[PATCH] driver core: replace "hotplug" by "uevent"
[linux-2.6-block.git] / drivers / usb / core / usb.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/config.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/string.h>
27#include <linux/bitops.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h> /* for in_interrupt() */
30#include <linux/kmod.h>
31#include <linux/init.h>
32#include <linux/spinlock.h>
33#include <linux/errno.h>
34#include <linux/smp_lock.h>
35#include <linux/rwsem.h>
36#include <linux/usb.h>
37
38#include <asm/io.h>
39#include <asm/scatterlist.h>
40#include <linux/mm.h>
41#include <linux/dma-mapping.h>
42
43#include "hcd.h"
44#include "usb.h"
45
1da177e4
LT
46
47const char *usbcore_name = "usbcore";
48
49static int nousb; /* Disable USB when built into kernel image */
50 /* Not honored on modular build */
51
52static DECLARE_RWSEM(usb_all_devices_rwsem);
53
54
55static int generic_probe (struct device *dev)
56{
57 return 0;
58}
59static int generic_remove (struct device *dev)
60{
3b4d7f79
AS
61 struct usb_device *udev = to_usb_device(dev);
62
63 /* if this is only an unbind, not a physical disconnect, then
64 * unconfigure the device */
65 if (udev->state == USB_STATE_CONFIGURED)
66 usb_set_configuration(udev, 0);
67
68 /* in case the call failed or the device was suspended */
69 if (udev->state >= USB_STATE_CONFIGURED)
70 usb_disable_device(udev, 0);
1da177e4
LT
71 return 0;
72}
73
74static struct device_driver usb_generic_driver = {
75 .owner = THIS_MODULE,
76 .name = "usb",
77 .bus = &usb_bus_type,
78 .probe = generic_probe,
79 .remove = generic_remove,
80};
81
82static int usb_generic_driver_data;
83
84/* called from driver core with usb_bus_type.subsys writelock */
85static int usb_probe_interface(struct device *dev)
86{
87 struct usb_interface * intf = to_usb_interface(dev);
88 struct usb_driver * driver = to_usb_driver(dev->driver);
89 const struct usb_device_id *id;
90 int error = -ENODEV;
91
92 dev_dbg(dev, "%s\n", __FUNCTION__);
93
94 if (!driver->probe)
95 return error;
96 /* FIXME we'd much prefer to just resume it ... */
97 if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
98 return -EHOSTUNREACH;
99
100 id = usb_match_id (intf, driver->id_table);
101 if (id) {
102 dev_dbg (dev, "%s - got id\n", __FUNCTION__);
db690874
DB
103
104 /* Interface "power state" doesn't correspond to any hardware
105 * state whatsoever. We use it to record when it's bound to
106 * a driver that may start I/0: it's not frozen/quiesced.
107 */
108 mark_active(intf);
1da177e4
LT
109 intf->condition = USB_INTERFACE_BINDING;
110 error = driver->probe (intf, id);
db690874
DB
111 if (error) {
112 mark_quiesced(intf);
113 intf->condition = USB_INTERFACE_UNBOUND;
114 } else
115 intf->condition = USB_INTERFACE_BOUND;
1da177e4
LT
116 }
117
118 return error;
119}
120
121/* called from driver core with usb_bus_type.subsys writelock */
122static int usb_unbind_interface(struct device *dev)
123{
124 struct usb_interface *intf = to_usb_interface(dev);
125 struct usb_driver *driver = to_usb_driver(intf->dev.driver);
126
127 intf->condition = USB_INTERFACE_UNBINDING;
128
129 /* release all urbs for this interface */
130 usb_disable_interface(interface_to_usbdev(intf), intf);
131
132 if (driver && driver->disconnect)
133 driver->disconnect(intf);
134
135 /* reset other interface state */
136 usb_set_interface(interface_to_usbdev(intf),
137 intf->altsetting[0].desc.bInterfaceNumber,
138 0);
139 usb_set_intfdata(intf, NULL);
140 intf->condition = USB_INTERFACE_UNBOUND;
db690874 141 mark_quiesced(intf);
1da177e4
LT
142
143 return 0;
144}
145
146/**
147 * usb_register - register a USB driver
148 * @new_driver: USB operations for the driver
149 *
150 * Registers a USB driver with the USB core. The list of unattached
151 * interfaces will be rescanned whenever a new driver is added, allowing
152 * the new driver to attach to any recognized devices.
153 * Returns a negative error code on failure and 0 on success.
154 *
155 * NOTE: if you want your driver to use the USB major number, you must call
156 * usb_register_dev() to enable that functionality. This function no longer
157 * takes care of that.
158 */
159int usb_register(struct usb_driver *new_driver)
160{
161 int retval = 0;
162
163 if (nousb)
164 return -ENODEV;
165
166 new_driver->driver.name = (char *)new_driver->name;
167 new_driver->driver.bus = &usb_bus_type;
168 new_driver->driver.probe = usb_probe_interface;
169 new_driver->driver.remove = usb_unbind_interface;
170 new_driver->driver.owner = new_driver->owner;
171
172 usb_lock_all_devices();
173 retval = driver_register(&new_driver->driver);
174 usb_unlock_all_devices();
175
176 if (!retval) {
177 pr_info("%s: registered new driver %s\n",
178 usbcore_name, new_driver->name);
179 usbfs_update_special();
180 } else {
181 printk(KERN_ERR "%s: error %d registering driver %s\n",
182 usbcore_name, retval, new_driver->name);
183 }
184
185 return retval;
186}
187
188/**
189 * usb_deregister - unregister a USB driver
190 * @driver: USB operations of the driver to unregister
191 * Context: must be able to sleep
192 *
193 * Unlinks the specified driver from the internal USB driver list.
194 *
195 * NOTE: If you called usb_register_dev(), you still need to call
196 * usb_deregister_dev() to clean up your driver's allocated minor numbers,
197 * this * call will no longer do it for you.
198 */
199void usb_deregister(struct usb_driver *driver)
200{
201 pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
202
203 usb_lock_all_devices();
204 driver_unregister (&driver->driver);
205 usb_unlock_all_devices();
206
207 usbfs_update_special();
208}
209
210/**
211 * usb_ifnum_to_if - get the interface object with a given interface number
212 * @dev: the device whose current configuration is considered
213 * @ifnum: the desired interface
214 *
215 * This walks the device descriptor for the currently active configuration
216 * and returns a pointer to the interface with that particular interface
217 * number, or null.
218 *
219 * Note that configuration descriptors are not required to assign interface
220 * numbers sequentially, so that it would be incorrect to assume that
221 * the first interface in that descriptor corresponds to interface zero.
222 * This routine helps device drivers avoid such mistakes.
223 * However, you should make sure that you do the right thing with any
224 * alternate settings available for this interfaces.
225 *
226 * Don't call this function unless you are bound to one of the interfaces
227 * on this device or you have locked the device!
228 */
229struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
230{
231 struct usb_host_config *config = dev->actconfig;
232 int i;
233
234 if (!config)
235 return NULL;
236 for (i = 0; i < config->desc.bNumInterfaces; i++)
237 if (config->interface[i]->altsetting[0]
238 .desc.bInterfaceNumber == ifnum)
239 return config->interface[i];
240
241 return NULL;
242}
243
244/**
245 * usb_altnum_to_altsetting - get the altsetting structure with a given
246 * alternate setting number.
247 * @intf: the interface containing the altsetting in question
248 * @altnum: the desired alternate setting number
249 *
250 * This searches the altsetting array of the specified interface for
251 * an entry with the correct bAlternateSetting value and returns a pointer
252 * to that entry, or null.
253 *
254 * Note that altsettings need not be stored sequentially by number, so
255 * it would be incorrect to assume that the first altsetting entry in
256 * the array corresponds to altsetting zero. This routine helps device
257 * drivers avoid such mistakes.
258 *
259 * Don't call this function unless you are bound to the intf interface
260 * or you have locked the device!
261 */
262struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
263 unsigned int altnum)
264{
265 int i;
266
267 for (i = 0; i < intf->num_altsetting; i++) {
268 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
269 return &intf->altsetting[i];
270 }
271 return NULL;
272}
273
274/**
275 * usb_driver_claim_interface - bind a driver to an interface
276 * @driver: the driver to be bound
277 * @iface: the interface to which it will be bound; must be in the
278 * usb device's active configuration
279 * @priv: driver data associated with that interface
280 *
281 * This is used by usb device drivers that need to claim more than one
282 * interface on a device when probing (audio and acm are current examples).
283 * No device driver should directly modify internal usb_interface or
284 * usb_device structure members.
285 *
286 * Few drivers should need to use this routine, since the most natural
287 * way to bind to an interface is to return the private data from
288 * the driver's probe() method.
289 *
290 * Callers must own the device lock and the driver model's usb_bus_type.subsys
291 * writelock. So driver probe() entries don't need extra locking,
292 * but other call contexts may need to explicitly claim those locks.
293 */
294int usb_driver_claim_interface(struct usb_driver *driver,
295 struct usb_interface *iface, void* priv)
296{
297 struct device *dev = &iface->dev;
298
299 if (dev->driver)
300 return -EBUSY;
301
302 dev->driver = &driver->driver;
303 usb_set_intfdata(iface, priv);
304 iface->condition = USB_INTERFACE_BOUND;
db690874 305 mark_active(iface);
1da177e4
LT
306
307 /* if interface was already added, bind now; else let
308 * the future device_add() bind it, bypassing probe()
309 */
d305ef5d 310 if (device_is_registered(dev))
1da177e4
LT
311 device_bind_driver(dev);
312
313 return 0;
314}
315
316/**
317 * usb_driver_release_interface - unbind a driver from an interface
318 * @driver: the driver to be unbound
319 * @iface: the interface from which it will be unbound
320 *
321 * This can be used by drivers to release an interface without waiting
322 * for their disconnect() methods to be called. In typical cases this
323 * also causes the driver disconnect() method to be called.
324 *
325 * This call is synchronous, and may not be used in an interrupt context.
326 * Callers must own the device lock and the driver model's usb_bus_type.subsys
327 * writelock. So driver disconnect() entries don't need extra locking,
328 * but other call contexts may need to explicitly claim those locks.
329 */
330void usb_driver_release_interface(struct usb_driver *driver,
331 struct usb_interface *iface)
332{
333 struct device *dev = &iface->dev;
334
335 /* this should never happen, don't release something that's not ours */
336 if (!dev->driver || dev->driver != &driver->driver)
337 return;
338
f4096618
AS
339 /* don't release from within disconnect() */
340 if (iface->condition != USB_INTERFACE_BOUND)
341 return;
342
d305ef5d
DR
343 /* don't release if the interface hasn't been added yet */
344 if (device_is_registered(dev)) {
f4096618 345 iface->condition = USB_INTERFACE_UNBINDING;
1da177e4 346 device_release_driver(dev);
f4096618 347 }
1da177e4
LT
348
349 dev->driver = NULL;
350 usb_set_intfdata(iface, NULL);
351 iface->condition = USB_INTERFACE_UNBOUND;
db690874 352 mark_quiesced(iface);
1da177e4
LT
353}
354
355/**
356 * usb_match_id - find first usb_device_id matching device or interface
357 * @interface: the interface of interest
358 * @id: array of usb_device_id structures, terminated by zero entry
359 *
360 * usb_match_id searches an array of usb_device_id's and returns
361 * the first one matching the device or interface, or null.
362 * This is used when binding (or rebinding) a driver to an interface.
363 * Most USB device drivers will use this indirectly, through the usb core,
364 * but some layered driver frameworks use it directly.
365 * These device tables are exported with MODULE_DEVICE_TABLE, through
312c004d 366 * modutils, to support the driver loading functionality of USB hotplugging.
1da177e4
LT
367 *
368 * What Matches:
369 *
370 * The "match_flags" element in a usb_device_id controls which
371 * members are used. If the corresponding bit is set, the
372 * value in the device_id must match its corresponding member
373 * in the device or interface descriptor, or else the device_id
374 * does not match.
375 *
376 * "driver_info" is normally used only by device drivers,
377 * but you can create a wildcard "matches anything" usb_device_id
378 * as a driver's "modules.usbmap" entry if you provide an id with
379 * only a nonzero "driver_info" field. If you do this, the USB device
380 * driver's probe() routine should use additional intelligence to
381 * decide whether to bind to the specified interface.
382 *
383 * What Makes Good usb_device_id Tables:
384 *
385 * The match algorithm is very simple, so that intelligence in
386 * driver selection must come from smart driver id records.
387 * Unless you have good reasons to use another selection policy,
388 * provide match elements only in related groups, and order match
389 * specifiers from specific to general. Use the macros provided
390 * for that purpose if you can.
391 *
392 * The most specific match specifiers use device descriptor
393 * data. These are commonly used with product-specific matches;
394 * the USB_DEVICE macro lets you provide vendor and product IDs,
395 * and you can also match against ranges of product revisions.
396 * These are widely used for devices with application or vendor
397 * specific bDeviceClass values.
398 *
399 * Matches based on device class/subclass/protocol specifications
400 * are slightly more general; use the USB_DEVICE_INFO macro, or
401 * its siblings. These are used with single-function devices
402 * where bDeviceClass doesn't specify that each interface has
403 * its own class.
404 *
405 * Matches based on interface class/subclass/protocol are the
406 * most general; they let drivers bind to any interface on a
407 * multiple-function device. Use the USB_INTERFACE_INFO
408 * macro, or its siblings, to match class-per-interface style
409 * devices (as recorded in bDeviceClass).
410 *
411 * Within those groups, remember that not all combinations are
412 * meaningful. For example, don't give a product version range
413 * without vendor and product IDs; or specify a protocol without
414 * its associated class and subclass.
415 */
416const struct usb_device_id *
417usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
418{
419 struct usb_host_interface *intf;
420 struct usb_device *dev;
421
422 /* proc_connectinfo in devio.c may call us with id == NULL. */
423 if (id == NULL)
424 return NULL;
425
426 intf = interface->cur_altsetting;
427 dev = interface_to_usbdev(interface);
428
429 /* It is important to check that id->driver_info is nonzero,
430 since an entry that is all zeroes except for a nonzero
431 id->driver_info is the way to create an entry that
432 indicates that the driver want to examine every
433 device and interface. */
434 for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
435 id->driver_info; id++) {
436
437 if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
438 id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
439 continue;
440
441 if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
442 id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
443 continue;
444
445 /* No need to test id->bcdDevice_lo != 0, since 0 is never
446 greater than any unsigned number. */
447 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
448 (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
449 continue;
450
451 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
452 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
453 continue;
454
455 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
456 (id->bDeviceClass != dev->descriptor.bDeviceClass))
457 continue;
458
459 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
460 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
461 continue;
462
463 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
464 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
465 continue;
466
467 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
468 (id->bInterfaceClass != intf->desc.bInterfaceClass))
469 continue;
470
471 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
472 (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
473 continue;
474
475 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
476 (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
477 continue;
478
479 return id;
480 }
481
482 return NULL;
483}
484
6034a080 485
486static int __find_interface(struct device * dev, void * data)
487{
488 struct usb_interface ** ret = (struct usb_interface **)data;
489 struct usb_interface * intf = *ret;
490 int *minor = (int *)data;
491
492 /* can't look at usb devices, only interfaces */
493 if (dev->driver == &usb_generic_driver)
494 return 0;
495
496 intf = to_usb_interface(dev);
497 if (intf->minor != -1 && intf->minor == *minor) {
498 *ret = intf;
499 return 1;
500 }
501 return 0;
502}
503
1da177e4
LT
504/**
505 * usb_find_interface - find usb_interface pointer for driver and device
506 * @drv: the driver whose current configuration is considered
507 * @minor: the minor number of the desired device
508 *
509 * This walks the driver device list and returns a pointer to the interface
510 * with the matching minor. Note, this only works for devices that share the
511 * USB major number.
512 */
513struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
514{
ff710710 515 struct usb_interface *intf = (struct usb_interface *)(long)minor;
6034a080 516 int ret;
1da177e4 517
6034a080 518 ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface);
1da177e4 519
6034a080 520 return ret ? intf : NULL;
1da177e4
LT
521}
522
523static int usb_device_match (struct device *dev, struct device_driver *drv)
524{
525 struct usb_interface *intf;
526 struct usb_driver *usb_drv;
527 const struct usb_device_id *id;
528
529 /* check for generic driver, which we don't match any device with */
530 if (drv == &usb_generic_driver)
531 return 0;
532
533 intf = to_usb_interface(dev);
534 usb_drv = to_usb_driver(drv);
535
536 id = usb_match_id (intf, usb_drv->id_table);
537 if (id)
538 return 1;
539
540 return 0;
541}
542
543
544#ifdef CONFIG_HOTPLUG
545
546/*
312c004d 547 * This sends an uevent to userspace, typically helping to load driver
1da177e4
LT
548 * or other modules, configure the device, and more. Drivers can provide
549 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
550 *
551 * We're called either from khubd (the typical case) or from root hub
552 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
553 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the
554 * device (and this configuration!) are still present.
555 */
312c004d
KS
556static int usb_uevent(struct device *dev, char **envp, int num_envp,
557 char *buffer, int buffer_size)
1da177e4
LT
558{
559 struct usb_interface *intf;
560 struct usb_device *usb_dev;
7521803d 561 struct usb_host_interface *alt;
1da177e4
LT
562 int i = 0;
563 int length = 0;
564
565 if (!dev)
566 return -ENODEV;
567
568 /* driver is often null here; dev_dbg() would oops */
312c004d 569 pr_debug ("usb %s: uevent\n", dev->bus_id);
1da177e4
LT
570
571 /* Must check driver_data here, as on remove driver is always NULL */
572 if ((dev->driver == &usb_generic_driver) ||
573 (dev->driver_data == &usb_generic_driver_data))
574 return 0;
575
576 intf = to_usb_interface(dev);
577 usb_dev = interface_to_usbdev (intf);
7521803d
GKH
578 alt = intf->cur_altsetting;
579
1da177e4
LT
580 if (usb_dev->devnum < 0) {
581 pr_debug ("usb %s: already deleted?\n", dev->bus_id);
582 return -ENODEV;
583 }
584 if (!usb_dev->bus) {
585 pr_debug ("usb %s: bus removed?\n", dev->bus_id);
586 return -ENODEV;
587 }
588
589#ifdef CONFIG_USB_DEVICEFS
590 /* If this is available, userspace programs can directly read
591 * all the device descriptors we don't tell them about. Or
592 * even act as usermode drivers.
593 *
594 * FIXME reduce hardwired intelligence here
595 */
312c004d
KS
596 if (add_uevent_var(envp, num_envp, &i,
597 buffer, buffer_size, &length,
598 "DEVICE=/proc/bus/usb/%03d/%03d",
599 usb_dev->bus->busnum, usb_dev->devnum))
1da177e4
LT
600 return -ENOMEM;
601#endif
602
603 /* per-device configurations are common */
312c004d
KS
604 if (add_uevent_var(envp, num_envp, &i,
605 buffer, buffer_size, &length,
606 "PRODUCT=%x/%x/%x",
607 le16_to_cpu(usb_dev->descriptor.idVendor),
608 le16_to_cpu(usb_dev->descriptor.idProduct),
609 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
1da177e4
LT
610 return -ENOMEM;
611
612 /* class-based driver binding models */
312c004d
KS
613 if (add_uevent_var(envp, num_envp, &i,
614 buffer, buffer_size, &length,
615 "TYPE=%d/%d/%d",
616 usb_dev->descriptor.bDeviceClass,
617 usb_dev->descriptor.bDeviceSubClass,
618 usb_dev->descriptor.bDeviceProtocol))
1da177e4
LT
619 return -ENOMEM;
620
312c004d
KS
621 if (add_uevent_var(envp, num_envp, &i,
622 buffer, buffer_size, &length,
623 "INTERFACE=%d/%d/%d",
624 alt->desc.bInterfaceClass,
625 alt->desc.bInterfaceSubClass,
626 alt->desc.bInterfaceProtocol))
7521803d 627 return -ENOMEM;
1da177e4 628
312c004d
KS
629 if (add_uevent_var(envp, num_envp, &i,
630 buffer, buffer_size, &length,
631 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
632 le16_to_cpu(usb_dev->descriptor.idVendor),
633 le16_to_cpu(usb_dev->descriptor.idProduct),
634 le16_to_cpu(usb_dev->descriptor.bcdDevice),
635 usb_dev->descriptor.bDeviceClass,
636 usb_dev->descriptor.bDeviceSubClass,
637 usb_dev->descriptor.bDeviceProtocol,
638 alt->desc.bInterfaceClass,
639 alt->desc.bInterfaceSubClass,
640 alt->desc.bInterfaceProtocol))
7521803d 641 return -ENOMEM;
1da177e4
LT
642
643 envp[i] = NULL;
644
645 return 0;
646}
647
648#else
649
312c004d 650static int usb_uevent(struct device *dev, char **envp,
1da177e4
LT
651 int num_envp, char *buffer, int buffer_size)
652{
653 return -ENODEV;
654}
655
656#endif /* CONFIG_HOTPLUG */
657
658/**
659 * usb_release_dev - free a usb device structure when all users of it are finished.
660 * @dev: device that's been disconnected
661 *
662 * Will be called only by the device core when all users of this usb device are
663 * done.
664 */
665static void usb_release_dev(struct device *dev)
666{
667 struct usb_device *udev;
668
669 udev = to_usb_device(dev);
670
671 usb_destroy_configuration(udev);
672 usb_bus_put(udev->bus);
673 kfree(udev->product);
674 kfree(udev->manufacturer);
675 kfree(udev->serial);
676 kfree(udev);
677}
678
679/**
680 * usb_alloc_dev - usb device constructor (usbcore-internal)
681 * @parent: hub to which device is connected; null to allocate a root hub
682 * @bus: bus used to access the device
683 * @port1: one-based index of port; ignored for root hubs
684 * Context: !in_interrupt ()
685 *
686 * Only hub drivers (including virtual root hub drivers for host
687 * controllers) should ever call this.
688 *
689 * This call may not be used in a non-sleeping context.
690 */
691struct usb_device *
692usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
693{
694 struct usb_device *dev;
695
0a1ef3b5 696 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1da177e4
LT
697 if (!dev)
698 return NULL;
699
1da177e4
LT
700 bus = usb_bus_get(bus);
701 if (!bus) {
702 kfree(dev);
703 return NULL;
704 }
705
706 device_initialize(&dev->dev);
707 dev->dev.bus = &usb_bus_type;
708 dev->dev.dma_mask = bus->controller->dma_mask;
709 dev->dev.driver_data = &usb_generic_driver_data;
710 dev->dev.driver = &usb_generic_driver;
711 dev->dev.release = usb_release_dev;
712 dev->state = USB_STATE_ATTACHED;
713
714 INIT_LIST_HEAD(&dev->ep0.urb_list);
715 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
716 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
717 /* ep0 maxpacket comes later, from device descriptor */
718 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
719
720 /* Save readable and stable topology id, distinguishing devices
721 * by location for diagnostics, tools, driver model, etc. The
722 * string is a path along hub ports, from the root. Each device's
723 * dev->devpath will be stable until USB is re-cabled, and hubs
724 * are often labeled with these port numbers. The bus_id isn't
725 * as stable: bus->busnum changes easily from modprobe order,
726 * cardbus or pci hotplugging, and so on.
727 */
728 if (unlikely (!parent)) {
729 dev->devpath [0] = '0';
730
731 dev->dev.parent = bus->controller;
732 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
733 } else {
734 /* match any labeling on the hubs; it's one-based */
735 if (parent->devpath [0] == '0')
736 snprintf (dev->devpath, sizeof dev->devpath,
737 "%d", port1);
738 else
739 snprintf (dev->devpath, sizeof dev->devpath,
740 "%s.%d", parent->devpath, port1);
741
742 dev->dev.parent = &parent->dev;
743 sprintf (&dev->dev.bus_id[0], "%d-%s",
744 bus->busnum, dev->devpath);
745
746 /* hub driver sets up TT records */
747 }
748
749 dev->bus = bus;
750 dev->parent = parent;
751 INIT_LIST_HEAD(&dev->filelist);
752
753 init_MUTEX(&dev->serialize);
754
755 return dev;
756}
757
758/**
759 * usb_get_dev - increments the reference count of the usb device structure
760 * @dev: the device being referenced
761 *
762 * Each live reference to a device should be refcounted.
763 *
764 * Drivers for USB interfaces should normally record such references in
765 * their probe() methods, when they bind to an interface, and release
766 * them by calling usb_put_dev(), in their disconnect() methods.
767 *
768 * A pointer to the device with the incremented reference counter is returned.
769 */
770struct usb_device *usb_get_dev(struct usb_device *dev)
771{
772 if (dev)
773 get_device(&dev->dev);
774 return dev;
775}
776
777/**
778 * usb_put_dev - release a use of the usb device structure
779 * @dev: device that's been disconnected
780 *
781 * Must be called when a user of a device is finished with it. When the last
782 * user of the device calls this function, the memory of the device is freed.
783 */
784void usb_put_dev(struct usb_device *dev)
785{
786 if (dev)
787 put_device(&dev->dev);
788}
789
790/**
791 * usb_get_intf - increments the reference count of the usb interface structure
792 * @intf: the interface being referenced
793 *
794 * Each live reference to a interface must be refcounted.
795 *
796 * Drivers for USB interfaces should normally record such references in
797 * their probe() methods, when they bind to an interface, and release
798 * them by calling usb_put_intf(), in their disconnect() methods.
799 *
800 * A pointer to the interface with the incremented reference counter is
801 * returned.
802 */
803struct usb_interface *usb_get_intf(struct usb_interface *intf)
804{
805 if (intf)
806 get_device(&intf->dev);
807 return intf;
808}
809
810/**
811 * usb_put_intf - release a use of the usb interface structure
812 * @intf: interface that's been decremented
813 *
814 * Must be called when a user of an interface is finished with it. When the
815 * last user of the interface calls this function, the memory of the interface
816 * is freed.
817 */
818void usb_put_intf(struct usb_interface *intf)
819{
820 if (intf)
821 put_device(&intf->dev);
822}
823
824
825/* USB device locking
826 *
827 * Although locking USB devices should be straightforward, it is
828 * complicated by the way the driver-model core works. When a new USB
829 * driver is registered or unregistered, the core will automatically
830 * probe or disconnect all matching interfaces on all USB devices while
831 * holding the USB subsystem writelock. There's no good way for us to
832 * tell which devices will be used or to lock them beforehand; our only
833 * option is to effectively lock all the USB devices.
834 *
835 * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
836 * When locking an individual device you must first acquire the rwsem's
837 * readlock. When a driver is registered or unregistered the writelock
838 * must be held. These actions are encapsulated in the subroutines
839 * below, so all a driver needs to do is call usb_lock_device() and
840 * usb_unlock_device().
841 *
842 * Complications arise when several devices are to be locked at the same
843 * time. Only hub-aware drivers that are part of usbcore ever have to
844 * do this; nobody else needs to worry about it. The problem is that
845 * usb_lock_device() must not be called to lock a second device since it
846 * would acquire the rwsem's readlock reentrantly, leading to deadlock if
847 * another thread was waiting for the writelock. The solution is simple:
848 *
849 * When locking more than one device, call usb_lock_device()
850 * to lock the first one. Lock the others by calling
851 * down(&udev->serialize) directly.
852 *
853 * When unlocking multiple devices, use up(&udev->serialize)
854 * to unlock all but the last one. Unlock the last one by
855 * calling usb_unlock_device().
856 *
857 * When locking both a device and its parent, always lock the
858 * the parent first.
859 */
860
861/**
862 * usb_lock_device - acquire the lock for a usb device structure
863 * @udev: device that's being locked
864 *
865 * Use this routine when you don't hold any other device locks;
866 * to acquire nested inner locks call down(&udev->serialize) directly.
867 * This is necessary for proper interaction with usb_lock_all_devices().
868 */
869void usb_lock_device(struct usb_device *udev)
870{
871 down_read(&usb_all_devices_rwsem);
872 down(&udev->serialize);
873}
874
875/**
876 * usb_trylock_device - attempt to acquire the lock for a usb device structure
877 * @udev: device that's being locked
878 *
879 * Don't use this routine if you already hold a device lock;
880 * use down_trylock(&udev->serialize) instead.
881 * This is necessary for proper interaction with usb_lock_all_devices().
882 *
883 * Returns 1 if successful, 0 if contention.
884 */
885int usb_trylock_device(struct usb_device *udev)
886{
887 if (!down_read_trylock(&usb_all_devices_rwsem))
888 return 0;
889 if (down_trylock(&udev->serialize)) {
890 up_read(&usb_all_devices_rwsem);
891 return 0;
892 }
893 return 1;
894}
895
896/**
897 * usb_lock_device_for_reset - cautiously acquire the lock for a
898 * usb device structure
899 * @udev: device that's being locked
900 * @iface: interface bound to the driver making the request (optional)
901 *
902 * Attempts to acquire the device lock, but fails if the device is
903 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
904 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
905 * lock, the routine polls repeatedly. This is to prevent deadlock with
906 * disconnect; in some drivers (such as usb-storage) the disconnect()
3ea15966 907 * or suspend() method will block waiting for a device reset to complete.
1da177e4
LT
908 *
909 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
910 * that the device will or will not have to be unlocked. (0 can be
911 * returned when an interface is given and is BINDING, because in that
912 * case the driver already owns the device lock.)
913 */
914int usb_lock_device_for_reset(struct usb_device *udev,
915 struct usb_interface *iface)
916{
3ea15966
AS
917 unsigned long jiffies_expire = jiffies + HZ;
918
1da177e4
LT
919 if (udev->state == USB_STATE_NOTATTACHED)
920 return -ENODEV;
921 if (udev->state == USB_STATE_SUSPENDED)
922 return -EHOSTUNREACH;
923 if (iface) {
924 switch (iface->condition) {
925 case USB_INTERFACE_BINDING:
926 return 0;
927 case USB_INTERFACE_BOUND:
928 break;
929 default:
930 return -EINTR;
931 }
932 }
933
934 while (!usb_trylock_device(udev)) {
3ea15966
AS
935
936 /* If we can't acquire the lock after waiting one second,
937 * we're probably deadlocked */
938 if (time_after(jiffies, jiffies_expire))
939 return -EBUSY;
940
1da177e4
LT
941 msleep(15);
942 if (udev->state == USB_STATE_NOTATTACHED)
943 return -ENODEV;
944 if (udev->state == USB_STATE_SUSPENDED)
945 return -EHOSTUNREACH;
946 if (iface && iface->condition != USB_INTERFACE_BOUND)
947 return -EINTR;
948 }
949 return 1;
950}
951
952/**
953 * usb_unlock_device - release the lock for a usb device structure
954 * @udev: device that's being unlocked
955 *
956 * Use this routine when releasing the only device lock you hold;
957 * to release inner nested locks call up(&udev->serialize) directly.
958 * This is necessary for proper interaction with usb_lock_all_devices().
959 */
960void usb_unlock_device(struct usb_device *udev)
961{
962 up(&udev->serialize);
963 up_read(&usb_all_devices_rwsem);
964}
965
966/**
967 * usb_lock_all_devices - acquire the lock for all usb device structures
968 *
969 * This is necessary when registering a new driver or probing a bus,
970 * since the driver-model core may try to use any usb_device.
971 */
972void usb_lock_all_devices(void)
973{
974 down_write(&usb_all_devices_rwsem);
975}
976
977/**
978 * usb_unlock_all_devices - release the lock for all usb device structures
979 */
980void usb_unlock_all_devices(void)
981{
982 up_write(&usb_all_devices_rwsem);
983}
984
985
986static struct usb_device *match_device(struct usb_device *dev,
987 u16 vendor_id, u16 product_id)
988{
989 struct usb_device *ret_dev = NULL;
990 int child;
991
992 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
993 le16_to_cpu(dev->descriptor.idVendor),
994 le16_to_cpu(dev->descriptor.idProduct));
995
996 /* see if this device matches */
997 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
998 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
999 dev_dbg (&dev->dev, "matched this device!\n");
1000 ret_dev = usb_get_dev(dev);
1001 goto exit;
1002 }
1003
1004 /* look through all of the children of this device */
1005 for (child = 0; child < dev->maxchild; ++child) {
1006 if (dev->children[child]) {
1007 down(&dev->children[child]->serialize);
1008 ret_dev = match_device(dev->children[child],
1009 vendor_id, product_id);
1010 up(&dev->children[child]->serialize);
1011 if (ret_dev)
1012 goto exit;
1013 }
1014 }
1015exit:
1016 return ret_dev;
1017}
1018
1019/**
1020 * usb_find_device - find a specific usb device in the system
1021 * @vendor_id: the vendor id of the device to find
1022 * @product_id: the product id of the device to find
1023 *
1024 * Returns a pointer to a struct usb_device if such a specified usb
1025 * device is present in the system currently. The usage count of the
1026 * device will be incremented if a device is found. Make sure to call
1027 * usb_put_dev() when the caller is finished with the device.
1028 *
1029 * If a device with the specified vendor and product id is not found,
1030 * NULL is returned.
1031 */
1032struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1033{
1034 struct list_head *buslist;
1035 struct usb_bus *bus;
1036 struct usb_device *dev = NULL;
1037
1038 down(&usb_bus_list_lock);
1039 for (buslist = usb_bus_list.next;
1040 buslist != &usb_bus_list;
1041 buslist = buslist->next) {
1042 bus = container_of(buslist, struct usb_bus, bus_list);
1043 if (!bus->root_hub)
1044 continue;
1045 usb_lock_device(bus->root_hub);
1046 dev = match_device(bus->root_hub, vendor_id, product_id);
1047 usb_unlock_device(bus->root_hub);
1048 if (dev)
1049 goto exit;
1050 }
1051exit:
1052 up(&usb_bus_list_lock);
1053 return dev;
1054}
1055
1056/**
1057 * usb_get_current_frame_number - return current bus frame number
1058 * @dev: the device whose bus is being queried
1059 *
1060 * Returns the current frame number for the USB host controller
1061 * used with the given USB device. This can be used when scheduling
1062 * isochronous requests.
1063 *
1064 * Note that different kinds of host controller have different
1065 * "scheduling horizons". While one type might support scheduling only
1066 * 32 frames into the future, others could support scheduling up to
1067 * 1024 frames into the future.
1068 */
1069int usb_get_current_frame_number(struct usb_device *dev)
1070{
1071 return dev->bus->op->get_frame_number (dev);
1072}
1073
1074/*-------------------------------------------------------------------*/
1075/*
1076 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1077 * extra field of the interface and endpoint descriptor structs.
1078 */
1079
1080int __usb_get_extra_descriptor(char *buffer, unsigned size,
1081 unsigned char type, void **ptr)
1082{
1083 struct usb_descriptor_header *header;
1084
1085 while (size >= sizeof(struct usb_descriptor_header)) {
1086 header = (struct usb_descriptor_header *)buffer;
1087
1088 if (header->bLength < 2) {
1089 printk(KERN_ERR
1090 "%s: bogus descriptor, type %d length %d\n",
1091 usbcore_name,
1092 header->bDescriptorType,
1093 header->bLength);
1094 return -1;
1095 }
1096
1097 if (header->bDescriptorType == type) {
1098 *ptr = header;
1099 return 0;
1100 }
1101
1102 buffer += header->bLength;
1103 size -= header->bLength;
1104 }
1105 return -1;
1106}
1107
1108/**
1109 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1110 * @dev: device the buffer will be used with
1111 * @size: requested buffer size
1112 * @mem_flags: affect whether allocation may block
1113 * @dma: used to return DMA address of buffer
1114 *
1115 * Return value is either null (indicating no buffer could be allocated), or
1116 * the cpu-space pointer to a buffer that may be used to perform DMA to the
1117 * specified device. Such cpu-space buffers are returned along with the DMA
1118 * address (through the pointer provided).
1119 *
1120 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1121 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1122 * mapping hardware for long idle periods. The implementation varies between
1123 * platforms, depending on details of how DMA will work to this device.
1124 * Using these buffers also helps prevent cacheline sharing problems on
1125 * architectures where CPU caches are not DMA-coherent.
1126 *
1127 * When the buffer is no longer used, free it with usb_buffer_free().
1128 */
1129void *usb_buffer_alloc (
1130 struct usb_device *dev,
1131 size_t size,
55016f10 1132 gfp_t mem_flags,
1da177e4
LT
1133 dma_addr_t *dma
1134)
1135{
1136 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1137 return NULL;
1138 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1139}
1140
1141/**
1142 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1143 * @dev: device the buffer was used with
1144 * @size: requested buffer size
1145 * @addr: CPU address of buffer
1146 * @dma: DMA address of buffer
1147 *
1148 * This reclaims an I/O buffer, letting it be reused. The memory must have
1149 * been allocated using usb_buffer_alloc(), and the parameters must match
1150 * those provided in that allocation request.
1151 */
1152void usb_buffer_free (
1153 struct usb_device *dev,
1154 size_t size,
1155 void *addr,
1156 dma_addr_t dma
1157)
1158{
1159 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1160 return;
1161 dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1162}
1163
1164/**
1165 * usb_buffer_map - create DMA mapping(s) for an urb
1166 * @urb: urb whose transfer_buffer/setup_packet will be mapped
1167 *
1168 * Return value is either null (indicating no buffer could be mapped), or
1169 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1170 * added to urb->transfer_flags if the operation succeeds. If the device
1171 * is connected to this system through a non-DMA controller, this operation
1172 * always succeeds.
1173 *
1174 * This call would normally be used for an urb which is reused, perhaps
1175 * as the target of a large periodic transfer, with usb_buffer_dmasync()
1176 * calls to synchronize memory and dma state.
1177 *
1178 * Reverse the effect of this call with usb_buffer_unmap().
1179 */
1180#if 0
1181struct urb *usb_buffer_map (struct urb *urb)
1182{
1183 struct usb_bus *bus;
1184 struct device *controller;
1185
1186 if (!urb
1187 || !urb->dev
1188 || !(bus = urb->dev->bus)
1189 || !(controller = bus->controller))
1190 return NULL;
1191
1192 if (controller->dma_mask) {
1193 urb->transfer_dma = dma_map_single (controller,
1194 urb->transfer_buffer, urb->transfer_buffer_length,
1195 usb_pipein (urb->pipe)
1196 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1197 if (usb_pipecontrol (urb->pipe))
1198 urb->setup_dma = dma_map_single (controller,
1199 urb->setup_packet,
1200 sizeof (struct usb_ctrlrequest),
1201 DMA_TO_DEVICE);
1202 // FIXME generic api broken like pci, can't report errors
1203 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1204 } else
1205 urb->transfer_dma = ~0;
1206 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1207 | URB_NO_SETUP_DMA_MAP);
1208 return urb;
1209}
1210#endif /* 0 */
1211
1212/* XXX DISABLED, no users currently. If you wish to re-enable this
1213 * XXX please determine whether the sync is to transfer ownership of
1214 * XXX the buffer from device to cpu or vice verse, and thusly use the
1215 * XXX appropriate _for_{cpu,device}() method. -DaveM
1216 */
1217#if 0
1218
1219/**
1220 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1221 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1222 */
1223void usb_buffer_dmasync (struct urb *urb)
1224{
1225 struct usb_bus *bus;
1226 struct device *controller;
1227
1228 if (!urb
1229 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1230 || !urb->dev
1231 || !(bus = urb->dev->bus)
1232 || !(controller = bus->controller))
1233 return;
1234
1235 if (controller->dma_mask) {
1236 dma_sync_single (controller,
1237 urb->transfer_dma, urb->transfer_buffer_length,
1238 usb_pipein (urb->pipe)
1239 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1240 if (usb_pipecontrol (urb->pipe))
1241 dma_sync_single (controller,
1242 urb->setup_dma,
1243 sizeof (struct usb_ctrlrequest),
1244 DMA_TO_DEVICE);
1245 }
1246}
1247#endif
1248
1249/**
1250 * usb_buffer_unmap - free DMA mapping(s) for an urb
1251 * @urb: urb whose transfer_buffer will be unmapped
1252 *
1253 * Reverses the effect of usb_buffer_map().
1254 */
1255#if 0
1256void usb_buffer_unmap (struct urb *urb)
1257{
1258 struct usb_bus *bus;
1259 struct device *controller;
1260
1261 if (!urb
1262 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1263 || !urb->dev
1264 || !(bus = urb->dev->bus)
1265 || !(controller = bus->controller))
1266 return;
1267
1268 if (controller->dma_mask) {
1269 dma_unmap_single (controller,
1270 urb->transfer_dma, urb->transfer_buffer_length,
1271 usb_pipein (urb->pipe)
1272 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1273 if (usb_pipecontrol (urb->pipe))
1274 dma_unmap_single (controller,
1275 urb->setup_dma,
1276 sizeof (struct usb_ctrlrequest),
1277 DMA_TO_DEVICE);
1278 }
1279 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1280 | URB_NO_SETUP_DMA_MAP);
1281}
1282#endif /* 0 */
1283
1284/**
1285 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1286 * @dev: device to which the scatterlist will be mapped
1287 * @pipe: endpoint defining the mapping direction
1288 * @sg: the scatterlist to map
1289 * @nents: the number of entries in the scatterlist
1290 *
1291 * Return value is either < 0 (indicating no buffers could be mapped), or
1292 * the number of DMA mapping array entries in the scatterlist.
1293 *
1294 * The caller is responsible for placing the resulting DMA addresses from
1295 * the scatterlist into URB transfer buffer pointers, and for setting the
1296 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1297 *
1298 * Top I/O rates come from queuing URBs, instead of waiting for each one
1299 * to complete before starting the next I/O. This is particularly easy
1300 * to do with scatterlists. Just allocate and submit one URB for each DMA
1301 * mapping entry returned, stopping on the first error or when all succeed.
1302 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1303 *
1304 * This call would normally be used when translating scatterlist requests,
1305 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1306 * may be able to coalesce mappings for improved I/O efficiency.
1307 *
1308 * Reverse the effect of this call with usb_buffer_unmap_sg().
1309 */
1310int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1311 struct scatterlist *sg, int nents)
1312{
1313 struct usb_bus *bus;
1314 struct device *controller;
1315
1316 if (!dev
1317 || usb_pipecontrol (pipe)
1318 || !(bus = dev->bus)
1319 || !(controller = bus->controller)
1320 || !controller->dma_mask)
1321 return -1;
1322
1323 // FIXME generic api broken like pci, can't report errors
1324 return dma_map_sg (controller, sg, nents,
1325 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1326}
1327
1328/* XXX DISABLED, no users currently. If you wish to re-enable this
1329 * XXX please determine whether the sync is to transfer ownership of
1330 * XXX the buffer from device to cpu or vice verse, and thusly use the
1331 * XXX appropriate _for_{cpu,device}() method. -DaveM
1332 */
1333#if 0
1334
1335/**
1336 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1337 * @dev: device to which the scatterlist will be mapped
1338 * @pipe: endpoint defining the mapping direction
1339 * @sg: the scatterlist to synchronize
1340 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1341 *
1342 * Use this when you are re-using a scatterlist's data buffers for
1343 * another USB request.
1344 */
1345void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1346 struct scatterlist *sg, int n_hw_ents)
1347{
1348 struct usb_bus *bus;
1349 struct device *controller;
1350
1351 if (!dev
1352 || !(bus = dev->bus)
1353 || !(controller = bus->controller)
1354 || !controller->dma_mask)
1355 return;
1356
1357 dma_sync_sg (controller, sg, n_hw_ents,
1358 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1359}
1360#endif
1361
1362/**
1363 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1364 * @dev: device to which the scatterlist will be mapped
1365 * @pipe: endpoint defining the mapping direction
1366 * @sg: the scatterlist to unmap
1367 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1368 *
1369 * Reverses the effect of usb_buffer_map_sg().
1370 */
1371void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1372 struct scatterlist *sg, int n_hw_ents)
1373{
1374 struct usb_bus *bus;
1375 struct device *controller;
1376
1377 if (!dev
1378 || !(bus = dev->bus)
1379 || !(controller = bus->controller)
1380 || !controller->dma_mask)
1381 return;
1382
1383 dma_unmap_sg (controller, sg, n_hw_ents,
1384 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1385}
1386
390a8c34
DB
1387static int verify_suspended(struct device *dev, void *unused)
1388{
1389 return (dev->power.power_state.event == PM_EVENT_ON) ? -EBUSY : 0;
1390}
1391
27d72e85 1392static int usb_generic_suspend(struct device *dev, pm_message_t message)
1da177e4 1393{
db690874
DB
1394 struct usb_interface *intf;
1395 struct usb_driver *driver;
1396 int status;
1da177e4 1397
390a8c34
DB
1398 /* USB devices enter SUSPEND state through their hubs, but can be
1399 * marked for FREEZE as soon as their children are already idled.
979d5199 1400 * But those semantics are useless, so we equate the two (sigh).
390a8c34
DB
1401 */
1402 if (dev->driver == &usb_generic_driver) {
1403 if (dev->power.power_state.event == message.event)
1404 return 0;
1405 /* we need to rule out bogus requests through sysfs */
1406 status = device_for_each_child(dev, NULL, verify_suspended);
1407 if (status)
1408 return status;
390a8c34
DB
1409 return usb_suspend_device (to_usb_device(dev));
1410 }
1da177e4
LT
1411
1412 if ((dev->driver == NULL) ||
1413 (dev->driver_data == &usb_generic_driver_data))
1414 return 0;
1415
1416 intf = to_usb_interface(dev);
1417 driver = to_usb_driver(dev->driver);
1418
db690874
DB
1419 /* with no hardware, USB interfaces only use FREEZE and ON states */
1420 if (!is_active(intf))
1da177e4
LT
1421 return 0;
1422
db690874
DB
1423 if (driver->suspend && driver->resume) {
1424 status = driver->suspend(intf, message);
1425 if (status)
1426 dev_err(dev, "%s error %d\n", "suspend", status);
1427 else
1428 mark_quiesced(intf);
1429 } else {
1430 // FIXME else if there's no suspend method, disconnect...
5a9191ff
AS
1431 dev_warn(dev, "no suspend for driver %s?\n", driver->name);
1432 mark_quiesced(intf);
db690874
DB
1433 status = 0;
1434 }
1435 return status;
1da177e4
LT
1436}
1437
1438static int usb_generic_resume(struct device *dev)
1439{
db690874
DB
1440 struct usb_interface *intf;
1441 struct usb_driver *driver;
979d5199 1442 struct usb_device *udev;
db690874
DB
1443 int status;
1444
1445 if (dev->power.power_state.event == PM_EVENT_ON)
1446 return 0;
1da177e4 1447
979d5199
DB
1448 /* mark things as "on" immediately, no matter what errors crop up */
1449 dev->power.power_state.event = PM_EVENT_ON;
1450
db690874 1451 /* devices resume through their hubs */
979d5199
DB
1452 if (dev->driver == &usb_generic_driver) {
1453 udev = to_usb_device(dev);
1454 if (udev->state == USB_STATE_NOTATTACHED)
1455 return 0;
1da177e4 1456 return usb_resume_device (to_usb_device(dev));
979d5199 1457 }
1da177e4
LT
1458
1459 if ((dev->driver == NULL) ||
5a9191ff
AS
1460 (dev->driver_data == &usb_generic_driver_data)) {
1461 dev->power.power_state.event = PM_EVENT_FREEZE;
1da177e4 1462 return 0;
5a9191ff 1463 }
1da177e4
LT
1464
1465 intf = to_usb_interface(dev);
1466 driver = to_usb_driver(dev->driver);
1467
979d5199
DB
1468 udev = interface_to_usbdev(intf);
1469 if (udev->state == USB_STATE_NOTATTACHED)
1470 return 0;
1471
db690874
DB
1472 /* if driver was suspended, it has a resume method;
1473 * however, sysfs can wrongly mark things as suspended
1474 * (on the "no suspend method" FIXME path above)
1475 */
db690874
DB
1476 if (driver->resume) {
1477 status = driver->resume(intf);
1478 if (status) {
1479 dev_err(dev, "%s error %d\n", "resume", status);
1480 mark_quiesced(intf);
1481 }
1482 } else
5a9191ff 1483 dev_warn(dev, "no resume for driver %s?\n", driver->name);
1da177e4
LT
1484 return 0;
1485}
1486
1487struct bus_type usb_bus_type = {
1488 .name = "usb",
1489 .match = usb_device_match,
312c004d 1490 .uevent = usb_uevent,
1da177e4
LT
1491 .suspend = usb_generic_suspend,
1492 .resume = usb_generic_resume,
1493};
1494
1495#ifndef MODULE
1496
1497static int __init usb_setup_disable(char *str)
1498{
1499 nousb = 1;
1500 return 1;
1501}
1502
1503/* format to disable USB on kernel command line is: nousb */
1504__setup("nousb", usb_setup_disable);
1505
1506#endif
1507
1508/*
1509 * for external read access to <nousb>
1510 */
1511int usb_disabled(void)
1512{
1513 return nousb;
1514}
1515
1516/*
1517 * Init
1518 */
1519static int __init usb_init(void)
1520{
1521 int retval;
1522 if (nousb) {
1523 pr_info ("%s: USB support disabled\n", usbcore_name);
1524 return 0;
1525 }
1526
1527 retval = bus_register(&usb_bus_type);
1528 if (retval)
1529 goto out;
1530 retval = usb_host_init();
1531 if (retval)
1532 goto host_init_failed;
1533 retval = usb_major_init();
1534 if (retval)
1535 goto major_init_failed;
fbf82fd2
KS
1536 retval = usb_register(&usbfs_driver);
1537 if (retval)
1538 goto driver_register_failed;
1539 retval = usbdev_init();
1540 if (retval)
1541 goto usbdevice_init_failed;
1da177e4
LT
1542 retval = usbfs_init();
1543 if (retval)
1544 goto fs_init_failed;
1545 retval = usb_hub_init();
1546 if (retval)
1547 goto hub_init_failed;
1da177e4
LT
1548 retval = driver_register(&usb_generic_driver);
1549 if (!retval)
1550 goto out;
1551
1552 usb_hub_cleanup();
1553hub_init_failed:
1554 usbfs_cleanup();
1555fs_init_failed:
fbf82fd2
KS
1556 usbdev_cleanup();
1557usbdevice_init_failed:
1558 usb_deregister(&usbfs_driver);
1559driver_register_failed:
1560 usb_major_cleanup();
1da177e4
LT
1561major_init_failed:
1562 usb_host_cleanup();
1563host_init_failed:
1564 bus_unregister(&usb_bus_type);
1565out:
1566 return retval;
1567}
1568
1569/*
1570 * Cleanup
1571 */
1572static void __exit usb_exit(void)
1573{
1574 /* This will matter if shutdown/reboot does exitcalls. */
1575 if (nousb)
1576 return;
1577
1578 driver_unregister(&usb_generic_driver);
1579 usb_major_cleanup();
1580 usbfs_cleanup();
fbf82fd2
KS
1581 usb_deregister(&usbfs_driver);
1582 usbdev_cleanup();
1da177e4
LT
1583 usb_hub_cleanup();
1584 usb_host_cleanup();
1585 bus_unregister(&usb_bus_type);
1586}
1587
1588subsys_initcall(usb_init);
1589module_exit(usb_exit);
1590
1591/*
1592 * USB may be built into the kernel or be built as modules.
1593 * These symbols are exported for device (or host controller)
1594 * driver modules to use.
1595 */
1596
1597EXPORT_SYMBOL(usb_register);
1598EXPORT_SYMBOL(usb_deregister);
1599EXPORT_SYMBOL(usb_disabled);
1600
a3fdf4eb 1601EXPORT_SYMBOL_GPL(usb_get_intf);
1602EXPORT_SYMBOL_GPL(usb_put_intf);
1603
1da177e4
LT
1604EXPORT_SYMBOL(usb_alloc_dev);
1605EXPORT_SYMBOL(usb_put_dev);
1606EXPORT_SYMBOL(usb_get_dev);
1607EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1608
1609EXPORT_SYMBOL(usb_lock_device);
1610EXPORT_SYMBOL(usb_trylock_device);
1611EXPORT_SYMBOL(usb_lock_device_for_reset);
1612EXPORT_SYMBOL(usb_unlock_device);
1613
1614EXPORT_SYMBOL(usb_driver_claim_interface);
1615EXPORT_SYMBOL(usb_driver_release_interface);
1616EXPORT_SYMBOL(usb_match_id);
1617EXPORT_SYMBOL(usb_find_interface);
1618EXPORT_SYMBOL(usb_ifnum_to_if);
1619EXPORT_SYMBOL(usb_altnum_to_altsetting);
1620
1621EXPORT_SYMBOL(usb_reset_device);
1622EXPORT_SYMBOL(usb_disconnect);
1623
1624EXPORT_SYMBOL(__usb_get_extra_descriptor);
1625
1626EXPORT_SYMBOL(usb_find_device);
1627EXPORT_SYMBOL(usb_get_current_frame_number);
1628
1629EXPORT_SYMBOL (usb_buffer_alloc);
1630EXPORT_SYMBOL (usb_buffer_free);
1631
1632#if 0
1633EXPORT_SYMBOL (usb_buffer_map);
1634EXPORT_SYMBOL (usb_buffer_dmasync);
1635EXPORT_SYMBOL (usb_buffer_unmap);
1636#endif
1637
1638EXPORT_SYMBOL (usb_buffer_map_sg);
1639#if 0
1640EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1641#endif
1642EXPORT_SYMBOL (usb_buffer_unmap_sg);
1643
1644MODULE_LICENSE("GPL");