1859 * @hsotg: The device state.
1860 *
1861 * Handle updating the device settings after the enumeration phase has
1862 * been completed.
1863*/
1864static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1865{
1866 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1867 int ep0_mps = 0, ep_mps;
1868
1869 /* This should signal the finish of the enumeration phase
1870 * of the USB handshaking, so we should now know what rate
1871 * we connected at. */
1872
1873 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1874
1875 /* note, since we're limited by the size of transfer on EP0, and
1876 * it seems IN transfers must be a even number of packets we do
1877 * not advertise a 64byte MPS on EP0. */
1878
1879 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1880 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1881 case S3C_DSTS_EnumSpd_FS:
1882 case S3C_DSTS_EnumSpd_FS48:
1883 hsotg->gadget.speed = USB_SPEED_FULL;
1884 dev_info(hsotg->dev, "new device is full-speed\n");
1885
1886 ep0_mps = EP0_MPS_LIMIT;
1887 ep_mps = 64;
1888 break;
1889
1890 case S3C_DSTS_EnumSpd_HS:
1891 dev_info(hsotg->dev, "new device is high-speed\n");
1892 hsotg->gadget.speed = USB_SPEED_HIGH;
1893
1894 ep0_mps = EP0_MPS_LIMIT;
1895 ep_mps = 512;
1896 break;
1897
1898 case S3C_DSTS_EnumSpd_LS:
1899 hsotg->gadget.speed = USB_SPEED_LOW;
1900 dev_info(hsotg->dev, "new device is low-speed\n");
1901
1902 /* note, we don't actually support LS in this driver at the
1903 * moment, and the documentation seems to imply that it isn't
1904 * supported by the PHYs on some of the devices.
1905 */
1906 break;
1907 }
1908
1909 /* we should now know the maximum packet size for an
1910 * endpoint, so set the endpoints to a default value. */
1911
1912 if (ep0_mps) {
1913 int i;
1914 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1915 for (i = 1; i < S3C_HSOTG_EPS; i++)
1916 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1917 }
1918
1919 /* ensure after enumeration our EP0 is active */
1920
1921 s3c_hsotg_enqueue_setup(hsotg);
1922
1923 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1924 readl(hsotg->regs + S3C_DIEPCTL0),
1925 readl(hsotg->regs + S3C_DOEPCTL0));
1926}
1927
1928/**
1929 * kill_all_requests - remove all requests from the endpoint's queue
1930 * @hsotg: The device state.
1931 * @ep: The endpoint the requests may be on.
1932 * @result: The result code to use.
1933 * @force: Force removal of any current requests
1934 *
1935 * Go through the requests on the given endpoint and mark them
1936 * completed with the given result code.
1937 */
1938static void kill_all_requests(struct s3c_hsotg *hsotg,
1939 struct s3c_hsotg_ep *ep,
1940 int result, bool force)
1941{
1942 struct s3c_hsotg_req *req, *treq;
1943 unsigned long flags;
1944
1945 spin_lock_irqsave(&ep->lock, flags);
1946
1947 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1948 /* currently, we can't do much about an already
1949 * running request on an in endpoint */
1950
1951 if (ep->req == req && ep->dir_in && !force)
1952 continue;
1953
1954 s3c_hsotg_complete_request(hsotg, ep, req,
1955 result);
1956 }
1957
1958 spin_unlock_irqrestore(&ep->lock, flags);
1959}
1960
1961#define call_gadget(_hs, _entry) \
1962 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1963 (_hs)->driver && (_hs)->driver->_entry) \
1964 (_hs)->driver->_entry(&(_hs)->gadget);
1965
1966/**
1967 * s3c_hsotg_disconnect_irq - disconnect irq service
1968 * @hsotg: The device state.
1969 *
1970 * A disconnect IRQ has been received, meaning that the host has
1971 * lost contact with the bus. Remove all current transactions
1972 * and signal the gadget driver that this has happened.
1973*/
1974static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1975{
1976 unsigned ep;
1977
1978 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1979 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1980
1981 call_gadget(hsotg, disconnect);
1982}
1983
1984/**
1985 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1986 * @hsotg: The device state:
1987 * @periodic: True if this is a periodic FIFO interrupt
1988 */
1989static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
1990{
1991 struct s3c_hsotg_ep *ep;
1992 int epno, ret;
1993
1994 /* look through for any more data to transmit */
1995
1996 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
1997 ep = &hsotg->eps[epno];
1998
1999 if (!ep->dir_in)
2000 continue;
2001
2002 if ((periodic && !ep->periodic) ||
2003 (!periodic && ep->periodic))
2004 continue;
2005
2006 ret = s3c_hsotg_trytx(hsotg, ep);
2007 if (ret < 0)
2008 break;
2009 }
2010}
2011
2012static struct s3c_hsotg *our_hsotg;
2013
2014/* IRQ flags which will trigger a retry around the IRQ loop */
2015#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
2016 S3C_GINTSTS_PTxFEmp | \
2017 S3C_GINTSTS_RxFLvl)
2018
2019/**
2020 * s3c_hsotg_irq - handle device interrupt
2021 * @irq: The IRQ number triggered
2022 * @pw: The pw value when registered the handler.
2023 */
2024static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2025{
2026 struct s3c_hsotg *hsotg = pw;
2027 int retry_count = 8;
2028 u32 gintsts;
2029 u32 gintmsk;
2030
2031irq_retry:
2032 gintsts = readl(hsotg->regs + S3C_GINTSTS);
2033 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
2034
2035 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2036 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2037
2038 gintsts &= gintmsk;
2039
2040 if (gintsts & S3C_GINTSTS_OTGInt) {
2041 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
2042
2043 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2044
2045 writel(otgint, hsotg->regs + S3C_GOTGINT);
5b7d70c6
BD
2046 }
2047
2048 if (gintsts & S3C_GINTSTS_DisconnInt) {
2049 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
2050 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
2051
2052 s3c_hsotg_disconnect_irq(hsotg);
2053 }
2054
2055 if (gintsts & S3C_GINTSTS_SessReqInt) {
2056 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2057 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
2058 }
2059
2060 if (gintsts & S3C_GINTSTS_EnumDone) {
5b7d70c6 2061 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
a3395f0d
AT
2062
2063 s3c_hsotg_irq_enumdone(hsotg);
5b7d70c6
BD
2064 }
2065
2066 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
2067 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2068 readl(hsotg->regs + S3C_DSTS),
2069 readl(hsotg->regs + S3C_GOTGCTL));
2070
2071 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
2072 }
2073
2074 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
2075 u32 daint = readl(hsotg->regs + S3C_DAINT);
2076 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
2077 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
2078 int ep;
2079
2080 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2081
2082 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2083 if (daint_out & 1)
2084 s3c_hsotg_epint(hsotg, ep, 0);
2085 }
2086
2087 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2088 if (daint_in & 1)
2089 s3c_hsotg_epint(hsotg, ep, 1);
2090 }
5b7d70c6
BD
2091 }
2092
2093 if (gintsts & S3C_GINTSTS_USBRst) {
2094 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2095 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2096 readl(hsotg->regs + S3C_GNPTXSTS));
2097
a3395f0d
AT
2098 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2099
5b7d70c6
BD
2100 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2101
2102 /* it seems after a reset we can end up with a situation
b3864ced
BD
2103 * where the TXFIFO still has data in it... the docs
2104 * suggest resetting all the fifos, so use the init_fifo
2105 * code to relayout and flush the fifos.
5b7d70c6
BD
2106 */
2107
b3864ced 2108 s3c_hsotg_init_fifo(hsotg);
5b7d70c6
BD
2109
2110 s3c_hsotg_enqueue_setup(hsotg);
5b7d70c6
BD
2111 }
2112
2113 /* check both FIFOs */
2114
2115 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2116 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2117
2118 /* Disable the interrupt to stop it happening again
2119 * unless one of these endpoint routines decides that
2120 * it needs re-enabling */
2121
2122 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2123 s3c_hsotg_irq_fifoempty(hsotg, false);
5b7d70c6
BD
2124 }
2125
2126 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2127 dev_dbg(hsotg->dev, "PTxFEmp\n");
2128
2129 /* See note in S3C_GINTSTS_NPTxFEmp */
2130
2131 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2132 s3c_hsotg_irq_fifoempty(hsotg, true);
5b7d70c6
BD
2133 }
2134
2135 if (gintsts & S3C_GINTSTS_RxFLvl) {
2136 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2137 * we need to retry s3c_hsotg_handle_rx if this is still
2138 * set. */
2139
2140 s3c_hsotg_handle_rx(hsotg);
5b7d70c6
BD
2141 }
2142
2143 if (gintsts & S3C_GINTSTS_ModeMis) {
2144 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2145 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2146 }
2147
2148 if (gintsts & S3C_GINTSTS_USBSusp) {
2149 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2150 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2151
2152 call_gadget(hsotg, suspend);
2153 }
2154
2155 if (gintsts & S3C_GINTSTS_WkUpInt) {
2156 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2157 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2158
2159 call_gadget(hsotg, resume);
2160 }
2161
2162 if (gintsts & S3C_GINTSTS_ErlySusp) {
2163 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2164 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2165 }
2166
2167 /* these next two seem to crop-up occasionally causing the core
2168 * to shutdown the USB transfer, so try clearing them and logging
25985edc 2169 * the occurrence. */
5b7d70c6
BD
2170
2171 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2172 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2173
5b7d70c6 2174 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
a3395f0d
AT
2175
2176 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2177 }
2178
2179 if (gintsts & S3C_GINTSTS_GINNakEff) {
2180 dev_info(hsotg->dev, "GINNakEff triggered\n");
2181
5b7d70c6 2182 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
a3395f0d
AT
2183
2184 s3c_hsotg_dump(hsotg);
5b7d70c6
BD
2185 }
2186
2187 /* if we've had fifo events, we should try and go around the
2188 * loop again to see if there's any point in returning yet. */
2189
2190 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2191 goto irq_retry;
2192
2193 return IRQ_HANDLED;
2194}
2195
2196/**
2197 * s3c_hsotg_ep_enable - enable the given endpoint
2198 * @ep: The USB endpint to configure
2199 * @desc: The USB endpoint descriptor to configure with.
2200 *
2201 * This is called from the USB gadget code's usb_ep_enable().
2202*/
2203static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2204 const struct usb_endpoint_descriptor *desc)
2205{
2206 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2207 struct s3c_hsotg *hsotg = hs_ep->parent;
2208 unsigned long flags;
2209 int index = hs_ep->index;
2210 u32 epctrl_reg;
2211 u32 epctrl;
2212 u32 mps;
2213 int dir_in;
19c190f9 2214 int ret = 0;
5b7d70c6
BD
2215
2216 dev_dbg(hsotg->dev,
2217 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2218 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2219 desc->wMaxPacketSize, desc->bInterval);
2220
2221 /* not to be called for EP0 */
2222 WARN_ON(index == 0);
2223
2224 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2225 if (dir_in != hs_ep->dir_in) {
2226 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2227 return -EINVAL;
2228 }
2229
2230 mps = le16_to_cpu(desc->wMaxPacketSize);
2231
2232 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2233
2234 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2235 epctrl = readl(hsotg->regs + epctrl_reg);
2236
2237 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2238 __func__, epctrl, epctrl_reg);
2239
2240 spin_lock_irqsave(&hs_ep->lock, flags);
2241
2242 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2243 epctrl |= S3C_DxEPCTL_MPS(mps);
2244
2245 /* mark the endpoint as active, otherwise the core may ignore
2246 * transactions entirely for this endpoint */
2247 epctrl |= S3C_DxEPCTL_USBActEp;
2248
2249 /* set the NAK status on the endpoint, otherwise we might try and
2250 * do something with data that we've yet got a request to process
2251 * since the RXFIFO will take data for an endpoint even if the
2252 * size register hasn't been set.
2253 */
2254
2255 epctrl |= S3C_DxEPCTL_SNAK;
2256
2257 /* update the endpoint state */
2258 hs_ep->ep.maxpacket = mps;
2259
2260 /* default, set to non-periodic */
2261 hs_ep->periodic = 0;
2262
2263 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2264 case USB_ENDPOINT_XFER_ISOC:
2265 dev_err(hsotg->dev, "no current ISOC support\n");
19c190f9
JL
2266 ret = -EINVAL;
2267 goto out;
5b7d70c6
BD
2268
2269 case USB_ENDPOINT_XFER_BULK:
2270 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2271 break;
2272
2273 case USB_ENDPOINT_XFER_INT:
2274 if (dir_in) {
2275 /* Allocate our TxFNum by simply using the index
2276 * of the endpoint for the moment. We could do
2277 * something better if the host indicates how
2278 * many FIFOs we are expecting to use. */
2279
2280 hs_ep->periodic = 1;
2281 epctrl |= S3C_DxEPCTL_TxFNum(index);
2282 }
2283
2284 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2285 break;
2286
2287 case USB_ENDPOINT_XFER_CONTROL:
2288 epctrl |= S3C_DxEPCTL_EPType_Control;
2289 break;
2290 }
2291
10aebc77
BD
2292 /* if the hardware has dedicated fifos, we must give each IN EP
2293 * a unique tx-fifo even if it is non-periodic.
2294 */
2295 if (dir_in && hsotg->dedicated_fifos)
2296 epctrl |= S3C_DxEPCTL_TxFNum(index);
2297
5b7d70c6
BD
2298 /* for non control endpoints, set PID to D0 */
2299 if (index)
2300 epctrl |= S3C_DxEPCTL_SetD0PID;
2301
2302 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2303 __func__, epctrl);
2304
2305 writel(epctrl, hsotg->regs + epctrl_reg);
2306 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2307 __func__, readl(hsotg->regs + epctrl_reg));
2308
2309 /* enable the endpoint interrupt */
2310 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2311
19c190f9 2312out:
5b7d70c6 2313 spin_unlock_irqrestore(&hs_ep->lock, flags);
19c190f9 2314 return ret;
5b7d70c6
BD
2315}
2316
2317static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2318{
2319 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2320 struct s3c_hsotg *hsotg = hs_ep->parent;
2321 int dir_in = hs_ep->dir_in;
2322 int index = hs_ep->index;
2323 unsigned long flags;
2324 u32 epctrl_reg;
2325 u32 ctrl;
2326
2327 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2328
2329 if (ep == &hsotg->eps[0].ep) {
2330 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2331 return -EINVAL;
2332 }
2333
2334 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2335
2336 /* terminate all requests with shutdown */
2337 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2338
2339 spin_lock_irqsave(&hs_ep->lock, flags);
2340
2341 ctrl = readl(hsotg->regs + epctrl_reg);
2342 ctrl &= ~S3C_DxEPCTL_EPEna;
2343 ctrl &= ~S3C_DxEPCTL_USBActEp;
2344 ctrl |= S3C_DxEPCTL_SNAK;
2345
2346 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2347 writel(ctrl, hsotg->regs + epctrl_reg);
2348
2349 /* disable endpoint interrupts */
2350 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2351
2352 spin_unlock_irqrestore(&hs_ep->lock, flags);
2353 return 0;
2354}
2355
2356/**
2357 * on_list - check request is on the given endpoint
2358 * @ep: The endpoint to check.
2359 * @test: The request to test if it is on the endpoint.
2360*/
2361static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2362{
2363 struct s3c_hsotg_req *req, *treq;
2364
2365 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2366 if (req == test)
2367 return true;
2368 }
2369
2370 return false;
2371}
2372
2373static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2374{
2375 struct s3c_hsotg_req *hs_req = our_req(req);
2376 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2377 struct s3c_hsotg *hs = hs_ep->parent;
2378 unsigned long flags;
2379
2380 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2381
2382 if (hs_req == hs_ep->req) {
2383 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2384 return -EINPROGRESS;
2385 }
2386
2387 spin_lock_irqsave(&hs_ep->lock, flags);
2388
2389 if (!on_list(hs_ep, hs_req)) {
2390 spin_unlock_irqrestore(&hs_ep->lock, flags);
2391 return -EINVAL;
2392 }
2393
2394 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2395 spin_unlock_irqrestore(&hs_ep->lock, flags);
2396
2397 return 0;
2398}
2399
2400static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2401{
2402 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2403 struct s3c_hsotg *hs = hs_ep->parent;
2404 int index = hs_ep->index;
2405 unsigned long irqflags;
2406 u32 epreg;
2407 u32 epctl;
2408
2409 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2410
2411 spin_lock_irqsave(&hs_ep->lock, irqflags);
2412
2413 /* write both IN and OUT control registers */
2414
2415 epreg = S3C_DIEPCTL(index);
2416 epctl = readl(hs->regs + epreg);
2417
2418 if (value)
2419 epctl |= S3C_DxEPCTL_Stall;
2420 else
2421 epctl &= ~S3C_DxEPCTL_Stall;
2422
2423 writel(epctl, hs->regs + epreg);
2424
2425 epreg = S3C_DOEPCTL(index);
2426 epctl = readl(hs->regs + epreg);
2427
2428 if (value)
2429 epctl |= S3C_DxEPCTL_Stall;
2430 else
2431 epctl &= ~S3C_DxEPCTL_Stall;
2432
2433 writel(epctl, hs->regs + epreg);
2434
2435 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2436
2437 return 0;
2438}
2439
2440static struct usb_ep_ops s3c_hsotg_ep_ops = {
2441 .enable = s3c_hsotg_ep_enable,
2442 .disable = s3c_hsotg_ep_disable,
2443 .alloc_request = s3c_hsotg_ep_alloc_request,
2444 .free_request = s3c_hsotg_ep_free_request,
2445 .queue = s3c_hsotg_ep_queue,
2446 .dequeue = s3c_hsotg_ep_dequeue,
2447 .set_halt = s3c_hsotg_ep_sethalt,
25985edc 2448 /* note, don't believe we have any call for the fifo routines */
5b7d70c6
BD
2449};
2450
2451/**
2452 * s3c_hsotg_corereset - issue softreset to the core
2453 * @hsotg: The device state
2454 *
2455 * Issue a soft reset to the core, and await the core finishing it.
2456*/
2457static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2458{
2459 int timeout;
2460 u32 grstctl;
2461
2462 dev_dbg(hsotg->dev, "resetting core\n");
2463
2464 /* issue soft reset */
2465 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2466
2467 timeout = 1000;
2468 do {
2469 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
d00f5004 2470 } while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
5b7d70c6 2471
d00f5004 2472 if (grstctl & S3C_GRSTCTL_CSftRst) {
5b7d70c6
BD
2473 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2474 return -EINVAL;
2475 }
2476
2477 timeout = 1000;
2478
2479 while (1) {
2480 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2481
2482 if (timeout-- < 0) {
2483 dev_info(hsotg->dev,
2484 "%s: reset failed, GRSTCTL=%08x\n",
2485 __func__, grstctl);
2486 return -ETIMEDOUT;
2487 }
2488
5b7d70c6
BD
2489 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2490 continue;
2491
2492 break; /* reset done */
2493 }
2494
2495 dev_dbg(hsotg->dev, "reset successful\n");
2496 return 0;
2497}
2498
b0fca50f
UKK
2499int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
2500 int (*bind)(struct usb_gadget *))
5b7d70c6
BD
2501{
2502 struct s3c_hsotg *hsotg = our_hsotg;
2503 int ret;
2504
2505 if (!hsotg) {
2506 printk(KERN_ERR "%s: called with no device\n", __func__);
2507 return -ENODEV;
2508 }
2509
2510 if (!driver) {
2511 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2512 return -EINVAL;
2513 }
2514
2515 if (driver->speed != USB_SPEED_HIGH &&
2516 driver->speed != USB_SPEED_FULL) {
2517 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2518 }
2519
b0fca50f 2520 if (!bind || !driver->setup) {
5b7d70c6
BD
2521 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2522 return -EINVAL;
2523 }
2524
2525 WARN_ON(hsotg->driver);
2526
2527 driver->driver.bus = NULL;
2528 hsotg->driver = driver;
2529 hsotg->gadget.dev.driver = &driver->driver;
2530 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2531 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2532
2533 ret = device_add(&hsotg->gadget.dev);
2534 if (ret) {
2535 dev_err(hsotg->dev, "failed to register gadget device\n");
2536 goto err;
2537 }
2538
b0fca50f 2539 ret = bind(&hsotg->gadget);
5b7d70c6
BD
2540 if (ret) {
2541 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2542
2543 hsotg->gadget.dev.driver = NULL;
2544 hsotg->driver = NULL;
2545 goto err;
2546 }
2547
2548 /* we must now enable ep0 ready for host detection and then
2549 * set configuration. */
2550
2551 s3c_hsotg_corereset(hsotg);
2552
2553 /* set the PLL on, remove the HNP/SRP and set the PHY */
2554 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2555 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2556
2557 /* looks like soft-reset changes state of FIFOs */
2558 s3c_hsotg_init_fifo(hsotg);
2559
2560 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2561
2562 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2563
a3395f0d
AT
2564 /* Clear any pending OTG interrupts */
2565 writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
2566
2567 /* Clear any pending interrupts */
2568 writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
2569
5b7d70c6
BD
2570 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2571 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2572 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2573 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2574 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2575 S3C_GINTSTS_ErlySusp,
2576 hsotg->regs + S3C_GINTMSK);
2577
2578 if (using_dma(hsotg))
2579 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2580 S3C_GAHBCFG_HBstLen_Incr4,
2581 hsotg->regs + S3C_GAHBCFG);
2582 else
2583 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2584
2585 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2586 * up being flooded with interrupts if the host is polling the
2587 * endpoint to try and read data. */
2588
2589 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2590 S3C_DIEPMSK_INTknEPMisMsk |
10aebc77
BD
2591 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
2592 ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
5b7d70c6
BD
2593 hsotg->regs + S3C_DIEPMSK);
2594
2595 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2596 * DMA mode we may need this. */
2597 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2598 S3C_DOEPMSK_EPDisbldMsk |
b7800218
RK
2599 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2600 S3C_DIEPMSK_TimeOUTMsk) : 0),
5b7d70c6
BD
2601 hsotg->regs + S3C_DOEPMSK);
2602
2603 writel(0, hsotg->regs + S3C_DAINTMSK);
2604
2605 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2606 readl(hsotg->regs + S3C_DIEPCTL0),
2607 readl(hsotg->regs + S3C_DOEPCTL0));
2608
2609 /* enable in and out endpoint interrupts */
2610 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2611
2612 /* Enable the RXFIFO when in slave mode, as this is how we collect
2613 * the data. In DMA mode, we get events from the FIFO but also
2614 * things we cannot process, so do not use it. */
2615 if (!using_dma(hsotg))
2616 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2617
2618 /* Enable interrupts for EP0 in and out */
2619 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2620 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2621
2622 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2623 udelay(10); /* see openiboot */
2624 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2625
2626 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2627
2628 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2629 writing to the EPCTL register.. */
2630
2631 /* set to read 1 8byte packet */
2632 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2633 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2634
2635 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2636 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2637 S3C_DxEPCTL_USBActEp,
2638 hsotg->regs + S3C_DOEPCTL0);
2639
2640 /* enable, but don't activate EP0in */
2641 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2642 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2643
2644 s3c_hsotg_enqueue_setup(hsotg);
2645
2646 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2647 readl(hsotg->regs + S3C_DIEPCTL0),
2648 readl(hsotg->regs + S3C_DOEPCTL0));
2649
2650 /* clear global NAKs */
2651 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2652 hsotg->regs + S3C_DCTL);
2653
2e0e0777
BD
2654 /* must be at-least 3ms to allow bus to see disconnect */
2655 msleep(3);
2656
5b7d70c6
BD
2657 /* remove the soft-disconnect and let's go */
2658 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2659
2660 /* report to the user, and return */
2661
2662 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2663 return 0;
2664
2665err:
2666 hsotg->driver = NULL;
2667 hsotg->gadget.dev.driver = NULL;
2668 return ret;
2669}
b0fca50f 2670EXPORT_SYMBOL(usb_gadget_probe_driver);
5b7d70c6
BD
2671
2672int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2673{
2674 struct s3c_hsotg *hsotg = our_hsotg;
2675 int ep;
2676
2677 if (!hsotg)
2678 return -ENODEV;
2679
2680 if (!driver || driver != hsotg->driver || !driver->unbind)
2681 return -EINVAL;
2682
2683 /* all endpoints should be shutdown */
2684 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2685 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2686
2687 call_gadget(hsotg, disconnect);
2688
2689 driver->unbind(&hsotg->gadget);
2690 hsotg->driver = NULL;
2691 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2692
2693 device_del(&hsotg->gadget.dev);
2694
2695 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2696 driver->driver.name);
2697
2698 return 0;
2699}
2700EXPORT_SYMBOL(usb_gadget_unregister_driver);
2701
2702static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2703{
2704 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2705}
2706
2707static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2708 .get_frame = s3c_hsotg_gadget_getframe,
2709};
2710
2711/**
2712 * s3c_hsotg_initep - initialise a single endpoint
2713 * @hsotg: The device state.
2714 * @hs_ep: The endpoint to be initialised.
2715 * @epnum: The endpoint number
2716 *
2717 * Initialise the given endpoint (as part of the probe and device state
2718 * creation) to give to the gadget driver. Setup the endpoint name, any
2719 * direction information and other state that may be required.
2720 */
2721static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2722 struct s3c_hsotg_ep *hs_ep,
2723 int epnum)
2724{
2725 u32 ptxfifo;
2726 char *dir;
2727
2728 if (epnum == 0)
2729 dir = "";
2730 else if ((epnum % 2) == 0) {
2731 dir = "out";
2732 } else {
2733 dir = "in";
2734 hs_ep->dir_in = 1;
2735 }
2736
2737 hs_ep->index = epnum;
2738
2739 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2740
2741 INIT_LIST_HEAD(&hs_ep->queue);
2742 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2743
2744 spin_lock_init(&hs_ep->lock);
2745
2746 /* add to the list of endpoints known by the gadget driver */
2747 if (epnum)
2748 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2749
2750 hs_ep->parent = hsotg;
2751 hs_ep->ep.name = hs_ep->name;
2752 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2753 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2754
2755 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2756 * an OUT endpoint, we may as well do this if in future the
2757 * code is changed to make each endpoint's direction changeable.
2758 */
2759
2760 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
679f9b7c 2761 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
5b7d70c6
BD
2762
2763 /* if we're using dma, we need to set the next-endpoint pointer
2764 * to be something valid.
2765 */
2766
2767 if (using_dma(hsotg)) {
2768 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2769 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2770 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2771 }
2772}
2773
2774/**
2775 * s3c_hsotg_otgreset - reset the OtG phy block
2776 * @hsotg: The host state.
2777 *
2778 * Power up the phy, set the basic configuration and start the PHY.
2779 */
2780static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2781{
e50bf385 2782 struct clk *xusbxti;
1eb838d3 2783 u32 pwr, osc;
5b7d70c6 2784
1eb838d3
MS
2785 pwr = readl(S3C_PHYPWR);
2786 pwr &= ~0x19;
2787 writel(pwr, S3C_PHYPWR);
5b7d70c6
BD
2788 mdelay(1);
2789
2790 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2791
e50bf385
MC
2792 xusbxti = clk_get(hsotg->dev, "xusbxti");
2793 if (xusbxti && !IS_ERR(xusbxti)) {
2794 switch (clk_get_rate(xusbxti)) {
2795 case 12*MHZ:
2796 osc |= S3C_PHYCLK_CLKSEL_12M;
2797 break;
2798 case 24*MHZ:
2799 osc |= S3C_PHYCLK_CLKSEL_24M;
2800 break;
2801 default:
2802 case 48*MHZ:
2803 /* default reference clock */
2804 break;
2805 }
2806 clk_put(xusbxti);
2807 }
2808
5b7d70c6
BD
2809 writel(osc | 0x10, S3C_PHYCLK);
2810
2811 /* issue a full set of resets to the otg and core */
2812
2813 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2814 udelay(20); /* at-least 10uS */
2815 writel(0, S3C_RSTCON);
2816}
2817
2818
2819static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2820{
10aebc77
BD
2821 u32 cfg4;
2822
5b7d70c6
BD
2823 /* unmask subset of endpoint interrupts */
2824
2825 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2826 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2827 hsotg->regs + S3C_DIEPMSK);
2828
2829 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2830 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2831 hsotg->regs + S3C_DOEPMSK);
2832
2833 writel(0, hsotg->regs + S3C_DAINTMSK);
2834
390b1661
TA
2835 /* Be in disconnected state until gadget is registered */
2836 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2837
5b7d70c6
BD
2838 if (0) {
2839 /* post global nak until we're ready */
2840 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2841 hsotg->regs + S3C_DCTL);
2842 }
2843
2844 /* setup fifos */
2845
2846 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2847 readl(hsotg->regs + S3C_GRXFSIZ),
2848 readl(hsotg->regs + S3C_GNPTXFSIZ));
2849
2850 s3c_hsotg_init_fifo(hsotg);
2851
2852 /* set the PLL on, remove the HNP/SRP and set the PHY */
2853 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2854 hsotg->regs + S3C_GUSBCFG);
2855
2856 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2857 hsotg->regs + S3C_GAHBCFG);
10aebc77
BD
2858
2859 /* check hardware configuration */
2860
2861 cfg4 = readl(hsotg->regs + 0x50);
2862 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
2863
2864 dev_info(hsotg->dev, "%s fifos\n",
2865 hsotg->dedicated_fifos ? "dedicated" : "shared");
5b7d70c6
BD
2866}
2867
2868static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2869{
2870 struct device *dev = hsotg->dev;
2871 void __iomem *regs = hsotg->regs;
2872 u32 val;
2873 int idx;
2874
2875 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2876 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2877 readl(regs + S3C_DIEPMSK));
2878
2879 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2880 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2881
2882 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2883 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2884
2885 /* show periodic fifo settings */
2886
2887 for (idx = 1; idx <= 15; idx++) {
2888 val = readl(regs + S3C_DPTXFSIZn(idx));
2889 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2890 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2891 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2892 }
2893
2894 for (idx = 0; idx < 15; idx++) {
2895 dev_info(dev,
2896 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2897 readl(regs + S3C_DIEPCTL(idx)),
2898 readl(regs + S3C_DIEPTSIZ(idx)),
2899 readl(regs + S3C_DIEPDMA(idx)));
2900
2901 val = readl(regs + S3C_DOEPCTL(idx));
2902 dev_info(dev,
2903 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2904 idx, readl(regs + S3C_DOEPCTL(idx)),
2905 readl(regs + S3C_DOEPTSIZ(idx)),
2906 readl(regs + S3C_DOEPDMA(idx)));
2907
2908 }
2909
2910 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2911 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2912}
2913
2914
2915/**
2916 * state_show - debugfs: show overall driver and device state.
2917 * @seq: The seq file to write to.
2918 * @v: Unused parameter.
2919 *
2920 * This debugfs entry shows the overall state of the hardware and
2921 * some general information about each of the endpoints available
2922 * to the system.
2923 */
2924static int state_show(struct seq_file *seq, void *v)
2925{
2926 struct s3c_hsotg *hsotg = seq->private;
2927 void __iomem *regs = hsotg->regs;
2928 int idx;
2929
2930 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2931 readl(regs + S3C_DCFG),
2932 readl(regs + S3C_DCTL),
2933 readl(regs + S3C_DSTS));
2934
2935 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2936 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2937
2938 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2939 readl(regs + S3C_GINTMSK),
2940 readl(regs + S3C_GINTSTS));
2941
2942 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2943 readl(regs + S3C_DAINTMSK),
2944 readl(regs + S3C_DAINT));
2945
2946 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2947 readl(regs + S3C_GNPTXSTS),
2948 readl(regs + S3C_GRXSTSR));
2949
2950 seq_printf(seq, "\nEndpoint status:\n");
2951
2952 for (idx = 0; idx < 15; idx++) {
2953 u32 in, out;
2954
2955 in = readl(regs + S3C_DIEPCTL(idx));
2956 out = readl(regs + S3C_DOEPCTL(idx));
2957
2958 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2959 idx, in, out);
2960
2961 in = readl(regs + S3C_DIEPTSIZ(idx));
2962 out = readl(regs + S3C_DOEPTSIZ(idx));
2963
2964 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2965 in, out);
2966
2967 seq_printf(seq, "\n");
2968 }
2969
2970 return 0;
2971}
2972
2973static int state_open(struct inode *inode, struct file *file)
2974{
2975 return single_open(file, state_show, inode->i_private);
2976}
2977
2978static const struct file_operations state_fops = {
2979 .owner = THIS_MODULE,
2980 .open = state_open,
2981 .read = seq_read,
2982 .llseek = seq_lseek,
2983 .release = single_release,
2984};
2985
2986/**
2987 * fifo_show - debugfs: show the fifo information
2988 * @seq: The seq_file to write data to.
2989 * @v: Unused parameter.
2990 *
2991 * Show the FIFO information for the overall fifo and all the
2992 * periodic transmission FIFOs.
2993*/
2994static int fifo_show(struct seq_file *seq, void *v)
2995{
2996 struct s3c_hsotg *hsotg = seq->private;
2997 void __iomem *regs = hsotg->regs;
2998 u32 val;
2999 int idx;
3000
3001 seq_printf(seq, "Non-periodic FIFOs:\n");
3002 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
3003
3004 val = readl(regs + S3C_GNPTXFSIZ);
3005 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3006 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
3007 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
3008
3009 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3010
3011 for (idx = 1; idx <= 15; idx++) {
3012 val = readl(regs + S3C_DPTXFSIZn(idx));
3013
3014 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3015 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
3016 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
3017 }
3018
3019 return 0;
3020}
3021
3022static int fifo_open(struct inode *inode, struct file *file)
3023{
3024 return single_open(file, fifo_show, inode->i_private);
3025}
3026
3027static const struct file_operations fifo_fops = {
3028 .owner = THIS_MODULE,
3029 .open = fifo_open,
3030 .read = seq_read,
3031 .llseek = seq_lseek,
3032 .release = single_release,
3033};
3034
3035
3036static const char *decode_direction(int is_in)
3037{
3038 return is_in ? "in" : "out";
3039}
3040
3041/**
3042 * ep_show - debugfs: show the state of an endpoint.
3043 * @seq: The seq_file to write data to.
3044 * @v: Unused parameter.
3045 *
3046 * This debugfs entry shows the state of the given endpoint (one is
3047 * registered for each available).
3048*/
3049static int ep_show(struct seq_file *seq, void *v)
3050{
3051 struct s3c_hsotg_ep *ep = seq->private;
3052 struct s3c_hsotg *hsotg = ep->parent;
3053 struct s3c_hsotg_req *req;
3054 void __iomem *regs = hsotg->regs;
3055 int index = ep->index;
3056 int show_limit = 15;
3057 unsigned long flags;
3058
3059 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3060 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3061
3062 /* first show the register state */
3063
3064 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3065 readl(regs + S3C_DIEPCTL(index)),
3066 readl(regs + S3C_DOEPCTL(index)));
3067
3068 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3069 readl(regs + S3C_DIEPDMA(index)),
3070 readl(regs + S3C_DOEPDMA(index)));
3071
3072 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3073 readl(regs + S3C_DIEPINT(index)),
3074 readl(regs + S3C_DOEPINT(index)));
3075
3076 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3077 readl(regs + S3C_DIEPTSIZ(index)),
3078 readl(regs + S3C_DOEPTSIZ(index)));
3079
3080 seq_printf(seq, "\n");
3081 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3082 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3083
3084 seq_printf(seq, "request list (%p,%p):\n",
3085 ep->queue.next, ep->queue.prev);
3086
3087 spin_lock_irqsave(&ep->lock, flags);
3088
3089 list_for_each_entry(req, &ep->queue, queue) {
3090 if (--show_limit < 0) {
3091 seq_printf(seq, "not showing more requests...\n");
3092 break;
3093 }
3094
3095 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3096 req == ep->req ? '*' : ' ',
3097 req, req->req.length, req->req.buf);
3098 seq_printf(seq, "%d done, res %d\n",
3099 req->req.actual, req->req.status);
3100 }
3101
3102 spin_unlock_irqrestore(&ep->lock, flags);
3103
3104 return 0;
3105}
3106
3107static int ep_open(struct inode *inode, struct file *file)
3108{
3109 return single_open(file, ep_show, inode->i_private);
3110}
3111
3112static const struct file_operations ep_fops = {
3113 .owner = THIS_MODULE,
3114 .open = ep_open,
3115 .read = seq_read,
3116 .llseek = seq_lseek,
3117 .release = single_release,
3118};
3119
3120/**
3121 * s3c_hsotg_create_debug - create debugfs directory and files
3122 * @hsotg: The driver state
3123 *
3124 * Create the debugfs files to allow the user to get information
3125 * about the state of the system. The directory name is created
3126 * with the same name as the device itself, in case we end up
3127 * with multiple blocks in future systems.
3128*/
3129static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3130{
3131 struct dentry *root;
3132 unsigned epidx;
3133
3134 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3135 hsotg->debug_root = root;
3136 if (IS_ERR(root)) {
3137 dev_err(hsotg->dev, "cannot create debug root\n");
3138 return;
3139 }
3140
3141 /* create general state file */
3142
3143 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3144 hsotg, &state_fops);
3145
3146 if (IS_ERR(hsotg->debug_file))
3147 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3148
3149 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3150 hsotg, &fifo_fops);
3151
3152 if (IS_ERR(hsotg->debug_fifo))
3153 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3154
3155 /* create one file for each endpoint */
3156
3157 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3158 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3159
3160 ep->debugfs = debugfs_create_file(ep->name, 0444,
3161 root, ep, &ep_fops);
3162
3163 if (IS_ERR(ep->debugfs))
3164 dev_err(hsotg->dev, "failed to create %s debug file\n",
3165 ep->name);
3166 }
3167}
3168
3169/**
3170 * s3c_hsotg_delete_debug - cleanup debugfs entries
3171 * @hsotg: The driver state
3172 *
3173 * Cleanup (remove) the debugfs files for use on module exit.
3174*/
3175static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3176{
3177 unsigned epidx;
3178
3179 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3180 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3181 debugfs_remove(ep->debugfs);
3182 }
3183
3184 debugfs_remove(hsotg->debug_file);
3185 debugfs_remove(hsotg->debug_fifo);
3186 debugfs_remove(hsotg->debug_root);
3187}
3188
3189/**
3190 * s3c_hsotg_gate - set the hardware gate for the block
3191 * @pdev: The device we bound to
3192 * @on: On or off.
3193 *
3194 * Set the hardware gate setting into the block. If we end up on
3195 * something other than an S3C64XX, then we might need to change this
3196 * to using a platform data callback, or some other mechanism.
3197 */
3198static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3199{
3200 unsigned long flags;
3201 u32 others;
3202
3203 local_irq_save(flags);
3204
3205 others = __raw_readl(S3C64XX_OTHERS);
3206 if (on)
3207 others |= S3C64XX_OTHERS_USBMASK;
3208 else
3209 others &= ~S3C64XX_OTHERS_USBMASK;
3210 __raw_writel(others, S3C64XX_OTHERS);
3211
3212 local_irq_restore(flags);
3213}
3214
0978f8c5 3215static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
5b7d70c6
BD
3216
3217static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3218{
3219 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3220 struct device *dev = &pdev->dev;
3221 struct s3c_hsotg *hsotg;
3222 struct resource *res;
3223 int epnum;
3224 int ret;
3225
3226 if (!plat)
3227 plat = &s3c_hsotg_default_pdata;
3228
3229 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3230 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3231 GFP_KERNEL);
3232 if (!hsotg) {
3233 dev_err(dev, "cannot get memory\n");
3234 return -ENOMEM;
3235 }
3236
3237 hsotg->dev = dev;
3238 hsotg->plat = plat;
3239
31ee04de
MS
3240 hsotg->clk = clk_get(&pdev->dev, "otg");
3241 if (IS_ERR(hsotg->clk)) {
3242 dev_err(dev, "cannot get otg clock\n");
3243 ret = -EINVAL;
3244 goto err_mem;
3245 }
3246
5b7d70c6
BD
3247 platform_set_drvdata(pdev, hsotg);
3248
3249 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3250 if (!res) {
3251 dev_err(dev, "cannot find register resource 0\n");
3252 ret = -EINVAL;
31ee04de 3253 goto err_clk;
5b7d70c6
BD
3254 }
3255
3256 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3257 dev_name(dev));
3258 if (!hsotg->regs_res) {
3259 dev_err(dev, "cannot reserve registers\n");
3260 ret = -ENOENT;
31ee04de 3261 goto err_clk;
5b7d70c6
BD
3262 }
3263
3264 hsotg->regs = ioremap(res->start, resource_size(res));
3265 if (!hsotg->regs) {
3266 dev_err(dev, "cannot map registers\n");
3267 ret = -ENXIO;
3268 goto err_regs_res;
3269 }
3270
3271 ret = platform_get_irq(pdev, 0);
3272 if (ret < 0) {
3273 dev_err(dev, "cannot find IRQ\n");
3274 goto err_regs;
3275 }
3276
3277 hsotg->irq = ret;
3278
3279 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3280 if (ret < 0) {
3281 dev_err(dev, "cannot claim IRQ\n");
3282 goto err_regs;
3283 }
3284
3285 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3286
3287 device_initialize(&hsotg->gadget.dev);
3288
3289 dev_set_name(&hsotg->gadget.dev, "gadget");
3290
3291 hsotg->gadget.is_dualspeed = 1;
3292 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3293 hsotg->gadget.name = dev_name(dev);
3294
3295 hsotg->gadget.dev.parent = dev;
3296 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3297
3298 /* setup endpoint information */
3299
3300 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3301 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3302
3303 /* allocate EP0 request */
3304
3305 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3306 GFP_KERNEL);
3307 if (!hsotg->ctrl_req) {
3308 dev_err(dev, "failed to allocate ctrl req\n");
3309 goto err_regs;
3310 }
3311
3312 /* reset the system */
3313
31ee04de
MS
3314 clk_enable(hsotg->clk);
3315
5b7d70c6
BD
3316 s3c_hsotg_gate(pdev, true);
3317
3318 s3c_hsotg_otgreset(hsotg);
3319 s3c_hsotg_corereset(hsotg);
3320 s3c_hsotg_init(hsotg);
3321
3322 /* initialise the endpoints now the core has been initialised */
3323 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3324 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3325
3326 s3c_hsotg_create_debug(hsotg);
3327
3328 s3c_hsotg_dump(hsotg);
3329
3330 our_hsotg = hsotg;
3331 return 0;
3332
3333err_regs:
3334 iounmap(hsotg->regs);
3335
3336err_regs_res:
3337 release_resource(hsotg->regs_res);
3338 kfree(hsotg->regs_res);
31ee04de
MS
3339err_clk:
3340 clk_put(hsotg->clk);
5b7d70c6
BD
3341err_mem:
3342 kfree(hsotg);
3343 return ret;
3344}
3345
3346static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3347{
3348 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3349
3350 s3c_hsotg_delete_debug(hsotg);
3351
3352 usb_gadget_unregister_driver(hsotg->driver);
3353
3354 free_irq(hsotg->irq, hsotg);
3355 iounmap(hsotg->regs);
3356
3357 release_resource(hsotg->regs_res);
3358 kfree(hsotg->regs_res);
3359
3360 s3c_hsotg_gate(pdev, false);
3361
31ee04de
MS
3362 clk_disable(hsotg->clk);
3363 clk_put(hsotg->clk);
3364
5b7d70c6
BD
3365 kfree(hsotg);
3366 return 0;
3367}
3368
3369#if 1
3370#define s3c_hsotg_suspend NULL
3371#define s3c_hsotg_resume NULL
3372#endif
3373
3374static struct platform_driver s3c_hsotg_driver = {
3375 .driver = {
3376 .name = "s3c-hsotg",
3377 .owner = THIS_MODULE,
3378 },
3379 .probe = s3c_hsotg_probe,
3380 .remove = __devexit_p(s3c_hsotg_remove),
3381 .suspend = s3c_hsotg_suspend,
3382 .resume = s3c_hsotg_resume,
3383};
3384
3385static int __init s3c_hsotg_modinit(void)
3386{
3387 return platform_driver_register(&s3c_hsotg_driver);
3388}
3389
3390static void __exit s3c_hsotg_modexit(void)
3391{
3392 platform_driver_unregister(&s3c_hsotg_driver);
3393}
3394
3395module_init(s3c_hsotg_modinit);
3396module_exit(s3c_hsotg_modexit);
3397
3398MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3399MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3400MODULE_LICENSE("GPL");
3401MODULE_ALIAS("platform:s3c-hsotg");