8250: three way resolve of the 8250 diffs
[linux-2.6-block.git] / drivers / tty / vt / keyboard.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
fe1e8604 15 *
1da177e4
LT
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
9272e9a2
DT
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
759448f4 27#include <linux/consolemap.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36
37#include <linux/kbd_kern.h>
38#include <linux/kbd_diacr.h>
39#include <linux/vt_kern.h>
1da177e4 40#include <linux/input.h>
83cc5ed3 41#include <linux/reboot.h>
41ab4396 42#include <linux/notifier.h>
b39b0440 43#include <linux/jiffies.h>
6623d640 44#include <linux/uaccess.h>
1da177e4 45
98c2b373
GU
46#include <asm/irq_regs.h>
47
1da177e4
LT
48extern void ctrl_alt_del(void);
49
50/*
51 * Exported functions/variables
52 */
53
54#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55
b2d0b7a0
JC
56#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
57#include <asm/kbdleds.h>
1da177e4 58#else
b2d0b7a0
JC
59static inline int kbd_defleds(void)
60{
61 return 0;
62}
1da177e4
LT
63#endif
64
65#define KBD_DEFLOCK 0
66
1da177e4
LT
67/*
68 * Handler Tables.
69 */
70
71#define K_HANDLERS\
72 k_self, k_fn, k_spec, k_pad,\
73 k_dead, k_cons, k_cur, k_shift,\
74 k_meta, k_ascii, k_lock, k_lowercase,\
b9ec4e10 75 k_slock, k_dead2, k_brl, k_ignore
1da177e4 76
fe1e8604 77typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
7d12e780 78 char up_flag);
1da177e4 79static k_handler_fn K_HANDLERS;
97f5f0cd 80static k_handler_fn *k_handler[16] = { K_HANDLERS };
1da177e4
LT
81
82#define FN_HANDLERS\
fe1e8604
DT
83 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
84 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
85 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
86 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
87 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
1da177e4 88
7d12e780 89typedef void (fn_handler_fn)(struct vc_data *vc);
1da177e4
LT
90static fn_handler_fn FN_HANDLERS;
91static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
92
93/*
94 * Variables exported for vt_ioctl.c
95 */
96
81af8d67 97struct vt_spawn_console vt_spawn_con = {
ccc94256 98 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
81af8d67
EB
99 .pid = NULL,
100 .sig = 0,
101};
1da177e4 102
1da177e4
LT
103
104/*
105 * Internal Data.
106 */
107
079c9534
AC
108static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
109static struct kbd_struct *kbd = kbd_table;
110
111/* maximum values each key_handler can handle */
112static const int max_vals[] = {
113 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
114 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
115 255, NR_LOCK - 1, 255, NR_BRL - 1
116};
117
118static const int NR_TYPES = ARRAY_SIZE(max_vals);
119
1da177e4 120static struct input_handler kbd_handler;
21cea58e 121static DEFINE_SPINLOCK(kbd_event_lock);
7b19ada2 122static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
1da177e4 123static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
e0785572 124static bool dead_key_next;
1da177e4 125static int npadch = -1; /* -1 or number assembled on pad */
b9ec4e10 126static unsigned int diacr;
1da177e4
LT
127static char rep; /* flag telling character repeat */
128
079c9534
AC
129static int shift_state = 0;
130
1da177e4
LT
131static unsigned char ledstate = 0xff; /* undefined */
132static unsigned char ledioctl;
133
134static struct ledptr {
135 unsigned int *addr;
136 unsigned int mask;
137 unsigned char valid:1;
138} ledptrs[3];
139
41ab4396
ST
140/*
141 * Notifier list for console keyboard events
142 */
143static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
144
145int register_keyboard_notifier(struct notifier_block *nb)
146{
147 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
148}
149EXPORT_SYMBOL_GPL(register_keyboard_notifier);
150
151int unregister_keyboard_notifier(struct notifier_block *nb)
152{
153 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
154}
155EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
156
1da177e4 157/*
c8e4c772
MR
158 * Translation of scancodes to keycodes. We set them on only the first
159 * keyboard in the list that accepts the scancode and keycode.
160 * Explanation for not choosing the first attached keyboard anymore:
161 * USB keyboards for example have two event devices: one for all "normal"
162 * keys and one for extra function keys (like "volume up", "make coffee",
163 * etc.). So this means that scancodes for the extra function keys won't
164 * be valid for the first event device, but will be for the second.
1da177e4 165 */
66d2a595
DT
166
167struct getset_keycode_data {
8613e4c2 168 struct input_keymap_entry ke;
66d2a595
DT
169 int error;
170};
171
172static int getkeycode_helper(struct input_handle *handle, void *data)
173{
174 struct getset_keycode_data *d = data;
175
8613e4c2 176 d->error = input_get_keycode(handle->dev, &d->ke);
66d2a595
DT
177
178 return d->error == 0; /* stop as soon as we successfully get one */
179}
180
079c9534 181static int getkeycode(unsigned int scancode)
1da177e4 182{
8613e4c2
MCC
183 struct getset_keycode_data d = {
184 .ke = {
185 .flags = 0,
186 .len = sizeof(scancode),
187 .keycode = 0,
188 },
189 .error = -ENODEV,
190 };
191
192 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
c8e4c772 193
66d2a595 194 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
1da177e4 195
8613e4c2 196 return d.error ?: d.ke.keycode;
66d2a595
DT
197}
198
199static int setkeycode_helper(struct input_handle *handle, void *data)
200{
201 struct getset_keycode_data *d = data;
202
8613e4c2 203 d->error = input_set_keycode(handle->dev, &d->ke);
66d2a595
DT
204
205 return d->error == 0; /* stop as soon as we successfully set one */
1da177e4
LT
206}
207
079c9534 208static int setkeycode(unsigned int scancode, unsigned int keycode)
1da177e4 209{
8613e4c2
MCC
210 struct getset_keycode_data d = {
211 .ke = {
212 .flags = 0,
213 .len = sizeof(scancode),
214 .keycode = keycode,
215 },
216 .error = -ENODEV,
217 };
218
219 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
c8e4c772 220
66d2a595 221 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
1da177e4 222
66d2a595 223 return d.error;
1da177e4
LT
224}
225
226/*
18f7ad59
DT
227 * Making beeps and bells. Note that we prefer beeps to bells, but when
228 * shutting the sound off we do both.
1da177e4 229 */
66d2a595
DT
230
231static int kd_sound_helper(struct input_handle *handle, void *data)
1da177e4 232{
66d2a595
DT
233 unsigned int *hz = data;
234 struct input_dev *dev = handle->dev;
1da177e4 235
66d2a595 236 if (test_bit(EV_SND, dev->evbit)) {
18f7ad59 237 if (test_bit(SND_TONE, dev->sndbit)) {
66d2a595 238 input_inject_event(handle, EV_SND, SND_TONE, *hz);
18f7ad59
DT
239 if (*hz)
240 return 0;
241 }
242 if (test_bit(SND_BELL, dev->sndbit))
66d2a595 243 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
1da177e4 244 }
66d2a595
DT
245
246 return 0;
247}
248
249static void kd_nosound(unsigned long ignored)
250{
251 static unsigned int zero;
252
253 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
1da177e4
LT
254}
255
8d06afab 256static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
1da177e4
LT
257
258void kd_mksound(unsigned int hz, unsigned int ticks)
259{
66d2a595 260 del_timer_sync(&kd_mksound_timer);
1da177e4 261
66d2a595 262 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
1da177e4 263
66d2a595
DT
264 if (hz && ticks)
265 mod_timer(&kd_mksound_timer, jiffies + ticks);
1da177e4 266}
f7511d5f 267EXPORT_SYMBOL(kd_mksound);
1da177e4
LT
268
269/*
270 * Setting the keyboard rate.
271 */
272
66d2a595 273static int kbd_rate_helper(struct input_handle *handle, void *data)
1da177e4 274{
66d2a595
DT
275 struct input_dev *dev = handle->dev;
276 struct kbd_repeat *rep = data;
277
278 if (test_bit(EV_REP, dev->evbit)) {
279
280 if (rep[0].delay > 0)
281 input_inject_event(handle,
282 EV_REP, REP_DELAY, rep[0].delay);
283 if (rep[0].period > 0)
284 input_inject_event(handle,
285 EV_REP, REP_PERIOD, rep[0].period);
286
287 rep[1].delay = dev->rep[REP_DELAY];
288 rep[1].period = dev->rep[REP_PERIOD];
1da177e4 289 }
66d2a595
DT
290
291 return 0;
292}
293
294int kbd_rate(struct kbd_repeat *rep)
295{
296 struct kbd_repeat data[2] = { *rep };
297
298 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
299 *rep = data[1]; /* Copy currently used settings */
300
1da177e4
LT
301 return 0;
302}
303
304/*
305 * Helper Functions.
306 */
307static void put_queue(struct vc_data *vc, int ch)
308{
8ce73264 309 struct tty_struct *tty = vc->port.tty;
1da177e4
LT
310
311 if (tty) {
312 tty_insert_flip_char(tty, ch, 0);
4c2ef53d 313 tty_schedule_flip(tty);
1da177e4
LT
314 }
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
8ce73264 319 struct tty_struct *tty = vc->port.tty;
1da177e4
LT
320
321 if (!tty)
322 return;
323
324 while (*cp) {
325 tty_insert_flip_char(tty, *cp, 0);
326 cp++;
327 }
4c2ef53d 328 tty_schedule_flip(tty);
1da177e4
LT
329}
330
331static void applkey(struct vc_data *vc, int key, char mode)
332{
333 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
334
335 buf[1] = (mode ? 'O' : '[');
336 buf[2] = key;
337 puts_queue(vc, buf);
338}
339
340/*
341 * Many other routines do put_queue, but I think either
342 * they produce ASCII, or they produce some user-assigned
343 * string, and in both cases we might assume that it is
759448f4 344 * in utf-8 already.
1da177e4 345 */
759448f4 346static void to_utf8(struct vc_data *vc, uint c)
1da177e4
LT
347{
348 if (c < 0x80)
349 /* 0******* */
350 put_queue(vc, c);
fe1e8604 351 else if (c < 0x800) {
1da177e4 352 /* 110***** 10****** */
fe1e8604 353 put_queue(vc, 0xc0 | (c >> 6));
1da177e4 354 put_queue(vc, 0x80 | (c & 0x3f));
e0785572
DT
355 } else if (c < 0x10000) {
356 if (c >= 0xD800 && c < 0xE000)
759448f4
JE
357 return;
358 if (c == 0xFFFF)
359 return;
1da177e4
LT
360 /* 1110**** 10****** 10****** */
361 put_queue(vc, 0xe0 | (c >> 12));
362 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
363 put_queue(vc, 0x80 | (c & 0x3f));
e0785572 364 } else if (c < 0x110000) {
759448f4
JE
365 /* 11110*** 10****** 10****** 10****** */
366 put_queue(vc, 0xf0 | (c >> 18));
367 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
fe1e8604 370 }
1da177e4
LT
371}
372
fe1e8604 373/*
1da177e4
LT
374 * Called after returning from RAW mode or when changing consoles - recompute
375 * shift_down[] and shift_state from key_down[] maybe called when keymap is
079c9534
AC
376 * undefined, so that shiftkey release is seen. The caller must hold the
377 * kbd_event_lock.
1da177e4 378 */
079c9534
AC
379
380static void do_compute_shiftstate(void)
1da177e4
LT
381{
382 unsigned int i, j, k, sym, val;
383
384 shift_state = 0;
385 memset(shift_down, 0, sizeof(shift_down));
fe1e8604 386
1da177e4
LT
387 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
388
389 if (!key_down[i])
390 continue;
391
392 k = i * BITS_PER_LONG;
393
394 for (j = 0; j < BITS_PER_LONG; j++, k++) {
395
396 if (!test_bit(k, key_down))
397 continue;
398
399 sym = U(key_maps[0][k]);
400 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
401 continue;
402
403 val = KVAL(sym);
404 if (val == KVAL(K_CAPSSHIFT))
405 val = KVAL(K_SHIFT);
406
407 shift_down[val]++;
408 shift_state |= (1 << val);
409 }
410 }
411}
412
079c9534
AC
413/* We still have to export this method to vt.c */
414void compute_shiftstate(void)
415{
416 unsigned long flags;
417 spin_lock_irqsave(&kbd_event_lock, flags);
418 do_compute_shiftstate();
419 spin_unlock_irqrestore(&kbd_event_lock, flags);
420}
421
1da177e4
LT
422/*
423 * We have a combining character DIACR here, followed by the character CH.
424 * If the combination occurs in the table, return the corresponding value.
425 * Otherwise, if CH is a space or equals DIACR, return DIACR.
426 * Otherwise, conclude that DIACR was not combining after all,
427 * queue it and return CH.
428 */
b9ec4e10 429static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
1da177e4 430{
b9ec4e10 431 unsigned int d = diacr;
1da177e4
LT
432 unsigned int i;
433
434 diacr = 0;
435
b9ec4e10
ST
436 if ((d & ~0xff) == BRL_UC_ROW) {
437 if ((ch & ~0xff) == BRL_UC_ROW)
438 return d | ch;
439 } else {
440 for (i = 0; i < accent_table_size; i++)
441 if (accent_table[i].diacr == d && accent_table[i].base == ch)
442 return accent_table[i].result;
1da177e4
LT
443 }
444
b9ec4e10 445 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
1da177e4
LT
446 return d;
447
b9ec4e10 448 if (kbd->kbdmode == VC_UNICODE)
04c71976
ST
449 to_utf8(vc, d);
450 else {
451 int c = conv_uni_to_8bit(d);
452 if (c != -1)
453 put_queue(vc, c);
454 }
b9ec4e10 455
1da177e4
LT
456 return ch;
457}
458
459/*
460 * Special function handlers
461 */
7d12e780 462static void fn_enter(struct vc_data *vc)
1da177e4
LT
463{
464 if (diacr) {
b9ec4e10 465 if (kbd->kbdmode == VC_UNICODE)
04c71976
ST
466 to_utf8(vc, diacr);
467 else {
468 int c = conv_uni_to_8bit(diacr);
469 if (c != -1)
470 put_queue(vc, c);
471 }
1da177e4
LT
472 diacr = 0;
473 }
e0785572 474
1da177e4
LT
475 put_queue(vc, 13);
476 if (vc_kbd_mode(kbd, VC_CRLF))
477 put_queue(vc, 10);
478}
479
7d12e780 480static void fn_caps_toggle(struct vc_data *vc)
1da177e4
LT
481{
482 if (rep)
483 return;
e0785572 484
1da177e4
LT
485 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
486}
487
7d12e780 488static void fn_caps_on(struct vc_data *vc)
1da177e4
LT
489{
490 if (rep)
491 return;
e0785572 492
1da177e4
LT
493 set_vc_kbd_led(kbd, VC_CAPSLOCK);
494}
495
7d12e780 496static void fn_show_ptregs(struct vc_data *vc)
1da177e4 497{
7d12e780 498 struct pt_regs *regs = get_irq_regs();
e0785572 499
1da177e4
LT
500 if (regs)
501 show_regs(regs);
502}
503
7d12e780 504static void fn_hold(struct vc_data *vc)
1da177e4 505{
8ce73264 506 struct tty_struct *tty = vc->port.tty;
1da177e4
LT
507
508 if (rep || !tty)
509 return;
510
511 /*
512 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
513 * these routines are also activated by ^S/^Q.
514 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
515 */
516 if (tty->stopped)
517 start_tty(tty);
518 else
519 stop_tty(tty);
520}
521
7d12e780 522static void fn_num(struct vc_data *vc)
1da177e4 523{
e0785572 524 if (vc_kbd_mode(kbd, VC_APPLIC))
1da177e4
LT
525 applkey(vc, 'P', 1);
526 else
7d12e780 527 fn_bare_num(vc);
1da177e4
LT
528}
529
530/*
531 * Bind this to Shift-NumLock if you work in application keypad mode
532 * but want to be able to change the NumLock flag.
533 * Bind this to NumLock if you prefer that the NumLock key always
534 * changes the NumLock flag.
535 */
7d12e780 536static void fn_bare_num(struct vc_data *vc)
1da177e4
LT
537{
538 if (!rep)
539 chg_vc_kbd_led(kbd, VC_NUMLOCK);
540}
541
7d12e780 542static void fn_lastcons(struct vc_data *vc)
1da177e4
LT
543{
544 /* switch to the last used console, ChN */
545 set_console(last_console);
546}
547
7d12e780 548static void fn_dec_console(struct vc_data *vc)
1da177e4
LT
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
fe1e8604 556 for (i = cur - 1; i != cur; i--) {
1da177e4 557 if (i == -1)
fe1e8604 558 i = MAX_NR_CONSOLES - 1;
1da177e4
LT
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
7d12e780 565static void fn_inc_console(struct vc_data *vc)
1da177e4
LT
566{
567 int i, cur = fg_console;
568
569 /* Currently switching? Queue this next switch relative to that. */
570 if (want_console != -1)
571 cur = want_console;
572
573 for (i = cur+1; i != cur; i++) {
574 if (i == MAX_NR_CONSOLES)
575 i = 0;
576 if (vc_cons_allocated(i))
577 break;
578 }
579 set_console(i);
580}
581
7d12e780 582static void fn_send_intr(struct vc_data *vc)
1da177e4 583{
8ce73264 584 struct tty_struct *tty = vc->port.tty;
1da177e4
LT
585
586 if (!tty)
587 return;
588 tty_insert_flip_char(tty, 0, TTY_BREAK);
4c2ef53d 589 tty_schedule_flip(tty);
1da177e4
LT
590}
591
7d12e780 592static void fn_scroll_forw(struct vc_data *vc)
1da177e4
LT
593{
594 scrollfront(vc, 0);
595}
596
7d12e780 597static void fn_scroll_back(struct vc_data *vc)
1da177e4
LT
598{
599 scrollback(vc, 0);
600}
601
7d12e780 602static void fn_show_mem(struct vc_data *vc)
1da177e4 603{
b2b755b5 604 show_mem(0);
1da177e4
LT
605}
606
7d12e780 607static void fn_show_state(struct vc_data *vc)
1da177e4
LT
608{
609 show_state();
610}
611
7d12e780 612static void fn_boot_it(struct vc_data *vc)
1da177e4
LT
613{
614 ctrl_alt_del();
615}
616
7d12e780 617static void fn_compose(struct vc_data *vc)
1da177e4 618{
e0785572 619 dead_key_next = true;
1da177e4
LT
620}
621
7d12e780 622static void fn_spawn_con(struct vc_data *vc)
1da177e4 623{
81af8d67
EB
624 spin_lock(&vt_spawn_con.lock);
625 if (vt_spawn_con.pid)
626 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
627 put_pid(vt_spawn_con.pid);
628 vt_spawn_con.pid = NULL;
629 }
630 spin_unlock(&vt_spawn_con.lock);
1da177e4
LT
631}
632
7d12e780 633static void fn_SAK(struct vc_data *vc)
1da177e4 634{
8b6312f4 635 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
8b6312f4 636 schedule_work(SAK_work);
1da177e4
LT
637}
638
7d12e780 639static void fn_null(struct vc_data *vc)
1da177e4 640{
079c9534 641 do_compute_shiftstate();
1da177e4
LT
642}
643
644/*
645 * Special key handlers
646 */
7d12e780 647static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4
LT
648{
649}
650
7d12e780 651static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4
LT
652{
653 if (up_flag)
654 return;
655 if (value >= ARRAY_SIZE(fn_handler))
656 return;
fe1e8604 657 if ((kbd->kbdmode == VC_RAW ||
9fc3de9c
AT
658 kbd->kbdmode == VC_MEDIUMRAW ||
659 kbd->kbdmode == VC_OFF) &&
1da177e4
LT
660 value != KVAL(K_SAK))
661 return; /* SAK is allowed even in raw mode */
7d12e780 662 fn_handler[value](vc);
1da177e4
LT
663}
664
7d12e780 665static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4 666{
9272e9a2 667 pr_err("k_lowercase was called - impossible\n");
1da177e4
LT
668}
669
7d12e780 670static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
1da177e4
LT
671{
672 if (up_flag)
673 return; /* no action, if this is a key release */
674
675 if (diacr)
676 value = handle_diacr(vc, value);
677
678 if (dead_key_next) {
e0785572 679 dead_key_next = false;
1da177e4
LT
680 diacr = value;
681 return;
682 }
b9ec4e10 683 if (kbd->kbdmode == VC_UNICODE)
04c71976
ST
684 to_utf8(vc, value);
685 else {
686 int c = conv_uni_to_8bit(value);
687 if (c != -1)
688 put_queue(vc, c);
689 }
1da177e4
LT
690}
691
692/*
693 * Handle dead key. Note that we now may have several
694 * dead keys modifying the same character. Very useful
695 * for Vietnamese.
696 */
7d12e780 697static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
1da177e4
LT
698{
699 if (up_flag)
700 return;
e0785572 701
1da177e4
LT
702 diacr = (diacr ? handle_diacr(vc, value) : value);
703}
704
7d12e780 705static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
b9ec4e10 706{
d2187ebd 707 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
b9ec4e10
ST
708}
709
7d12e780 710static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
b9ec4e10 711{
7d12e780 712 k_deadunicode(vc, value, up_flag);
b9ec4e10
ST
713}
714
1da177e4
LT
715/*
716 * Obsolete - for backwards compatibility only
717 */
7d12e780 718static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4 719{
0f5e560e 720 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
e0785572
DT
721
722 k_deadunicode(vc, ret_diacr[value], up_flag);
1da177e4
LT
723}
724
7d12e780 725static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4
LT
726{
727 if (up_flag)
728 return;
e0785572 729
1da177e4
LT
730 set_console(value);
731}
732
7d12e780 733static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4 734{
1da177e4
LT
735 if (up_flag)
736 return;
e0785572
DT
737
738 if ((unsigned)value < ARRAY_SIZE(func_table)) {
1da177e4
LT
739 if (func_table[value])
740 puts_queue(vc, func_table[value]);
741 } else
9272e9a2 742 pr_err("k_fn called with value=%d\n", value);
1da177e4
LT
743}
744
7d12e780 745static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4 746{
e52b29c2 747 static const char cur_chars[] = "BDCA";
1da177e4
LT
748
749 if (up_flag)
750 return;
e0785572 751
1da177e4
LT
752 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
753}
754
7d12e780 755static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4 756{
0f5e560e
AM
757 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
758 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
1da177e4
LT
759
760 if (up_flag)
761 return; /* no action, if this is a key release */
762
763 /* kludge... shift forces cursor/number keys */
764 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
765 applkey(vc, app_map[value], 1);
766 return;
767 }
768
e0785572
DT
769 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
770
1da177e4 771 switch (value) {
e0785572
DT
772 case KVAL(K_PCOMMA):
773 case KVAL(K_PDOT):
774 k_fn(vc, KVAL(K_REMOVE), 0);
775 return;
776 case KVAL(K_P0):
777 k_fn(vc, KVAL(K_INSERT), 0);
778 return;
779 case KVAL(K_P1):
780 k_fn(vc, KVAL(K_SELECT), 0);
781 return;
782 case KVAL(K_P2):
783 k_cur(vc, KVAL(K_DOWN), 0);
784 return;
785 case KVAL(K_P3):
786 k_fn(vc, KVAL(K_PGDN), 0);
787 return;
788 case KVAL(K_P4):
789 k_cur(vc, KVAL(K_LEFT), 0);
790 return;
791 case KVAL(K_P6):
792 k_cur(vc, KVAL(K_RIGHT), 0);
793 return;
794 case KVAL(K_P7):
795 k_fn(vc, KVAL(K_FIND), 0);
796 return;
797 case KVAL(K_P8):
798 k_cur(vc, KVAL(K_UP), 0);
799 return;
800 case KVAL(K_P9):
801 k_fn(vc, KVAL(K_PGUP), 0);
802 return;
803 case KVAL(K_P5):
804 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
805 return;
1da177e4 806 }
e0785572 807 }
1da177e4
LT
808
809 put_queue(vc, pad_chars[value]);
810 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
811 put_queue(vc, 10);
812}
813
7d12e780 814static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4
LT
815{
816 int old_state = shift_state;
817
818 if (rep)
819 return;
820 /*
821 * Mimic typewriter:
822 * a CapsShift key acts like Shift but undoes CapsLock
823 */
824 if (value == KVAL(K_CAPSSHIFT)) {
825 value = KVAL(K_SHIFT);
826 if (!up_flag)
827 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
828 }
829
830 if (up_flag) {
831 /*
832 * handle the case that two shift or control
833 * keys are depressed simultaneously
834 */
835 if (shift_down[value])
836 shift_down[value]--;
837 } else
838 shift_down[value]++;
839
840 if (shift_down[value])
841 shift_state |= (1 << value);
842 else
843 shift_state &= ~(1 << value);
844
845 /* kludge */
846 if (up_flag && shift_state != old_state && npadch != -1) {
847 if (kbd->kbdmode == VC_UNICODE)
759448f4 848 to_utf8(vc, npadch);
1da177e4
LT
849 else
850 put_queue(vc, npadch & 0xff);
851 npadch = -1;
852 }
853}
854
7d12e780 855static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4
LT
856{
857 if (up_flag)
858 return;
859
860 if (vc_kbd_mode(kbd, VC_META)) {
861 put_queue(vc, '\033');
862 put_queue(vc, value);
863 } else
864 put_queue(vc, value | 0x80);
865}
866
7d12e780 867static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4
LT
868{
869 int base;
870
871 if (up_flag)
872 return;
873
874 if (value < 10) {
875 /* decimal input of code, while Alt depressed */
876 base = 10;
877 } else {
878 /* hexadecimal input of code, while AltGr depressed */
879 value -= 10;
880 base = 16;
881 }
882
883 if (npadch == -1)
884 npadch = value;
885 else
886 npadch = npadch * base + value;
887}
888
7d12e780 889static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4
LT
890{
891 if (up_flag || rep)
892 return;
e0785572 893
1da177e4
LT
894 chg_vc_kbd_lock(kbd, value);
895}
896
7d12e780 897static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
1da177e4 898{
7d12e780 899 k_shift(vc, value, up_flag);
1da177e4
LT
900 if (up_flag || rep)
901 return;
e0785572 902
1da177e4
LT
903 chg_vc_kbd_slock(kbd, value);
904 /* try to make Alt, oops, AltGr and such work */
905 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
906 kbd->slockstate = 0;
907 chg_vc_kbd_slock(kbd, value);
908 }
909}
910
b9ec4e10 911/* by default, 300ms interval for combination release */
77426d72
ST
912static unsigned brl_timeout = 300;
913MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
914module_param(brl_timeout, uint, 0644);
915
916static unsigned brl_nbchords = 1;
917MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
918module_param(brl_nbchords, uint, 0644);
919
7d12e780 920static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
77426d72
ST
921{
922 static unsigned long chords;
923 static unsigned committed;
924
925 if (!brl_nbchords)
7d12e780 926 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
77426d72
ST
927 else {
928 committed |= pattern;
929 chords++;
930 if (chords == brl_nbchords) {
7d12e780 931 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
77426d72
ST
932 chords = 0;
933 committed = 0;
934 }
935 }
936}
937
7d12e780 938static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
b9ec4e10 939{
e0785572 940 static unsigned pressed, committing;
b9ec4e10
ST
941 static unsigned long releasestart;
942
943 if (kbd->kbdmode != VC_UNICODE) {
944 if (!up_flag)
9272e9a2 945 pr_warning("keyboard mode must be unicode for braille patterns\n");
b9ec4e10
ST
946 return;
947 }
948
949 if (!value) {
7d12e780 950 k_unicode(vc, BRL_UC_ROW, up_flag);
b9ec4e10
ST
951 return;
952 }
953
954 if (value > 8)
955 return;
956
e0785572 957 if (!up_flag) {
b9ec4e10
ST
958 pressed |= 1 << (value - 1);
959 if (!brl_timeout)
960 committing = pressed;
e0785572
DT
961 } else if (brl_timeout) {
962 if (!committing ||
963 time_after(jiffies,
964 releasestart + msecs_to_jiffies(brl_timeout))) {
965 committing = pressed;
966 releasestart = jiffies;
967 }
968 pressed &= ~(1 << (value - 1));
969 if (!pressed && committing) {
970 k_brlcommit(vc, committing, 0);
971 committing = 0;
972 }
973 } else {
974 if (committing) {
975 k_brlcommit(vc, committing, 0);
976 committing = 0;
977 }
978 pressed &= ~(1 << (value - 1));
b9ec4e10
ST
979 }
980}
981
1da177e4
LT
982/*
983 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
984 * or (ii) whatever pattern of lights people want to show using KDSETLED,
985 * or (iii) specified bits of specified words in kernel memory.
986 */
987unsigned char getledstate(void)
988{
989 return ledstate;
990}
991
992void setledstate(struct kbd_struct *kbd, unsigned int led)
993{
079c9534
AC
994 unsigned long flags;
995 spin_lock_irqsave(&kbd_event_lock, flags);
1da177e4
LT
996 if (!(led & ~7)) {
997 ledioctl = led;
998 kbd->ledmode = LED_SHOW_IOCTL;
999 } else
1000 kbd->ledmode = LED_SHOW_FLAGS;
e0785572 1001
1da177e4 1002 set_leds();
079c9534 1003 spin_unlock_irqrestore(&kbd_event_lock, flags);
1da177e4
LT
1004}
1005
1006static inline unsigned char getleds(void)
1007{
1008 struct kbd_struct *kbd = kbd_table + fg_console;
1009 unsigned char leds;
1010 int i;
1011
1012 if (kbd->ledmode == LED_SHOW_IOCTL)
1013 return ledioctl;
1014
1015 leds = kbd->ledflagstate;
1016
1017 if (kbd->ledmode == LED_SHOW_MEM) {
1018 for (i = 0; i < 3; i++)
1019 if (ledptrs[i].valid) {
1020 if (*ledptrs[i].addr & ledptrs[i].mask)
1021 leds |= (1 << i);
1022 else
1023 leds &= ~(1 << i);
1024 }
1025 }
1026 return leds;
1027}
1028
66d2a595
DT
1029static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030{
1031 unsigned char leds = *(unsigned char *)data;
1032
1033 if (test_bit(EV_LED, handle->dev->evbit)) {
1034 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1035 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1036 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1037 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1038 }
1039
1040 return 0;
1041}
1042
079c9534
AC
1043/**
1044 * vt_get_leds - helper for braille console
1045 * @console: console to read
1046 * @flag: flag we want to check
1047 *
1048 * Check the status of a keyboard led flag and report it back
1049 */
1050int vt_get_leds(int console, int flag)
1051{
079c9534
AC
1052 struct kbd_struct * kbd = kbd_table + console;
1053 int ret;
1054
079c9534 1055 ret = vc_kbd_led(kbd, flag);
079c9534
AC
1056
1057 return ret;
1058}
1059EXPORT_SYMBOL_GPL(vt_get_leds);
1060
1061/**
1062 * vt_set_led_state - set LED state of a console
1063 * @console: console to set
1064 * @leds: LED bits
1065 *
1066 * Set the LEDs on a console. This is a wrapper for the VT layer
1067 * so that we can keep kbd knowledge internal
1068 */
1069void vt_set_led_state(int console, int leds)
1070{
1071 struct kbd_struct * kbd = kbd_table + console;
1072 setledstate(kbd, leds);
1073}
1074
1075/**
1076 * vt_kbd_con_start - Keyboard side of console start
1077 * @console: console
1078 *
1079 * Handle console start. This is a wrapper for the VT layer
1080 * so that we can keep kbd knowledge internal
84f904ec
AC
1081 *
1082 * FIXME: We eventually need to hold the kbd lock here to protect
1083 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1084 * and start_tty under the kbd_event_lock, while normal tty paths
1085 * don't hold the lock. We probably need to split out an LED lock
1086 * but not during an -rc release!
079c9534
AC
1087 */
1088void vt_kbd_con_start(int console)
1089{
1090 struct kbd_struct * kbd = kbd_table + console;
84f904ec
AC
1091/* unsigned long flags; */
1092/* spin_lock_irqsave(&kbd_event_lock, flags); */
079c9534
AC
1093 clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1094 set_leds();
84f904ec 1095/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
079c9534
AC
1096}
1097
1098/**
1099 * vt_kbd_con_stop - Keyboard side of console stop
1100 * @console: console
1101 *
1102 * Handle console stop. This is a wrapper for the VT layer
1103 * so that we can keep kbd knowledge internal
84f904ec
AC
1104 *
1105 * FIXME: We eventually need to hold the kbd lock here to protect
1106 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1107 * and start_tty under the kbd_event_lock, while normal tty paths
1108 * don't hold the lock. We probably need to split out an LED lock
1109 * but not during an -rc release!
079c9534
AC
1110 */
1111void vt_kbd_con_stop(int console)
1112{
1113 struct kbd_struct * kbd = kbd_table + console;
84f904ec
AC
1114/* unsigned long flags; */
1115/* spin_lock_irqsave(&kbd_event_lock, flags); */
079c9534
AC
1116 set_vc_kbd_led(kbd, VC_SCROLLOCK);
1117 set_leds();
84f904ec 1118/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
079c9534
AC
1119}
1120
1da177e4 1121/*
66d2a595
DT
1122 * This is the tasklet that updates LED state on all keyboards
1123 * attached to the box. The reason we use tasklet is that we
1124 * need to handle the scenario when keyboard handler is not
84f904ec 1125 * registered yet but we already getting updates from the VT to
66d2a595 1126 * update led state.
1da177e4 1127 */
1da177e4
LT
1128static void kbd_bh(unsigned long dummy)
1129{
1da177e4
LT
1130 unsigned char leds = getleds();
1131
1132 if (leds != ledstate) {
66d2a595
DT
1133 input_handler_for_each_handle(&kbd_handler, &leds,
1134 kbd_update_leds_helper);
1135 ledstate = leds;
1da177e4 1136 }
1da177e4
LT
1137}
1138
1139DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1140
1da177e4 1141#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
0b57ee9e
AB
1142 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1143 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
3a4e832c
HCE
1144 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1145 defined(CONFIG_AVR32)
1da177e4
LT
1146
1147#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1148 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1149
0f5e560e 1150static const unsigned short x86_keycodes[256] =
1da177e4
LT
1151 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1152 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1153 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1154 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1155 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1156 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
896cdc7b 1157 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1da177e4
LT
1158 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1159 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
72a42f24
HG
1160 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1161 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1da177e4
LT
1162 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1163 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1164 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1165 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1166
0b57ee9e 1167#ifdef CONFIG_SPARC
e0785572 1168static int sparc_l1_a_state;
1da177e4
LT
1169extern void sun_do_break(void);
1170#endif
1171
fe1e8604 1172static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1da177e4
LT
1173 unsigned char up_flag)
1174{
896cdc7b 1175 int code;
1da177e4
LT
1176
1177 switch (keycode) {
896cdc7b 1178
e0785572
DT
1179 case KEY_PAUSE:
1180 put_queue(vc, 0xe1);
1181 put_queue(vc, 0x1d | up_flag);
1182 put_queue(vc, 0x45 | up_flag);
1183 break;
896cdc7b 1184
e0785572
DT
1185 case KEY_HANGEUL:
1186 if (!up_flag)
1187 put_queue(vc, 0xf2);
1188 break;
1da177e4 1189
e0785572
DT
1190 case KEY_HANJA:
1191 if (!up_flag)
1192 put_queue(vc, 0xf1);
1193 break;
896cdc7b 1194
e0785572
DT
1195 case KEY_SYSRQ:
1196 /*
1197 * Real AT keyboards (that's what we're trying
1198 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1199 * pressing PrtSc/SysRq alone, but simply 0x54
1200 * when pressing Alt+PrtSc/SysRq.
1201 */
1202 if (test_bit(KEY_LEFTALT, key_down) ||
1203 test_bit(KEY_RIGHTALT, key_down)) {
1204 put_queue(vc, 0x54 | up_flag);
1205 } else {
1206 put_queue(vc, 0xe0);
1207 put_queue(vc, 0x2a | up_flag);
1208 put_queue(vc, 0xe0);
1209 put_queue(vc, 0x37 | up_flag);
1210 }
1211 break;
1da177e4 1212
e0785572
DT
1213 default:
1214 if (keycode > 255)
1215 return -1;
1da177e4 1216
e0785572
DT
1217 code = x86_keycodes[keycode];
1218 if (!code)
1219 return -1;
1da177e4 1220
e0785572
DT
1221 if (code & 0x100)
1222 put_queue(vc, 0xe0);
1223 put_queue(vc, (code & 0x7f) | up_flag);
1224
1225 break;
1da177e4
LT
1226 }
1227
1228 return 0;
1229}
1230
1231#else
1232
1233#define HW_RAW(dev) 0
1234
1da177e4
LT
1235static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1236{
1237 if (keycode > 127)
1238 return -1;
1239
1240 put_queue(vc, keycode | up_flag);
1241 return 0;
1242}
1243#endif
1244
1245static void kbd_rawcode(unsigned char data)
1246{
1247 struct vc_data *vc = vc_cons[fg_console].d;
e0785572 1248
0c09b2ac 1249 kbd = kbd_table + vc->vc_num;
1da177e4
LT
1250 if (kbd->kbdmode == VC_RAW)
1251 put_queue(vc, data);
1252}
1253
7d12e780 1254static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1da177e4
LT
1255{
1256 struct vc_data *vc = vc_cons[fg_console].d;
1257 unsigned short keysym, *key_map;
e0785572
DT
1258 unsigned char type;
1259 bool raw_mode;
1da177e4
LT
1260 struct tty_struct *tty;
1261 int shift_final;
41ab4396 1262 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
e0785572 1263 int rc;
1da177e4 1264
8ce73264 1265 tty = vc->port.tty;
1da177e4
LT
1266
1267 if (tty && (!tty->driver_data)) {
1268 /* No driver data? Strange. Okay we fix it then. */
1269 tty->driver_data = vc;
1270 }
1271
0c09b2ac 1272 kbd = kbd_table + vc->vc_num;
1da177e4 1273
0b57ee9e 1274#ifdef CONFIG_SPARC
1da177e4
LT
1275 if (keycode == KEY_STOP)
1276 sparc_l1_a_state = down;
1277#endif
1278
1279 rep = (down == 2);
1280
e0785572
DT
1281 raw_mode = (kbd->kbdmode == VC_RAW);
1282 if (raw_mode && !hw_raw)
1da177e4 1283 if (emulate_raw(vc, keycode, !down << 7))
9e35d206 1284 if (keycode < BTN_MISC && printk_ratelimit())
9272e9a2
DT
1285 pr_warning("can't emulate rawmode for keycode %d\n",
1286 keycode);
1da177e4 1287
0b57ee9e 1288#ifdef CONFIG_SPARC
1da177e4 1289 if (keycode == KEY_A && sparc_l1_a_state) {
e0785572 1290 sparc_l1_a_state = false;
1da177e4
LT
1291 sun_do_break();
1292 }
1293#endif
1294
1295 if (kbd->kbdmode == VC_MEDIUMRAW) {
1296 /*
1297 * This is extended medium raw mode, with keys above 127
1298 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1299 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1300 * interfere with anything else. The two bytes after 0 will
1301 * always have the up flag set not to interfere with older
1302 * applications. This allows for 16384 different keycodes,
1303 * which should be enough.
1304 */
1305 if (keycode < 128) {
1306 put_queue(vc, keycode | (!down << 7));
1307 } else {
1308 put_queue(vc, !down << 7);
1309 put_queue(vc, (keycode >> 7) | 0x80);
1310 put_queue(vc, keycode | 0x80);
1311 }
e0785572 1312 raw_mode = true;
1da177e4
LT
1313 }
1314
1315 if (down)
1316 set_bit(keycode, key_down);
1317 else
1318 clear_bit(keycode, key_down);
1319
fe1e8604
DT
1320 if (rep &&
1321 (!vc_kbd_mode(kbd, VC_REPEAT) ||
f34d7a5b 1322 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1da177e4
LT
1323 /*
1324 * Don't repeat a key if the input buffers are not empty and the
fe1e8604 1325 * characters get aren't echoed locally. This makes key repeat
1da177e4
LT
1326 * usable with slow applications and under heavy loads.
1327 */
1328 return;
1329 }
1330
41ab4396 1331 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
0beb4f6f 1332 param.ledstate = kbd->ledflagstate;
1da177e4
LT
1333 key_map = key_maps[shift_final];
1334
e0785572
DT
1335 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1336 KBD_KEYCODE, &param);
1337 if (rc == NOTIFY_STOP || !key_map) {
1338 atomic_notifier_call_chain(&keyboard_notifier_list,
1339 KBD_UNBOUND_KEYCODE, &param);
079c9534 1340 do_compute_shiftstate();
1da177e4
LT
1341 kbd->slockstate = 0;
1342 return;
1343 }
1344
e0785572 1345 if (keycode < NR_KEYS)
b9ec4e10 1346 keysym = key_map[keycode];
e0785572
DT
1347 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1348 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1349 else
1350 return;
1da177e4 1351
1da177e4
LT
1352 type = KTYP(keysym);
1353
1354 if (type < 0xf0) {
41ab4396 1355 param.value = keysym;
e0785572
DT
1356 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1357 KBD_UNICODE, &param);
1358 if (rc != NOTIFY_STOP)
1359 if (down && !raw_mode)
1360 to_utf8(vc, keysym);
1da177e4
LT
1361 return;
1362 }
1363
1364 type -= 0xf0;
1365
1da177e4
LT
1366 if (type == KT_LETTER) {
1367 type = KT_LATIN;
1368 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1369 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1370 if (key_map)
1371 keysym = key_map[keycode];
1372 }
1373 }
41ab4396 1374
e0785572
DT
1375 param.value = keysym;
1376 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1377 KBD_KEYSYM, &param);
1378 if (rc == NOTIFY_STOP)
41ab4396
ST
1379 return;
1380
9fc3de9c 1381 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
41ab4396 1382 return;
1da177e4 1383
7d12e780 1384 (*k_handler[type])(vc, keysym & 0xff, !down);
1da177e4 1385
0beb4f6f 1386 param.ledstate = kbd->ledflagstate;
41ab4396
ST
1387 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1388
1da177e4
LT
1389 if (type != KT_SLOCK)
1390 kbd->slockstate = 0;
1391}
1392
fe1e8604 1393static void kbd_event(struct input_handle *handle, unsigned int event_type,
1da177e4
LT
1394 unsigned int event_code, int value)
1395{
21cea58e
DT
1396 /* We are called with interrupts disabled, just take the lock */
1397 spin_lock(&kbd_event_lock);
1398
1da177e4
LT
1399 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1400 kbd_rawcode(value);
1401 if (event_type == EV_KEY)
7d12e780 1402 kbd_keycode(event_code, value, HW_RAW(handle->dev));
21cea58e
DT
1403
1404 spin_unlock(&kbd_event_lock);
1405
1da177e4
LT
1406 tasklet_schedule(&keyboard_tasklet);
1407 do_poke_blanked_console = 1;
1408 schedule_console_callback();
1409}
1410
0b7024ac
DT
1411static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1412{
1413 int i;
1414
1415 if (test_bit(EV_SND, dev->evbit))
1416 return true;
1417
53c1f764 1418 if (test_bit(EV_KEY, dev->evbit)) {
0b7024ac
DT
1419 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1420 if (test_bit(i, dev->keybit))
1421 return true;
53c1f764
ST
1422 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1423 if (test_bit(i, dev->keybit))
1424 return true;
1425 }
0b7024ac
DT
1426
1427 return false;
1428}
1429
1da177e4
LT
1430/*
1431 * When a keyboard (or other input device) is found, the kbd_connect
1432 * function is called. The function then looks at the device, and if it
1433 * likes it, it can open it and get events from it. In this (kbd_connect)
1434 * function, we should decide which VT to bind that keyboard to initially.
1435 */
5b2a0826
DT
1436static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1437 const struct input_device_id *id)
1da177e4
LT
1438{
1439 struct input_handle *handle;
5b2a0826 1440 int error;
1da177e4 1441
22479e1c
DT
1442 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1443 if (!handle)
5b2a0826 1444 return -ENOMEM;
1da177e4
LT
1445
1446 handle->dev = dev;
1447 handle->handler = handler;
fe1e8604 1448 handle->name = "kbd";
1da177e4 1449
5b2a0826
DT
1450 error = input_register_handle(handle);
1451 if (error)
1452 goto err_free_handle;
1da177e4 1453
5b2a0826
DT
1454 error = input_open_device(handle);
1455 if (error)
1456 goto err_unregister_handle;
1457
1458 return 0;
1459
1460 err_unregister_handle:
1461 input_unregister_handle(handle);
1462 err_free_handle:
1463 kfree(handle);
1464 return error;
1da177e4
LT
1465}
1466
1467static void kbd_disconnect(struct input_handle *handle)
1468{
1469 input_close_device(handle);
5b2a0826 1470 input_unregister_handle(handle);
1da177e4
LT
1471 kfree(handle);
1472}
1473
c7e8dc6e
DT
1474/*
1475 * Start keyboard handler on the new keyboard by refreshing LED state to
1476 * match the rest of the system.
1477 */
1478static void kbd_start(struct input_handle *handle)
1479{
c7e8dc6e 1480 tasklet_disable(&keyboard_tasklet);
66d2a595
DT
1481
1482 if (ledstate != 0xff)
1483 kbd_update_leds_helper(handle, &ledstate);
1484
c7e8dc6e
DT
1485 tasklet_enable(&keyboard_tasklet);
1486}
1487
66e66118 1488static const struct input_device_id kbd_ids[] = {
1da177e4 1489 {
6aeed479
AC
1490 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1491 .evbit = { BIT_MASK(EV_KEY) },
1492 },
fe1e8604 1493
1da177e4 1494 {
6aeed479
AC
1495 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1496 .evbit = { BIT_MASK(EV_SND) },
1497 },
1da177e4
LT
1498
1499 { }, /* Terminating entry */
1500};
1501
1502MODULE_DEVICE_TABLE(input, kbd_ids);
1503
1504static struct input_handler kbd_handler = {
1505 .event = kbd_event,
0b7024ac 1506 .match = kbd_match,
1da177e4
LT
1507 .connect = kbd_connect,
1508 .disconnect = kbd_disconnect,
c7e8dc6e 1509 .start = kbd_start,
1da177e4
LT
1510 .name = "kbd",
1511 .id_table = kbd_ids,
1512};
1513
1514int __init kbd_init(void)
1515{
1516 int i;
4263cf0f 1517 int error;
1da177e4 1518
6aeed479 1519 for (i = 0; i < MAX_NR_CONSOLES; i++) {
b2d0b7a0
JC
1520 kbd_table[i].ledflagstate = kbd_defleds();
1521 kbd_table[i].default_ledflagstate = kbd_defleds();
2b192908
DT
1522 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1523 kbd_table[i].lockstate = KBD_DEFLOCK;
1524 kbd_table[i].slockstate = 0;
1525 kbd_table[i].modeflags = KBD_DEFMODE;
2e8ecb9d 1526 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2b192908 1527 }
1da177e4 1528
4263cf0f
DT
1529 error = input_register_handler(&kbd_handler);
1530 if (error)
1531 return error;
1da177e4
LT
1532
1533 tasklet_enable(&keyboard_tasklet);
1534 tasklet_schedule(&keyboard_tasklet);
1535
1536 return 0;
1537}
247ff8e6
AC
1538
1539/* Ioctl support code */
1540
1541/**
1542 * vt_do_diacrit - diacritical table updates
1543 * @cmd: ioctl request
1544 * @up: pointer to user data for ioctl
1545 * @perm: permissions check computed by caller
1546 *
1547 * Update the diacritical tables atomically and safely. Lock them
1548 * against simultaneous keypresses
1549 */
1550int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1551{
1552 struct kbdiacrs __user *a = up;
1553 unsigned long flags;
1554 int asize;
1555 int ret = 0;
1556
1557 switch (cmd) {
1558 case KDGKBDIACR:
1559 {
1560 struct kbdiacr *diacr;
1561 int i;
1562
1563 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1564 GFP_KERNEL);
1565 if (diacr == NULL)
1566 return -ENOMEM;
1567
1568 /* Lock the diacriticals table, make a copy and then
1569 copy it after we unlock */
1570 spin_lock_irqsave(&kbd_event_lock, flags);
1571
1572 asize = accent_table_size;
1573 for (i = 0; i < asize; i++) {
1574 diacr[i].diacr = conv_uni_to_8bit(
1575 accent_table[i].diacr);
1576 diacr[i].base = conv_uni_to_8bit(
1577 accent_table[i].base);
1578 diacr[i].result = conv_uni_to_8bit(
1579 accent_table[i].result);
1580 }
1581 spin_unlock_irqrestore(&kbd_event_lock, flags);
1582
1583 if (put_user(asize, &a->kb_cnt))
1584 ret = -EFAULT;
1585 else if (copy_to_user(a->kbdiacr, diacr,
1586 asize * sizeof(struct kbdiacr)))
1587 ret = -EFAULT;
1588 kfree(diacr);
1589 return ret;
1590 }
1591 case KDGKBDIACRUC:
1592 {
1593 struct kbdiacrsuc __user *a = up;
1594 void *buf;
1595
1596 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1597 GFP_KERNEL);
1598 if (buf == NULL)
1599 return -ENOMEM;
1600
1601 /* Lock the diacriticals table, make a copy and then
1602 copy it after we unlock */
1603 spin_lock_irqsave(&kbd_event_lock, flags);
1604
1605 asize = accent_table_size;
1606 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1607
1608 spin_unlock_irqrestore(&kbd_event_lock, flags);
1609
1610 if (put_user(asize, &a->kb_cnt))
1611 ret = -EFAULT;
1612 else if (copy_to_user(a->kbdiacruc, buf,
1613 asize*sizeof(struct kbdiacruc)))
1614 ret = -EFAULT;
1615 kfree(buf);
1616 return ret;
1617 }
1618
1619 case KDSKBDIACR:
1620 {
1621 struct kbdiacrs __user *a = up;
1622 struct kbdiacr *diacr = NULL;
1623 unsigned int ct;
1624 int i;
1625
1626 if (!perm)
1627 return -EPERM;
1628 if (get_user(ct, &a->kb_cnt))
1629 return -EFAULT;
1630 if (ct >= MAX_DIACR)
1631 return -EINVAL;
1632
1633 if (ct) {
1634 diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1635 GFP_KERNEL);
1636 if (diacr == NULL)
1637 return -ENOMEM;
1638
1639 if (copy_from_user(diacr, a->kbdiacr,
1640 sizeof(struct kbdiacr) * ct)) {
1641 kfree(diacr);
1642 return -EFAULT;
1643 }
1644 }
1645
1646 spin_lock_irqsave(&kbd_event_lock, flags);
1647 accent_table_size = ct;
1648 for (i = 0; i < ct; i++) {
1649 accent_table[i].diacr =
1650 conv_8bit_to_uni(diacr[i].diacr);
1651 accent_table[i].base =
1652 conv_8bit_to_uni(diacr[i].base);
1653 accent_table[i].result =
1654 conv_8bit_to_uni(diacr[i].result);
1655 }
1656 spin_unlock_irqrestore(&kbd_event_lock, flags);
1657 kfree(diacr);
1658 return 0;
1659 }
1660
1661 case KDSKBDIACRUC:
1662 {
1663 struct kbdiacrsuc __user *a = up;
1664 unsigned int ct;
1665 void *buf = NULL;
1666
1667 if (!perm)
1668 return -EPERM;
1669
1670 if (get_user(ct, &a->kb_cnt))
1671 return -EFAULT;
1672
1673 if (ct >= MAX_DIACR)
1674 return -EINVAL;
1675
1676 if (ct) {
1677 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1678 GFP_KERNEL);
1679 if (buf == NULL)
1680 return -ENOMEM;
1681
1682 if (copy_from_user(buf, a->kbdiacruc,
1683 ct * sizeof(struct kbdiacruc))) {
1684 kfree(buf);
1685 return -EFAULT;
1686 }
1687 }
1688 spin_lock_irqsave(&kbd_event_lock, flags);
1689 if (ct)
1690 memcpy(accent_table, buf,
1691 ct * sizeof(struct kbdiacruc));
1692 accent_table_size = ct;
1693 spin_unlock_irqrestore(&kbd_event_lock, flags);
1694 kfree(buf);
1695 return 0;
1696 }
1697 }
1698 return ret;
1699}
079c9534
AC
1700
1701/**
1702 * vt_do_kdskbmode - set keyboard mode ioctl
1703 * @console: the console to use
1704 * @arg: the requested mode
1705 *
1706 * Update the keyboard mode bits while holding the correct locks.
1707 * Return 0 for success or an error code.
1708 */
1709int vt_do_kdskbmode(int console, unsigned int arg)
1710{
1711 struct kbd_struct * kbd = kbd_table + console;
1712 int ret = 0;
1713 unsigned long flags;
1714
1715 spin_lock_irqsave(&kbd_event_lock, flags);
1716 switch(arg) {
1717 case K_RAW:
1718 kbd->kbdmode = VC_RAW;
1719 break;
1720 case K_MEDIUMRAW:
1721 kbd->kbdmode = VC_MEDIUMRAW;
1722 break;
1723 case K_XLATE:
1724 kbd->kbdmode = VC_XLATE;
1725 do_compute_shiftstate();
1726 break;
1727 case K_UNICODE:
1728 kbd->kbdmode = VC_UNICODE;
1729 do_compute_shiftstate();
1730 break;
1731 case K_OFF:
1732 kbd->kbdmode = VC_OFF;
1733 break;
1734 default:
1735 ret = -EINVAL;
1736 }
1737 spin_unlock_irqrestore(&kbd_event_lock, flags);
1738 return ret;
1739}
1740
1741/**
1742 * vt_do_kdskbmeta - set keyboard meta state
1743 * @console: the console to use
1744 * @arg: the requested meta state
1745 *
1746 * Update the keyboard meta bits while holding the correct locks.
1747 * Return 0 for success or an error code.
1748 */
1749int vt_do_kdskbmeta(int console, unsigned int arg)
1750{
1751 struct kbd_struct * kbd = kbd_table + console;
1752 int ret = 0;
1753 unsigned long flags;
1754
1755 spin_lock_irqsave(&kbd_event_lock, flags);
1756 switch(arg) {
1757 case K_METABIT:
1758 clr_vc_kbd_mode(kbd, VC_META);
1759 break;
1760 case K_ESCPREFIX:
1761 set_vc_kbd_mode(kbd, VC_META);
1762 break;
1763 default:
1764 ret = -EINVAL;
1765 }
1766 spin_unlock_irqrestore(&kbd_event_lock, flags);
1767 return ret;
1768}
1769
1770int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1771 int perm)
1772{
1773 struct kbkeycode tmp;
1774 int kc = 0;
1775
1776 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1777 return -EFAULT;
1778 switch (cmd) {
1779 case KDGETKEYCODE:
1780 kc = getkeycode(tmp.scancode);
1781 if (kc >= 0)
1782 kc = put_user(kc, &user_kbkc->keycode);
1783 break;
1784 case KDSETKEYCODE:
1785 if (!perm)
1786 return -EPERM;
1787 kc = setkeycode(tmp.scancode, tmp.keycode);
1788 break;
1789 }
1790 return kc;
1791}
1792
1793#define i (tmp.kb_index)
1794#define s (tmp.kb_table)
1795#define v (tmp.kb_value)
1796
1797int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1798 int console)
1799{
1800 struct kbd_struct * kbd = kbd_table + console;
1801 struct kbentry tmp;
1802 ushort *key_map, *new_map, val, ov;
1803 unsigned long flags;
1804
1805 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1806 return -EFAULT;
1807
1808 if (!capable(CAP_SYS_TTY_CONFIG))
1809 perm = 0;
1810
1811 switch (cmd) {
1812 case KDGKBENT:
1813 /* Ensure another thread doesn't free it under us */
1814 spin_lock_irqsave(&kbd_event_lock, flags);
1815 key_map = key_maps[s];
1816 if (key_map) {
1817 val = U(key_map[i]);
1818 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1819 val = K_HOLE;
1820 } else
1821 val = (i ? K_HOLE : K_NOSUCHMAP);
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 return put_user(val, &user_kbe->kb_value);
1824 case KDSKBENT:
1825 if (!perm)
1826 return -EPERM;
1827 if (!i && v == K_NOSUCHMAP) {
1828 spin_lock_irqsave(&kbd_event_lock, flags);
1829 /* deallocate map */
1830 key_map = key_maps[s];
1831 if (s && key_map) {
1832 key_maps[s] = NULL;
1833 if (key_map[0] == U(K_ALLOCATED)) {
1834 kfree(key_map);
1835 keymap_count--;
1836 }
1837 }
1838 spin_unlock_irqrestore(&kbd_event_lock, flags);
1839 break;
1840 }
1841
1842 if (KTYP(v) < NR_TYPES) {
1843 if (KVAL(v) > max_vals[KTYP(v)])
1844 return -EINVAL;
1845 } else
1846 if (kbd->kbdmode != VC_UNICODE)
1847 return -EINVAL;
1848
1849 /* ++Geert: non-PC keyboards may generate keycode zero */
1850#if !defined(__mc68000__) && !defined(__powerpc__)
1851 /* assignment to entry 0 only tests validity of args */
1852 if (!i)
1853 break;
1854#endif
1855
1856 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1857 if (!new_map)
1858 return -ENOMEM;
1859 spin_lock_irqsave(&kbd_event_lock, flags);
1860 key_map = key_maps[s];
1861 if (key_map == NULL) {
1862 int j;
1863
1864 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1865 !capable(CAP_SYS_RESOURCE)) {
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 kfree(new_map);
1868 return -EPERM;
1869 }
1870 key_maps[s] = new_map;
82896210 1871 key_map = new_map;
079c9534
AC
1872 key_map[0] = U(K_ALLOCATED);
1873 for (j = 1; j < NR_KEYS; j++)
1874 key_map[j] = U(K_HOLE);
1875 keymap_count++;
1876 } else
1877 kfree(new_map);
1878
1879 ov = U(key_map[i]);
1880 if (v == ov)
1881 goto out;
1882 /*
1883 * Attention Key.
1884 */
1885 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1886 spin_unlock_irqrestore(&kbd_event_lock, flags);
1887 return -EPERM;
1888 }
1889 key_map[i] = U(v);
1890 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1891 do_compute_shiftstate();
1892out:
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 break;
1895 }
1896 return 0;
1897}
1898#undef i
1899#undef s
1900#undef v
1901
1902/* FIXME: This one needs untangling and locking */
1903int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1904{
1905 struct kbsentry *kbs;
1906 char *p;
1907 u_char *q;
1908 u_char __user *up;
1909 int sz;
1910 int delta;
1911 char *first_free, *fj, *fnw;
1912 int i, j, k;
1913 int ret;
1914
1915 if (!capable(CAP_SYS_TTY_CONFIG))
1916 perm = 0;
1917
1918 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1919 if (!kbs) {
1920 ret = -ENOMEM;
1921 goto reterr;
1922 }
1923
1924 /* we mostly copy too much here (512bytes), but who cares ;) */
1925 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1926 ret = -EFAULT;
1927 goto reterr;
1928 }
1929 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1930 i = kbs->kb_func;
1931
1932 switch (cmd) {
1933 case KDGKBSENT:
1934 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1935 a struct member */
1936 up = user_kdgkb->kb_string;
1937 p = func_table[i];
1938 if(p)
1939 for ( ; *p && sz; p++, sz--)
1940 if (put_user(*p, up++)) {
1941 ret = -EFAULT;
1942 goto reterr;
1943 }
1944 if (put_user('\0', up)) {
1945 ret = -EFAULT;
1946 goto reterr;
1947 }
1948 kfree(kbs);
1949 return ((p && *p) ? -EOVERFLOW : 0);
1950 case KDSKBSENT:
1951 if (!perm) {
1952 ret = -EPERM;
1953 goto reterr;
1954 }
1955
1956 q = func_table[i];
1957 first_free = funcbufptr + (funcbufsize - funcbufleft);
1958 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1959 ;
1960 if (j < MAX_NR_FUNC)
1961 fj = func_table[j];
1962 else
1963 fj = first_free;
1964
1965 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1966 if (delta <= funcbufleft) { /* it fits in current buf */
1967 if (j < MAX_NR_FUNC) {
1968 memmove(fj + delta, fj, first_free - fj);
1969 for (k = j; k < MAX_NR_FUNC; k++)
1970 if (func_table[k])
1971 func_table[k] += delta;
1972 }
1973 if (!q)
1974 func_table[i] = fj;
1975 funcbufleft -= delta;
1976 } else { /* allocate a larger buffer */
1977 sz = 256;
1978 while (sz < funcbufsize - funcbufleft + delta)
1979 sz <<= 1;
1980 fnw = kmalloc(sz, GFP_KERNEL);
1981 if(!fnw) {
1982 ret = -ENOMEM;
1983 goto reterr;
1984 }
1985
1986 if (!q)
1987 func_table[i] = fj;
1988 if (fj > funcbufptr)
1989 memmove(fnw, funcbufptr, fj - funcbufptr);
1990 for (k = 0; k < j; k++)
1991 if (func_table[k])
1992 func_table[k] = fnw + (func_table[k] - funcbufptr);
1993
1994 if (first_free > fj) {
1995 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1996 for (k = j; k < MAX_NR_FUNC; k++)
1997 if (func_table[k])
1998 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1999 }
2000 if (funcbufptr != func_buf)
2001 kfree(funcbufptr);
2002 funcbufptr = fnw;
2003 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2004 funcbufsize = sz;
2005 }
2006 strcpy(func_table[i], kbs->kb_string);
2007 break;
2008 }
2009 ret = 0;
2010reterr:
2011 kfree(kbs);
2012 return ret;
2013}
2014
2015int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2016{
2017 struct kbd_struct * kbd = kbd_table + console;
2018 unsigned long flags;
2019 unsigned char ucval;
2020
2021 switch(cmd) {
2022 /* the ioctls below read/set the flags usually shown in the leds */
2023 /* don't use them - they will go away without warning */
2024 case KDGKBLED:
2025 spin_lock_irqsave(&kbd_event_lock, flags);
2026 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2027 spin_unlock_irqrestore(&kbd_event_lock, flags);
2028 return put_user(ucval, (char __user *)arg);
2029
2030 case KDSKBLED:
2031 if (!perm)
2032 return -EPERM;
2033 if (arg & ~0x77)
2034 return -EINVAL;
2035 spin_lock_irqsave(&kbd_event_lock, flags);
2036 kbd->ledflagstate = (arg & 7);
2037 kbd->default_ledflagstate = ((arg >> 4) & 7);
2038 set_leds();
2039 spin_unlock_irqrestore(&kbd_event_lock, flags);
eea41aee 2040 return 0;
079c9534
AC
2041
2042 /* the ioctls below only set the lights, not the functions */
2043 /* for those, see KDGKBLED and KDSKBLED above */
2044 case KDGETLED:
2045 ucval = getledstate();
2046 return put_user(ucval, (char __user *)arg);
2047
2048 case KDSETLED:
2049 if (!perm)
2050 return -EPERM;
2051 setledstate(kbd, arg);
2052 return 0;
2053 }
2054 return -ENOIOCTLCMD;
2055}
2056
2057int vt_do_kdgkbmode(int console)
2058{
2059 struct kbd_struct * kbd = kbd_table + console;
2060 /* This is a spot read so needs no locking */
2061 switch (kbd->kbdmode) {
2062 case VC_RAW:
2063 return K_RAW;
2064 case VC_MEDIUMRAW:
2065 return K_MEDIUMRAW;
2066 case VC_UNICODE:
2067 return K_UNICODE;
2068 case VC_OFF:
2069 return K_OFF;
2070 default:
2071 return K_XLATE;
2072 }
2073}
2074
2075/**
2076 * vt_do_kdgkbmeta - report meta status
2077 * @console: console to report
2078 *
2079 * Report the meta flag status of this console
2080 */
2081int vt_do_kdgkbmeta(int console)
2082{
2083 struct kbd_struct * kbd = kbd_table + console;
2084 /* Again a spot read so no locking */
2085 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2086}
2087
2088/**
2089 * vt_reset_unicode - reset the unicode status
2090 * @console: console being reset
2091 *
2092 * Restore the unicode console state to its default
2093 */
2094void vt_reset_unicode(int console)
2095{
2096 unsigned long flags;
2097
2098 spin_lock_irqsave(&kbd_event_lock, flags);
2099 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2100 spin_unlock_irqrestore(&kbd_event_lock, flags);
2101}
2102
2103/**
2104 * vt_get_shiftstate - shift bit state
2105 *
2106 * Report the shift bits from the keyboard state. We have to export
2107 * this to support some oddities in the vt layer.
2108 */
2109int vt_get_shift_state(void)
2110{
2111 /* Don't lock as this is a transient report */
2112 return shift_state;
2113}
2114
2115/**
2116 * vt_reset_keyboard - reset keyboard state
2117 * @console: console to reset
2118 *
2119 * Reset the keyboard bits for a console as part of a general console
2120 * reset event
2121 */
2122void vt_reset_keyboard(int console)
2123{
2124 struct kbd_struct * kbd = kbd_table + console;
2125 unsigned long flags;
2126
2127 spin_lock_irqsave(&kbd_event_lock, flags);
2128 set_vc_kbd_mode(kbd, VC_REPEAT);
2129 clr_vc_kbd_mode(kbd, VC_CKMODE);
2130 clr_vc_kbd_mode(kbd, VC_APPLIC);
2131 clr_vc_kbd_mode(kbd, VC_CRLF);
2132 kbd->lockstate = 0;
2133 kbd->slockstate = 0;
2134 kbd->ledmode = LED_SHOW_FLAGS;
2135 kbd->ledflagstate = kbd->default_ledflagstate;
2136 /* do not do set_leds here because this causes an endless tasklet loop
2137 when the keyboard hasn't been initialized yet */
2138 spin_unlock_irqrestore(&kbd_event_lock, flags);
2139}
2140
2141/**
2142 * vt_get_kbd_mode_bit - read keyboard status bits
2143 * @console: console to read from
2144 * @bit: mode bit to read
2145 *
2146 * Report back a vt mode bit. We do this without locking so the
2147 * caller must be sure that there are no synchronization needs
2148 */
2149
2150int vt_get_kbd_mode_bit(int console, int bit)
2151{
2152 struct kbd_struct * kbd = kbd_table + console;
2153 return vc_kbd_mode(kbd, bit);
2154}
2155
2156/**
2157 * vt_set_kbd_mode_bit - read keyboard status bits
2158 * @console: console to read from
2159 * @bit: mode bit to read
2160 *
2161 * Set a vt mode bit. We do this without locking so the
2162 * caller must be sure that there are no synchronization needs
2163 */
2164
2165void vt_set_kbd_mode_bit(int console, int bit)
2166{
2167 struct kbd_struct * kbd = kbd_table + console;
2168 unsigned long flags;
2169
2170 spin_lock_irqsave(&kbd_event_lock, flags);
2171 set_vc_kbd_mode(kbd, bit);
2172 spin_unlock_irqrestore(&kbd_event_lock, flags);
2173}
2174
2175/**
2176 * vt_clr_kbd_mode_bit - read keyboard status bits
2177 * @console: console to read from
2178 * @bit: mode bit to read
2179 *
2180 * Report back a vt mode bit. We do this without locking so the
2181 * caller must be sure that there are no synchronization needs
2182 */
2183
2184void vt_clr_kbd_mode_bit(int console, int bit)
2185{
2186 struct kbd_struct * kbd = kbd_table + console;
2187 unsigned long flags;
2188
2189 spin_lock_irqsave(&kbd_event_lock, flags);
2190 clr_vc_kbd_mode(kbd, bit);
2191 spin_unlock_irqrestore(&kbd_event_lock, flags);
2192}