thunderbolt: Pass metadata directly to usb4_switch_op()
[linux-block.git] / drivers / thunderbolt / usb4.c
CommitLineData
b0407983
MW
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12
02d12855 13#include "sb_regs.h"
b0407983
MW
14#include "tb.h"
15
16#define USB4_DATA_DWORDS 16
17#define USB4_DATA_RETRIES 3
18
19enum usb4_switch_op {
20 USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
21 USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
22 USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
23 USB4_SWITCH_OP_NVM_WRITE = 0x20,
24 USB4_SWITCH_OP_NVM_AUTH = 0x21,
25 USB4_SWITCH_OP_NVM_READ = 0x22,
26 USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
27 USB4_SWITCH_OP_DROM_READ = 0x24,
28 USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
29};
30
02d12855
RM
31enum usb4_sb_target {
32 USB4_SB_TARGET_ROUTER,
33 USB4_SB_TARGET_PARTNER,
34 USB4_SB_TARGET_RETIMER,
35};
36
b0407983
MW
37#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
38#define USB4_NVM_READ_OFFSET_SHIFT 2
39#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
40#define USB4_NVM_READ_LENGTH_SHIFT 24
41
42#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
43#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
44
45#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
46#define USB4_DROM_ADDRESS_SHIFT 2
47#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
48#define USB4_DROM_SIZE_SHIFT 15
49
50#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
51
7e72846b
MW
52typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
53typedef int (*write_block_fn)(void *, const void *, size_t);
b0407983
MW
54
55static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
56 u32 value, int timeout_msec)
57{
58 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
59
60 do {
61 u32 val;
62 int ret;
63
64 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
65 if (ret)
66 return ret;
67
68 if ((val & bit) == value)
69 return 0;
70
71 usleep_range(50, 100);
72 } while (ktime_before(ktime_get(), timeout));
73
74 return -ETIMEDOUT;
75}
76
77static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
78 size_t dwords)
79{
80 if (dwords > USB4_DATA_DWORDS)
81 return -EINVAL;
82
83 return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
84}
85
86static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
87 size_t dwords)
88{
89 if (dwords > USB4_DATA_DWORDS)
90 return -EINVAL;
91
92 return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
93}
94
7e72846b
MW
95static int usb4_do_read_data(u16 address, void *buf, size_t size,
96 read_block_fn read_block, void *read_block_data)
b0407983
MW
97{
98 unsigned int retries = USB4_DATA_RETRIES;
99 unsigned int offset;
100
101 offset = address & 3;
102 address = address & ~3;
103
104 do {
105 size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
106 unsigned int dwaddress, dwords;
107 u8 data[USB4_DATA_DWORDS * 4];
108 int ret;
109
110 dwaddress = address / 4;
111 dwords = ALIGN(nbytes, 4) / 4;
112
7e72846b 113 ret = read_block(read_block_data, dwaddress, data, dwords);
b0407983 114 if (ret) {
6bfe3347
MW
115 if (ret != -ENODEV && retries--)
116 continue;
b0407983
MW
117 return ret;
118 }
119
120 memcpy(buf, data + offset, nbytes);
121
122 size -= nbytes;
123 address += nbytes;
124 buf += nbytes;
125 } while (size > 0);
126
127 return 0;
128}
129
7e72846b
MW
130static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
131 write_block_fn write_next_block, void *write_block_data)
b0407983
MW
132{
133 unsigned int retries = USB4_DATA_RETRIES;
134 unsigned int offset;
135
136 offset = address & 3;
137 address = address & ~3;
138
139 do {
140 u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
141 u8 data[USB4_DATA_DWORDS * 4];
142 int ret;
143
144 memcpy(data + offset, buf, nbytes);
145
7e72846b 146 ret = write_next_block(write_block_data, data, nbytes / 4);
b0407983
MW
147 if (ret) {
148 if (ret == -ETIMEDOUT) {
149 if (retries--)
150 continue;
151 ret = -EIO;
152 }
153 return ret;
154 }
155
156 size -= nbytes;
157 address += nbytes;
158 buf += nbytes;
159 } while (size > 0);
160
161 return 0;
162}
163
fe265a06
MW
164static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
165 u8 *status)
b0407983
MW
166{
167 u32 val;
168 int ret;
169
fe265a06
MW
170 if (metadata) {
171 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
172 if (ret)
173 return ret;
174 }
175
b0407983
MW
176 val = opcode | ROUTER_CS_26_OV;
177 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
178 if (ret)
179 return ret;
180
181 ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
182 if (ret)
183 return ret;
184
185 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
c3bf9930
MW
186 if (ret)
187 return ret;
188
b0407983
MW
189 if (val & ROUTER_CS_26_ONS)
190 return -EOPNOTSUPP;
191
661b1947
MW
192 if (status)
193 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
194 ROUTER_CS_26_STATUS_SHIFT;
fe265a06
MW
195
196 return metadata ?
197 tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1) : 0;
b0407983
MW
198}
199
b2911a59
MW
200static void usb4_switch_check_wakes(struct tb_switch *sw)
201{
202 struct tb_port *port;
203 bool wakeup = false;
204 u32 val;
205
206 if (!device_may_wakeup(&sw->dev))
207 return;
208
209 if (tb_route(sw)) {
210 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
211 return;
212
213 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
214 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
215 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
216
217 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
218 }
219
220 /* Check for any connected downstream ports for USB4 wake */
221 tb_switch_for_each_port(sw, port) {
222 if (!tb_port_has_remote(port))
223 continue;
224
225 if (tb_port_read(port, &val, TB_CFG_PORT,
226 port->cap_usb4 + PORT_CS_18, 1))
227 break;
228
229 tb_port_dbg(port, "USB4 wake: %s\n",
230 (val & PORT_CS_18_WOU4S) ? "yes" : "no");
231
232 if (val & PORT_CS_18_WOU4S)
233 wakeup = true;
234 }
235
236 if (wakeup)
237 pm_wakeup_event(&sw->dev, 0);
238}
239
bbcf40b3
MW
240static bool link_is_usb4(struct tb_port *port)
241{
242 u32 val;
243
244 if (!port->cap_usb4)
245 return false;
246
247 if (tb_port_read(port, &val, TB_CFG_PORT,
248 port->cap_usb4 + PORT_CS_18, 1))
249 return false;
250
251 return !(val & PORT_CS_18_TCM);
252}
253
b0407983
MW
254/**
255 * usb4_switch_setup() - Additional setup for USB4 device
256 * @sw: USB4 router to setup
257 *
258 * USB4 routers need additional settings in order to enable all the
259 * tunneling. This function enables USB and PCIe tunneling if it can be
260 * enabled (e.g the parent switch also supports them). If USB tunneling
261 * is not available for some reason (like that there is Thunderbolt 3
262 * switch upstream) then the internal xHCI controller is enabled
263 * instead.
264 */
265int usb4_switch_setup(struct tb_switch *sw)
266{
bbcf40b3 267 struct tb_port *downstream_port;
b0407983
MW
268 struct tb_switch *parent;
269 bool tbt3, xhci;
270 u32 val = 0;
271 int ret;
272
b2911a59
MW
273 usb4_switch_check_wakes(sw);
274
b0407983
MW
275 if (!tb_route(sw))
276 return 0;
277
278 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
279 if (ret)
280 return ret;
281
bbcf40b3
MW
282 parent = tb_switch_parent(sw);
283 downstream_port = tb_port_at(tb_route(sw), parent);
284 sw->link_usb4 = link_is_usb4(downstream_port);
285 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
286
b0407983
MW
287 xhci = val & ROUTER_CS_6_HCI;
288 tbt3 = !(val & ROUTER_CS_6_TNS);
289
290 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
291 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
292
293 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
294 if (ret)
295 return ret;
296
bbcf40b3 297 if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
e6f81858
RM
298 val |= ROUTER_CS_5_UTO;
299 xhci = false;
300 }
301
b0407983
MW
302 /* Only enable PCIe tunneling if the parent router supports it */
303 if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
304 val |= ROUTER_CS_5_PTO;
e6f81858
RM
305 /*
306 * xHCI can be enabled if PCIe tunneling is supported
307 * and the parent does not have any USB3 dowstream
308 * adapters (so we cannot do USB 3.x tunneling).
309 */
c7a7ac84 310 if (xhci)
b0407983
MW
311 val |= ROUTER_CS_5_HCO;
312 }
313
314 /* TBT3 supported by the CM */
315 val |= ROUTER_CS_5_C3S;
316 /* Tunneling configuration is ready now */
317 val |= ROUTER_CS_5_CV;
318
319 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
320 if (ret)
321 return ret;
322
323 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
324 ROUTER_CS_6_CR, 50);
325}
326
327/**
328 * usb4_switch_read_uid() - Read UID from USB4 router
329 * @sw: USB4 router
21d78d86 330 * @uid: UID is stored here
b0407983
MW
331 *
332 * Reads 64-bit UID from USB4 router config space.
333 */
334int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
335{
336 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
337}
338
7e72846b 339static int usb4_switch_drom_read_block(void *data,
b0407983
MW
340 unsigned int dwaddress, void *buf,
341 size_t dwords)
342{
7e72846b 343 struct tb_switch *sw = data;
b0407983
MW
344 u8 status = 0;
345 u32 metadata;
346 int ret;
347
348 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
349 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
350 USB4_DROM_ADDRESS_MASK;
351
fe265a06 352 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &metadata, &status);
b0407983
MW
353 if (ret)
354 return ret;
355
356 if (status)
357 return -EIO;
358
359 return usb4_switch_op_read_data(sw, buf, dwords);
360}
361
362/**
363 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
364 * @sw: USB4 router
21d78d86
MW
365 * @address: Byte address inside DROM to start reading
366 * @buf: Buffer where the DROM content is stored
367 * @size: Number of bytes to read from DROM
b0407983
MW
368 *
369 * Uses USB4 router operations to read router DROM. For devices this
370 * should always work but for hosts it may return %-EOPNOTSUPP in which
371 * case the host router does not have DROM.
372 */
373int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
374 size_t size)
375{
7e72846b
MW
376 return usb4_do_read_data(address, buf, size,
377 usb4_switch_drom_read_block, sw);
b0407983
MW
378}
379
b0407983
MW
380/**
381 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
382 * @sw: USB4 router
383 *
384 * Checks whether conditions are met so that lane bonding can be
385 * established with the upstream router. Call only for device routers.
386 */
387bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
388{
389 struct tb_port *up;
390 int ret;
391 u32 val;
392
393 up = tb_upstream_port(sw);
394 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
395 if (ret)
396 return false;
397
398 return !!(val & PORT_CS_18_BE);
399}
400
b2911a59
MW
401/**
402 * usb4_switch_set_wake() - Enabled/disable wake
403 * @sw: USB4 router
404 * @flags: Wakeup flags (%0 to disable)
405 *
406 * Enables/disables router to wake up from sleep.
407 */
408int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
409{
410 struct tb_port *port;
411 u64 route = tb_route(sw);
412 u32 val;
413 int ret;
414
415 /*
416 * Enable wakes coming from all USB4 downstream ports (from
417 * child routers). For device routers do this also for the
418 * upstream USB4 port.
419 */
420 tb_switch_for_each_port(sw, port) {
421 if (!route && tb_is_upstream_port(port))
422 continue;
423
424 ret = tb_port_read(port, &val, TB_CFG_PORT,
425 port->cap_usb4 + PORT_CS_19, 1);
426 if (ret)
427 return ret;
428
429 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
430
431 if (flags & TB_WAKE_ON_CONNECT)
432 val |= PORT_CS_19_WOC;
433 if (flags & TB_WAKE_ON_DISCONNECT)
434 val |= PORT_CS_19_WOD;
435 if (flags & TB_WAKE_ON_USB4)
436 val |= PORT_CS_19_WOU4;
437
438 ret = tb_port_write(port, &val, TB_CFG_PORT,
439 port->cap_usb4 + PORT_CS_19, 1);
440 if (ret)
441 return ret;
442 }
443
444 /*
445 * Enable wakes from PCIe and USB 3.x on this router. Only
446 * needed for device routers.
447 */
448 if (route) {
449 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
450 if (ret)
451 return ret;
452
453 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
454 if (flags & TB_WAKE_ON_USB3)
455 val |= ROUTER_CS_5_WOU;
456 if (flags & TB_WAKE_ON_PCIE)
457 val |= ROUTER_CS_5_WOP;
458
459 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
460 if (ret)
461 return ret;
462 }
463
464 return 0;
465}
466
b0407983
MW
467/**
468 * usb4_switch_set_sleep() - Prepare the router to enter sleep
469 * @sw: USB4 router
470 *
b2911a59
MW
471 * Sets sleep bit for the router. Returns when the router sleep ready
472 * bit has been asserted.
b0407983
MW
473 */
474int usb4_switch_set_sleep(struct tb_switch *sw)
475{
476 int ret;
477 u32 val;
478
479 /* Set sleep bit and wait for sleep ready to be asserted */
480 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
481 if (ret)
482 return ret;
483
484 val |= ROUTER_CS_5_SLP;
485
486 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
487 if (ret)
488 return ret;
489
490 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
491 ROUTER_CS_6_SLPR, 500);
492}
493
494/**
495 * usb4_switch_nvm_sector_size() - Return router NVM sector size
496 * @sw: USB4 router
497 *
498 * If the router supports NVM operations this function returns the NVM
499 * sector size in bytes. If NVM operations are not supported returns
500 * %-EOPNOTSUPP.
501 */
502int usb4_switch_nvm_sector_size(struct tb_switch *sw)
503{
504 u32 metadata;
505 u8 status;
506 int ret;
507
fe265a06
MW
508 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
509 &status);
b0407983
MW
510 if (ret)
511 return ret;
512
513 if (status)
514 return status == 0x2 ? -EOPNOTSUPP : -EIO;
515
b0407983
MW
516 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
517}
518
7e72846b 519static int usb4_switch_nvm_read_block(void *data,
b0407983
MW
520 unsigned int dwaddress, void *buf, size_t dwords)
521{
7e72846b 522 struct tb_switch *sw = data;
b0407983
MW
523 u8 status = 0;
524 u32 metadata;
525 int ret;
526
527 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
528 USB4_NVM_READ_LENGTH_MASK;
529 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
530 USB4_NVM_READ_OFFSET_MASK;
531
fe265a06 532 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &metadata, &status);
b0407983
MW
533 if (ret)
534 return ret;
535
536 if (status)
537 return -EIO;
538
539 return usb4_switch_op_read_data(sw, buf, dwords);
540}
541
542/**
543 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
544 * @sw: USB4 router
545 * @address: Starting address in bytes
546 * @buf: Read data is placed here
547 * @size: How many bytes to read
548 *
549 * Reads NVM contents of the router. If NVM is not supported returns
550 * %-EOPNOTSUPP.
551 */
552int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
553 size_t size)
554{
7e72846b
MW
555 return usb4_do_read_data(address, buf, size,
556 usb4_switch_nvm_read_block, sw);
b0407983
MW
557}
558
559static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
560 unsigned int address)
561{
562 u32 metadata, dwaddress;
563 u8 status = 0;
564 int ret;
565
566 dwaddress = address / 4;
567 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
568 USB4_NVM_SET_OFFSET_MASK;
569
fe265a06
MW
570 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
571 &status);
b0407983
MW
572 if (ret)
573 return ret;
574
575 return status ? -EIO : 0;
576}
577
7e72846b
MW
578static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
579 size_t dwords)
b0407983 580{
7e72846b 581 struct tb_switch *sw = data;
b0407983
MW
582 u8 status;
583 int ret;
584
585 ret = usb4_switch_op_write_data(sw, buf, dwords);
586 if (ret)
587 return ret;
588
fe265a06 589 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status);
b0407983
MW
590 if (ret)
591 return ret;
592
593 return status ? -EIO : 0;
594}
595
596/**
597 * usb4_switch_nvm_write() - Write to the router NVM
598 * @sw: USB4 router
599 * @address: Start address where to write in bytes
600 * @buf: Pointer to the data to write
601 * @size: Size of @buf in bytes
602 *
603 * Writes @buf to the router NVM using USB4 router operations. If NVM
604 * write is not supported returns %-EOPNOTSUPP.
605 */
606int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
607 const void *buf, size_t size)
608{
609 int ret;
610
611 ret = usb4_switch_nvm_set_offset(sw, address);
612 if (ret)
613 return ret;
614
7e72846b
MW
615 return usb4_do_write_data(address, buf, size,
616 usb4_switch_nvm_write_next_block, sw);
b0407983
MW
617}
618
619/**
620 * usb4_switch_nvm_authenticate() - Authenticate new NVM
621 * @sw: USB4 router
622 *
623 * After the new NVM has been written via usb4_switch_nvm_write(), this
661b1947
MW
624 * function triggers NVM authentication process. The router gets power
625 * cycled and if the authentication is successful the new NVM starts
b0407983 626 * running. In case of failure returns negative errno.
661b1947
MW
627 *
628 * The caller should call usb4_switch_nvm_authenticate_status() to read
629 * the status of the authentication after power cycle. It should be the
630 * first router operation to avoid the status being lost.
b0407983
MW
631 */
632int usb4_switch_nvm_authenticate(struct tb_switch *sw)
633{
b0407983
MW
634 int ret;
635
fe265a06 636 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
661b1947
MW
637 switch (ret) {
638 /*
639 * The router is power cycled once NVM_AUTH is started so it is
640 * expected to get any of the following errors back.
641 */
642 case -EACCES:
643 case -ENOTCONN:
644 case -ETIMEDOUT:
645 return 0;
646
647 default:
648 return ret;
649 }
650}
651
652/**
653 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
654 * @sw: USB4 router
655 * @status: Status code of the operation
656 *
657 * The function checks if there is status available from the last NVM
658 * authenticate router operation. If there is status then %0 is returned
659 * and the status code is placed in @status. Returns negative errno in case
660 * of failure.
661 *
662 * Must be called before any other router operation.
663 */
664int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
665{
666 u16 opcode;
667 u32 val;
668 int ret;
669
670 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
b0407983
MW
671 if (ret)
672 return ret;
673
661b1947
MW
674 /* Check that the opcode is correct */
675 opcode = val & ROUTER_CS_26_OPCODE_MASK;
676 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
677 if (val & ROUTER_CS_26_OV)
678 return -EBUSY;
679 if (val & ROUTER_CS_26_ONS)
680 return -EOPNOTSUPP;
681
682 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
683 ROUTER_CS_26_STATUS_SHIFT;
684 } else {
685 *status = 0;
b0407983 686 }
661b1947
MW
687
688 return 0;
b0407983
MW
689}
690
691/**
692 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
693 * @sw: USB4 router
694 * @in: DP IN adapter
695 *
696 * For DP tunneling this function can be used to query availability of
697 * DP IN resource. Returns true if the resource is available for DP
698 * tunneling, false otherwise.
699 */
700bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
701{
fe265a06 702 u32 metadata = in->port;
b0407983
MW
703 u8 status;
704 int ret;
705
fe265a06
MW
706 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
707 &status);
b0407983
MW
708 /*
709 * If DP resource allocation is not supported assume it is
710 * always available.
711 */
712 if (ret == -EOPNOTSUPP)
713 return true;
714 else if (ret)
715 return false;
716
717 return !status;
718}
719
720/**
721 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
722 * @sw: USB4 router
723 * @in: DP IN adapter
724 *
725 * Allocates DP IN resource for DP tunneling using USB4 router
726 * operations. If the resource was allocated returns %0. Otherwise
727 * returns negative errno, in particular %-EBUSY if the resource is
728 * already allocated.
729 */
730int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
731{
fe265a06 732 u32 metadata = in->port;
b0407983
MW
733 u8 status;
734 int ret;
735
fe265a06
MW
736 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
737 &status);
b0407983
MW
738 if (ret == -EOPNOTSUPP)
739 return 0;
740 else if (ret)
741 return ret;
742
743 return status ? -EBUSY : 0;
744}
745
746/**
747 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
748 * @sw: USB4 router
749 * @in: DP IN adapter
750 *
751 * Releases the previously allocated DP IN resource.
752 */
753int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
754{
fe265a06 755 u32 metadata = in->port;
b0407983
MW
756 u8 status;
757 int ret;
758
fe265a06
MW
759 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
760 &status);
b0407983
MW
761 if (ret == -EOPNOTSUPP)
762 return 0;
763 else if (ret)
764 return ret;
765
766 return status ? -EIO : 0;
767}
768
769static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
770{
771 struct tb_port *p;
772 int usb4_idx = 0;
773
774 /* Assume port is primary */
775 tb_switch_for_each_port(sw, p) {
776 if (!tb_port_is_null(p))
777 continue;
778 if (tb_is_upstream_port(p))
779 continue;
780 if (!p->link_nr) {
781 if (p == port)
782 break;
783 usb4_idx++;
784 }
785 }
786
787 return usb4_idx;
788}
789
790/**
791 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
792 * @sw: USB4 router
793 * @port: USB4 port
794 *
795 * USB4 routers have direct mapping between USB4 ports and PCIe
796 * downstream adapters where the PCIe topology is extended. This
797 * function returns the corresponding downstream PCIe adapter or %NULL
798 * if no such mapping was possible.
799 */
800struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
801 const struct tb_port *port)
802{
803 int usb4_idx = usb4_port_idx(sw, port);
804 struct tb_port *p;
805 int pcie_idx = 0;
806
807 /* Find PCIe down port matching usb4_port */
808 tb_switch_for_each_port(sw, p) {
809 if (!tb_port_is_pcie_down(p))
810 continue;
811
9cac51a0 812 if (pcie_idx == usb4_idx)
b0407983
MW
813 return p;
814
815 pcie_idx++;
816 }
817
818 return NULL;
819}
820
e6f81858
RM
821/**
822 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
823 * @sw: USB4 router
824 * @port: USB4 port
825 *
826 * USB4 routers have direct mapping between USB4 ports and USB 3.x
827 * downstream adapters where the USB 3.x topology is extended. This
828 * function returns the corresponding downstream USB 3.x adapter or
829 * %NULL if no such mapping was possible.
830 */
831struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
832 const struct tb_port *port)
833{
834 int usb4_idx = usb4_port_idx(sw, port);
835 struct tb_port *p;
836 int usb_idx = 0;
837
838 /* Find USB3 down port matching usb4_port */
839 tb_switch_for_each_port(sw, p) {
840 if (!tb_port_is_usb3_down(p))
841 continue;
842
77cfa40f 843 if (usb_idx == usb4_idx)
e6f81858
RM
844 return p;
845
846 usb_idx++;
847 }
848
849 return NULL;
850}
851
b0407983
MW
852/**
853 * usb4_port_unlock() - Unlock USB4 downstream port
854 * @port: USB4 port to unlock
855 *
856 * Unlocks USB4 downstream port so that the connection manager can
857 * access the router below this port.
858 */
859int usb4_port_unlock(struct tb_port *port)
860{
861 int ret;
862 u32 val;
863
864 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
865 if (ret)
866 return ret;
867
868 val &= ~ADP_CS_4_LCK;
869 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
870}
3b1d8d57 871
e28178bf
MW
872static int usb4_port_set_configured(struct tb_port *port, bool configured)
873{
874 int ret;
875 u32 val;
876
877 if (!port->cap_usb4)
878 return -EINVAL;
879
880 ret = tb_port_read(port, &val, TB_CFG_PORT,
881 port->cap_usb4 + PORT_CS_19, 1);
882 if (ret)
883 return ret;
884
885 if (configured)
886 val |= PORT_CS_19_PC;
887 else
888 val &= ~PORT_CS_19_PC;
889
890 return tb_port_write(port, &val, TB_CFG_PORT,
891 port->cap_usb4 + PORT_CS_19, 1);
892}
893
894/**
895 * usb4_port_configure() - Set USB4 port configured
896 * @port: USB4 router
897 *
898 * Sets the USB4 link to be configured for power management purposes.
899 */
900int usb4_port_configure(struct tb_port *port)
901{
902 return usb4_port_set_configured(port, true);
903}
904
905/**
906 * usb4_port_unconfigure() - Set USB4 port unconfigured
907 * @port: USB4 router
908 *
909 * Sets the USB4 link to be unconfigured for power management purposes.
910 */
911void usb4_port_unconfigure(struct tb_port *port)
912{
913 usb4_port_set_configured(port, false);
914}
915
284652a4
MW
916static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
917{
918 int ret;
919 u32 val;
920
921 if (!port->cap_usb4)
922 return -EINVAL;
923
924 ret = tb_port_read(port, &val, TB_CFG_PORT,
925 port->cap_usb4 + PORT_CS_19, 1);
926 if (ret)
927 return ret;
928
929 if (configured)
930 val |= PORT_CS_19_PID;
931 else
932 val &= ~PORT_CS_19_PID;
933
934 return tb_port_write(port, &val, TB_CFG_PORT,
935 port->cap_usb4 + PORT_CS_19, 1);
936}
937
938/**
939 * usb4_port_configure_xdomain() - Configure port for XDomain
940 * @port: USB4 port connected to another host
941 *
942 * Marks the USB4 port as being connected to another host. Returns %0 in
943 * success and negative errno in failure.
944 */
945int usb4_port_configure_xdomain(struct tb_port *port)
946{
947 return usb4_set_xdomain_configured(port, true);
948}
949
950/**
951 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
952 * @port: USB4 port that was connected to another host
953 *
954 * Clears USB4 port from being marked as XDomain.
955 */
956void usb4_port_unconfigure_xdomain(struct tb_port *port)
957{
958 usb4_set_xdomain_configured(port, false);
959}
960
3b1d8d57
MW
961static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
962 u32 value, int timeout_msec)
963{
964 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
965
966 do {
967 u32 val;
968 int ret;
969
970 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
971 if (ret)
972 return ret;
973
974 if ((val & bit) == value)
975 return 0;
976
977 usleep_range(50, 100);
978 } while (ktime_before(ktime_get(), timeout));
979
980 return -ETIMEDOUT;
981}
982
02d12855
RM
983static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
984{
985 if (dwords > USB4_DATA_DWORDS)
986 return -EINVAL;
987
988 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
989 dwords);
990}
991
992static int usb4_port_write_data(struct tb_port *port, const void *data,
993 size_t dwords)
994{
995 if (dwords > USB4_DATA_DWORDS)
996 return -EINVAL;
997
998 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
999 dwords);
1000}
1001
1002static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1003 u8 index, u8 reg, void *buf, u8 size)
1004{
1005 size_t dwords = DIV_ROUND_UP(size, 4);
1006 int ret;
1007 u32 val;
1008
1009 if (!port->cap_usb4)
1010 return -EINVAL;
1011
1012 val = reg;
1013 val |= size << PORT_CS_1_LENGTH_SHIFT;
1014 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1015 if (target == USB4_SB_TARGET_RETIMER)
1016 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1017 val |= PORT_CS_1_PND;
1018
1019 ret = tb_port_write(port, &val, TB_CFG_PORT,
1020 port->cap_usb4 + PORT_CS_1, 1);
1021 if (ret)
1022 return ret;
1023
1024 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1025 PORT_CS_1_PND, 0, 500);
1026 if (ret)
1027 return ret;
1028
1029 ret = tb_port_read(port, &val, TB_CFG_PORT,
1030 port->cap_usb4 + PORT_CS_1, 1);
1031 if (ret)
1032 return ret;
1033
1034 if (val & PORT_CS_1_NR)
1035 return -ENODEV;
1036 if (val & PORT_CS_1_RC)
1037 return -EIO;
1038
1039 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1040}
1041
1042static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1043 u8 index, u8 reg, const void *buf, u8 size)
1044{
1045 size_t dwords = DIV_ROUND_UP(size, 4);
1046 int ret;
1047 u32 val;
1048
1049 if (!port->cap_usb4)
1050 return -EINVAL;
1051
1052 if (buf) {
1053 ret = usb4_port_write_data(port, buf, dwords);
1054 if (ret)
1055 return ret;
1056 }
1057
1058 val = reg;
1059 val |= size << PORT_CS_1_LENGTH_SHIFT;
1060 val |= PORT_CS_1_WNR_WRITE;
1061 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1062 if (target == USB4_SB_TARGET_RETIMER)
1063 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1064 val |= PORT_CS_1_PND;
1065
1066 ret = tb_port_write(port, &val, TB_CFG_PORT,
1067 port->cap_usb4 + PORT_CS_1, 1);
1068 if (ret)
1069 return ret;
1070
1071 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1072 PORT_CS_1_PND, 0, 500);
1073 if (ret)
1074 return ret;
1075
1076 ret = tb_port_read(port, &val, TB_CFG_PORT,
1077 port->cap_usb4 + PORT_CS_1, 1);
1078 if (ret)
1079 return ret;
1080
1081 if (val & PORT_CS_1_NR)
1082 return -ENODEV;
1083 if (val & PORT_CS_1_RC)
1084 return -EIO;
1085
1086 return 0;
1087}
1088
1089static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1090 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1091{
1092 ktime_t timeout;
1093 u32 val;
1094 int ret;
1095
1096 val = opcode;
1097 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1098 sizeof(val));
1099 if (ret)
1100 return ret;
1101
1102 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1103
1104 do {
1105 /* Check results */
1106 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1107 &val, sizeof(val));
1108 if (ret)
1109 return ret;
1110
1111 switch (val) {
1112 case 0:
1113 return 0;
1114
1115 case USB4_SB_OPCODE_ERR:
1116 return -EAGAIN;
1117
1118 case USB4_SB_OPCODE_ONS:
1119 return -EOPNOTSUPP;
1120
1121 default:
1122 if (val != opcode)
1123 return -EIO;
1124 break;
1125 }
1126 } while (ktime_before(ktime_get(), timeout));
1127
1128 return -ETIMEDOUT;
1129}
1130
1131/**
1132 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1133 * @port: USB4 port
1134 *
1135 * This forces the USB4 port to send broadcast RT transaction which
1136 * makes the retimers on the link to assign index to themselves. Returns
1137 * %0 in case of success and negative errno if there was an error.
1138 */
1139int usb4_port_enumerate_retimers(struct tb_port *port)
1140{
1141 u32 val;
1142
1143 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1144 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1145 USB4_SB_OPCODE, &val, sizeof(val));
1146}
1147
1148static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1149 enum usb4_sb_opcode opcode,
1150 int timeout_msec)
1151{
1152 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1153 timeout_msec);
1154}
1155
1156/**
1157 * usb4_port_retimer_read() - Read from retimer sideband registers
1158 * @port: USB4 port
1159 * @index: Retimer index
1160 * @reg: Sideband register to read
1161 * @buf: Data from @reg is stored here
1162 * @size: Number of bytes to read
1163 *
1164 * Function reads retimer sideband registers starting from @reg. The
1165 * retimer is connected to @port at @index. Returns %0 in case of
1166 * success, and read data is copied to @buf. If there is no retimer
1167 * present at given @index returns %-ENODEV. In any other failure
1168 * returns negative errno.
1169 */
1170int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1171 u8 size)
1172{
1173 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1174 size);
1175}
1176
1177/**
1178 * usb4_port_retimer_write() - Write to retimer sideband registers
1179 * @port: USB4 port
1180 * @index: Retimer index
1181 * @reg: Sideband register to write
1182 * @buf: Data that is written starting from @reg
1183 * @size: Number of bytes to write
1184 *
1185 * Writes retimer sideband registers starting from @reg. The retimer is
1186 * connected to @port at @index. Returns %0 in case of success. If there
1187 * is no retimer present at given @index returns %-ENODEV. In any other
1188 * failure returns negative errno.
1189 */
1190int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1191 const void *buf, u8 size)
1192{
1193 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1194 size);
1195}
1196
1197/**
1198 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1199 * @port: USB4 port
1200 * @index: Retimer index
1201 *
1202 * If the retimer at @index is last one (connected directly to the
1203 * Type-C port) this function returns %1. If it is not returns %0. If
1204 * the retimer is not present returns %-ENODEV. Otherwise returns
1205 * negative errno.
1206 */
1207int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1208{
1209 u32 metadata;
1210 int ret;
1211
1212 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1213 500);
1214 if (ret)
1215 return ret;
1216
1217 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1218 sizeof(metadata));
1219 return ret ? ret : metadata & 1;
1220}
1221
1222/**
1223 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1224 * @port: USB4 port
1225 * @index: Retimer index
1226 *
1227 * Reads NVM sector size (in bytes) of a retimer at @index. This
1228 * operation can be used to determine whether the retimer supports NVM
1229 * upgrade for example. Returns sector size in bytes or negative errno
1230 * in case of error. Specifically returns %-ENODEV if there is no
1231 * retimer at @index.
1232 */
1233int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1234{
1235 u32 metadata;
1236 int ret;
1237
1238 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1239 500);
1240 if (ret)
1241 return ret;
1242
1243 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1244 sizeof(metadata));
1245 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1246}
1247
1248static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1249 unsigned int address)
1250{
1251 u32 metadata, dwaddress;
1252 int ret;
1253
1254 dwaddress = address / 4;
1255 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1256 USB4_NVM_SET_OFFSET_MASK;
1257
1258 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1259 sizeof(metadata));
1260 if (ret)
1261 return ret;
1262
1263 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1264 500);
1265}
1266
1267struct retimer_info {
1268 struct tb_port *port;
1269 u8 index;
1270};
1271
1272static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1273 size_t dwords)
1274
1275{
1276 const struct retimer_info *info = data;
1277 struct tb_port *port = info->port;
1278 u8 index = info->index;
1279 int ret;
1280
1281 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1282 buf, dwords * 4);
1283 if (ret)
1284 return ret;
1285
1286 return usb4_port_retimer_op(port, index,
1287 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1288}
1289
1290/**
1291 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1292 * @port: USB4 port
1293 * @index: Retimer index
1294 * @address: Byte address where to start the write
1295 * @buf: Data to write
1296 * @size: Size in bytes how much to write
1297 *
1298 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1299 * upgrade. Returns %0 if the data was written successfully and negative
1300 * errno in case of failure. Specifically returns %-ENODEV if there is
1301 * no retimer at @index.
1302 */
1303int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1304 const void *buf, size_t size)
1305{
1306 struct retimer_info info = { .port = port, .index = index };
1307 int ret;
1308
1309 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1310 if (ret)
1311 return ret;
1312
1313 return usb4_do_write_data(address, buf, size,
1314 usb4_port_retimer_nvm_write_next_block, &info);
1315}
1316
1317/**
1318 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1319 * @port: USB4 port
1320 * @index: Retimer index
1321 *
1322 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1323 * this function can be used to trigger the NVM upgrade process. If
1324 * successful the retimer restarts with the new NVM and may not have the
1325 * index set so one needs to call usb4_port_enumerate_retimers() to
1326 * force index to be assigned.
1327 */
1328int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1329{
1330 u32 val;
1331
1332 /*
1333 * We need to use the raw operation here because once the
1334 * authentication completes the retimer index is not set anymore
1335 * so we do not get back the status now.
1336 */
1337 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1338 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1339 USB4_SB_OPCODE, &val, sizeof(val));
1340}
1341
1342/**
1343 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1344 * @port: USB4 port
1345 * @index: Retimer index
1346 * @status: Raw status code read from metadata
1347 *
1348 * This can be called after usb4_port_retimer_nvm_authenticate() and
1349 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1350 *
1351 * Returns %0 if the authentication status was successfully read. The
1352 * completion metadata (the result) is then stored into @status. If
1353 * reading the status fails, returns negative errno.
1354 */
1355int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1356 u32 *status)
1357{
1358 u32 metadata, val;
1359 int ret;
1360
1361 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1362 sizeof(val));
1363 if (ret)
1364 return ret;
1365
1366 switch (val) {
1367 case 0:
1368 *status = 0;
1369 return 0;
1370
1371 case USB4_SB_OPCODE_ERR:
1372 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1373 &metadata, sizeof(metadata));
1374 if (ret)
1375 return ret;
1376
1377 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1378 return 0;
1379
1380 case USB4_SB_OPCODE_ONS:
1381 return -EOPNOTSUPP;
1382
1383 default:
1384 return -EIO;
1385 }
1386}
1387
1388static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1389 void *buf, size_t dwords)
1390{
1391 const struct retimer_info *info = data;
1392 struct tb_port *port = info->port;
1393 u8 index = info->index;
1394 u32 metadata;
1395 int ret;
1396
1397 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1398 if (dwords < USB4_DATA_DWORDS)
1399 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1400
1401 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1402 sizeof(metadata));
1403 if (ret)
1404 return ret;
1405
1406 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1407 if (ret)
1408 return ret;
1409
1410 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1411 dwords * 4);
1412}
1413
1414/**
1415 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1416 * @port: USB4 port
1417 * @index: Retimer index
1418 * @address: NVM address (in bytes) to start reading
1419 * @buf: Data read from NVM is stored here
1420 * @size: Number of bytes to read
1421 *
1422 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1423 * read was successful and negative errno in case of failure.
1424 * Specifically returns %-ENODEV if there is no retimer at @index.
1425 */
1426int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1427 unsigned int address, void *buf, size_t size)
1428{
1429 struct retimer_info info = { .port = port, .index = index };
1430
1431 return usb4_do_read_data(address, buf, size,
1432 usb4_port_retimer_nvm_read_block, &info);
1433}
1434
3b1d8d57
MW
1435/**
1436 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1437 * @port: USB3 adapter port
1438 *
1439 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1440 * Negative errno in case of error.
1441 */
1442int usb4_usb3_port_max_link_rate(struct tb_port *port)
1443{
1444 int ret, lr;
1445 u32 val;
1446
1447 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1448 return -EINVAL;
1449
1450 ret = tb_port_read(port, &val, TB_CFG_PORT,
1451 port->cap_adap + ADP_USB3_CS_4, 1);
1452 if (ret)
1453 return ret;
1454
1455 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1456 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1457}
1458
1459/**
1460 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1461 * @port: USB3 adapter port
1462 *
1463 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1464 * link is not up returns %0 and negative errno in case of failure.
1465 */
1466int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1467{
1468 int ret, lr;
1469 u32 val;
1470
1471 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1472 return -EINVAL;
1473
1474 ret = tb_port_read(port, &val, TB_CFG_PORT,
1475 port->cap_adap + ADP_USB3_CS_4, 1);
1476 if (ret)
1477 return ret;
1478
1479 if (!(val & ADP_USB3_CS_4_ULV))
1480 return 0;
1481
1482 lr = val & ADP_USB3_CS_4_ALR_MASK;
1483 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1484}
1485
1486static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1487{
1488 int ret;
1489 u32 val;
1490
1491 if (!tb_port_is_usb3_down(port))
1492 return -EINVAL;
1493 if (tb_route(port->sw))
1494 return -EINVAL;
1495
1496 ret = tb_port_read(port, &val, TB_CFG_PORT,
1497 port->cap_adap + ADP_USB3_CS_2, 1);
1498 if (ret)
1499 return ret;
1500
1501 if (request)
1502 val |= ADP_USB3_CS_2_CMR;
1503 else
1504 val &= ~ADP_USB3_CS_2_CMR;
1505
1506 ret = tb_port_write(port, &val, TB_CFG_PORT,
1507 port->cap_adap + ADP_USB3_CS_2, 1);
1508 if (ret)
1509 return ret;
1510
1511 /*
1512 * We can use val here directly as the CMR bit is in the same place
1513 * as HCA. Just mask out others.
1514 */
1515 val &= ADP_USB3_CS_2_CMR;
1516 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1517 ADP_USB3_CS_1_HCA, val, 1500);
1518}
1519
1520static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1521{
1522 return usb4_usb3_port_cm_request(port, true);
1523}
1524
1525static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1526{
1527 return usb4_usb3_port_cm_request(port, false);
1528}
1529
1530static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1531{
1532 unsigned long uframes;
1533
4c767ce4 1534 uframes = bw * 512UL << scale;
3b1d8d57
MW
1535 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1536}
1537
1538static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1539{
1540 unsigned long uframes;
1541
1542 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1543 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
4c767ce4 1544 return DIV_ROUND_UP(uframes, 512UL << scale);
3b1d8d57
MW
1545}
1546
1547static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1548 int *upstream_bw,
1549 int *downstream_bw)
1550{
1551 u32 val, bw, scale;
1552 int ret;
1553
1554 ret = tb_port_read(port, &val, TB_CFG_PORT,
1555 port->cap_adap + ADP_USB3_CS_2, 1);
1556 if (ret)
1557 return ret;
1558
1559 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1560 port->cap_adap + ADP_USB3_CS_3, 1);
1561 if (ret)
1562 return ret;
1563
1564 scale &= ADP_USB3_CS_3_SCALE_MASK;
1565
1566 bw = val & ADP_USB3_CS_2_AUBW_MASK;
1567 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1568
1569 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1570 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1571
1572 return 0;
1573}
1574
1575/**
1576 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1577 * @port: USB3 adapter port
1578 * @upstream_bw: Allocated upstream bandwidth is stored here
1579 * @downstream_bw: Allocated downstream bandwidth is stored here
1580 *
1581 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1582 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1583 * errno in failure.
1584 */
1585int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1586 int *downstream_bw)
1587{
1588 int ret;
1589
1590 ret = usb4_usb3_port_set_cm_request(port);
1591 if (ret)
1592 return ret;
1593
1594 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1595 downstream_bw);
1596 usb4_usb3_port_clear_cm_request(port);
1597
1598 return ret;
1599}
1600
1601static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1602 int *upstream_bw,
1603 int *downstream_bw)
1604{
1605 u32 val, bw, scale;
1606 int ret;
1607
1608 ret = tb_port_read(port, &val, TB_CFG_PORT,
1609 port->cap_adap + ADP_USB3_CS_1, 1);
1610 if (ret)
1611 return ret;
1612
1613 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1614 port->cap_adap + ADP_USB3_CS_3, 1);
1615 if (ret)
1616 return ret;
1617
1618 scale &= ADP_USB3_CS_3_SCALE_MASK;
1619
1620 bw = val & ADP_USB3_CS_1_CUBW_MASK;
1621 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1622
1623 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1624 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1625
1626 return 0;
1627}
1628
1629static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1630 int upstream_bw,
1631 int downstream_bw)
1632{
1633 u32 val, ubw, dbw, scale;
1634 int ret;
1635
1636 /* Read the used scale, hardware default is 0 */
1637 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1638 port->cap_adap + ADP_USB3_CS_3, 1);
1639 if (ret)
1640 return ret;
1641
1642 scale &= ADP_USB3_CS_3_SCALE_MASK;
1643 ubw = mbps_to_usb3_bw(upstream_bw, scale);
1644 dbw = mbps_to_usb3_bw(downstream_bw, scale);
1645
1646 ret = tb_port_read(port, &val, TB_CFG_PORT,
1647 port->cap_adap + ADP_USB3_CS_2, 1);
1648 if (ret)
1649 return ret;
1650
1651 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1652 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1653 val |= ubw;
1654
1655 return tb_port_write(port, &val, TB_CFG_PORT,
1656 port->cap_adap + ADP_USB3_CS_2, 1);
1657}
1658
1659/**
1660 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1661 * @port: USB3 adapter port
1662 * @upstream_bw: New upstream bandwidth
1663 * @downstream_bw: New downstream bandwidth
1664 *
1665 * This can be used to set how much bandwidth is allocated for the USB3
1666 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1667 * new values programmed to the USB3 adapter allocation registers. If
1668 * the values are lower than what is currently consumed the allocation
1669 * is set to what is currently consumed instead (consumed bandwidth
1670 * cannot be taken away by CM). The actual new values are returned in
1671 * @upstream_bw and @downstream_bw.
1672 *
1673 * Returns %0 in case of success and negative errno if there was a
1674 * failure.
1675 */
1676int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1677 int *downstream_bw)
1678{
1679 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1680
1681 ret = usb4_usb3_port_set_cm_request(port);
1682 if (ret)
1683 return ret;
1684
1685 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1686 &consumed_down);
1687 if (ret)
1688 goto err_request;
1689
1690 /* Don't allow it go lower than what is consumed */
1691 allocate_up = max(*upstream_bw, consumed_up);
1692 allocate_down = max(*downstream_bw, consumed_down);
1693
1694 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1695 allocate_down);
1696 if (ret)
1697 goto err_request;
1698
1699 *upstream_bw = allocate_up;
1700 *downstream_bw = allocate_down;
1701
1702err_request:
1703 usb4_usb3_port_clear_cm_request(port);
1704 return ret;
1705}
1706
1707/**
1708 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1709 * @port: USB3 adapter port
1710 * @upstream_bw: New allocated upstream bandwidth
1711 * @downstream_bw: New allocated downstream bandwidth
1712 *
1713 * Releases USB3 allocated bandwidth down to what is actually consumed.
1714 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1715 *
1716 * Returns 0% in success and negative errno in case of failure.
1717 */
1718int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1719 int *downstream_bw)
1720{
1721 int ret, consumed_up, consumed_down;
1722
1723 ret = usb4_usb3_port_set_cm_request(port);
1724 if (ret)
1725 return ret;
1726
1727 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1728 &consumed_down);
1729 if (ret)
1730 goto err_request;
1731
1732 /*
1733 * Always keep 1000 Mb/s to make sure xHCI has at least some
1734 * bandwidth available for isochronous traffic.
1735 */
1736 if (consumed_up < 1000)
1737 consumed_up = 1000;
1738 if (consumed_down < 1000)
1739 consumed_down = 1000;
1740
1741 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1742 consumed_down);
1743 if (ret)
1744 goto err_request;
1745
1746 *upstream_bw = consumed_up;
1747 *downstream_bw = consumed_down;
1748
1749err_request:
1750 usb4_usb3_port_clear_cm_request(port);
1751 return ret;
1752}