usb: dwc2: debugfs: Don't touch RX FIFO during register dump
[linux-2.6-block.git] / drivers / usb / dwc2 / core.h
CommitLineData
5fd54ace 1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
56f5b1cf
PZ
2/*
3 * core.h - DesignWare HS OTG Controller common declarations
4 *
5 * Copyright (C) 2004-2013 Synopsys, Inc.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
19 *
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
23 * later version.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#ifndef __DWC2_CORE_H__
39#define __DWC2_CORE_H__
40
f7c0b143
DN
41#include <linux/phy/phy.h>
42#include <linux/regulator/consumer.h>
43#include <linux/usb/gadget.h>
44#include <linux/usb/otg.h>
56f5b1cf
PZ
45#include <linux/usb/phy.h>
46#include "hw.h"
47
74fc4a75
DA
48/*
49 * Suggested defines for tracers:
50 * - no_printk: Disable tracing
51 * - pr_info: Print this info to the console
52 * - trace_printk: Print this info to trace buffer (good for verbose logging)
53 */
54
55#define DWC2_TRACE_SCHEDULER no_printk
56#define DWC2_TRACE_SCHEDULER_VB no_printk
57
58/* Detailed scheduler tracing, but won't overwhelm console */
59#define dwc2_sch_dbg(hsotg, fmt, ...) \
60 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
61 dev_name(hsotg->dev), ##__VA_ARGS__)
62
63/* Verbose scheduler tracing */
64#define dwc2_sch_vdbg(hsotg, fmt, ...) \
65 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
66 dev_name(hsotg->dev), ##__VA_ARGS__)
67
23e34392
AB
68#ifdef CONFIG_MIPS
69/*
70 * There are some MIPS machines that can run in either big-endian
71 * or little-endian mode and that use the dwc2 register without
72 * a byteswap in both ways.
73 * Unlike other architectures, MIPS apparently does not require a
74 * barrier before the __raw_writel() to synchronize with DMA but does
75 * require the barrier after the __raw_writel() to serialize a set of
76 * writes. This set of operations was added specifically for MIPS and
77 * should only be used there.
78 */
95c8bc36 79static inline u32 dwc2_readl(const void __iomem *addr)
56f5b1cf 80{
95c8bc36
AS
81 u32 value = __raw_readl(addr);
82
83 /* In order to preserve endianness __raw_* operation is used. Therefore
84 * a barrier is needed to ensure IO access is not re-ordered across
85 * reads or writes
86 */
87 mb();
88 return value;
56f5b1cf
PZ
89}
90
95c8bc36
AS
91static inline void dwc2_writel(u32 value, void __iomem *addr)
92{
93 __raw_writel(value, addr);
94
95 /*
96 * In order to preserve endianness __raw_* operation is used. Therefore
97 * a barrier is needed to ensure IO access is not re-ordered across
98 * reads or writes
99 */
100 mb();
101#ifdef DWC2_LOG_WRITES
102 pr_info("INFO:: wrote %08x to %p\n", value, addr);
56f5b1cf 103#endif
95c8bc36 104}
23e34392
AB
105#else
106/* Normal architectures just use readl/write */
107static inline u32 dwc2_readl(const void __iomem *addr)
108{
109 return readl(addr);
110}
111
112static inline void dwc2_writel(u32 value, void __iomem *addr)
113{
114 writel(value, addr);
115
116#ifdef DWC2_LOG_WRITES
117 pr_info("info:: wrote %08x to %p\n", value, addr);
118#endif
119}
120#endif
56f5b1cf
PZ
121
122/* Maximum number of Endpoints/HostChannels */
123#define MAX_EPS_CHANNELS 16
124
1f91b4cc
FB
125/* dwc2-hsotg declarations */
126static const char * const dwc2_hsotg_supply_names[] = {
f7c0b143
DN
127 "vusb_d", /* digital USB supply, 1.2V */
128 "vusb_a", /* analog USB supply, 1.1V */
129};
130
b98866c2
JY
131#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
132
f7c0b143
DN
133/*
134 * EP0_MPS_LIMIT
135 *
136 * Unfortunately there seems to be a limit of the amount of data that can
137 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
138 * packets (which practically means 1 packet and 63 bytes of data) when the
139 * MPS is set to 64.
140 *
141 * This means if we are wanting to move >127 bytes of data, we need to
142 * split the transactions up, but just doing one packet at a time does
143 * not work (this may be an implicit DATA0 PID on first packet of the
144 * transaction) and doing 2 packets is outside the controller's limits.
145 *
146 * If we try to lower the MPS size for EP0, then no transfers work properly
147 * for EP0, and the system will fail basic enumeration. As no cause for this
148 * has currently been found, we cannot support any large IN transfers for
149 * EP0.
150 */
151#define EP0_MPS_LIMIT 64
152
941fcce4 153struct dwc2_hsotg;
1f91b4cc 154struct dwc2_hsotg_req;
f7c0b143
DN
155
156/**
1f91b4cc 157 * struct dwc2_hsotg_ep - driver endpoint definition.
f7c0b143
DN
158 * @ep: The gadget layer representation of the endpoint.
159 * @name: The driver generated name for the endpoint.
160 * @queue: Queue of requests for this endpoint.
161 * @parent: Reference back to the parent device structure.
162 * @req: The current request that the endpoint is processing. This is
163 * used to indicate an request has been loaded onto the endpoint
164 * and has yet to be completed (maybe due to data move, or simply
165 * awaiting an ack from the core all the data has been completed).
166 * @debugfs: File entry for debugfs file for this endpoint.
167 * @lock: State lock to protect contents of endpoint.
168 * @dir_in: Set to true if this endpoint is of the IN direction, which
169 * means that it is sending data to the Host.
170 * @index: The index for the endpoint registers.
171 * @mc: Multi Count - number of transactions per microframe
142bd33f 172 * @interval - Interval for periodic endpoints, in frames or microframes.
f7c0b143
DN
173 * @name: The name array passed to the USB core.
174 * @halted: Set if the endpoint has been halted.
175 * @periodic: Set if this is a periodic ep, such as Interrupt
176 * @isochronous: Set if this is a isochronous ep
8a20fa45 177 * @send_zlp: Set if we need to send a zero-length packet.
5f54c54b
VA
178 * @desc_list_dma: The DMA address of descriptor chain currently in use.
179 * @desc_list: Pointer to descriptor DMA chain head currently in use.
180 * @desc_count: Count of entries within the DMA descriptor chain of EP.
ab7d2192 181 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
729cac69 182 * @compl_desc: index of next descriptor to be completed by xFerComplete
f7c0b143
DN
183 * @total_data: The total number of data bytes done.
184 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
185 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
186 * @last_load: The offset of data for the last start of request.
187 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
92d1635d
VM
188 * @target_frame: Targeted frame num to setup next ISOC transfer
189 * @frame_overrun: Indicates SOF number overrun in DSTS
f7c0b143
DN
190 *
191 * This is the driver's state for each registered enpoint, allowing it
192 * to keep track of transactions that need doing. Each endpoint has a
193 * lock to protect the state, to try and avoid using an overall lock
194 * for the host controller as much as possible.
195 *
196 * For periodic IN endpoints, we have fifo_size and fifo_load to try
197 * and keep track of the amount of data in the periodic FIFO for each
198 * of these as we don't have a status register that tells us how much
199 * is in each of them. (note, this may actually be useless information
200 * as in shared-fifo mode periodic in acts like a single-frame packet
201 * buffer than a fifo)
202 */
1f91b4cc 203struct dwc2_hsotg_ep {
f7c0b143
DN
204 struct usb_ep ep;
205 struct list_head queue;
941fcce4 206 struct dwc2_hsotg *parent;
1f91b4cc 207 struct dwc2_hsotg_req *req;
f7c0b143
DN
208 struct dentry *debugfs;
209
210 unsigned long total_data;
211 unsigned int size_loaded;
212 unsigned int last_load;
213 unsigned int fifo_load;
214 unsigned short fifo_size;
b203d0a2 215 unsigned short fifo_index;
f7c0b143
DN
216
217 unsigned char dir_in;
218 unsigned char index;
219 unsigned char mc;
12814a3f 220 u16 interval;
f7c0b143
DN
221
222 unsigned int halted:1;
223 unsigned int periodic:1;
224 unsigned int isochronous:1;
8a20fa45 225 unsigned int send_zlp:1;
92d1635d
VM
226 unsigned int target_frame;
227#define TARGET_FRAME_INITIAL 0xFFFFFFFF
228 bool frame_overrun;
f7c0b143 229
5f54c54b
VA
230 dma_addr_t desc_list_dma;
231 struct dwc2_dma_desc *desc_list;
232 u8 desc_count;
233
ab7d2192 234 unsigned int next_desc;
729cac69 235 unsigned int compl_desc;
ab7d2192 236
f7c0b143
DN
237 char name[10];
238};
239
f7c0b143 240/**
1f91b4cc 241 * struct dwc2_hsotg_req - data transfer request
f7c0b143
DN
242 * @req: The USB gadget request
243 * @queue: The list of requests for the endpoint this is queued for.
7d24c1b5 244 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
f7c0b143 245 */
1f91b4cc 246struct dwc2_hsotg_req {
f7c0b143
DN
247 struct usb_request req;
248 struct list_head queue;
7d24c1b5 249 void *saved_req_buf;
f7c0b143
DN
250};
251
b98866c2
JY
252#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
253 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
f7c0b143
DN
254#define call_gadget(_hs, _entry) \
255do { \
256 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
257 (_hs)->driver && (_hs)->driver->_entry) { \
258 spin_unlock(&_hs->lock); \
259 (_hs)->driver->_entry(&(_hs)->gadget); \
260 spin_lock(&_hs->lock); \
261 } \
262} while (0)
941fcce4
DN
263#else
264#define call_gadget(_hs, _entry) do {} while (0)
265#endif
f7c0b143 266
56f5b1cf
PZ
267struct dwc2_hsotg;
268struct dwc2_host_chan;
269
270/* Device States */
271enum dwc2_lx_state {
272 DWC2_L0, /* On state */
273 DWC2_L1, /* LPM sleep state */
274 DWC2_L2, /* USB suspend state */
275 DWC2_L3, /* Off state */
276};
277
fe0b94ab
MYK
278/* Gadget ep0 states */
279enum dwc2_ep0_state {
280 DWC2_EP0_SETUP,
281 DWC2_EP0_DATA_IN,
282 DWC2_EP0_DATA_OUT,
283 DWC2_EP0_STATUS_IN,
284 DWC2_EP0_STATUS_OUT,
285};
286
56f5b1cf
PZ
287/**
288 * struct dwc2_core_params - Parameters for configuring the core
289 *
91121c10
MK
290 * @otg_cap: Specifies the OTG capabilities.
291 * 0 - HNP and SRP capable
56f5b1cf 292 * 1 - SRP Only capable
91121c10
MK
293 * 2 - No HNP/SRP capable (always available)
294 * Defaults to best available option (0, 1, then 2)
e7839f99 295 * @host_dma: Specifies whether to use slave or DMA mode for accessing
56f5b1cf
PZ
296 * the data FIFOs. The driver will automatically detect the
297 * value for this parameter if none is specified.
91121c10 298 * 0 - Slave (always available)
56f5b1cf
PZ
299 * 1 - DMA (default, if available)
300 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
301 * address DMA mode or descriptor DMA mode for accessing
302 * the data FIFOs. The driver will automatically detect the
303 * value for this if none is specified.
304 * 0 - Address DMA
305 * 1 - Descriptor DMA (default, if available)
fbb9e22b
MYK
306 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
307 * address DMA mode or descriptor DMA mode for accessing
308 * the data FIFOs in Full Speed mode only. The driver
309 * will automatically detect the value for this if none is
310 * specified.
311 * 0 - Address DMA
312 * 1 - Descriptor DMA in FS (default, if available)
56f5b1cf
PZ
313 * @speed: Specifies the maximum speed of operation in host and
314 * device mode. The actual speed depends on the speed of
315 * the attached device and the value of phy_type.
91121c10
MK
316 * 0 - High Speed
317 * (default when phy_type is UTMI+ or ULPI)
56f5b1cf 318 * 1 - Full Speed
91121c10 319 * (default when phy_type is Full Speed)
56f5b1cf 320 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
91121c10 321 * 1 - Allow dynamic FIFO sizing (default, if available)
725acc86 322 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
c1d286cf
JY
323 * are enabled for non-periodic IN endpoints in device
324 * mode.
56f5b1cf
PZ
325 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
326 * dynamic FIFO sizing is enabled
91121c10
MK
327 * 16 to 32768
328 * Actual maximum value is autodetected and also
329 * the default.
56f5b1cf
PZ
330 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
331 * in host mode when dynamic FIFO sizing is enabled
91121c10
MK
332 * 16 to 32768
333 * Actual maximum value is autodetected and also
334 * the default.
56f5b1cf
PZ
335 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
336 * host mode when dynamic FIFO sizing is enabled
91121c10
MK
337 * 16 to 32768
338 * Actual maximum value is autodetected and also
339 * the default.
56f5b1cf 340 * @max_transfer_size: The maximum transfer size supported, in bytes
91121c10
MK
341 * 2047 to 65,535
342 * Actual maximum value is autodetected and also
343 * the default.
56f5b1cf 344 * @max_packet_count: The maximum number of packets in a transfer
91121c10
MK
345 * 15 to 511
346 * Actual maximum value is autodetected and also
347 * the default.
56f5b1cf 348 * @host_channels: The number of host channel registers to use
91121c10
MK
349 * 1 to 16
350 * Actual maximum value is autodetected and also
351 * the default.
56f5b1cf
PZ
352 * @phy_type: Specifies the type of PHY interface to use. By default,
353 * the driver will automatically detect the phy_type.
91121c10
MK
354 * 0 - Full Speed Phy
355 * 1 - UTMI+ Phy
356 * 2 - ULPI Phy
357 * Defaults to best available option (2, 1, then 0)
56f5b1cf
PZ
358 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
359 * is applicable for a phy_type of UTMI+ or ULPI. (For a
360 * ULPI phy_type, this parameter indicates the data width
361 * between the MAC and the ULPI Wrapper.) Also, this
362 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
363 * parameter was set to "8 and 16 bits", meaning that the
364 * core has been configured to work at either data path
365 * width.
91121c10 366 * 8 or 16 (default 16 if available)
56f5b1cf
PZ
367 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
368 * data rate. This parameter is only applicable if phy_type
369 * is ULPI.
370 * 0 - single data rate ULPI interface with 8 bit wide
371 * data bus (default)
372 * 1 - double data rate ULPI interface with 4 bit wide
373 * data bus
374 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
375 * external supply to drive the VBus
91121c10
MK
376 * 0 - Internal supply (default)
377 * 1 - External supply
56f5b1cf
PZ
378 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
379 * speed PHY. This parameter is only applicable if phy_type
380 * is FS.
381 * 0 - No (default)
382 * 1 - Yes
b43ebc96
GT
383 * @ipg_isoc_en Indicates the IPG supports is enabled or disabled.
384 * 0 - Disable (default)
385 * 1 - Enable
91121c10
MK
386 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
387 * 0 - No (default)
388 * 1 - Yes
725acc86
PZ
389 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
390 * when attached to a Full Speed or Low Speed device in
391 * host mode.
392 * 0 - Don't support low power mode (default)
393 * 1 - Support low power mode
394 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
91121c10
MK
395 * when connected to a Low Speed device in host
396 * mode. This parameter is applicable only if
397 * host_support_fs_ls_low_power is enabled.
725acc86 398 * 0 - 48 MHz
91121c10 399 * (default when phy_type is UTMI+ or ULPI)
725acc86 400 * 1 - 6 MHz
91121c10 401 * (default when phy_type is Full Speed)
b11633c4
DN
402 * @oc_disable: Flag to disable overcurrent condition.
403 * 0 - Allow overcurrent condition to get detected
404 * 1 - Disable overcurrent condtion to get detected
91121c10
MK
405 * @ts_dline: Enable Term Select Dline pulsing
406 * 0 - No (default)
407 * 1 - Yes
408 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
409 * 0 - No (default for core < 2.92a)
410 * 1 - Yes (default for core >= 2.92a)
4d3190e1
PZ
411 * @ahbcfg: This field allows the default value of the GAHBCFG
412 * register to be overridden
91121c10 413 * -1 - GAHBCFG value will be set to 0x06
1b52d2fa 414 * (INCR, default)
4d3190e1
PZ
415 * all others - GAHBCFG value will be overridden with
416 * this value
91121c10
MK
417 * Not all bits can be controlled like this, the
418 * bits defined by GAHBCFG_CTRL_MASK are controlled
419 * by the driver and are ignored in this
420 * configuration value.
20f2eb9c 421 * @uframe_sched: True to enable the microframe scheduler
a6d249d8
GH
422 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
423 * Disable CONIDSTSCHNG controller interrupt in such
424 * case.
425 * 0 - No (default)
426 * 1 - Yes
41ba9b9b
VM
427 * @power_down: Specifies whether the controller support power_down.
428 * If power_down is enabled, the controller will enter
429 * power_down in both peripheral and host mode when
285046aa
GH
430 * needed.
431 * 0 - No (default)
631a2310
VM
432 * 1 - Partial power down
433 * 2 - Hibernation
6f80b6de
SA
434 * @lpm: Enable LPM support.
435 * 0 - No
436 * 1 - Yes
437 * @lpm_clock_gating: Enable core PHY clock gating.
438 * 0 - No
439 * 1 - Yes
440 * @besl: Enable LPM Errata support.
441 * 0 - No
442 * 1 - Yes
443 * @hird_threshold_en: HIRD or HIRD Threshold enable.
444 * 0 - No
445 * 1 - Yes
446 * @hird_threshold: Value of BESL or HIRD Threshold.
e35b1350
BH
447 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
448 * register.
449 * 0 - Deactivate the transceiver (default)
450 * 1 - Activate the transceiver
9962b62f 451 * @g_dma: Enables gadget dma usage (default: autodetect).
dec4b556 452 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect).
05ee799f
JY
453 * @g_rx_fifo_size: The periodic rx fifo size for the device, in
454 * DWORDS from 16-32768 (default: 2048 if
455 * possible, otherwise autodetect).
456 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in
457 * DWORDS from 16-32768 (default: 1024 if
458 * possible, otherwise autodetect).
459 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo
460 * mode. Each value corresponds to one EP
461 * starting from EP1 (max 15 values). Sizes are
462 * in DWORDS with possible values from from
463 * 16-32768 (default: 256, 256, 256, 256, 768,
464 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
ca8b0332
CY
465 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
466 * while full&low speed device connect. And change speed
467 * back to DWC2_SPEED_PARAM_HIGH while device is gone.
468 * 0 - No (default)
469 * 1 - Yes
56f5b1cf
PZ
470 *
471 * The following parameters may be specified when starting the module. These
91121c10
MK
472 * parameters define how the DWC_otg controller should be configured. A
473 * value of -1 (or any other out of range value) for any parameter means
474 * to read the value from hardware (if possible) or use the builtin
475 * default described above.
56f5b1cf
PZ
476 */
477struct dwc2_core_params {
d21bcc3f 478 u8 otg_cap;
c1d286cf
JY
479#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
480#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
481#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
482
d21bcc3f 483 u8 phy_type;
c1d286cf
JY
484#define DWC2_PHY_TYPE_PARAM_FS 0
485#define DWC2_PHY_TYPE_PARAM_UTMI 1
486#define DWC2_PHY_TYPE_PARAM_ULPI 2
487
57b8e235
JY
488 u8 speed;
489#define DWC2_SPEED_PARAM_HIGH 0
490#define DWC2_SPEED_PARAM_FULL 1
491#define DWC2_SPEED_PARAM_LOW 2
492
d21bcc3f
JY
493 u8 phy_utmi_width;
494 bool phy_ulpi_ddr;
495 bool phy_ulpi_ext_vbus;
57b8e235
JY
496 bool enable_dynamic_fifo;
497 bool en_multiple_tx_fifo;
d21bcc3f 498 bool i2c_enable;
66e77a24 499 bool acg_enable;
d21bcc3f 500 bool ulpi_fs_ls;
d21bcc3f
JY
501 bool ts_dline;
502 bool reload_ctl;
d21bcc3f
JY
503 bool uframe_sched;
504 bool external_id_pin_ctl;
631a2310
VM
505
506 int power_down;
507#define DWC2_POWER_DOWN_PARAM_NONE 0
508#define DWC2_POWER_DOWN_PARAM_PARTIAL 1
509#define DWC2_POWER_DOWN_PARAM_HIBERNATION 2
510
6f80b6de
SA
511 bool lpm;
512 bool lpm_clock_gating;
513 bool besl;
514 bool hird_threshold_en;
515 u8 hird_threshold;
e35b1350 516 bool activate_stm_fs_transceiver;
b43ebc96 517 bool ipg_isoc_en;
57b8e235
JY
518 u16 max_packet_count;
519 u32 max_transfer_size;
520 u32 ahbcfg;
6b66ce51
JY
521
522 /* Host parameters */
523 bool host_dma;
57b8e235
JY
524 bool dma_desc_enable;
525 bool dma_desc_fs_enable;
526 bool host_support_fs_ls_low_power;
527 bool host_ls_low_power_phy_clk;
b11633c4 528 bool oc_disable;
57b8e235
JY
529
530 u8 host_channels;
531 u16 host_rx_fifo_size;
532 u16 host_nperio_tx_fifo_size;
533 u16 host_perio_tx_fifo_size;
6b66ce51
JY
534
535 /* Gadget parameters */
05ee799f 536 bool g_dma;
dec4b556 537 bool g_dma_desc;
00c704cc
LY
538 u32 g_rx_fifo_size;
539 u32 g_np_tx_fifo_size;
05ee799f 540 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
ca8b0332
CY
541
542 bool change_speed_quirk;
56f5b1cf
PZ
543};
544
9badec2f
MK
545/**
546 * struct dwc2_hw_params - Autodetected parameters.
547 *
548 * These parameters are the various parameters read from hardware
549 * registers during initialization. They typically contain the best
550 * supported or maximum value that can be configured in the
551 * corresponding dwc2_core_params value.
552 *
553 * The values that are not in dwc2_core_params are documented below.
554 *
555 * @op_mode Mode of Operation
556 * 0 - HNP- and SRP-Capable OTG (Host & Device)
557 * 1 - SRP-Capable OTG (Host & Device)
558 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
559 * 3 - SRP-Capable Device
560 * 4 - Non-OTG Device
561 * 5 - SRP-Capable Host
562 * 6 - Non-OTG Host
563 * @arch Architecture
564 * 0 - Slave only
565 * 1 - External DMA
566 * 2 - Internal DMA
b43ebc96
GT
567 * @ipg_isoc_en This feature indicates that the controller supports
568 * the worst-case scenario of Rx followed by Rx
569 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi
570 * specification for any token following ISOC OUT token.
571 * 0 - Don't support
572 * 1 - Support
9badec2f
MK
573 * @power_optimized Are power optimizations enabled?
574 * @num_dev_ep Number of device endpoints available
9273083a 575 * @num_dev_in_eps Number of device IN endpoints available
9badec2f 576 * @num_dev_perio_in_ep Number of device periodic IN endpoints
997f4f81 577 * available
9badec2f
MK
578 * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
579 * Depth
580 * 0 to 30
581 * @host_perio_tx_q_depth
582 * Host Mode Periodic Request Queue Depth
583 * 2, 4 or 8
584 * @nperio_tx_q_depth
585 * Non-Periodic Request Queue Depth
586 * 2, 4 or 8
587 * @hs_phy_type High-speed PHY interface type
588 * 0 - High-speed interface not supported
589 * 1 - UTMI+
590 * 2 - ULPI
591 * 3 - UTMI+ and ULPI
592 * @fs_phy_type Full-speed PHY interface type
593 * 0 - Full speed interface not supported
594 * 1 - Dedicated full speed interface
595 * 2 - FS pins shared with UTMI+ pins
596 * 3 - FS pins shared with ULPI pins
597 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
631a2310 598 * @hibernation Is hibernation enabled?
de4a1931
MK
599 * @utmi_phy_data_width UTMI+ PHY data width
600 * 0 - 8 bits
601 * 1 - 16 bits
602 * 2 - 8 or 16 bits
9badec2f 603 * @snpsid: Value from SNPSID register
55e1040e 604 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
9273083a 605 * @g_tx_fifo_size[] Power-on values of TxFIFO sizes
9badec2f
MK
606 */
607struct dwc2_hw_params {
608 unsigned op_mode:3;
609 unsigned arch:2;
610 unsigned dma_desc_enable:1;
611 unsigned enable_dynamic_fifo:1;
612 unsigned en_multiple_tx_fifo:1;
d1531319 613 unsigned rx_fifo_size:16;
9badec2f 614 unsigned host_nperio_tx_fifo_size:16;
55e1040e 615 unsigned dev_nperio_tx_fifo_size:16;
9badec2f
MK
616 unsigned host_perio_tx_fifo_size:16;
617 unsigned nperio_tx_q_depth:3;
618 unsigned host_perio_tx_q_depth:3;
619 unsigned dev_token_q_depth:5;
620 unsigned max_transfer_size:26;
621 unsigned max_packet_count:11;
2d115547 622 unsigned host_channels:5;
9badec2f
MK
623 unsigned hs_phy_type:2;
624 unsigned fs_phy_type:2;
625 unsigned i2c_enable:1;
66e77a24 626 unsigned acg_enable:1;
9badec2f 627 unsigned num_dev_ep:4;
9273083a 628 unsigned num_dev_in_eps : 4;
9badec2f
MK
629 unsigned num_dev_perio_in_ep:4;
630 unsigned total_fifo_size:16;
631 unsigned power_optimized:1;
631a2310 632 unsigned hibernation:1;
de4a1931 633 unsigned utmi_phy_data_width:2;
6f80b6de 634 unsigned lpm_mode:1;
b43ebc96 635 unsigned ipg_isoc_en:1;
9badec2f 636 u32 snpsid;
55e1040e 637 u32 dev_ep_dirs;
9273083a 638 u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
9badec2f
MK
639};
640
3f95001d
MYK
641/* Size of control and EP0 buffers */
642#define DWC2_CTRL_BUFF_SIZE 8
643
d17ee77b 644/**
38beaec6
JY
645 * struct dwc2_gregs_backup - Holds global registers state before
646 * entering partial power down
d17ee77b
GH
647 * @gotgctl: Backup of GOTGCTL register
648 * @gintmsk: Backup of GINTMSK register
649 * @gahbcfg: Backup of GAHBCFG register
650 * @gusbcfg: Backup of GUSBCFG register
651 * @grxfsiz: Backup of GRXFSIZ register
652 * @gnptxfsiz: Backup of GNPTXFSIZ register
653 * @gi2cctl: Backup of GI2CCTL register
66a36096 654 * @glpmcfg: Backup of GLPMCFG register
d17ee77b 655 * @gdfifocfg: Backup of GDFIFOCFG register
d17ee77b
GH
656 * @gpwrdn: Backup of GPWRDN register
657 */
658struct dwc2_gregs_backup {
659 u32 gotgctl;
660 u32 gintmsk;
661 u32 gahbcfg;
662 u32 gusbcfg;
663 u32 grxfsiz;
664 u32 gnptxfsiz;
665 u32 gi2cctl;
66a36096 666 u32 glpmcfg;
d17ee77b 667 u32 pcgcctl;
600a490e 668 u32 pcgcctl1;
d17ee77b 669 u32 gdfifocfg;
d17ee77b 670 u32 gpwrdn;
cc1e204c 671 bool valid;
d17ee77b
GH
672};
673
674/**
38beaec6
JY
675 * struct dwc2_dregs_backup - Holds device registers state before
676 * entering partial power down
d17ee77b
GH
677 * @dcfg: Backup of DCFG register
678 * @dctl: Backup of DCTL register
679 * @daintmsk: Backup of DAINTMSK register
680 * @diepmsk: Backup of DIEPMSK register
681 * @doepmsk: Backup of DOEPMSK register
682 * @diepctl: Backup of DIEPCTL register
683 * @dieptsiz: Backup of DIEPTSIZ register
684 * @diepdma: Backup of DIEPDMA register
685 * @doepctl: Backup of DOEPCTL register
686 * @doeptsiz: Backup of DOEPTSIZ register
687 * @doepdma: Backup of DOEPDMA register
af7c2bd3 688 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
d17ee77b
GH
689 */
690struct dwc2_dregs_backup {
691 u32 dcfg;
692 u32 dctl;
693 u32 daintmsk;
694 u32 diepmsk;
695 u32 doepmsk;
696 u32 diepctl[MAX_EPS_CHANNELS];
697 u32 dieptsiz[MAX_EPS_CHANNELS];
698 u32 diepdma[MAX_EPS_CHANNELS];
699 u32 doepctl[MAX_EPS_CHANNELS];
700 u32 doeptsiz[MAX_EPS_CHANNELS];
701 u32 doepdma[MAX_EPS_CHANNELS];
af7c2bd3 702 u32 dtxfsiz[MAX_EPS_CHANNELS];
cc1e204c 703 bool valid;
d17ee77b
GH
704};
705
706/**
38beaec6
JY
707 * struct dwc2_hregs_backup - Holds host registers state before
708 * entering partial power down
d17ee77b
GH
709 * @hcfg: Backup of HCFG register
710 * @haintmsk: Backup of HAINTMSK register
711 * @hcintmsk: Backup of HCINTMSK register
712 * @hptr0: Backup of HPTR0 register
713 * @hfir: Backup of HFIR register
66a36096 714 * @hptxfsiz: Backup of HPTXFSIZ register
d17ee77b
GH
715 */
716struct dwc2_hregs_backup {
717 u32 hcfg;
718 u32 haintmsk;
719 u32 hcintmsk[MAX_EPS_CHANNELS];
720 u32 hprt0;
721 u32 hfir;
66a36096 722 u32 hptxfsiz;
cc1e204c 723 bool valid;
d17ee77b
GH
724};
725
9f9f09b0
DA
726/*
727 * Constants related to high speed periodic scheduling
728 *
729 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
730 * reservation point of view it's assumed that the schedule goes right back to
731 * the beginning after the end of the schedule.
732 *
733 * What does that mean for scheduling things with a long interval? It means
734 * we'll reserve time for them in every possible microframe that they could
735 * ever be scheduled in. ...but we'll still only actually schedule them as
736 * often as they were requested.
737 *
738 * We keep our schedule in a "bitmap" structure. This simplifies having
739 * to keep track of and merge intervals: we just let the bitmap code do most
740 * of the heavy lifting. In a way scheduling is much like memory allocation.
741 *
742 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
743 * supposed to schedule for periodic transfers). That's according to spec.
744 *
745 * Note that though we only schedule 80% of each microframe, the bitmap that we
746 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
747 * space for each uFrame).
748 *
749 * Requirements:
750 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
751 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
752 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
753 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
754 */
755#define DWC2_US_PER_UFRAME 125
756#define DWC2_HS_PERIODIC_US_PER_UFRAME 100
757
758#define DWC2_HS_SCHEDULE_UFRAMES 8
759#define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
760 DWC2_HS_PERIODIC_US_PER_UFRAME)
761
762/*
763 * Constants related to low speed scheduling
764 *
765 * For high speed we schedule every 1us. For low speed that's a bit overkill,
766 * so we make up a unit called a "slice" that's worth 25us. There are 40
767 * slices in a full frame and we can schedule 36 of those (90%) for periodic
768 * transfers.
769 *
770 * Our low speed schedule can be as short as 1 frame or could be longer. When
771 * we only schedule 1 frame it means that we'll need to reserve a time every
772 * frame even for things that only transfer very rarely, so something that runs
773 * every 2048 frames will get time reserved in every frame. Our low speed
774 * schedule can be longer and we'll be able to handle more overlap, but that
775 * will come at increased memory cost and increased time to schedule.
776 *
777 * Note: one other advantage of a short low speed schedule is that if we mess
778 * up and miss scheduling we can jump in and use any of the slots that we
779 * happened to reserve.
780 *
781 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
782 * the schedule. There will be one schedule per TT.
783 *
784 * Requirements:
785 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
786 */
787#define DWC2_US_PER_SLICE 25
788#define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
789
790#define DWC2_ROUND_US_TO_SLICE(us) \
791 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
792 DWC2_US_PER_SLICE)
793
794#define DWC2_LS_PERIODIC_US_PER_FRAME \
795 900
796#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
797 (DWC2_LS_PERIODIC_US_PER_FRAME / \
798 DWC2_US_PER_SLICE)
799
800#define DWC2_LS_SCHEDULE_FRAMES 1
801#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
802 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
803
56f5b1cf
PZ
804/**
805 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
806 * and periodic schedules
807 *
941fcce4
DN
808 * These are common for both host and peripheral modes:
809 *
56f5b1cf
PZ
810 * @dev: The struct device pointer
811 * @regs: Pointer to controller regs
9badec2f
MK
812 * @hw_params: Parameters that were autodetected from the
813 * hardware registers
941fcce4 814 * @core_params: Parameters that define how the core should be configured
56f5b1cf
PZ
815 * @op_state: The operational State, during transitions (a_host=>
816 * a_peripheral and b_device=>b_host) this may not match
817 * the core, but allows the software to determine
818 * transitions
c0155b9d
KY
819 * @dr_mode: Requested mode of operation, one of following:
820 * - USB_DR_MODE_PERIPHERAL
821 * - USB_DR_MODE_HOST
822 * - USB_DR_MODE_OTG
09a75e85
MS
823 * @hcd_enabled Host mode sub-driver initialization indicator.
824 * @gadget_enabled Peripheral mode sub-driver initialization indicator.
825 * @ll_hw_enabled Status of low-level hardware resources.
20fe4409 826 * @hibernated: True if core is hibernated
09a75e85 827 * @phy: The otg phy transceiver structure for phy control.
38beaec6
JY
828 * @uphy: The otg phy transceiver structure for old USB phy
829 * control.
830 * @plat: The platform specific configuration data. This can be
831 * removed once all SoCs support usb transceiver.
09a75e85 832 * @supplies: Definition of USB power supplies
531ef5eb 833 * @vbus_supply: Regulator supplying vbus.
09a75e85 834 * @phyif: PHY interface width
941fcce4
DN
835 * @lock: Spinlock that protects all the driver data structures
836 * @priv: Stores a pointer to the struct usb_hcd
56f5b1cf
PZ
837 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
838 * transfer are in process of being queued
839 * @srp_success: Stores status of SRP request in the case of a FS PHY
840 * with an I2C interface
841 * @wq_otg: Workqueue object used for handling of some interrupts
842 * @wf_otg: Work object for handling Connector ID Status Change
843 * interrupt
844 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
845 * @lx_state: Lx state of connected device
d17ee77b
GH
846 * @gregs_backup: Backup of global registers during suspend
847 * @dregs_backup: Backup of device registers during suspend
848 * @hregs_backup: Backup of host registers during suspend
941fcce4
DN
849 *
850 * These are for host mode:
851 *
56f5b1cf
PZ
852 * @flags: Flags for handling root port state changes
853 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
854 * Transfers associated with these QHs are not currently
855 * assigned to a host channel.
856 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
857 * Transfers associated with these QHs are currently
858 * assigned to a host channel.
859 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
860 * non-periodic schedule
861 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
862 * list of QHs for periodic transfers that are _not_
863 * scheduled for the next frame. Each QH in the list has an
864 * interval counter that determines when it needs to be
865 * scheduled for execution. This scheduling mechanism
866 * allows only a simple calculation for periodic bandwidth
867 * used (i.e. must assume that all periodic transfers may
868 * need to execute in the same frame). However, it greatly
869 * simplifies scheduling and should be sufficient for the
870 * vast majority of OTG hosts, which need to connect to a
871 * small number of peripherals at one time. Items move from
872 * this list to periodic_sched_ready when the QH interval
873 * counter is 0 at SOF.
874 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
875 * the next frame, but have not yet been assigned to host
876 * channels. Items move from this list to
877 * periodic_sched_assigned as host channels become
878 * available during the current frame.
879 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
880 * frame that are assigned to host channels. Items move
881 * from this list to periodic_sched_queued as the
882 * transactions for the QH are queued to the DWC_otg
883 * controller.
884 * @periodic_sched_queued: List of periodic QHs that have been queued for
885 * execution. Items move from this list to either
886 * periodic_sched_inactive or periodic_sched_ready when the
887 * channel associated with the transfer is released. If the
888 * interval for the QH is 1, the item moves to
889 * periodic_sched_ready because it must be rescheduled for
890 * the next frame. Otherwise, the item moves to
891 * periodic_sched_inactive.
c9c8ac01 892 * @split_order: List keeping track of channels doing splits, in order.
56f5b1cf
PZ
893 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
894 * This value is in microseconds per (micro)frame. The
895 * assumption is that all periodic transfers may occur in
896 * the same (micro)frame.
9f9f09b0
DA
897 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
898 * host is in high speed mode; low speed schedules are
899 * stored elsewhere since we need one per TT.
56f5b1cf
PZ
900 * @frame_number: Frame number read from the core at SOF. The value ranges
901 * from 0 to HFNUM_MAX_FRNUM.
902 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
903 * SOF enable/disable.
904 * @free_hc_list: Free host channels in the controller. This is a list of
905 * struct dwc2_host_chan items.
906 * @periodic_channels: Number of host channels assigned to periodic transfers.
907 * Currently assuming that there is a dedicated host
908 * channel for each periodic transaction and at least one
909 * host channel is available for non-periodic transactions.
910 * @non_periodic_channels: Number of host channels assigned to non-periodic
911 * transfers
20f2eb9c
DC
912 * @available_host_channels Number of host channels available for the microframe
913 * scheduler to use
56f5b1cf
PZ
914 * @hc_ptr_array: Array of pointers to the host channel descriptors.
915 * Allows accessing a host channel descriptor given the
916 * host channel number. This is useful in interrupt
917 * handlers.
918 * @status_buf: Buffer used for data received during the status phase of
919 * a control transfer.
920 * @status_buf_dma: DMA address for status_buf
921 * @start_work: Delayed work for handling host A-cable connection
922 * @reset_work: Delayed work for handling a port reset
56f5b1cf
PZ
923 * @otg_port: OTG port number
924 * @frame_list: Frame list
925 * @frame_list_dma: Frame list DMA address
95105a99 926 * @frame_list_sz: Frame list size
3b5fcc9a
GH
927 * @desc_gen_cache: Kmem cache for generic descriptors
928 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
941fcce4
DN
929 *
930 * These are for peripheral mode:
931 *
932 * @driver: USB gadget driver
941fcce4
DN
933 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
934 * @num_of_eps: Number of available EPs (excluding EP0)
935 * @debug_root: Root directrory for debugfs.
936 * @debug_file: Main status file for debugfs.
9e14d0a5 937 * @debug_testmode: Testmode status file for debugfs.
941fcce4
DN
938 * @debug_fifo: FIFO status file for debugfs.
939 * @ep0_reply: Request used for ep0 reply.
940 * @ep0_buff: Buffer for EP0 reply data, if needed.
941 * @ctrl_buff: Buffer for EP0 control requests.
942 * @ctrl_req: Request for EP0 control packets.
fe0b94ab 943 * @ep0_state: EP0 control transfers state
9e14d0a5 944 * @test_mode: USB test mode requested by the host
fa389a6d
VM
945 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
946 * remote-wakeup signalling
0f6b80c0
VA
947 * @setup_desc_dma: EP0 setup stage desc chain DMA address
948 * @setup_desc: EP0 setup stage desc chain pointer
949 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address
950 * @ctrl_in_desc: EP0 IN data phase desc chain pointer
951 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address
952 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer
941fcce4 953 * @eps: The endpoints being supplied to the gadget framework
56f5b1cf
PZ
954 */
955struct dwc2_hsotg {
956 struct device *dev;
957 void __iomem *regs;
9badec2f
MK
958 /** Params detected from hardware */
959 struct dwc2_hw_params hw_params;
960 /** Params to actually use */
bea8e86c 961 struct dwc2_core_params params;
56f5b1cf 962 enum usb_otg_state op_state;
c0155b9d 963 enum usb_dr_mode dr_mode;
e39af88f
MS
964 unsigned int hcd_enabled:1;
965 unsigned int gadget_enabled:1;
09a75e85 966 unsigned int ll_hw_enabled:1;
20fe4409 967 unsigned int hibernated:1;
56f5b1cf 968
941fcce4
DN
969 struct phy *phy;
970 struct usb_phy *uphy;
09a75e85 971 struct dwc2_hsotg_plat *plat;
b98866c2 972 struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
531ef5eb 973 struct regulator *vbus_supply;
09a75e85 974 u32 phyif;
941fcce4
DN
975
976 spinlock_t lock;
977 void *priv;
978 int irq;
979 struct clk *clk;
83f8da56 980 struct reset_control *reset;
f2830ad4 981 struct reset_control *reset_ecc;
941fcce4 982
56f5b1cf
PZ
983 unsigned int queuing_high_bandwidth:1;
984 unsigned int srp_success:1;
985
986 struct workqueue_struct *wq_otg;
987 struct work_struct wf_otg;
988 struct timer_list wkp_timer;
989 enum dwc2_lx_state lx_state;
cc1e204c
MYK
990 struct dwc2_gregs_backup gr_backup;
991 struct dwc2_dregs_backup dr_backup;
992 struct dwc2_hregs_backup hr_backup;
56f5b1cf 993
941fcce4 994 struct dentry *debug_root;
563cf017 995 struct debugfs_regset32 *regset;
941fcce4
DN
996
997 /* DWC OTG HW Release versions */
998#define DWC2_CORE_REV_2_71a 0x4f54271a
6f80b6de 999#define DWC2_CORE_REV_2_80a 0x4f54280a
941fcce4 1000#define DWC2_CORE_REV_2_90a 0x4f54290a
e1f411d1 1001#define DWC2_CORE_REV_2_91a 0x4f54291a
941fcce4
DN
1002#define DWC2_CORE_REV_2_92a 0x4f54292a
1003#define DWC2_CORE_REV_2_94a 0x4f54294a
1004#define DWC2_CORE_REV_3_00a 0x4f54300a
fef6bc37 1005#define DWC2_CORE_REV_3_10a 0x4f54310a
1e6b98eb
VM
1006#define DWC2_FS_IOT_REV_1_00a 0x5531100a
1007#define DWC2_HS_IOT_REV_1_00a 0x5532100a
941fcce4 1008
d14ccaba
GS
1009 /* DWC OTG HW Core ID */
1010#define DWC2_OTG_ID 0x4f540000
1011#define DWC2_FS_IOT_ID 0x55310000
1012#define DWC2_HS_IOT_ID 0x55320000
1013
941fcce4 1014#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
56f5b1cf
PZ
1015 union dwc2_hcd_internal_flags {
1016 u32 d32;
1017 struct {
1018 unsigned port_connect_status_change:1;
1019 unsigned port_connect_status:1;
1020 unsigned port_reset_change:1;
1021 unsigned port_enable_change:1;
1022 unsigned port_suspend_change:1;
1023 unsigned port_over_current_change:1;
1024 unsigned port_l1_change:1;
fd4850cf 1025 unsigned reserved:25;
56f5b1cf
PZ
1026 } b;
1027 } flags;
1028
1029 struct list_head non_periodic_sched_inactive;
38d2b5fb 1030 struct list_head non_periodic_sched_waiting;
56f5b1cf
PZ
1031 struct list_head non_periodic_sched_active;
1032 struct list_head *non_periodic_qh_ptr;
1033 struct list_head periodic_sched_inactive;
1034 struct list_head periodic_sched_ready;
1035 struct list_head periodic_sched_assigned;
1036 struct list_head periodic_sched_queued;
c9c8ac01 1037 struct list_head split_order;
56f5b1cf 1038 u16 periodic_usecs;
9f9f09b0
DA
1039 unsigned long hs_periodic_bitmap[
1040 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
56f5b1cf
PZ
1041 u16 frame_number;
1042 u16 periodic_qh_count;
734643df 1043 bool bus_suspended;
fbb9e22b 1044 bool new_connection;
56f5b1cf 1045
483bb254
DA
1046 u16 last_frame_num;
1047
56f5b1cf
PZ
1048#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1049#define FRAME_NUM_ARRAY_SIZE 1000
56f5b1cf
PZ
1050 u16 *frame_num_array;
1051 u16 *last_frame_num_array;
1052 int frame_num_idx;
1053 int dumped_frame_num_array;
1054#endif
1055
1056 struct list_head free_hc_list;
1057 int periodic_channels;
1058 int non_periodic_channels;
20f2eb9c 1059 int available_host_channels;
56f5b1cf
PZ
1060 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1061 u8 *status_buf;
1062 dma_addr_t status_buf_dma;
1063#define DWC2_HCD_STATUS_BUF_SIZE 64
1064
1065 struct delayed_work start_work;
1066 struct delayed_work reset_work;
56f5b1cf
PZ
1067 u8 otg_port;
1068 u32 *frame_list;
1069 dma_addr_t frame_list_dma;
95105a99 1070 u32 frame_list_sz;
3b5fcc9a
GH
1071 struct kmem_cache *desc_gen_cache;
1072 struct kmem_cache *desc_hsisoc_cache;
56f5b1cf 1073
941fcce4
DN
1074#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1075
b98866c2
JY
1076#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1077 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
941fcce4
DN
1078 /* Gadget structures */
1079 struct usb_gadget_driver *driver;
941fcce4
DN
1080 int fifo_mem;
1081 unsigned int dedicated_fifos:1;
1082 unsigned char num_of_eps;
1083 u32 fifo_map;
1084
1085 struct usb_request *ep0_reply;
1086 struct usb_request *ctrl_req;
3f95001d
MYK
1087 void *ep0_buff;
1088 void *ctrl_buff;
fe0b94ab 1089 enum dwc2_ep0_state ep0_state;
9e14d0a5 1090 u8 test_mode;
941fcce4 1091
0f6b80c0
VA
1092 dma_addr_t setup_desc_dma[2];
1093 struct dwc2_dma_desc *setup_desc[2];
1094 dma_addr_t ctrl_in_desc_dma;
1095 struct dwc2_dma_desc *ctrl_in_desc;
1096 dma_addr_t ctrl_out_desc_dma;
1097 struct dwc2_dma_desc *ctrl_out_desc;
1098
941fcce4 1099 struct usb_gadget gadget;
dc6e69e6 1100 unsigned int enabled:1;
4ace06e8 1101 unsigned int connected:1;
fa389a6d 1102 unsigned int remote_wakeup_allowed:1;
1f91b4cc
FB
1103 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1104 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
941fcce4 1105#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
56f5b1cf
PZ
1106};
1107
1108/* Reasons for halting a host channel */
1109enum dwc2_halt_status {
1110 DWC2_HC_XFER_NO_HALT_STATUS,
1111 DWC2_HC_XFER_COMPLETE,
1112 DWC2_HC_XFER_URB_COMPLETE,
1113 DWC2_HC_XFER_ACK,
1114 DWC2_HC_XFER_NAK,
1115 DWC2_HC_XFER_NYET,
1116 DWC2_HC_XFER_STALL,
1117 DWC2_HC_XFER_XACT_ERR,
1118 DWC2_HC_XFER_FRAME_OVERRUN,
1119 DWC2_HC_XFER_BABBLE_ERR,
1120 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1121 DWC2_HC_XFER_AHB_ERR,
1122 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1123 DWC2_HC_XFER_URB_DEQUEUE,
1124};
1125
1e6b98eb
VM
1126/* Core version information */
1127static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1128{
1129 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1130}
1131
1132static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1133{
1134 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1135}
1136
1137static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1138{
1139 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1140}
1141
56f5b1cf
PZ
1142/*
1143 * The following functions support initialization of the core driver component
1144 * and the DWC_otg controller
1145 */
6e6360b6 1146int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
41ba9b9b
VM
1147int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1148int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
624815ce
VM
1149int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1150int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
13b1f8e2 1151 int reset, int is_host);
56f5b1cf 1152
13b1f8e2 1153void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
09c96980
JY
1154void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1155
9da51974 1156bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
56f5b1cf
PZ
1157
1158/*
1159 * Common core Functions.
1160 * The following functions support managing the DWC_otg controller in either
1161 * device or host mode.
1162 */
9da51974
JY
1163void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1164void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1165void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
56f5b1cf 1166
9da51974
JY
1167void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1168void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
56f5b1cf 1169
94d2666c
VM
1170void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1171 int is_host);
c5c403dc
VM
1172int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1173int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
94d2666c 1174
66e77a24
RK
1175void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1176
56f5b1cf 1177/* This function should be called on every hardware interrupt. */
9da51974 1178irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
56f5b1cf 1179
323230ef
JY
1180/* The device ID match table */
1181extern const struct of_device_id dwc2_of_match_table[];
1182
9da51974
JY
1183int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1184int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
ecb176c6 1185
79d6b8c5
SA
1186/* Common polling functions */
1187int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1188 u32 timeout);
1189int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1190 u32 timeout);
334bbd4e 1191/* Parameters */
c1d286cf 1192int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
334bbd4e
JY
1193int dwc2_init_params(struct dwc2_hsotg *hsotg);
1194
6bea9620
JY
1195/*
1196 * The following functions check the controller's OTG operation mode
1197 * capability (GHWCFG2.OTG_MODE).
1198 *
1199 * These functions can be used before the internal hsotg->hw_params
1200 * are read in and cached so they always read directly from the
1201 * GHWCFG2 register.
1202 */
9da51974 1203unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
6bea9620
JY
1204bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1205bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1206bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1207
1696d5ab
JY
1208/*
1209 * Returns the mode of operation, host or device
1210 */
1211static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1212{
1213 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1214}
9da51974 1215
1696d5ab
JY
1216static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1217{
1218 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1219}
1220
56f5b1cf
PZ
1221/*
1222 * Dump core registers and SPRAM
1223 */
9da51974
JY
1224void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1225void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1226void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
56f5b1cf 1227
117777b2 1228/* Gadget defines */
b98866c2
JY
1229#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1230 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
9da51974
JY
1231int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1232int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1233int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
f3768997 1234int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
9da51974
JY
1235void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1236 bool reset);
1237void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1238void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1239int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
f81f46e1 1240#define dwc2_is_device_connected(hsotg) (hsotg->connected)
58e52ff6 1241int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
9a5d2816 1242int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
c5c403dc
VM
1243int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1244int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1245 int rem_wakeup, int reset);
c138ecfa
SA
1246int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1247int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1248int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
21b03405 1249void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
117777b2 1250#else
1f91b4cc 1251static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
117777b2 1252{ return 0; }
1f91b4cc 1253static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
117777b2 1254{ return 0; }
1f91b4cc 1255static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
117777b2 1256{ return 0; }
f3768997 1257static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
117777b2 1258{ return 0; }
1f91b4cc 1259static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
9da51974 1260 bool reset) {}
1f91b4cc
FB
1261static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1262static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1263static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
9da51974 1264 int testmode)
f91eea44 1265{ return 0; }
f81f46e1 1266#define dwc2_is_device_connected(hsotg) (0)
58e52ff6
JY
1267static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1268{ return 0; }
9a5d2816
VM
1269static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1270 int remote_wakeup)
58e52ff6 1271{ return 0; }
c5c403dc
VM
1272static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1273{ return 0; }
1274static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1275 int rem_wakeup, int reset)
1276{ return 0; }
c138ecfa
SA
1277static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1278{ return 0; }
1279static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1280{ return 0; }
1281static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1282{ return 0; }
21b03405 1283static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
117777b2
DN
1284#endif
1285
1286#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
9da51974
JY
1287int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1288int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1289void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1290void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1291void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
65c9c4c6 1292int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
58e52ff6
JY
1293int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1294int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
c5c403dc
VM
1295int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1296int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1297 int rem_wakeup, int reset);
117777b2 1298#else
117777b2
DN
1299static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1300{ return 0; }
fae4e826
DA
1301static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1302 int us)
1303{ return 0; }
6a659531
DA
1304static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1305static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
117777b2
DN
1306static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1307static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
65c9c4c6
VM
1308static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1309{ return 0; }
4fe160d5 1310static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
117777b2 1311{ return 0; }
58e52ff6
JY
1312static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1313{ return 0; }
1314static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1315{ return 0; }
c5c403dc
VM
1316static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1317{ return 0; }
1318static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1319 int rem_wakeup, int reset)
1320{ return 0; }
58e52ff6 1321
117777b2
DN
1322#endif
1323
56f5b1cf 1324#endif /* __DWC2_CORE_H__ */