usb: dwc2: Remove unnecessary prototypes
[linux-block.git] / drivers / usb / dwc2 / core.h
CommitLineData
56f5b1cf
PZ
1/*
2 * core.h - DesignWare HS OTG Controller common declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#ifndef __DWC2_CORE_H__
38#define __DWC2_CORE_H__
39
f7c0b143
DN
40#include <linux/phy/phy.h>
41#include <linux/regulator/consumer.h>
42#include <linux/usb/gadget.h>
43#include <linux/usb/otg.h>
56f5b1cf
PZ
44#include <linux/usb/phy.h>
45#include "hw.h"
46
74fc4a75
DA
47/*
48 * Suggested defines for tracers:
49 * - no_printk: Disable tracing
50 * - pr_info: Print this info to the console
51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
52 */
53
54#define DWC2_TRACE_SCHEDULER no_printk
55#define DWC2_TRACE_SCHEDULER_VB no_printk
56
57/* Detailed scheduler tracing, but won't overwhelm console */
58#define dwc2_sch_dbg(hsotg, fmt, ...) \
59 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
60 dev_name(hsotg->dev), ##__VA_ARGS__)
61
62/* Verbose scheduler tracing */
63#define dwc2_sch_vdbg(hsotg, fmt, ...) \
64 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
65 dev_name(hsotg->dev), ##__VA_ARGS__)
66
23e34392
AB
67#ifdef CONFIG_MIPS
68/*
69 * There are some MIPS machines that can run in either big-endian
70 * or little-endian mode and that use the dwc2 register without
71 * a byteswap in both ways.
72 * Unlike other architectures, MIPS apparently does not require a
73 * barrier before the __raw_writel() to synchronize with DMA but does
74 * require the barrier after the __raw_writel() to serialize a set of
75 * writes. This set of operations was added specifically for MIPS and
76 * should only be used there.
77 */
95c8bc36 78static inline u32 dwc2_readl(const void __iomem *addr)
56f5b1cf 79{
95c8bc36
AS
80 u32 value = __raw_readl(addr);
81
82 /* In order to preserve endianness __raw_* operation is used. Therefore
83 * a barrier is needed to ensure IO access is not re-ordered across
84 * reads or writes
85 */
86 mb();
87 return value;
56f5b1cf
PZ
88}
89
95c8bc36
AS
90static inline void dwc2_writel(u32 value, void __iomem *addr)
91{
92 __raw_writel(value, addr);
93
94 /*
95 * In order to preserve endianness __raw_* operation is used. Therefore
96 * a barrier is needed to ensure IO access is not re-ordered across
97 * reads or writes
98 */
99 mb();
100#ifdef DWC2_LOG_WRITES
101 pr_info("INFO:: wrote %08x to %p\n", value, addr);
56f5b1cf 102#endif
95c8bc36 103}
23e34392
AB
104#else
105/* Normal architectures just use readl/write */
106static inline u32 dwc2_readl(const void __iomem *addr)
107{
108 return readl(addr);
109}
110
111static inline void dwc2_writel(u32 value, void __iomem *addr)
112{
113 writel(value, addr);
114
115#ifdef DWC2_LOG_WRITES
116 pr_info("info:: wrote %08x to %p\n", value, addr);
117#endif
118}
119#endif
56f5b1cf
PZ
120
121/* Maximum number of Endpoints/HostChannels */
122#define MAX_EPS_CHANNELS 16
123
1f91b4cc
FB
124/* dwc2-hsotg declarations */
125static const char * const dwc2_hsotg_supply_names[] = {
f7c0b143
DN
126 "vusb_d", /* digital USB supply, 1.2V */
127 "vusb_a", /* analog USB supply, 1.1V */
128};
129
130/*
131 * EP0_MPS_LIMIT
132 *
133 * Unfortunately there seems to be a limit of the amount of data that can
134 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
135 * packets (which practically means 1 packet and 63 bytes of data) when the
136 * MPS is set to 64.
137 *
138 * This means if we are wanting to move >127 bytes of data, we need to
139 * split the transactions up, but just doing one packet at a time does
140 * not work (this may be an implicit DATA0 PID on first packet of the
141 * transaction) and doing 2 packets is outside the controller's limits.
142 *
143 * If we try to lower the MPS size for EP0, then no transfers work properly
144 * for EP0, and the system will fail basic enumeration. As no cause for this
145 * has currently been found, we cannot support any large IN transfers for
146 * EP0.
147 */
148#define EP0_MPS_LIMIT 64
149
941fcce4 150struct dwc2_hsotg;
1f91b4cc 151struct dwc2_hsotg_req;
f7c0b143
DN
152
153/**
1f91b4cc 154 * struct dwc2_hsotg_ep - driver endpoint definition.
f7c0b143
DN
155 * @ep: The gadget layer representation of the endpoint.
156 * @name: The driver generated name for the endpoint.
157 * @queue: Queue of requests for this endpoint.
158 * @parent: Reference back to the parent device structure.
159 * @req: The current request that the endpoint is processing. This is
160 * used to indicate an request has been loaded onto the endpoint
161 * and has yet to be completed (maybe due to data move, or simply
162 * awaiting an ack from the core all the data has been completed).
163 * @debugfs: File entry for debugfs file for this endpoint.
164 * @lock: State lock to protect contents of endpoint.
165 * @dir_in: Set to true if this endpoint is of the IN direction, which
166 * means that it is sending data to the Host.
167 * @index: The index for the endpoint registers.
168 * @mc: Multi Count - number of transactions per microframe
142bd33f 169 * @interval - Interval for periodic endpoints, in frames or microframes.
f7c0b143
DN
170 * @name: The name array passed to the USB core.
171 * @halted: Set if the endpoint has been halted.
172 * @periodic: Set if this is a periodic ep, such as Interrupt
173 * @isochronous: Set if this is a isochronous ep
8a20fa45 174 * @send_zlp: Set if we need to send a zero-length packet.
f7c0b143
DN
175 * @total_data: The total number of data bytes done.
176 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
177 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
178 * @last_load: The offset of data for the last start of request.
179 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
92d1635d
VM
180 * @target_frame: Targeted frame num to setup next ISOC transfer
181 * @frame_overrun: Indicates SOF number overrun in DSTS
f7c0b143
DN
182 *
183 * This is the driver's state for each registered enpoint, allowing it
184 * to keep track of transactions that need doing. Each endpoint has a
185 * lock to protect the state, to try and avoid using an overall lock
186 * for the host controller as much as possible.
187 *
188 * For periodic IN endpoints, we have fifo_size and fifo_load to try
189 * and keep track of the amount of data in the periodic FIFO for each
190 * of these as we don't have a status register that tells us how much
191 * is in each of them. (note, this may actually be useless information
192 * as in shared-fifo mode periodic in acts like a single-frame packet
193 * buffer than a fifo)
194 */
1f91b4cc 195struct dwc2_hsotg_ep {
f7c0b143
DN
196 struct usb_ep ep;
197 struct list_head queue;
941fcce4 198 struct dwc2_hsotg *parent;
1f91b4cc 199 struct dwc2_hsotg_req *req;
f7c0b143
DN
200 struct dentry *debugfs;
201
202 unsigned long total_data;
203 unsigned int size_loaded;
204 unsigned int last_load;
205 unsigned int fifo_load;
206 unsigned short fifo_size;
b203d0a2 207 unsigned short fifo_index;
f7c0b143
DN
208
209 unsigned char dir_in;
210 unsigned char index;
211 unsigned char mc;
212 unsigned char interval;
213
214 unsigned int halted:1;
215 unsigned int periodic:1;
216 unsigned int isochronous:1;
8a20fa45 217 unsigned int send_zlp:1;
92d1635d
VM
218 unsigned int target_frame;
219#define TARGET_FRAME_INITIAL 0xFFFFFFFF
220 bool frame_overrun;
f7c0b143
DN
221
222 char name[10];
223};
224
f7c0b143 225/**
1f91b4cc 226 * struct dwc2_hsotg_req - data transfer request
f7c0b143
DN
227 * @req: The USB gadget request
228 * @queue: The list of requests for the endpoint this is queued for.
7d24c1b5 229 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
f7c0b143 230 */
1f91b4cc 231struct dwc2_hsotg_req {
f7c0b143
DN
232 struct usb_request req;
233 struct list_head queue;
7d24c1b5 234 void *saved_req_buf;
f7c0b143
DN
235};
236
941fcce4 237#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
f7c0b143
DN
238#define call_gadget(_hs, _entry) \
239do { \
240 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
241 (_hs)->driver && (_hs)->driver->_entry) { \
242 spin_unlock(&_hs->lock); \
243 (_hs)->driver->_entry(&(_hs)->gadget); \
244 spin_lock(&_hs->lock); \
245 } \
246} while (0)
941fcce4
DN
247#else
248#define call_gadget(_hs, _entry) do {} while (0)
249#endif
f7c0b143 250
56f5b1cf
PZ
251struct dwc2_hsotg;
252struct dwc2_host_chan;
253
254/* Device States */
255enum dwc2_lx_state {
256 DWC2_L0, /* On state */
257 DWC2_L1, /* LPM sleep state */
258 DWC2_L2, /* USB suspend state */
259 DWC2_L3, /* Off state */
260};
261
3fa95385
JY
262/*
263 * Gadget periodic tx fifo sizes as used by legacy driver
264 * EP0 is not included
265 */
266#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
267 768, 0, 0, 0, 0, 0, 0, 0}
268
fe0b94ab
MYK
269/* Gadget ep0 states */
270enum dwc2_ep0_state {
271 DWC2_EP0_SETUP,
272 DWC2_EP0_DATA_IN,
273 DWC2_EP0_DATA_OUT,
274 DWC2_EP0_STATUS_IN,
275 DWC2_EP0_STATUS_OUT,
276};
277
56f5b1cf
PZ
278/**
279 * struct dwc2_core_params - Parameters for configuring the core
280 *
91121c10
MK
281 * @otg_cap: Specifies the OTG capabilities.
282 * 0 - HNP and SRP capable
56f5b1cf 283 * 1 - SRP Only capable
91121c10
MK
284 * 2 - No HNP/SRP capable (always available)
285 * Defaults to best available option (0, 1, then 2)
725acc86 286 * @otg_ver: OTG version supported
91121c10 287 * 0 - 1.3 (default)
725acc86 288 * 1 - 2.0
56f5b1cf
PZ
289 * @dma_enable: Specifies whether to use slave or DMA mode for accessing
290 * the data FIFOs. The driver will automatically detect the
291 * value for this parameter if none is specified.
91121c10 292 * 0 - Slave (always available)
56f5b1cf
PZ
293 * 1 - DMA (default, if available)
294 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
295 * address DMA mode or descriptor DMA mode for accessing
296 * the data FIFOs. The driver will automatically detect the
297 * value for this if none is specified.
298 * 0 - Address DMA
299 * 1 - Descriptor DMA (default, if available)
fbb9e22b
MYK
300 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
301 * address DMA mode or descriptor DMA mode for accessing
302 * the data FIFOs in Full Speed mode only. The driver
303 * will automatically detect the value for this if none is
304 * specified.
305 * 0 - Address DMA
306 * 1 - Descriptor DMA in FS (default, if available)
56f5b1cf
PZ
307 * @speed: Specifies the maximum speed of operation in host and
308 * device mode. The actual speed depends on the speed of
309 * the attached device and the value of phy_type.
91121c10
MK
310 * 0 - High Speed
311 * (default when phy_type is UTMI+ or ULPI)
56f5b1cf 312 * 1 - Full Speed
91121c10 313 * (default when phy_type is Full Speed)
56f5b1cf 314 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
91121c10 315 * 1 - Allow dynamic FIFO sizing (default, if available)
725acc86 316 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
c1d286cf
JY
317 * are enabled for non-periodic IN endpoints in device
318 * mode.
56f5b1cf
PZ
319 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
320 * dynamic FIFO sizing is enabled
91121c10
MK
321 * 16 to 32768
322 * Actual maximum value is autodetected and also
323 * the default.
56f5b1cf
PZ
324 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
325 * in host mode when dynamic FIFO sizing is enabled
91121c10
MK
326 * 16 to 32768
327 * Actual maximum value is autodetected and also
328 * the default.
56f5b1cf
PZ
329 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
330 * host mode when dynamic FIFO sizing is enabled
91121c10
MK
331 * 16 to 32768
332 * Actual maximum value is autodetected and also
333 * the default.
56f5b1cf 334 * @max_transfer_size: The maximum transfer size supported, in bytes
91121c10
MK
335 * 2047 to 65,535
336 * Actual maximum value is autodetected and also
337 * the default.
56f5b1cf 338 * @max_packet_count: The maximum number of packets in a transfer
91121c10
MK
339 * 15 to 511
340 * Actual maximum value is autodetected and also
341 * the default.
56f5b1cf 342 * @host_channels: The number of host channel registers to use
91121c10
MK
343 * 1 to 16
344 * Actual maximum value is autodetected and also
345 * the default.
56f5b1cf
PZ
346 * @phy_type: Specifies the type of PHY interface to use. By default,
347 * the driver will automatically detect the phy_type.
91121c10
MK
348 * 0 - Full Speed Phy
349 * 1 - UTMI+ Phy
350 * 2 - ULPI Phy
351 * Defaults to best available option (2, 1, then 0)
56f5b1cf
PZ
352 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
353 * is applicable for a phy_type of UTMI+ or ULPI. (For a
354 * ULPI phy_type, this parameter indicates the data width
355 * between the MAC and the ULPI Wrapper.) Also, this
356 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
357 * parameter was set to "8 and 16 bits", meaning that the
358 * core has been configured to work at either data path
359 * width.
91121c10 360 * 8 or 16 (default 16 if available)
56f5b1cf
PZ
361 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
362 * data rate. This parameter is only applicable if phy_type
363 * is ULPI.
364 * 0 - single data rate ULPI interface with 8 bit wide
365 * data bus (default)
366 * 1 - double data rate ULPI interface with 4 bit wide
367 * data bus
368 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
369 * external supply to drive the VBus
91121c10
MK
370 * 0 - Internal supply (default)
371 * 1 - External supply
56f5b1cf
PZ
372 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
373 * speed PHY. This parameter is only applicable if phy_type
374 * is FS.
375 * 0 - No (default)
376 * 1 - Yes
91121c10
MK
377 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
378 * 0 - No (default)
379 * 1 - Yes
725acc86
PZ
380 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
381 * when attached to a Full Speed or Low Speed device in
382 * host mode.
383 * 0 - Don't support low power mode (default)
384 * 1 - Support low power mode
385 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
91121c10
MK
386 * when connected to a Low Speed device in host
387 * mode. This parameter is applicable only if
388 * host_support_fs_ls_low_power is enabled.
725acc86 389 * 0 - 48 MHz
91121c10 390 * (default when phy_type is UTMI+ or ULPI)
725acc86 391 * 1 - 6 MHz
91121c10
MK
392 * (default when phy_type is Full Speed)
393 * @ts_dline: Enable Term Select Dline pulsing
394 * 0 - No (default)
395 * 1 - Yes
396 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
397 * 0 - No (default for core < 2.92a)
398 * 1 - Yes (default for core >= 2.92a)
4d3190e1
PZ
399 * @ahbcfg: This field allows the default value of the GAHBCFG
400 * register to be overridden
91121c10
MK
401 * -1 - GAHBCFG value will be set to 0x06
402 * (INCR4, default)
4d3190e1
PZ
403 * all others - GAHBCFG value will be overridden with
404 * this value
91121c10
MK
405 * Not all bits can be controlled like this, the
406 * bits defined by GAHBCFG_CTRL_MASK are controlled
407 * by the driver and are ignored in this
408 * configuration value.
20f2eb9c 409 * @uframe_sched: True to enable the microframe scheduler
a6d249d8
GH
410 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
411 * Disable CONIDSTSCHNG controller interrupt in such
412 * case.
413 * 0 - No (default)
414 * 1 - Yes
285046aa
GH
415 * @hibernation: Specifies whether the controller support hibernation.
416 * If hibernation is enabled, the controller will enter
417 * hibernation in both peripheral and host mode when
418 * needed.
419 * 0 - No (default)
420 * 1 - Yes
56f5b1cf
PZ
421 *
422 * The following parameters may be specified when starting the module. These
91121c10
MK
423 * parameters define how the DWC_otg controller should be configured. A
424 * value of -1 (or any other out of range value) for any parameter means
425 * to read the value from hardware (if possible) or use the builtin
426 * default described above.
56f5b1cf
PZ
427 */
428struct dwc2_core_params {
8284f93b
MK
429 /*
430 * Don't add any non-int members here, this will break
431 * dwc2_set_all_params!
432 */
56f5b1cf 433 int otg_cap;
c1d286cf
JY
434#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
435#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
436#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
437
56f5b1cf
PZ
438 int otg_ver;
439 int dma_enable;
440 int dma_desc_enable;
fbb9e22b 441 int dma_desc_fs_enable;
56f5b1cf 442 int speed;
c1d286cf
JY
443#define DWC2_SPEED_PARAM_HIGH 0
444#define DWC2_SPEED_PARAM_FULL 1
445
56f5b1cf
PZ
446 int enable_dynamic_fifo;
447 int en_multiple_tx_fifo;
448 int host_rx_fifo_size;
449 int host_nperio_tx_fifo_size;
450 int host_perio_tx_fifo_size;
451 int max_transfer_size;
452 int max_packet_count;
453 int host_channels;
454 int phy_type;
c1d286cf
JY
455#define DWC2_PHY_TYPE_PARAM_FS 0
456#define DWC2_PHY_TYPE_PARAM_UTMI 1
457#define DWC2_PHY_TYPE_PARAM_ULPI 2
458
56f5b1cf
PZ
459 int phy_utmi_width;
460 int phy_ulpi_ddr;
461 int phy_ulpi_ext_vbus;
c1d286cf
JY
462#define DWC2_PHY_ULPI_INTERNAL_VBUS 0
463#define DWC2_PHY_ULPI_EXTERNAL_VBUS 1
464
56f5b1cf
PZ
465 int i2c_enable;
466 int ulpi_fs_ls;
467 int host_support_fs_ls_low_power;
468 int host_ls_low_power_phy_clk;
c1d286cf
JY
469#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
470#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
471
56f5b1cf
PZ
472 int ts_dline;
473 int reload_ctl;
4d3190e1 474 int ahbcfg;
20f2eb9c 475 int uframe_sched;
a6d249d8 476 int external_id_pin_ctl;
285046aa 477 int hibernation;
56f5b1cf
PZ
478};
479
9badec2f
MK
480/**
481 * struct dwc2_hw_params - Autodetected parameters.
482 *
483 * These parameters are the various parameters read from hardware
484 * registers during initialization. They typically contain the best
485 * supported or maximum value that can be configured in the
486 * corresponding dwc2_core_params value.
487 *
488 * The values that are not in dwc2_core_params are documented below.
489 *
490 * @op_mode Mode of Operation
491 * 0 - HNP- and SRP-Capable OTG (Host & Device)
492 * 1 - SRP-Capable OTG (Host & Device)
493 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
494 * 3 - SRP-Capable Device
495 * 4 - Non-OTG Device
496 * 5 - SRP-Capable Host
497 * 6 - Non-OTG Host
498 * @arch Architecture
499 * 0 - Slave only
500 * 1 - External DMA
501 * 2 - Internal DMA
502 * @power_optimized Are power optimizations enabled?
503 * @num_dev_ep Number of device endpoints available
504 * @num_dev_perio_in_ep Number of device periodic IN endpoints
997f4f81 505 * available
9badec2f
MK
506 * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
507 * Depth
508 * 0 to 30
509 * @host_perio_tx_q_depth
510 * Host Mode Periodic Request Queue Depth
511 * 2, 4 or 8
512 * @nperio_tx_q_depth
513 * Non-Periodic Request Queue Depth
514 * 2, 4 or 8
515 * @hs_phy_type High-speed PHY interface type
516 * 0 - High-speed interface not supported
517 * 1 - UTMI+
518 * 2 - ULPI
519 * 3 - UTMI+ and ULPI
520 * @fs_phy_type Full-speed PHY interface type
521 * 0 - Full speed interface not supported
522 * 1 - Dedicated full speed interface
523 * 2 - FS pins shared with UTMI+ pins
524 * 3 - FS pins shared with ULPI pins
525 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
de4a1931
MK
526 * @utmi_phy_data_width UTMI+ PHY data width
527 * 0 - 8 bits
528 * 1 - 16 bits
529 * 2 - 8 or 16 bits
9badec2f 530 * @snpsid: Value from SNPSID register
55e1040e 531 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
9badec2f
MK
532 */
533struct dwc2_hw_params {
534 unsigned op_mode:3;
535 unsigned arch:2;
536 unsigned dma_desc_enable:1;
537 unsigned enable_dynamic_fifo:1;
538 unsigned en_multiple_tx_fifo:1;
539 unsigned host_rx_fifo_size:16;
540 unsigned host_nperio_tx_fifo_size:16;
55e1040e 541 unsigned dev_nperio_tx_fifo_size:16;
9badec2f
MK
542 unsigned host_perio_tx_fifo_size:16;
543 unsigned nperio_tx_q_depth:3;
544 unsigned host_perio_tx_q_depth:3;
545 unsigned dev_token_q_depth:5;
546 unsigned max_transfer_size:26;
547 unsigned max_packet_count:11;
2d115547 548 unsigned host_channels:5;
9badec2f
MK
549 unsigned hs_phy_type:2;
550 unsigned fs_phy_type:2;
551 unsigned i2c_enable:1;
552 unsigned num_dev_ep:4;
553 unsigned num_dev_perio_in_ep:4;
554 unsigned total_fifo_size:16;
555 unsigned power_optimized:1;
de4a1931 556 unsigned utmi_phy_data_width:2;
9badec2f 557 u32 snpsid;
55e1040e 558 u32 dev_ep_dirs;
9badec2f
MK
559};
560
3f95001d
MYK
561/* Size of control and EP0 buffers */
562#define DWC2_CTRL_BUFF_SIZE 8
563
d17ee77b
GH
564/**
565 * struct dwc2_gregs_backup - Holds global registers state before entering partial
566 * power down
567 * @gotgctl: Backup of GOTGCTL register
568 * @gintmsk: Backup of GINTMSK register
569 * @gahbcfg: Backup of GAHBCFG register
570 * @gusbcfg: Backup of GUSBCFG register
571 * @grxfsiz: Backup of GRXFSIZ register
572 * @gnptxfsiz: Backup of GNPTXFSIZ register
573 * @gi2cctl: Backup of GI2CCTL register
574 * @hptxfsiz: Backup of HPTXFSIZ register
575 * @gdfifocfg: Backup of GDFIFOCFG register
576 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
577 * @gpwrdn: Backup of GPWRDN register
578 */
579struct dwc2_gregs_backup {
580 u32 gotgctl;
581 u32 gintmsk;
582 u32 gahbcfg;
583 u32 gusbcfg;
584 u32 grxfsiz;
585 u32 gnptxfsiz;
586 u32 gi2cctl;
587 u32 hptxfsiz;
588 u32 pcgcctl;
589 u32 gdfifocfg;
590 u32 dtxfsiz[MAX_EPS_CHANNELS];
591 u32 gpwrdn;
cc1e204c 592 bool valid;
d17ee77b
GH
593};
594
595/**
596 * struct dwc2_dregs_backup - Holds device registers state before entering partial
597 * power down
598 * @dcfg: Backup of DCFG register
599 * @dctl: Backup of DCTL register
600 * @daintmsk: Backup of DAINTMSK register
601 * @diepmsk: Backup of DIEPMSK register
602 * @doepmsk: Backup of DOEPMSK register
603 * @diepctl: Backup of DIEPCTL register
604 * @dieptsiz: Backup of DIEPTSIZ register
605 * @diepdma: Backup of DIEPDMA register
606 * @doepctl: Backup of DOEPCTL register
607 * @doeptsiz: Backup of DOEPTSIZ register
608 * @doepdma: Backup of DOEPDMA register
609 */
610struct dwc2_dregs_backup {
611 u32 dcfg;
612 u32 dctl;
613 u32 daintmsk;
614 u32 diepmsk;
615 u32 doepmsk;
616 u32 diepctl[MAX_EPS_CHANNELS];
617 u32 dieptsiz[MAX_EPS_CHANNELS];
618 u32 diepdma[MAX_EPS_CHANNELS];
619 u32 doepctl[MAX_EPS_CHANNELS];
620 u32 doeptsiz[MAX_EPS_CHANNELS];
621 u32 doepdma[MAX_EPS_CHANNELS];
cc1e204c 622 bool valid;
d17ee77b
GH
623};
624
625/**
626 * struct dwc2_hregs_backup - Holds host registers state before entering partial
627 * power down
628 * @hcfg: Backup of HCFG register
629 * @haintmsk: Backup of HAINTMSK register
630 * @hcintmsk: Backup of HCINTMSK register
631 * @hptr0: Backup of HPTR0 register
632 * @hfir: Backup of HFIR register
633 */
634struct dwc2_hregs_backup {
635 u32 hcfg;
636 u32 haintmsk;
637 u32 hcintmsk[MAX_EPS_CHANNELS];
638 u32 hprt0;
639 u32 hfir;
cc1e204c 640 bool valid;
d17ee77b
GH
641};
642
9f9f09b0
DA
643/*
644 * Constants related to high speed periodic scheduling
645 *
646 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
647 * reservation point of view it's assumed that the schedule goes right back to
648 * the beginning after the end of the schedule.
649 *
650 * What does that mean for scheduling things with a long interval? It means
651 * we'll reserve time for them in every possible microframe that they could
652 * ever be scheduled in. ...but we'll still only actually schedule them as
653 * often as they were requested.
654 *
655 * We keep our schedule in a "bitmap" structure. This simplifies having
656 * to keep track of and merge intervals: we just let the bitmap code do most
657 * of the heavy lifting. In a way scheduling is much like memory allocation.
658 *
659 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
660 * supposed to schedule for periodic transfers). That's according to spec.
661 *
662 * Note that though we only schedule 80% of each microframe, the bitmap that we
663 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
664 * space for each uFrame).
665 *
666 * Requirements:
667 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
668 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
669 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
670 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
671 */
672#define DWC2_US_PER_UFRAME 125
673#define DWC2_HS_PERIODIC_US_PER_UFRAME 100
674
675#define DWC2_HS_SCHEDULE_UFRAMES 8
676#define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
677 DWC2_HS_PERIODIC_US_PER_UFRAME)
678
679/*
680 * Constants related to low speed scheduling
681 *
682 * For high speed we schedule every 1us. For low speed that's a bit overkill,
683 * so we make up a unit called a "slice" that's worth 25us. There are 40
684 * slices in a full frame and we can schedule 36 of those (90%) for periodic
685 * transfers.
686 *
687 * Our low speed schedule can be as short as 1 frame or could be longer. When
688 * we only schedule 1 frame it means that we'll need to reserve a time every
689 * frame even for things that only transfer very rarely, so something that runs
690 * every 2048 frames will get time reserved in every frame. Our low speed
691 * schedule can be longer and we'll be able to handle more overlap, but that
692 * will come at increased memory cost and increased time to schedule.
693 *
694 * Note: one other advantage of a short low speed schedule is that if we mess
695 * up and miss scheduling we can jump in and use any of the slots that we
696 * happened to reserve.
697 *
698 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
699 * the schedule. There will be one schedule per TT.
700 *
701 * Requirements:
702 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
703 */
704#define DWC2_US_PER_SLICE 25
705#define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
706
707#define DWC2_ROUND_US_TO_SLICE(us) \
708 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
709 DWC2_US_PER_SLICE)
710
711#define DWC2_LS_PERIODIC_US_PER_FRAME \
712 900
713#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
714 (DWC2_LS_PERIODIC_US_PER_FRAME / \
715 DWC2_US_PER_SLICE)
716
717#define DWC2_LS_SCHEDULE_FRAMES 1
718#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
719 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
720
56f5b1cf
PZ
721/**
722 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
723 * and periodic schedules
724 *
941fcce4
DN
725 * These are common for both host and peripheral modes:
726 *
56f5b1cf
PZ
727 * @dev: The struct device pointer
728 * @regs: Pointer to controller regs
9badec2f
MK
729 * @hw_params: Parameters that were autodetected from the
730 * hardware registers
941fcce4 731 * @core_params: Parameters that define how the core should be configured
56f5b1cf
PZ
732 * @op_state: The operational State, during transitions (a_host=>
733 * a_peripheral and b_device=>b_host) this may not match
734 * the core, but allows the software to determine
735 * transitions
c0155b9d
KY
736 * @dr_mode: Requested mode of operation, one of following:
737 * - USB_DR_MODE_PERIPHERAL
738 * - USB_DR_MODE_HOST
739 * - USB_DR_MODE_OTG
09a75e85
MS
740 * @hcd_enabled Host mode sub-driver initialization indicator.
741 * @gadget_enabled Peripheral mode sub-driver initialization indicator.
742 * @ll_hw_enabled Status of low-level hardware resources.
743 * @phy: The otg phy transceiver structure for phy control.
744 * @uphy: The otg phy transceiver structure for old USB phy control.
745 * @plat: The platform specific configuration data. This can be removed once
746 * all SoCs support usb transceiver.
747 * @supplies: Definition of USB power supplies
748 * @phyif: PHY interface width
941fcce4
DN
749 * @lock: Spinlock that protects all the driver data structures
750 * @priv: Stores a pointer to the struct usb_hcd
56f5b1cf
PZ
751 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
752 * transfer are in process of being queued
753 * @srp_success: Stores status of SRP request in the case of a FS PHY
754 * with an I2C interface
755 * @wq_otg: Workqueue object used for handling of some interrupts
756 * @wf_otg: Work object for handling Connector ID Status Change
757 * interrupt
758 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
759 * @lx_state: Lx state of connected device
d17ee77b
GH
760 * @gregs_backup: Backup of global registers during suspend
761 * @dregs_backup: Backup of device registers during suspend
762 * @hregs_backup: Backup of host registers during suspend
941fcce4
DN
763 *
764 * These are for host mode:
765 *
56f5b1cf
PZ
766 * @flags: Flags for handling root port state changes
767 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
768 * Transfers associated with these QHs are not currently
769 * assigned to a host channel.
770 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
771 * Transfers associated with these QHs are currently
772 * assigned to a host channel.
773 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
774 * non-periodic schedule
775 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
776 * list of QHs for periodic transfers that are _not_
777 * scheduled for the next frame. Each QH in the list has an
778 * interval counter that determines when it needs to be
779 * scheduled for execution. This scheduling mechanism
780 * allows only a simple calculation for periodic bandwidth
781 * used (i.e. must assume that all periodic transfers may
782 * need to execute in the same frame). However, it greatly
783 * simplifies scheduling and should be sufficient for the
784 * vast majority of OTG hosts, which need to connect to a
785 * small number of peripherals at one time. Items move from
786 * this list to periodic_sched_ready when the QH interval
787 * counter is 0 at SOF.
788 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
789 * the next frame, but have not yet been assigned to host
790 * channels. Items move from this list to
791 * periodic_sched_assigned as host channels become
792 * available during the current frame.
793 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
794 * frame that are assigned to host channels. Items move
795 * from this list to periodic_sched_queued as the
796 * transactions for the QH are queued to the DWC_otg
797 * controller.
798 * @periodic_sched_queued: List of periodic QHs that have been queued for
799 * execution. Items move from this list to either
800 * periodic_sched_inactive or periodic_sched_ready when the
801 * channel associated with the transfer is released. If the
802 * interval for the QH is 1, the item moves to
803 * periodic_sched_ready because it must be rescheduled for
804 * the next frame. Otherwise, the item moves to
805 * periodic_sched_inactive.
c9c8ac01 806 * @split_order: List keeping track of channels doing splits, in order.
56f5b1cf
PZ
807 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
808 * This value is in microseconds per (micro)frame. The
809 * assumption is that all periodic transfers may occur in
810 * the same (micro)frame.
9f9f09b0
DA
811 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
812 * host is in high speed mode; low speed schedules are
813 * stored elsewhere since we need one per TT.
56f5b1cf
PZ
814 * @frame_number: Frame number read from the core at SOF. The value ranges
815 * from 0 to HFNUM_MAX_FRNUM.
816 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
817 * SOF enable/disable.
818 * @free_hc_list: Free host channels in the controller. This is a list of
819 * struct dwc2_host_chan items.
820 * @periodic_channels: Number of host channels assigned to periodic transfers.
821 * Currently assuming that there is a dedicated host
822 * channel for each periodic transaction and at least one
823 * host channel is available for non-periodic transactions.
824 * @non_periodic_channels: Number of host channels assigned to non-periodic
825 * transfers
20f2eb9c
DC
826 * @available_host_channels Number of host channels available for the microframe
827 * scheduler to use
56f5b1cf
PZ
828 * @hc_ptr_array: Array of pointers to the host channel descriptors.
829 * Allows accessing a host channel descriptor given the
830 * host channel number. This is useful in interrupt
831 * handlers.
832 * @status_buf: Buffer used for data received during the status phase of
833 * a control transfer.
834 * @status_buf_dma: DMA address for status_buf
835 * @start_work: Delayed work for handling host A-cable connection
836 * @reset_work: Delayed work for handling a port reset
56f5b1cf
PZ
837 * @otg_port: OTG port number
838 * @frame_list: Frame list
839 * @frame_list_dma: Frame list DMA address
95105a99 840 * @frame_list_sz: Frame list size
3b5fcc9a
GH
841 * @desc_gen_cache: Kmem cache for generic descriptors
842 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
941fcce4
DN
843 *
844 * These are for peripheral mode:
845 *
846 * @driver: USB gadget driver
941fcce4
DN
847 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
848 * @num_of_eps: Number of available EPs (excluding EP0)
849 * @debug_root: Root directrory for debugfs.
850 * @debug_file: Main status file for debugfs.
9e14d0a5 851 * @debug_testmode: Testmode status file for debugfs.
941fcce4
DN
852 * @debug_fifo: FIFO status file for debugfs.
853 * @ep0_reply: Request used for ep0 reply.
854 * @ep0_buff: Buffer for EP0 reply data, if needed.
855 * @ctrl_buff: Buffer for EP0 control requests.
856 * @ctrl_req: Request for EP0 control packets.
fe0b94ab 857 * @ep0_state: EP0 control transfers state
9e14d0a5 858 * @test_mode: USB test mode requested by the host
941fcce4 859 * @eps: The endpoints being supplied to the gadget framework
edd74be8 860 * @g_using_dma: Indicate if dma usage is enabled
0a176279
GH
861 * @g_rx_fifo_sz: Contains rx fifo size value
862 * @g_np_g_tx_fifo_sz: Contains Non-Periodic tx fifo size value
863 * @g_tx_fifo_sz: Contains tx fifo size value per endpoints
56f5b1cf
PZ
864 */
865struct dwc2_hsotg {
866 struct device *dev;
867 void __iomem *regs;
9badec2f
MK
868 /** Params detected from hardware */
869 struct dwc2_hw_params hw_params;
870 /** Params to actually use */
bea8e86c 871 struct dwc2_core_params params;
56f5b1cf 872 enum usb_otg_state op_state;
c0155b9d 873 enum usb_dr_mode dr_mode;
e39af88f
MS
874 unsigned int hcd_enabled:1;
875 unsigned int gadget_enabled:1;
09a75e85 876 unsigned int ll_hw_enabled:1;
56f5b1cf 877
941fcce4
DN
878 struct phy *phy;
879 struct usb_phy *uphy;
09a75e85 880 struct dwc2_hsotg_plat *plat;
1f91b4cc 881 struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
09a75e85 882 u32 phyif;
941fcce4
DN
883
884 spinlock_t lock;
885 void *priv;
886 int irq;
887 struct clk *clk;
83f8da56 888 struct reset_control *reset;
941fcce4 889
56f5b1cf
PZ
890 unsigned int queuing_high_bandwidth:1;
891 unsigned int srp_success:1;
892
893 struct workqueue_struct *wq_otg;
894 struct work_struct wf_otg;
895 struct timer_list wkp_timer;
896 enum dwc2_lx_state lx_state;
cc1e204c
MYK
897 struct dwc2_gregs_backup gr_backup;
898 struct dwc2_dregs_backup dr_backup;
899 struct dwc2_hregs_backup hr_backup;
56f5b1cf 900
941fcce4 901 struct dentry *debug_root;
563cf017 902 struct debugfs_regset32 *regset;
941fcce4
DN
903
904 /* DWC OTG HW Release versions */
905#define DWC2_CORE_REV_2_71a 0x4f54271a
906#define DWC2_CORE_REV_2_90a 0x4f54290a
907#define DWC2_CORE_REV_2_92a 0x4f54292a
908#define DWC2_CORE_REV_2_94a 0x4f54294a
909#define DWC2_CORE_REV_3_00a 0x4f54300a
fef6bc37 910#define DWC2_CORE_REV_3_10a 0x4f54310a
941fcce4
DN
911
912#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
56f5b1cf
PZ
913 union dwc2_hcd_internal_flags {
914 u32 d32;
915 struct {
916 unsigned port_connect_status_change:1;
917 unsigned port_connect_status:1;
918 unsigned port_reset_change:1;
919 unsigned port_enable_change:1;
920 unsigned port_suspend_change:1;
921 unsigned port_over_current_change:1;
922 unsigned port_l1_change:1;
fd4850cf 923 unsigned reserved:25;
56f5b1cf
PZ
924 } b;
925 } flags;
926
927 struct list_head non_periodic_sched_inactive;
928 struct list_head non_periodic_sched_active;
929 struct list_head *non_periodic_qh_ptr;
930 struct list_head periodic_sched_inactive;
931 struct list_head periodic_sched_ready;
932 struct list_head periodic_sched_assigned;
933 struct list_head periodic_sched_queued;
c9c8ac01 934 struct list_head split_order;
56f5b1cf 935 u16 periodic_usecs;
9f9f09b0
DA
936 unsigned long hs_periodic_bitmap[
937 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
56f5b1cf
PZ
938 u16 frame_number;
939 u16 periodic_qh_count;
734643df 940 bool bus_suspended;
fbb9e22b 941 bool new_connection;
56f5b1cf 942
483bb254
DA
943 u16 last_frame_num;
944
56f5b1cf
PZ
945#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
946#define FRAME_NUM_ARRAY_SIZE 1000
56f5b1cf
PZ
947 u16 *frame_num_array;
948 u16 *last_frame_num_array;
949 int frame_num_idx;
950 int dumped_frame_num_array;
951#endif
952
953 struct list_head free_hc_list;
954 int periodic_channels;
955 int non_periodic_channels;
20f2eb9c 956 int available_host_channels;
56f5b1cf
PZ
957 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
958 u8 *status_buf;
959 dma_addr_t status_buf_dma;
960#define DWC2_HCD_STATUS_BUF_SIZE 64
961
962 struct delayed_work start_work;
963 struct delayed_work reset_work;
56f5b1cf
PZ
964 u8 otg_port;
965 u32 *frame_list;
966 dma_addr_t frame_list_dma;
95105a99 967 u32 frame_list_sz;
3b5fcc9a
GH
968 struct kmem_cache *desc_gen_cache;
969 struct kmem_cache *desc_hsisoc_cache;
56f5b1cf 970
56f5b1cf
PZ
971#ifdef DEBUG
972 u32 frrem_samples;
973 u64 frrem_accum;
974
975 u32 hfnum_7_samples_a;
976 u64 hfnum_7_frrem_accum_a;
977 u32 hfnum_0_samples_a;
978 u64 hfnum_0_frrem_accum_a;
979 u32 hfnum_other_samples_a;
980 u64 hfnum_other_frrem_accum_a;
981
982 u32 hfnum_7_samples_b;
983 u64 hfnum_7_frrem_accum_b;
984 u32 hfnum_0_samples_b;
985 u64 hfnum_0_frrem_accum_b;
986 u32 hfnum_other_samples_b;
987 u64 hfnum_other_frrem_accum_b;
988#endif
941fcce4
DN
989#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
990
991#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
992 /* Gadget structures */
993 struct usb_gadget_driver *driver;
941fcce4
DN
994 int fifo_mem;
995 unsigned int dedicated_fifos:1;
996 unsigned char num_of_eps;
997 u32 fifo_map;
998
999 struct usb_request *ep0_reply;
1000 struct usb_request *ctrl_req;
3f95001d
MYK
1001 void *ep0_buff;
1002 void *ctrl_buff;
fe0b94ab 1003 enum dwc2_ep0_state ep0_state;
9e14d0a5 1004 u8 test_mode;
941fcce4
DN
1005
1006 struct usb_gadget gadget;
dc6e69e6 1007 unsigned int enabled:1;
4ace06e8 1008 unsigned int connected:1;
1f91b4cc
FB
1009 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1010 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
edd74be8 1011 u32 g_using_dma;
0a176279
GH
1012 u32 g_rx_fifo_sz;
1013 u32 g_np_g_tx_fifo_sz;
1014 u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
941fcce4 1015#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
56f5b1cf
PZ
1016};
1017
1018/* Reasons for halting a host channel */
1019enum dwc2_halt_status {
1020 DWC2_HC_XFER_NO_HALT_STATUS,
1021 DWC2_HC_XFER_COMPLETE,
1022 DWC2_HC_XFER_URB_COMPLETE,
1023 DWC2_HC_XFER_ACK,
1024 DWC2_HC_XFER_NAK,
1025 DWC2_HC_XFER_NYET,
1026 DWC2_HC_XFER_STALL,
1027 DWC2_HC_XFER_XACT_ERR,
1028 DWC2_HC_XFER_FRAME_OVERRUN,
1029 DWC2_HC_XFER_BABBLE_ERR,
1030 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1031 DWC2_HC_XFER_AHB_ERR,
1032 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1033 DWC2_HC_XFER_URB_DEQUEUE,
1034};
1035
1036/*
1037 * The following functions support initialization of the core driver component
1038 * and the DWC_otg controller
1039 */
b5d308ab 1040extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
6d58f346 1041extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
d17ee77b
GH
1042extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1043extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
56f5b1cf 1044
323230ef
JY
1045bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1046void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
09c96980
JY
1047void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1048
057715f2 1049extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
56f5b1cf
PZ
1050
1051/*
1052 * Common core Functions.
1053 * The following functions support managing the DWC_otg controller in either
1054 * device or host mode.
1055 */
1056extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1057extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1058extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1059
56f5b1cf
PZ
1060extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1061extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1062
1063/* This function should be called on every hardware interrupt. */
1064extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1065
323230ef
JY
1066/* The device ID match table */
1067extern const struct of_device_id dwc2_of_match_table[];
1068
09a75e85
MS
1069extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1070extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
ecb176c6 1071
334bbd4e 1072/* Parameters */
c1d286cf 1073int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
334bbd4e
JY
1074int dwc2_init_params(struct dwc2_hsotg *hsotg);
1075
6bea9620
JY
1076/*
1077 * The following functions check the controller's OTG operation mode
1078 * capability (GHWCFG2.OTG_MODE).
1079 *
1080 * These functions can be used before the internal hsotg->hw_params
1081 * are read in and cached so they always read directly from the
1082 * GHWCFG2 register.
1083 */
1084unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1085bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1086bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1087bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1088
1696d5ab
JY
1089/*
1090 * Returns the mode of operation, host or device
1091 */
1092static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1093{
1094 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1095}
1096static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1097{
1098 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1099}
1100
56f5b1cf
PZ
1101/*
1102 * Dump core registers and SPRAM
1103 */
1104extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1105extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1106extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1107
1108/*
1109 * Return OTG version - either 1.3 or 2.0
1110 */
1111extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1112
117777b2
DN
1113/* Gadget defines */
1114#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1f91b4cc
FB
1115extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1116extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1117extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
117777b2 1118extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1f91b4cc 1119extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
643cc4de 1120 bool reset);
1f91b4cc
FB
1121extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1122extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1123extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
f81f46e1 1124#define dwc2_is_device_connected(hsotg) (hsotg->connected)
58e52ff6
JY
1125int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1126int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
117777b2 1127#else
1f91b4cc 1128static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
117777b2 1129{ return 0; }
1f91b4cc 1130static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
117777b2 1131{ return 0; }
1f91b4cc 1132static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
117777b2
DN
1133{ return 0; }
1134static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1135{ return 0; }
1f91b4cc 1136static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
643cc4de 1137 bool reset) {}
1f91b4cc
FB
1138static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1139static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1140static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
f91eea44
MYK
1141 int testmode)
1142{ return 0; }
f81f46e1 1143#define dwc2_is_device_connected(hsotg) (0)
58e52ff6
JY
1144static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1145{ return 0; }
1146static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1147{ return 0; }
117777b2
DN
1148#endif
1149
1150#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1151extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
fae4e826 1152extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
6a659531
DA
1153extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1154extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
117777b2 1155extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
58e52ff6
JY
1156int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1157int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
117777b2 1158#else
117777b2
DN
1159static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1160{ return 0; }
fae4e826
DA
1161static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1162 int us)
1163{ return 0; }
6a659531
DA
1164static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1165static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
117777b2
DN
1166static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1167static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
ecb176c6 1168static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
117777b2 1169{ return 0; }
58e52ff6
JY
1170static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1171{ return 0; }
1172static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1173{ return 0; }
1174
117777b2
DN
1175#endif
1176
56f5b1cf 1177#endif /* __DWC2_CORE_H__ */