net/mlx5e: Compare all fields in IPv6 address
[linux-block.git] / drivers / thunderbolt / usb4.c
CommitLineData
b0407983
MW
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12
02d12855 13#include "sb_regs.h"
b0407983
MW
14#include "tb.h"
15
b0407983
MW
16#define USB4_DATA_RETRIES 3
17
02d12855
RM
18enum usb4_sb_target {
19 USB4_SB_TARGET_ROUTER,
20 USB4_SB_TARGET_PARTNER,
21 USB4_SB_TARGET_RETIMER,
22};
23
b0407983
MW
24#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
25#define USB4_NVM_READ_OFFSET_SHIFT 2
26#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
27#define USB4_NVM_READ_LENGTH_SHIFT 24
28
29#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
30#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
31
32#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
33#define USB4_DROM_ADDRESS_SHIFT 2
34#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
35#define USB4_DROM_SIZE_SHIFT 15
36
37#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
38
56ad3aef
MW
39#define USB4_BA_LENGTH_MASK GENMASK(7, 0)
40#define USB4_BA_INDEX_MASK GENMASK(15, 0)
41
42enum usb4_ba_index {
43 USB4_BA_MAX_USB3 = 0x1,
44 USB4_BA_MIN_DP_AUX = 0x2,
45 USB4_BA_MIN_DP_MAIN = 0x3,
46 USB4_BA_MAX_PCIE = 0x4,
47 USB4_BA_MAX_HI = 0x5,
48};
49
50#define USB4_BA_VALUE_MASK GENMASK(31, 16)
51#define USB4_BA_VALUE_SHIFT 16
52
9490f711
MW
53static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
54 u32 *metadata, u8 *status,
55 const void *tx_data, size_t tx_dwords,
56 void *rx_data, size_t rx_dwords)
b0407983
MW
57{
58 u32 val;
59 int ret;
60
fe265a06
MW
61 if (metadata) {
62 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
63 if (ret)
64 return ret;
65 }
83bab44a
MW
66 if (tx_dwords) {
67 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
68 tx_dwords);
69 if (ret)
70 return ret;
71 }
fe265a06 72
b0407983
MW
73 val = opcode | ROUTER_CS_26_OV;
74 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
75 if (ret)
76 return ret;
77
1639664f 78 ret = tb_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
b0407983
MW
79 if (ret)
80 return ret;
81
82 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
c3bf9930
MW
83 if (ret)
84 return ret;
85
b0407983
MW
86 if (val & ROUTER_CS_26_ONS)
87 return -EOPNOTSUPP;
88
661b1947
MW
89 if (status)
90 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
91 ROUTER_CS_26_STATUS_SHIFT;
fe265a06 92
83bab44a
MW
93 if (metadata) {
94 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
95 if (ret)
96 return ret;
97 }
98 if (rx_dwords) {
99 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
100 rx_dwords);
101 if (ret)
102 return ret;
103 }
104
b0407983
MW
105 return 0;
106}
107
9490f711
MW
108static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
109 u8 *status, const void *tx_data, size_t tx_dwords,
110 void *rx_data, size_t rx_dwords)
111{
112 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
113
9b383037 114 if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS)
9490f711
MW
115 return -EINVAL;
116
117 /*
118 * If the connection manager implementation provides USB4 router
119 * operation proxy callback, call it here instead of running the
120 * operation natively.
121 */
122 if (cm_ops->usb4_switch_op) {
123 int ret;
124
125 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
126 tx_data, tx_dwords, rx_data,
127 rx_dwords);
128 if (ret != -EOPNOTSUPP)
129 return ret;
130
131 /*
132 * If the proxy was not supported then run the native
133 * router operation instead.
134 */
135 }
136
137 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
138 tx_dwords, rx_data, rx_dwords);
139}
140
83bab44a
MW
141static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
142 u32 *metadata, u8 *status)
143{
144 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
145}
146
147static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
148 u32 *metadata, u8 *status,
149 const void *tx_data, size_t tx_dwords,
150 void *rx_data, size_t rx_dwords)
151{
152 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
153 tx_dwords, rx_data, rx_dwords);
b0407983
MW
154}
155
b2911a59
MW
156static void usb4_switch_check_wakes(struct tb_switch *sw)
157{
a5cfc9d6
RK
158 bool wakeup_usb4 = false;
159 struct usb4_port *usb4;
b2911a59
MW
160 struct tb_port *port;
161 bool wakeup = false;
162 u32 val;
163
164 if (!device_may_wakeup(&sw->dev))
165 return;
166
167 if (tb_route(sw)) {
168 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
169 return;
170
171 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
172 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
173 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
174
175 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
176 }
177
a5cfc9d6
RK
178 /*
179 * Check for any downstream ports for USB4 wake,
180 * connection wake and disconnection wake.
181 */
b2911a59 182 tb_switch_for_each_port(sw, port) {
a5cfc9d6 183 if (!port->cap_usb4)
b2911a59
MW
184 continue;
185
186 if (tb_port_read(port, &val, TB_CFG_PORT,
187 port->cap_usb4 + PORT_CS_18, 1))
188 break;
189
a5cfc9d6
RK
190 tb_port_dbg(port, "USB4 wake: %s, connection wake: %s, disconnection wake: %s\n",
191 (val & PORT_CS_18_WOU4S) ? "yes" : "no",
192 (val & PORT_CS_18_WOCS) ? "yes" : "no",
193 (val & PORT_CS_18_WODS) ? "yes" : "no");
194
195 wakeup_usb4 = val & (PORT_CS_18_WOU4S | PORT_CS_18_WOCS |
196 PORT_CS_18_WODS);
197
198 usb4 = port->usb4;
199 if (device_may_wakeup(&usb4->dev) && wakeup_usb4)
200 pm_wakeup_event(&usb4->dev, 0);
b2911a59 201
a5cfc9d6 202 wakeup |= wakeup_usb4;
b2911a59
MW
203 }
204
205 if (wakeup)
206 pm_wakeup_event(&sw->dev, 0);
207}
208
bbcf40b3
MW
209static bool link_is_usb4(struct tb_port *port)
210{
211 u32 val;
212
213 if (!port->cap_usb4)
214 return false;
215
216 if (tb_port_read(port, &val, TB_CFG_PORT,
217 port->cap_usb4 + PORT_CS_18, 1))
218 return false;
219
220 return !(val & PORT_CS_18_TCM);
221}
222
b0407983
MW
223/**
224 * usb4_switch_setup() - Additional setup for USB4 device
225 * @sw: USB4 router to setup
226 *
227 * USB4 routers need additional settings in order to enable all the
228 * tunneling. This function enables USB and PCIe tunneling if it can be
229 * enabled (e.g the parent switch also supports them). If USB tunneling
230 * is not available for some reason (like that there is Thunderbolt 3
231 * switch upstream) then the internal xHCI controller is enabled
232 * instead.
233 */
234int usb4_switch_setup(struct tb_switch *sw)
235{
bbcf40b3 236 struct tb_port *downstream_port;
b0407983
MW
237 struct tb_switch *parent;
238 bool tbt3, xhci;
239 u32 val = 0;
240 int ret;
241
b2911a59
MW
242 usb4_switch_check_wakes(sw);
243
b0407983
MW
244 if (!tb_route(sw))
245 return 0;
246
247 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
248 if (ret)
249 return ret;
250
bbcf40b3
MW
251 parent = tb_switch_parent(sw);
252 downstream_port = tb_port_at(tb_route(sw), parent);
253 sw->link_usb4 = link_is_usb4(downstream_port);
0f28879c 254 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
bbcf40b3 255
b0407983
MW
256 xhci = val & ROUTER_CS_6_HCI;
257 tbt3 = !(val & ROUTER_CS_6_TNS);
258
259 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
260 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
261
262 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
263 if (ret)
264 return ret;
265
c6da62a2
MW
266 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
267 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
e6f81858
RM
268 val |= ROUTER_CS_5_UTO;
269 xhci = false;
270 }
271
c6da62a2
MW
272 /*
273 * Only enable PCIe tunneling if the parent router supports it
274 * and it is not disabled.
275 */
276 if (tb_acpi_may_tunnel_pcie() &&
277 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
b0407983 278 val |= ROUTER_CS_5_PTO;
e6f81858
RM
279 /*
280 * xHCI can be enabled if PCIe tunneling is supported
281 * and the parent does not have any USB3 dowstream
282 * adapters (so we cannot do USB 3.x tunneling).
283 */
c7a7ac84 284 if (xhci)
b0407983
MW
285 val |= ROUTER_CS_5_HCO;
286 }
287
288 /* TBT3 supported by the CM */
289 val |= ROUTER_CS_5_C3S;
290 /* Tunneling configuration is ready now */
291 val |= ROUTER_CS_5_CV;
292
293 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
294 if (ret)
295 return ret;
296
1639664f
GF
297 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
298 ROUTER_CS_6_CR, 50);
b0407983
MW
299}
300
301/**
302 * usb4_switch_read_uid() - Read UID from USB4 router
303 * @sw: USB4 router
21d78d86 304 * @uid: UID is stored here
b0407983
MW
305 *
306 * Reads 64-bit UID from USB4 router config space.
307 */
308int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
309{
310 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
311}
312
7e72846b 313static int usb4_switch_drom_read_block(void *data,
b0407983
MW
314 unsigned int dwaddress, void *buf,
315 size_t dwords)
316{
7e72846b 317 struct tb_switch *sw = data;
b0407983
MW
318 u8 status = 0;
319 u32 metadata;
320 int ret;
321
322 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
323 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
324 USB4_DROM_ADDRESS_MASK;
325
83bab44a
MW
326 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
327 &status, NULL, 0, buf, dwords);
b0407983
MW
328 if (ret)
329 return ret;
330
83bab44a 331 return status ? -EIO : 0;
b0407983
MW
332}
333
334/**
335 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
336 * @sw: USB4 router
21d78d86
MW
337 * @address: Byte address inside DROM to start reading
338 * @buf: Buffer where the DROM content is stored
339 * @size: Number of bytes to read from DROM
b0407983
MW
340 *
341 * Uses USB4 router operations to read router DROM. For devices this
342 * should always work but for hosts it may return %-EOPNOTSUPP in which
343 * case the host router does not have DROM.
344 */
345int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
346 size_t size)
347{
9b383037
MW
348 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
349 usb4_switch_drom_read_block, sw);
b0407983
MW
350}
351
b0407983
MW
352/**
353 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
354 * @sw: USB4 router
355 *
356 * Checks whether conditions are met so that lane bonding can be
357 * established with the upstream router. Call only for device routers.
358 */
359bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
360{
361 struct tb_port *up;
362 int ret;
363 u32 val;
364
365 up = tb_upstream_port(sw);
366 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
367 if (ret)
368 return false;
369
370 return !!(val & PORT_CS_18_BE);
371}
372
b2911a59
MW
373/**
374 * usb4_switch_set_wake() - Enabled/disable wake
375 * @sw: USB4 router
376 * @flags: Wakeup flags (%0 to disable)
377 *
378 * Enables/disables router to wake up from sleep.
379 */
380int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
381{
a5cfc9d6 382 struct usb4_port *usb4;
b2911a59
MW
383 struct tb_port *port;
384 u64 route = tb_route(sw);
385 u32 val;
386 int ret;
387
388 /*
389 * Enable wakes coming from all USB4 downstream ports (from
390 * child routers). For device routers do this also for the
391 * upstream USB4 port.
392 */
393 tb_switch_for_each_port(sw, port) {
f8fa2c2e
MW
394 if (!tb_port_is_null(port))
395 continue;
b2911a59
MW
396 if (!route && tb_is_upstream_port(port))
397 continue;
f8fa2c2e
MW
398 if (!port->cap_usb4)
399 continue;
b2911a59
MW
400
401 ret = tb_port_read(port, &val, TB_CFG_PORT,
402 port->cap_usb4 + PORT_CS_19, 1);
403 if (ret)
404 return ret;
405
406 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
407
3caf8887 408 if (tb_is_upstream_port(port)) {
b2911a59 409 val |= PORT_CS_19_WOU4;
3caf8887
MW
410 } else {
411 bool configured = val & PORT_CS_19_PC;
a5cfc9d6 412 usb4 = port->usb4;
3caf8887 413
a5cfc9d6
RK
414 if (((flags & TB_WAKE_ON_CONNECT) |
415 device_may_wakeup(&usb4->dev)) && !configured)
3caf8887 416 val |= PORT_CS_19_WOC;
a5cfc9d6
RK
417 if (((flags & TB_WAKE_ON_DISCONNECT) |
418 device_may_wakeup(&usb4->dev)) && configured)
3caf8887
MW
419 val |= PORT_CS_19_WOD;
420 if ((flags & TB_WAKE_ON_USB4) && configured)
421 val |= PORT_CS_19_WOU4;
422 }
b2911a59
MW
423
424 ret = tb_port_write(port, &val, TB_CFG_PORT,
425 port->cap_usb4 + PORT_CS_19, 1);
426 if (ret)
427 return ret;
428 }
429
430 /*
6026b703 431 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
b2911a59
MW
432 * needed for device routers.
433 */
434 if (route) {
435 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
436 if (ret)
437 return ret;
438
6026b703 439 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
b2911a59
MW
440 if (flags & TB_WAKE_ON_USB3)
441 val |= ROUTER_CS_5_WOU;
442 if (flags & TB_WAKE_ON_PCIE)
443 val |= ROUTER_CS_5_WOP;
6026b703
MW
444 if (flags & TB_WAKE_ON_DP)
445 val |= ROUTER_CS_5_WOD;
b2911a59
MW
446
447 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
448 if (ret)
449 return ret;
450 }
451
452 return 0;
453}
454
b0407983
MW
455/**
456 * usb4_switch_set_sleep() - Prepare the router to enter sleep
457 * @sw: USB4 router
458 *
b2911a59
MW
459 * Sets sleep bit for the router. Returns when the router sleep ready
460 * bit has been asserted.
b0407983
MW
461 */
462int usb4_switch_set_sleep(struct tb_switch *sw)
463{
464 int ret;
465 u32 val;
466
467 /* Set sleep bit and wait for sleep ready to be asserted */
468 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
469 if (ret)
470 return ret;
471
472 val |= ROUTER_CS_5_SLP;
473
474 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
475 if (ret)
476 return ret;
477
1639664f
GF
478 return tb_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
479 ROUTER_CS_6_SLPR, 500);
b0407983
MW
480}
481
482/**
483 * usb4_switch_nvm_sector_size() - Return router NVM sector size
484 * @sw: USB4 router
485 *
486 * If the router supports NVM operations this function returns the NVM
487 * sector size in bytes. If NVM operations are not supported returns
488 * %-EOPNOTSUPP.
489 */
490int usb4_switch_nvm_sector_size(struct tb_switch *sw)
491{
492 u32 metadata;
493 u8 status;
494 int ret;
495
fe265a06
MW
496 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
497 &status);
b0407983
MW
498 if (ret)
499 return ret;
500
501 if (status)
502 return status == 0x2 ? -EOPNOTSUPP : -EIO;
503
b0407983
MW
504 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
505}
506
7e72846b 507static int usb4_switch_nvm_read_block(void *data,
b0407983
MW
508 unsigned int dwaddress, void *buf, size_t dwords)
509{
7e72846b 510 struct tb_switch *sw = data;
b0407983
MW
511 u8 status = 0;
512 u32 metadata;
513 int ret;
514
515 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
516 USB4_NVM_READ_LENGTH_MASK;
517 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
518 USB4_NVM_READ_OFFSET_MASK;
519
83bab44a
MW
520 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
521 &status, NULL, 0, buf, dwords);
b0407983
MW
522 if (ret)
523 return ret;
524
83bab44a 525 return status ? -EIO : 0;
b0407983
MW
526}
527
528/**
529 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
530 * @sw: USB4 router
531 * @address: Starting address in bytes
532 * @buf: Read data is placed here
533 * @size: How many bytes to read
534 *
535 * Reads NVM contents of the router. If NVM is not supported returns
536 * %-EOPNOTSUPP.
537 */
538int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
539 size_t size)
540{
9b383037
MW
541 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
542 usb4_switch_nvm_read_block, sw);
b0407983
MW
543}
544
1cbf680f
MW
545/**
546 * usb4_switch_nvm_set_offset() - Set NVM write offset
547 * @sw: USB4 router
548 * @address: Start offset
549 *
550 * Explicitly sets NVM write offset. Normally when writing to NVM this
551 * is done automatically by usb4_switch_nvm_write().
552 *
553 * Returns %0 in success and negative errno if there was a failure.
554 */
555int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
b0407983
MW
556{
557 u32 metadata, dwaddress;
558 u8 status = 0;
559 int ret;
560
561 dwaddress = address / 4;
562 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
563 USB4_NVM_SET_OFFSET_MASK;
564
fe265a06
MW
565 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
566 &status);
b0407983
MW
567 if (ret)
568 return ret;
569
570 return status ? -EIO : 0;
571}
572
9b383037
MW
573static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
574 const void *buf, size_t dwords)
b0407983 575{
7e72846b 576 struct tb_switch *sw = data;
b0407983
MW
577 u8 status;
578 int ret;
579
83bab44a
MW
580 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
581 buf, dwords, NULL, 0);
b0407983
MW
582 if (ret)
583 return ret;
584
585 return status ? -EIO : 0;
586}
587
588/**
589 * usb4_switch_nvm_write() - Write to the router NVM
590 * @sw: USB4 router
591 * @address: Start address where to write in bytes
592 * @buf: Pointer to the data to write
593 * @size: Size of @buf in bytes
594 *
595 * Writes @buf to the router NVM using USB4 router operations. If NVM
596 * write is not supported returns %-EOPNOTSUPP.
597 */
598int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
599 const void *buf, size_t size)
600{
601 int ret;
602
603 ret = usb4_switch_nvm_set_offset(sw, address);
604 if (ret)
605 return ret;
606
9b383037
MW
607 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
608 usb4_switch_nvm_write_next_block, sw);
b0407983
MW
609}
610
611/**
612 * usb4_switch_nvm_authenticate() - Authenticate new NVM
613 * @sw: USB4 router
614 *
615 * After the new NVM has been written via usb4_switch_nvm_write(), this
661b1947
MW
616 * function triggers NVM authentication process. The router gets power
617 * cycled and if the authentication is successful the new NVM starts
b0407983 618 * running. In case of failure returns negative errno.
661b1947
MW
619 *
620 * The caller should call usb4_switch_nvm_authenticate_status() to read
621 * the status of the authentication after power cycle. It should be the
622 * first router operation to avoid the status being lost.
b0407983
MW
623 */
624int usb4_switch_nvm_authenticate(struct tb_switch *sw)
625{
b0407983
MW
626 int ret;
627
fe265a06 628 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
661b1947
MW
629 switch (ret) {
630 /*
631 * The router is power cycled once NVM_AUTH is started so it is
632 * expected to get any of the following errors back.
633 */
634 case -EACCES:
635 case -ENOTCONN:
636 case -ETIMEDOUT:
637 return 0;
638
639 default:
640 return ret;
641 }
642}
643
644/**
645 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
646 * @sw: USB4 router
647 * @status: Status code of the operation
648 *
649 * The function checks if there is status available from the last NVM
650 * authenticate router operation. If there is status then %0 is returned
651 * and the status code is placed in @status. Returns negative errno in case
652 * of failure.
653 *
654 * Must be called before any other router operation.
655 */
656int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
657{
9490f711 658 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
661b1947
MW
659 u16 opcode;
660 u32 val;
661 int ret;
662
9490f711
MW
663 if (cm_ops->usb4_switch_nvm_authenticate_status) {
664 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
665 if (ret != -EOPNOTSUPP)
666 return ret;
667 }
668
661b1947 669 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
b0407983
MW
670 if (ret)
671 return ret;
672
661b1947
MW
673 /* Check that the opcode is correct */
674 opcode = val & ROUTER_CS_26_OPCODE_MASK;
675 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
676 if (val & ROUTER_CS_26_OV)
677 return -EBUSY;
678 if (val & ROUTER_CS_26_ONS)
679 return -EOPNOTSUPP;
680
681 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
682 ROUTER_CS_26_STATUS_SHIFT;
683 } else {
684 *status = 0;
b0407983 685 }
661b1947
MW
686
687 return 0;
b0407983
MW
688}
689
56ad3aef
MW
690/**
691 * usb4_switch_credits_init() - Read buffer allocation parameters
692 * @sw: USB4 router
693 *
694 * Reads @sw buffer allocation parameters and initializes @sw buffer
695 * allocation fields accordingly. Specifically @sw->credits_allocation
696 * is set to %true if these parameters can be used in tunneling.
697 *
698 * Returns %0 on success and negative errno otherwise.
699 */
700int usb4_switch_credits_init(struct tb_switch *sw)
701{
702 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
703 int ret, length, i, nports;
704 const struct tb_port *port;
705 u32 data[NVM_DATA_DWORDS];
706 u32 metadata = 0;
707 u8 status = 0;
708
709 memset(data, 0, sizeof(data));
710 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
711 &status, NULL, 0, data, ARRAY_SIZE(data));
712 if (ret)
713 return ret;
714 if (status)
715 return -EIO;
716
717 length = metadata & USB4_BA_LENGTH_MASK;
718 if (WARN_ON(length > ARRAY_SIZE(data)))
719 return -EMSGSIZE;
720
721 max_usb3 = -1;
722 min_dp_aux = -1;
723 min_dp_main = -1;
724 max_pcie = -1;
725 max_dma = -1;
726
727 tb_sw_dbg(sw, "credit allocation parameters:\n");
728
729 for (i = 0; i < length; i++) {
730 u16 index, value;
731
732 index = data[i] & USB4_BA_INDEX_MASK;
733 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
734
735 switch (index) {
736 case USB4_BA_MAX_USB3:
737 tb_sw_dbg(sw, " USB3: %u\n", value);
738 max_usb3 = value;
739 break;
740 case USB4_BA_MIN_DP_AUX:
741 tb_sw_dbg(sw, " DP AUX: %u\n", value);
742 min_dp_aux = value;
743 break;
744 case USB4_BA_MIN_DP_MAIN:
745 tb_sw_dbg(sw, " DP main: %u\n", value);
746 min_dp_main = value;
747 break;
748 case USB4_BA_MAX_PCIE:
749 tb_sw_dbg(sw, " PCIe: %u\n", value);
750 max_pcie = value;
751 break;
752 case USB4_BA_MAX_HI:
753 tb_sw_dbg(sw, " DMA: %u\n", value);
754 max_dma = value;
755 break;
756 default:
757 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
758 index);
759 break;
760 }
761 }
762
763 /*
764 * Validate the buffer allocation preferences. If we find
765 * issues, log a warning and fall back using the hard-coded
766 * values.
767 */
768
769 /* Host router must report baMaxHI */
770 if (!tb_route(sw) && max_dma < 0) {
771 tb_sw_warn(sw, "host router is missing baMaxHI\n");
772 goto err_invalid;
773 }
774
775 nports = 0;
776 tb_switch_for_each_port(sw, port) {
777 if (tb_port_is_null(port))
778 nports++;
779 }
780
781 /* Must have DP buffer allocation (multiple USB4 ports) */
782 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
783 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
784 goto err_invalid;
785 }
786
787 tb_switch_for_each_port(sw, port) {
788 if (tb_port_is_dpout(port) && min_dp_main < 0) {
789 tb_sw_warn(sw, "missing baMinDPmain");
790 goto err_invalid;
791 }
792 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
793 min_dp_aux < 0) {
794 tb_sw_warn(sw, "missing baMinDPaux");
795 goto err_invalid;
796 }
797 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
798 max_usb3 < 0) {
799 tb_sw_warn(sw, "missing baMaxUSB3");
800 goto err_invalid;
801 }
802 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
803 max_pcie < 0) {
804 tb_sw_warn(sw, "missing baMaxPCIe");
805 goto err_invalid;
806 }
807 }
808
809 /*
810 * Buffer allocation passed the validation so we can use it in
811 * path creation.
812 */
813 sw->credit_allocation = true;
814 if (max_usb3 > 0)
815 sw->max_usb3_credits = max_usb3;
816 if (min_dp_aux > 0)
817 sw->min_dp_aux_credits = min_dp_aux;
818 if (min_dp_main > 0)
819 sw->min_dp_main_credits = min_dp_main;
820 if (max_pcie > 0)
821 sw->max_pcie_credits = max_pcie;
822 if (max_dma > 0)
823 sw->max_dma_credits = max_dma;
824
825 return 0;
826
827err_invalid:
828 return -EINVAL;
829}
830
b0407983
MW
831/**
832 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
833 * @sw: USB4 router
834 * @in: DP IN adapter
835 *
836 * For DP tunneling this function can be used to query availability of
837 * DP IN resource. Returns true if the resource is available for DP
838 * tunneling, false otherwise.
839 */
840bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
841{
fe265a06 842 u32 metadata = in->port;
b0407983
MW
843 u8 status;
844 int ret;
845
fe265a06
MW
846 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
847 &status);
b0407983
MW
848 /*
849 * If DP resource allocation is not supported assume it is
850 * always available.
851 */
852 if (ret == -EOPNOTSUPP)
853 return true;
854 else if (ret)
855 return false;
856
857 return !status;
858}
859
860/**
861 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
862 * @sw: USB4 router
863 * @in: DP IN adapter
864 *
865 * Allocates DP IN resource for DP tunneling using USB4 router
866 * operations. If the resource was allocated returns %0. Otherwise
867 * returns negative errno, in particular %-EBUSY if the resource is
868 * already allocated.
869 */
870int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
871{
fe265a06 872 u32 metadata = in->port;
b0407983
MW
873 u8 status;
874 int ret;
875
fe265a06
MW
876 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
877 &status);
b0407983
MW
878 if (ret == -EOPNOTSUPP)
879 return 0;
880 else if (ret)
881 return ret;
882
883 return status ? -EBUSY : 0;
884}
885
886/**
887 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
888 * @sw: USB4 router
889 * @in: DP IN adapter
890 *
891 * Releases the previously allocated DP IN resource.
892 */
893int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
894{
fe265a06 895 u32 metadata = in->port;
b0407983
MW
896 u8 status;
897 int ret;
898
fe265a06
MW
899 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
900 &status);
b0407983
MW
901 if (ret == -EOPNOTSUPP)
902 return 0;
903 else if (ret)
904 return ret;
905
906 return status ? -EIO : 0;
907}
908
909static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
910{
911 struct tb_port *p;
912 int usb4_idx = 0;
913
914 /* Assume port is primary */
915 tb_switch_for_each_port(sw, p) {
916 if (!tb_port_is_null(p))
917 continue;
918 if (tb_is_upstream_port(p))
919 continue;
920 if (!p->link_nr) {
921 if (p == port)
922 break;
923 usb4_idx++;
924 }
925 }
926
927 return usb4_idx;
928}
929
930/**
931 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
932 * @sw: USB4 router
933 * @port: USB4 port
934 *
935 * USB4 routers have direct mapping between USB4 ports and PCIe
936 * downstream adapters where the PCIe topology is extended. This
937 * function returns the corresponding downstream PCIe adapter or %NULL
938 * if no such mapping was possible.
939 */
940struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
941 const struct tb_port *port)
942{
943 int usb4_idx = usb4_port_idx(sw, port);
944 struct tb_port *p;
945 int pcie_idx = 0;
946
947 /* Find PCIe down port matching usb4_port */
948 tb_switch_for_each_port(sw, p) {
949 if (!tb_port_is_pcie_down(p))
950 continue;
951
9cac51a0 952 if (pcie_idx == usb4_idx)
b0407983
MW
953 return p;
954
955 pcie_idx++;
956 }
957
958 return NULL;
959}
960
e6f81858
RM
961/**
962 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
963 * @sw: USB4 router
964 * @port: USB4 port
965 *
966 * USB4 routers have direct mapping between USB4 ports and USB 3.x
967 * downstream adapters where the USB 3.x topology is extended. This
968 * function returns the corresponding downstream USB 3.x adapter or
969 * %NULL if no such mapping was possible.
970 */
971struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
972 const struct tb_port *port)
973{
974 int usb4_idx = usb4_port_idx(sw, port);
975 struct tb_port *p;
976 int usb_idx = 0;
977
978 /* Find USB3 down port matching usb4_port */
979 tb_switch_for_each_port(sw, p) {
980 if (!tb_port_is_usb3_down(p))
981 continue;
982
77cfa40f 983 if (usb_idx == usb4_idx)
e6f81858
RM
984 return p;
985
986 usb_idx++;
987 }
988
989 return NULL;
990}
991
cae5f515
MW
992/**
993 * usb4_switch_add_ports() - Add USB4 ports for this router
994 * @sw: USB4 router
995 *
996 * For USB4 router finds all USB4 ports and registers devices for each.
997 * Can be called to any router.
998 *
999 * Return %0 in case of success and negative errno in case of failure.
1000 */
1001int usb4_switch_add_ports(struct tb_switch *sw)
1002{
1003 struct tb_port *port;
1004
1005 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1006 return 0;
1007
1008 tb_switch_for_each_port(sw, port) {
1009 struct usb4_port *usb4;
1010
1011 if (!tb_port_is_null(port))
1012 continue;
1013 if (!port->cap_usb4)
1014 continue;
1015
1016 usb4 = usb4_port_device_add(port);
1017 if (IS_ERR(usb4)) {
1018 usb4_switch_remove_ports(sw);
1019 return PTR_ERR(usb4);
1020 }
1021
1022 port->usb4 = usb4;
1023 }
1024
1025 return 0;
1026}
1027
1028/**
1029 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1030 * @sw: USB4 router
1031 *
1032 * Unregisters previously registered USB4 ports.
1033 */
1034void usb4_switch_remove_ports(struct tb_switch *sw)
1035{
1036 struct tb_port *port;
1037
1038 tb_switch_for_each_port(sw, port) {
1039 if (port->usb4) {
1040 usb4_port_device_remove(port->usb4);
1041 port->usb4 = NULL;
1042 }
1043 }
1044}
1045
b0407983
MW
1046/**
1047 * usb4_port_unlock() - Unlock USB4 downstream port
1048 * @port: USB4 port to unlock
1049 *
1050 * Unlocks USB4 downstream port so that the connection manager can
1051 * access the router below this port.
1052 */
1053int usb4_port_unlock(struct tb_port *port)
1054{
1055 int ret;
1056 u32 val;
1057
1058 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1059 if (ret)
1060 return ret;
1061
1062 val &= ~ADP_CS_4_LCK;
1063 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1064}
3b1d8d57 1065
5d2569cb
ML
1066/**
1067 * usb4_port_hotplug_enable() - Enables hotplug for a port
1068 * @port: USB4 port to operate on
1069 *
1070 * Enables hot plug events on a given port. This is only intended
1071 * to be used on lane, DP-IN, and DP-OUT adapters.
1072 */
1073int usb4_port_hotplug_enable(struct tb_port *port)
1074{
1075 int ret;
1076 u32 val;
1077
1078 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1079 if (ret)
1080 return ret;
1081
1082 val &= ~ADP_CS_5_DHP;
1083 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_5, 1);
1084}
1085
e28178bf
MW
1086static int usb4_port_set_configured(struct tb_port *port, bool configured)
1087{
1088 int ret;
1089 u32 val;
1090
1091 if (!port->cap_usb4)
1092 return -EINVAL;
1093
1094 ret = tb_port_read(port, &val, TB_CFG_PORT,
1095 port->cap_usb4 + PORT_CS_19, 1);
1096 if (ret)
1097 return ret;
1098
1099 if (configured)
1100 val |= PORT_CS_19_PC;
1101 else
1102 val &= ~PORT_CS_19_PC;
1103
1104 return tb_port_write(port, &val, TB_CFG_PORT,
1105 port->cap_usb4 + PORT_CS_19, 1);
1106}
1107
1108/**
1109 * usb4_port_configure() - Set USB4 port configured
1110 * @port: USB4 router
1111 *
1112 * Sets the USB4 link to be configured for power management purposes.
1113 */
1114int usb4_port_configure(struct tb_port *port)
1115{
1116 return usb4_port_set_configured(port, true);
1117}
1118
1119/**
1120 * usb4_port_unconfigure() - Set USB4 port unconfigured
1121 * @port: USB4 router
1122 *
1123 * Sets the USB4 link to be unconfigured for power management purposes.
1124 */
1125void usb4_port_unconfigure(struct tb_port *port)
1126{
1127 usb4_port_set_configured(port, false);
1128}
1129
284652a4
MW
1130static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1131{
1132 int ret;
1133 u32 val;
1134
1135 if (!port->cap_usb4)
1136 return -EINVAL;
1137
1138 ret = tb_port_read(port, &val, TB_CFG_PORT,
1139 port->cap_usb4 + PORT_CS_19, 1);
1140 if (ret)
1141 return ret;
1142
1143 if (configured)
1144 val |= PORT_CS_19_PID;
1145 else
1146 val &= ~PORT_CS_19_PID;
1147
1148 return tb_port_write(port, &val, TB_CFG_PORT,
1149 port->cap_usb4 + PORT_CS_19, 1);
1150}
1151
1152/**
1153 * usb4_port_configure_xdomain() - Configure port for XDomain
1154 * @port: USB4 port connected to another host
f9cad07b 1155 * @xd: XDomain that is connected to the port
284652a4 1156 *
f9cad07b
MW
1157 * Marks the USB4 port as being connected to another host and updates
1158 * the link type. Returns %0 in success and negative errno in failure.
284652a4 1159 */
f9cad07b 1160int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
284652a4 1161{
f9cad07b 1162 xd->link_usb4 = link_is_usb4(port);
284652a4
MW
1163 return usb4_set_xdomain_configured(port, true);
1164}
1165
1166/**
1167 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1168 * @port: USB4 port that was connected to another host
1169 *
1170 * Clears USB4 port from being marked as XDomain.
1171 */
1172void usb4_port_unconfigure_xdomain(struct tb_port *port)
1173{
1174 usb4_set_xdomain_configured(port, false);
1175}
1176
3b1d8d57
MW
1177static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1178 u32 value, int timeout_msec)
1179{
1180 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1181
1182 do {
1183 u32 val;
1184 int ret;
1185
1186 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1187 if (ret)
1188 return ret;
1189
1190 if ((val & bit) == value)
1191 return 0;
1192
1193 usleep_range(50, 100);
1194 } while (ktime_before(ktime_get(), timeout));
1195
1196 return -ETIMEDOUT;
1197}
1198
02d12855
RM
1199static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1200{
9b383037 1201 if (dwords > NVM_DATA_DWORDS)
02d12855
RM
1202 return -EINVAL;
1203
1204 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1205 dwords);
1206}
1207
1208static int usb4_port_write_data(struct tb_port *port, const void *data,
1209 size_t dwords)
1210{
9b383037 1211 if (dwords > NVM_DATA_DWORDS)
02d12855
RM
1212 return -EINVAL;
1213
1214 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1215 dwords);
1216}
1217
1218static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1219 u8 index, u8 reg, void *buf, u8 size)
1220{
1221 size_t dwords = DIV_ROUND_UP(size, 4);
1222 int ret;
1223 u32 val;
1224
1225 if (!port->cap_usb4)
1226 return -EINVAL;
1227
1228 val = reg;
1229 val |= size << PORT_CS_1_LENGTH_SHIFT;
1230 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1231 if (target == USB4_SB_TARGET_RETIMER)
1232 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1233 val |= PORT_CS_1_PND;
1234
1235 ret = tb_port_write(port, &val, TB_CFG_PORT,
1236 port->cap_usb4 + PORT_CS_1, 1);
1237 if (ret)
1238 return ret;
1239
1240 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1241 PORT_CS_1_PND, 0, 500);
1242 if (ret)
1243 return ret;
1244
1245 ret = tb_port_read(port, &val, TB_CFG_PORT,
1246 port->cap_usb4 + PORT_CS_1, 1);
1247 if (ret)
1248 return ret;
1249
1250 if (val & PORT_CS_1_NR)
1251 return -ENODEV;
1252 if (val & PORT_CS_1_RC)
1253 return -EIO;
1254
1255 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1256}
1257
1258static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1259 u8 index, u8 reg, const void *buf, u8 size)
1260{
1261 size_t dwords = DIV_ROUND_UP(size, 4);
1262 int ret;
1263 u32 val;
1264
1265 if (!port->cap_usb4)
1266 return -EINVAL;
1267
1268 if (buf) {
1269 ret = usb4_port_write_data(port, buf, dwords);
1270 if (ret)
1271 return ret;
1272 }
1273
1274 val = reg;
1275 val |= size << PORT_CS_1_LENGTH_SHIFT;
1276 val |= PORT_CS_1_WNR_WRITE;
1277 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1278 if (target == USB4_SB_TARGET_RETIMER)
1279 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1280 val |= PORT_CS_1_PND;
1281
1282 ret = tb_port_write(port, &val, TB_CFG_PORT,
1283 port->cap_usb4 + PORT_CS_1, 1);
1284 if (ret)
1285 return ret;
1286
1287 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1288 PORT_CS_1_PND, 0, 500);
1289 if (ret)
1290 return ret;
1291
1292 ret = tb_port_read(port, &val, TB_CFG_PORT,
1293 port->cap_usb4 + PORT_CS_1, 1);
1294 if (ret)
1295 return ret;
1296
1297 if (val & PORT_CS_1_NR)
1298 return -ENODEV;
1299 if (val & PORT_CS_1_RC)
1300 return -EIO;
1301
1302 return 0;
1303}
1304
1305static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1306 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1307{
1308 ktime_t timeout;
1309 u32 val;
1310 int ret;
1311
1312 val = opcode;
1313 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1314 sizeof(val));
1315 if (ret)
1316 return ret;
1317
1318 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1319
1320 do {
1321 /* Check results */
1322 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1323 &val, sizeof(val));
1324 if (ret)
1325 return ret;
1326
1327 switch (val) {
1328 case 0:
1329 return 0;
1330
1331 case USB4_SB_OPCODE_ERR:
1332 return -EAGAIN;
1333
1334 case USB4_SB_OPCODE_ONS:
1335 return -EOPNOTSUPP;
1336
1337 default:
1338 if (val != opcode)
1339 return -EIO;
1340 break;
1341 }
1342 } while (ktime_before(ktime_get(), timeout));
1343
1344 return -ETIMEDOUT;
1345}
1346
3406de7c
RM
1347static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1348{
1349 u32 val = !offline;
1350 int ret;
1351
1352 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1353 USB4_SB_METADATA, &val, sizeof(val));
1354 if (ret)
1355 return ret;
1356
1357 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1358 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1359 USB4_SB_OPCODE, &val, sizeof(val));
1360}
1361
1362/**
1363 * usb4_port_router_offline() - Put the USB4 port to offline mode
1364 * @port: USB4 port
1365 *
1366 * This function puts the USB4 port into offline mode. In this mode the
1367 * port does not react on hotplug events anymore. This needs to be
1368 * called before retimer access is done when the USB4 links is not up.
1369 *
1370 * Returns %0 in case of success and negative errno if there was an
1371 * error.
1372 */
1373int usb4_port_router_offline(struct tb_port *port)
1374{
1375 return usb4_port_set_router_offline(port, true);
1376}
1377
1378/**
1379 * usb4_port_router_online() - Put the USB4 port back to online
1380 * @port: USB4 port
1381 *
1382 * Makes the USB4 port functional again.
1383 */
1384int usb4_port_router_online(struct tb_port *port)
1385{
1386 return usb4_port_set_router_offline(port, false);
1387}
1388
02d12855
RM
1389/**
1390 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1391 * @port: USB4 port
1392 *
1393 * This forces the USB4 port to send broadcast RT transaction which
1394 * makes the retimers on the link to assign index to themselves. Returns
1395 * %0 in case of success and negative errno if there was an error.
1396 */
1397int usb4_port_enumerate_retimers(struct tb_port *port)
1398{
1399 u32 val;
1400
1401 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1402 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1403 USB4_SB_OPCODE, &val, sizeof(val));
1404}
1405
8a90e4fa
GF
1406/**
1407 * usb4_port_clx_supported() - Check if CLx is supported by the link
1408 * @port: Port to check for CLx support for
1409 *
1410 * PORT_CS_18_CPS bit reflects if the link supports CLx including
1411 * active cables (if connected on the link).
1412 */
1413bool usb4_port_clx_supported(struct tb_port *port)
1414{
1415 int ret;
1416 u32 val;
1417
1418 ret = tb_port_read(port, &val, TB_CFG_PORT,
1419 port->cap_usb4 + PORT_CS_18, 1);
1420 if (ret)
1421 return false;
1422
1423 return !!(val & PORT_CS_18_CPS);
1424}
1425
d0f1e0c2
MW
1426/**
1427 * usb4_port_margining_caps() - Read USB4 port marginig capabilities
1428 * @port: USB4 port
1429 * @caps: Array with at least two elements to hold the results
1430 *
1431 * Reads the USB4 port lane margining capabilities into @caps.
1432 */
1433int usb4_port_margining_caps(struct tb_port *port, u32 *caps)
1434{
1435 int ret;
1436
1437 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1438 USB4_SB_OPCODE_READ_LANE_MARGINING_CAP, 500);
1439 if (ret)
1440 return ret;
1441
1442 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1443 USB4_SB_DATA, caps, sizeof(*caps) * 2);
1444}
1445
1446/**
1447 * usb4_port_hw_margin() - Run hardware lane margining on port
1448 * @port: USB4 port
1449 * @lanes: Which lanes to run (must match the port capabilities). Can be
1450 * %0, %1 or %7.
1451 * @ber_level: BER level contour value
1452 * @timing: Perform timing margining instead of voltage
1453 * @right_high: Use Right/high margin instead of left/low
1454 * @results: Array with at least two elements to hold the results
1455 *
1456 * Runs hardware lane margining on USB4 port and returns the result in
1457 * @results.
1458 */
1459int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
1460 unsigned int ber_level, bool timing, bool right_high,
1461 u32 *results)
1462{
1463 u32 val;
1464 int ret;
1465
1466 val = lanes;
1467 if (timing)
1468 val |= USB4_MARGIN_HW_TIME;
1469 if (right_high)
1470 val |= USB4_MARGIN_HW_RH;
1471 if (ber_level)
1472 val |= (ber_level << USB4_MARGIN_HW_BER_SHIFT) &
1473 USB4_MARGIN_HW_BER_MASK;
1474
1475 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1476 USB4_SB_METADATA, &val, sizeof(val));
1477 if (ret)
1478 return ret;
1479
1480 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1481 USB4_SB_OPCODE_RUN_HW_LANE_MARGINING, 2500);
1482 if (ret)
1483 return ret;
1484
1485 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1486 USB4_SB_DATA, results, sizeof(*results) * 2);
1487}
1488
1489/**
1490 * usb4_port_sw_margin() - Run software lane margining on port
1491 * @port: USB4 port
1492 * @lanes: Which lanes to run (must match the port capabilities). Can be
1493 * %0, %1 or %7.
1494 * @timing: Perform timing margining instead of voltage
1495 * @right_high: Use Right/high margin instead of left/low
1496 * @counter: What to do with the error counter
1497 *
1498 * Runs software lane margining on USB4 port. Read back the error
1499 * counters by calling usb4_port_sw_margin_errors(). Returns %0 in
1500 * success and negative errno otherwise.
1501 */
1502int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
1503 bool right_high, u32 counter)
1504{
1505 u32 val;
1506 int ret;
1507
1508 val = lanes;
1509 if (timing)
1510 val |= USB4_MARGIN_SW_TIME;
1511 if (right_high)
1512 val |= USB4_MARGIN_SW_RH;
1513 val |= (counter << USB4_MARGIN_SW_COUNTER_SHIFT) &
1514 USB4_MARGIN_SW_COUNTER_MASK;
1515
1516 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1517 USB4_SB_METADATA, &val, sizeof(val));
1518 if (ret)
1519 return ret;
1520
1521 return usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1522 USB4_SB_OPCODE_RUN_SW_LANE_MARGINING, 2500);
1523}
1524
1525/**
1526 * usb4_port_sw_margin_errors() - Read the software margining error counters
1527 * @port: USB4 port
1528 * @errors: Error metadata is copied here.
1529 *
1530 * This reads back the software margining error counters from the port.
1531 * Returns %0 in success and negative errno otherwise.
1532 */
1533int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors)
1534{
1535 int ret;
1536
1537 ret = usb4_port_sb_op(port, USB4_SB_TARGET_ROUTER, 0,
1538 USB4_SB_OPCODE_READ_SW_MARGIN_ERR, 150);
1539 if (ret)
1540 return ret;
1541
1542 return usb4_port_sb_read(port, USB4_SB_TARGET_ROUTER, 0,
1543 USB4_SB_METADATA, errors, sizeof(*errors));
1544}
1545
02d12855
RM
1546static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1547 enum usb4_sb_opcode opcode,
1548 int timeout_msec)
1549{
1550 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1551 timeout_msec);
1552}
1553
3406de7c
RM
1554/**
1555 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1556 * @port: USB4 port
1557 * @index: Retimer index
1558 *
1559 * Enables sideband channel transations on SBTX. Can be used when USB4
1560 * link does not go up, for example if there is no device connected.
1561 */
1562int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1563{
1564 int ret;
1565
1566 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1567 500);
1568
1569 if (ret != -ENODEV)
1570 return ret;
1571
1572 /*
1573 * Per the USB4 retimer spec, the retimer is not required to
1574 * send an RT (Retimer Transaction) response for the first
1575 * SET_INBOUND_SBTX command
1576 */
1577 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1578 500);
1579}
1580
cd0c1e58
GF
1581/**
1582 * usb4_port_retimer_unset_inbound_sbtx() - Disable sideband channel transactions
1583 * @port: USB4 port
1584 * @index: Retimer index
1585 *
1586 * Disables sideband channel transations on SBTX. The reverse of
1587 * usb4_port_retimer_set_inbound_sbtx().
1588 */
1589int usb4_port_retimer_unset_inbound_sbtx(struct tb_port *port, u8 index)
1590{
1591 return usb4_port_retimer_op(port, index,
1592 USB4_SB_OPCODE_UNSET_INBOUND_SBTX, 500);
1593}
1594
02d12855
RM
1595/**
1596 * usb4_port_retimer_read() - Read from retimer sideband registers
1597 * @port: USB4 port
1598 * @index: Retimer index
1599 * @reg: Sideband register to read
1600 * @buf: Data from @reg is stored here
1601 * @size: Number of bytes to read
1602 *
1603 * Function reads retimer sideband registers starting from @reg. The
1604 * retimer is connected to @port at @index. Returns %0 in case of
1605 * success, and read data is copied to @buf. If there is no retimer
1606 * present at given @index returns %-ENODEV. In any other failure
1607 * returns negative errno.
1608 */
1609int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1610 u8 size)
1611{
1612 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1613 size);
1614}
1615
1616/**
1617 * usb4_port_retimer_write() - Write to retimer sideband registers
1618 * @port: USB4 port
1619 * @index: Retimer index
1620 * @reg: Sideband register to write
1621 * @buf: Data that is written starting from @reg
1622 * @size: Number of bytes to write
1623 *
1624 * Writes retimer sideband registers starting from @reg. The retimer is
1625 * connected to @port at @index. Returns %0 in case of success. If there
1626 * is no retimer present at given @index returns %-ENODEV. In any other
1627 * failure returns negative errno.
1628 */
1629int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1630 const void *buf, u8 size)
1631{
1632 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1633 size);
1634}
1635
1636/**
1637 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1638 * @port: USB4 port
1639 * @index: Retimer index
1640 *
1641 * If the retimer at @index is last one (connected directly to the
1642 * Type-C port) this function returns %1. If it is not returns %0. If
1643 * the retimer is not present returns %-ENODEV. Otherwise returns
1644 * negative errno.
1645 */
1646int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1647{
1648 u32 metadata;
1649 int ret;
1650
1651 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1652 500);
1653 if (ret)
1654 return ret;
1655
1656 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1657 sizeof(metadata));
1658 return ret ? ret : metadata & 1;
1659}
1660
1661/**
1662 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1663 * @port: USB4 port
1664 * @index: Retimer index
1665 *
1666 * Reads NVM sector size (in bytes) of a retimer at @index. This
1667 * operation can be used to determine whether the retimer supports NVM
1668 * upgrade for example. Returns sector size in bytes or negative errno
1669 * in case of error. Specifically returns %-ENODEV if there is no
1670 * retimer at @index.
1671 */
1672int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1673{
1674 u32 metadata;
1675 int ret;
1676
1677 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1678 500);
1679 if (ret)
1680 return ret;
1681
1682 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1683 sizeof(metadata));
1684 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1685}
1686
faa1c615
RM
1687/**
1688 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1689 * @port: USB4 port
1690 * @index: Retimer index
1691 * @address: Start offset
1692 *
1693 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1694 * done automatically by usb4_port_retimer_nvm_write().
1695 *
1696 * Returns %0 in success and negative errno if there was a failure.
1697 */
1698int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1699 unsigned int address)
02d12855
RM
1700{
1701 u32 metadata, dwaddress;
1702 int ret;
1703
1704 dwaddress = address / 4;
1705 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1706 USB4_NVM_SET_OFFSET_MASK;
1707
1708 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1709 sizeof(metadata));
1710 if (ret)
1711 return ret;
1712
1713 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1714 500);
1715}
1716
1717struct retimer_info {
1718 struct tb_port *port;
1719 u8 index;
1720};
1721
9b383037
MW
1722static int usb4_port_retimer_nvm_write_next_block(void *data,
1723 unsigned int dwaddress, const void *buf, size_t dwords)
02d12855
RM
1724
1725{
1726 const struct retimer_info *info = data;
1727 struct tb_port *port = info->port;
1728 u8 index = info->index;
1729 int ret;
1730
1731 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1732 buf, dwords * 4);
1733 if (ret)
1734 return ret;
1735
1736 return usb4_port_retimer_op(port, index,
1737 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1738}
1739
1740/**
1741 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1742 * @port: USB4 port
1743 * @index: Retimer index
1744 * @address: Byte address where to start the write
1745 * @buf: Data to write
1746 * @size: Size in bytes how much to write
1747 *
1748 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1749 * upgrade. Returns %0 if the data was written successfully and negative
1750 * errno in case of failure. Specifically returns %-ENODEV if there is
1751 * no retimer at @index.
1752 */
1753int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1754 const void *buf, size_t size)
1755{
1756 struct retimer_info info = { .port = port, .index = index };
1757 int ret;
1758
1759 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1760 if (ret)
1761 return ret;
1762
9b383037
MW
1763 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1764 usb4_port_retimer_nvm_write_next_block, &info);
02d12855
RM
1765}
1766
1767/**
1768 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1769 * @port: USB4 port
1770 * @index: Retimer index
1771 *
1772 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1773 * this function can be used to trigger the NVM upgrade process. If
1774 * successful the retimer restarts with the new NVM and may not have the
1775 * index set so one needs to call usb4_port_enumerate_retimers() to
1776 * force index to be assigned.
1777 */
1778int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1779{
1780 u32 val;
1781
1782 /*
1783 * We need to use the raw operation here because once the
1784 * authentication completes the retimer index is not set anymore
1785 * so we do not get back the status now.
1786 */
1787 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1788 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1789 USB4_SB_OPCODE, &val, sizeof(val));
1790}
1791
1792/**
1793 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1794 * @port: USB4 port
1795 * @index: Retimer index
1796 * @status: Raw status code read from metadata
1797 *
1798 * This can be called after usb4_port_retimer_nvm_authenticate() and
1799 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1800 *
1801 * Returns %0 if the authentication status was successfully read. The
1802 * completion metadata (the result) is then stored into @status. If
1803 * reading the status fails, returns negative errno.
1804 */
1805int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1806 u32 *status)
1807{
1808 u32 metadata, val;
1809 int ret;
1810
1811 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1812 sizeof(val));
1813 if (ret)
1814 return ret;
1815
1816 switch (val) {
1817 case 0:
1818 *status = 0;
1819 return 0;
1820
1821 case USB4_SB_OPCODE_ERR:
1822 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1823 &metadata, sizeof(metadata));
1824 if (ret)
1825 return ret;
1826
1827 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1828 return 0;
1829
1830 case USB4_SB_OPCODE_ONS:
1831 return -EOPNOTSUPP;
1832
1833 default:
1834 return -EIO;
1835 }
1836}
1837
1838static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1839 void *buf, size_t dwords)
1840{
1841 const struct retimer_info *info = data;
1842 struct tb_port *port = info->port;
1843 u8 index = info->index;
1844 u32 metadata;
1845 int ret;
1846
1847 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
9b383037 1848 if (dwords < NVM_DATA_DWORDS)
02d12855
RM
1849 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1850
1851 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1852 sizeof(metadata));
1853 if (ret)
1854 return ret;
1855
1856 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1857 if (ret)
1858 return ret;
1859
1860 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1861 dwords * 4);
1862}
1863
1864/**
1865 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1866 * @port: USB4 port
1867 * @index: Retimer index
1868 * @address: NVM address (in bytes) to start reading
1869 * @buf: Data read from NVM is stored here
1870 * @size: Number of bytes to read
1871 *
1872 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1873 * read was successful and negative errno in case of failure.
1874 * Specifically returns %-ENODEV if there is no retimer at @index.
1875 */
1876int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1877 unsigned int address, void *buf, size_t size)
1878{
1879 struct retimer_info info = { .port = port, .index = index };
1880
9b383037
MW
1881 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1882 usb4_port_retimer_nvm_read_block, &info);
02d12855
RM
1883}
1884
f0a57dd3
GF
1885static inline unsigned int
1886usb4_usb3_port_max_bandwidth(const struct tb_port *port, unsigned int bw)
1887{
1888 /* Take the possible bandwidth limitation into account */
1889 if (port->max_bw)
1890 return min(bw, port->max_bw);
1891 return bw;
1892}
1893
3b1d8d57
MW
1894/**
1895 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1896 * @port: USB3 adapter port
1897 *
1898 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1899 * Negative errno in case of error.
1900 */
1901int usb4_usb3_port_max_link_rate(struct tb_port *port)
1902{
1903 int ret, lr;
1904 u32 val;
1905
1906 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1907 return -EINVAL;
1908
1909 ret = tb_port_read(port, &val, TB_CFG_PORT,
1910 port->cap_adap + ADP_USB3_CS_4, 1);
1911 if (ret)
1912 return ret;
1913
1914 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
f0a57dd3
GF
1915 ret = lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1916
1917 return usb4_usb3_port_max_bandwidth(port, ret);
3b1d8d57
MW
1918}
1919
1920/**
1921 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1922 * @port: USB3 adapter port
1923 *
1924 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1925 * link is not up returns %0 and negative errno in case of failure.
1926 */
1927int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1928{
1929 int ret, lr;
1930 u32 val;
1931
1932 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1933 return -EINVAL;
1934
1935 ret = tb_port_read(port, &val, TB_CFG_PORT,
1936 port->cap_adap + ADP_USB3_CS_4, 1);
1937 if (ret)
1938 return ret;
1939
1940 if (!(val & ADP_USB3_CS_4_ULV))
1941 return 0;
1942
1943 lr = val & ADP_USB3_CS_4_ALR_MASK;
f0a57dd3
GF
1944 ret = lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1945
1946 return usb4_usb3_port_max_bandwidth(port, ret);
3b1d8d57
MW
1947}
1948
1949static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1950{
1951 int ret;
1952 u32 val;
1953
1954 if (!tb_port_is_usb3_down(port))
1955 return -EINVAL;
1956 if (tb_route(port->sw))
1957 return -EINVAL;
1958
1959 ret = tb_port_read(port, &val, TB_CFG_PORT,
1960 port->cap_adap + ADP_USB3_CS_2, 1);
1961 if (ret)
1962 return ret;
1963
1964 if (request)
1965 val |= ADP_USB3_CS_2_CMR;
1966 else
1967 val &= ~ADP_USB3_CS_2_CMR;
1968
1969 ret = tb_port_write(port, &val, TB_CFG_PORT,
1970 port->cap_adap + ADP_USB3_CS_2, 1);
1971 if (ret)
1972 return ret;
1973
1974 /*
1975 * We can use val here directly as the CMR bit is in the same place
1976 * as HCA. Just mask out others.
1977 */
1978 val &= ADP_USB3_CS_2_CMR;
1979 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1980 ADP_USB3_CS_1_HCA, val, 1500);
1981}
1982
1983static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1984{
1985 return usb4_usb3_port_cm_request(port, true);
1986}
1987
1988static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1989{
1990 return usb4_usb3_port_cm_request(port, false);
1991}
1992
1993static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1994{
1995 unsigned long uframes;
1996
4c767ce4 1997 uframes = bw * 512UL << scale;
3b1d8d57
MW
1998 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1999}
2000
2001static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
2002{
2003 unsigned long uframes;
2004
2005 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
2006 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
4c767ce4 2007 return DIV_ROUND_UP(uframes, 512UL << scale);
3b1d8d57
MW
2008}
2009
2010static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
2011 int *upstream_bw,
2012 int *downstream_bw)
2013{
2014 u32 val, bw, scale;
2015 int ret;
2016
2017 ret = tb_port_read(port, &val, TB_CFG_PORT,
2018 port->cap_adap + ADP_USB3_CS_2, 1);
2019 if (ret)
2020 return ret;
2021
2022 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2023 port->cap_adap + ADP_USB3_CS_3, 1);
2024 if (ret)
2025 return ret;
2026
2027 scale &= ADP_USB3_CS_3_SCALE_MASK;
2028
2029 bw = val & ADP_USB3_CS_2_AUBW_MASK;
2030 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2031
2032 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
2033 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2034
2035 return 0;
2036}
2037
2038/**
2039 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
2040 * @port: USB3 adapter port
2041 * @upstream_bw: Allocated upstream bandwidth is stored here
2042 * @downstream_bw: Allocated downstream bandwidth is stored here
2043 *
2044 * Stores currently allocated USB3 bandwidth into @upstream_bw and
2045 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
2046 * errno in failure.
2047 */
2048int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
2049 int *downstream_bw)
2050{
2051 int ret;
2052
2053 ret = usb4_usb3_port_set_cm_request(port);
2054 if (ret)
2055 return ret;
2056
2057 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
2058 downstream_bw);
2059 usb4_usb3_port_clear_cm_request(port);
2060
2061 return ret;
2062}
2063
2064static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
2065 int *upstream_bw,
2066 int *downstream_bw)
2067{
2068 u32 val, bw, scale;
2069 int ret;
2070
2071 ret = tb_port_read(port, &val, TB_CFG_PORT,
2072 port->cap_adap + ADP_USB3_CS_1, 1);
2073 if (ret)
2074 return ret;
2075
2076 ret = tb_port_read(port, &scale, TB_CFG_PORT,
2077 port->cap_adap + ADP_USB3_CS_3, 1);
2078 if (ret)
2079 return ret;
2080
2081 scale &= ADP_USB3_CS_3_SCALE_MASK;
2082
2083 bw = val & ADP_USB3_CS_1_CUBW_MASK;
2084 *upstream_bw = usb3_bw_to_mbps(bw, scale);
2085
2086 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
2087 *downstream_bw = usb3_bw_to_mbps(bw, scale);
2088
2089 return 0;
2090}
2091
2092static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
2093 int upstream_bw,
2094 int downstream_bw)
2095{
2096 u32 val, ubw, dbw, scale;
c82510b1 2097 int ret, max_bw;
3b1d8d57 2098
c82510b1
MW
2099 /* Figure out suitable scale */
2100 scale = 0;
2101 max_bw = max(upstream_bw, downstream_bw);
2102 while (scale < 64) {
2103 if (mbps_to_usb3_bw(max_bw, scale) < 4096)
2104 break;
2105 scale++;
2106 }
2107
2108 if (WARN_ON(scale >= 64))
2109 return -EINVAL;
2110
2111 ret = tb_port_write(port, &scale, TB_CFG_PORT,
2112 port->cap_adap + ADP_USB3_CS_3, 1);
3b1d8d57
MW
2113 if (ret)
2114 return ret;
2115
3b1d8d57
MW
2116 ubw = mbps_to_usb3_bw(upstream_bw, scale);
2117 dbw = mbps_to_usb3_bw(downstream_bw, scale);
2118
c82510b1
MW
2119 tb_port_dbg(port, "scaled bandwidth %u/%u, scale %u\n", ubw, dbw, scale);
2120
3b1d8d57
MW
2121 ret = tb_port_read(port, &val, TB_CFG_PORT,
2122 port->cap_adap + ADP_USB3_CS_2, 1);
2123 if (ret)
2124 return ret;
2125
2126 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
2127 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
2128 val |= ubw;
2129
2130 return tb_port_write(port, &val, TB_CFG_PORT,
2131 port->cap_adap + ADP_USB3_CS_2, 1);
2132}
2133
2134/**
2135 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
2136 * @port: USB3 adapter port
2137 * @upstream_bw: New upstream bandwidth
2138 * @downstream_bw: New downstream bandwidth
2139 *
2140 * This can be used to set how much bandwidth is allocated for the USB3
2141 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
2142 * new values programmed to the USB3 adapter allocation registers. If
2143 * the values are lower than what is currently consumed the allocation
2144 * is set to what is currently consumed instead (consumed bandwidth
2145 * cannot be taken away by CM). The actual new values are returned in
2146 * @upstream_bw and @downstream_bw.
2147 *
2148 * Returns %0 in case of success and negative errno if there was a
2149 * failure.
2150 */
2151int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
2152 int *downstream_bw)
2153{
2154 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
2155
2156 ret = usb4_usb3_port_set_cm_request(port);
2157 if (ret)
2158 return ret;
2159
2160 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2161 &consumed_down);
2162 if (ret)
2163 goto err_request;
2164
2165 /* Don't allow it go lower than what is consumed */
2166 allocate_up = max(*upstream_bw, consumed_up);
2167 allocate_down = max(*downstream_bw, consumed_down);
2168
2169 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
2170 allocate_down);
2171 if (ret)
2172 goto err_request;
2173
2174 *upstream_bw = allocate_up;
2175 *downstream_bw = allocate_down;
2176
2177err_request:
2178 usb4_usb3_port_clear_cm_request(port);
2179 return ret;
2180}
2181
2182/**
2183 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
2184 * @port: USB3 adapter port
2185 * @upstream_bw: New allocated upstream bandwidth
2186 * @downstream_bw: New allocated downstream bandwidth
2187 *
2188 * Releases USB3 allocated bandwidth down to what is actually consumed.
2189 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
2190 *
2191 * Returns 0% in success and negative errno in case of failure.
2192 */
2193int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
2194 int *downstream_bw)
2195{
2196 int ret, consumed_up, consumed_down;
2197
2198 ret = usb4_usb3_port_set_cm_request(port);
2199 if (ret)
2200 return ret;
2201
2202 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2203 &consumed_down);
2204 if (ret)
2205 goto err_request;
2206
2207 /*
2208 * Always keep 1000 Mb/s to make sure xHCI has at least some
2209 * bandwidth available for isochronous traffic.
2210 */
2211 if (consumed_up < 1000)
2212 consumed_up = 1000;
2213 if (consumed_down < 1000)
2214 consumed_down = 1000;
2215
2216 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2217 consumed_down);
2218 if (ret)
2219 goto err_request;
2220
2221 *upstream_bw = consumed_up;
2222 *downstream_bw = consumed_down;
2223
2224err_request:
2225 usb4_usb3_port_clear_cm_request(port);
2226 return ret;
2227}
e3273801
MW
2228
2229static bool is_usb4_dpin(const struct tb_port *port)
2230{
2231 if (!tb_port_is_dpin(port))
2232 return false;
2233 if (!tb_switch_is_usb4(port->sw))
2234 return false;
2235 return true;
2236}
2237
2238/**
2239 * usb4_dp_port_set_cm_id() - Assign CM ID to the DP IN adapter
2240 * @port: DP IN adapter
2241 * @cm_id: CM ID to assign
2242 *
2243 * Sets CM ID for the @port. Returns %0 on success and negative errno
2244 * otherwise. Speficially returns %-EOPNOTSUPP if the @port does not
2245 * support this.
2246 */
2247int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id)
2248{
2249 u32 val;
2250 int ret;
2251
2252 if (!is_usb4_dpin(port))
2253 return -EOPNOTSUPP;
2254
2255 ret = tb_port_read(port, &val, TB_CFG_PORT,
2256 port->cap_adap + ADP_DP_CS_2, 1);
2257 if (ret)
2258 return ret;
2259
2260 val &= ~ADP_DP_CS_2_CM_ID_MASK;
2261 val |= cm_id << ADP_DP_CS_2_CM_ID_SHIFT;
2262
2263 return tb_port_write(port, &val, TB_CFG_PORT,
2264 port->cap_adap + ADP_DP_CS_2, 1);
2265}
2266
2267/**
2268 * usb4_dp_port_bw_mode_supported() - Is the bandwidth allocation mode supported
2269 * @port: DP IN adapter to check
2270 *
2271 * Can be called to any DP IN adapter. Returns true if the adapter
2272 * supports USB4 bandwidth allocation mode, false otherwise.
2273 */
2274bool usb4_dp_port_bw_mode_supported(struct tb_port *port)
2275{
2276 int ret;
2277 u32 val;
2278
2279 if (!is_usb4_dpin(port))
2280 return false;
2281
2282 ret = tb_port_read(port, &val, TB_CFG_PORT,
2283 port->cap_adap + DP_LOCAL_CAP, 1);
2284 if (ret)
2285 return false;
2286
2287 return !!(val & DP_COMMON_CAP_BW_MODE);
2288}
2289
2290/**
2291 * usb4_dp_port_bw_mode_enabled() - Is the bandwidth allocation mode enabled
2292 * @port: DP IN adapter to check
2293 *
2294 * Can be called to any DP IN adapter. Returns true if the bandwidth
2295 * allocation mode has been enabled, false otherwise.
2296 */
2297bool usb4_dp_port_bw_mode_enabled(struct tb_port *port)
2298{
2299 int ret;
2300 u32 val;
2301
2302 if (!is_usb4_dpin(port))
2303 return false;
2304
2305 ret = tb_port_read(port, &val, TB_CFG_PORT,
2306 port->cap_adap + ADP_DP_CS_8, 1);
2307 if (ret)
2308 return false;
2309
2310 return !!(val & ADP_DP_CS_8_DPME);
2311}
2312
2313/**
2314 * usb4_dp_port_set_cm_bw_mode_supported() - Set/clear CM support for bandwidth allocation mode
2315 * @port: DP IN adapter
2316 * @supported: Does the CM support bandwidth allocation mode
2317 *
2318 * Can be called to any DP IN adapter. Sets or clears the CM support bit
2319 * of the DP IN adapter. Returns %0 in success and negative errno
2320 * otherwise. Specifically returns %-OPNOTSUPP if the passed in adapter
2321 * does not support this.
2322 */
2323int usb4_dp_port_set_cm_bw_mode_supported(struct tb_port *port, bool supported)
2324{
2325 u32 val;
2326 int ret;
2327
2328 if (!is_usb4_dpin(port))
2329 return -EOPNOTSUPP;
2330
2331 ret = tb_port_read(port, &val, TB_CFG_PORT,
2332 port->cap_adap + ADP_DP_CS_2, 1);
2333 if (ret)
2334 return ret;
2335
2336 if (supported)
2337 val |= ADP_DP_CS_2_CMMS;
2338 else
2339 val &= ~ADP_DP_CS_2_CMMS;
2340
2341 return tb_port_write(port, &val, TB_CFG_PORT,
2342 port->cap_adap + ADP_DP_CS_2, 1);
2343}
2344
2345/**
2346 * usb4_dp_port_group_id() - Return Group ID assigned for the adapter
2347 * @port: DP IN adapter
2348 *
2349 * Reads bandwidth allocation Group ID from the DP IN adapter and
2350 * returns it. If the adapter does not support setting Group_ID
2351 * %-EOPNOTSUPP is returned.
2352 */
2353int usb4_dp_port_group_id(struct tb_port *port)
2354{
2355 u32 val;
2356 int ret;
2357
2358 if (!is_usb4_dpin(port))
2359 return -EOPNOTSUPP;
2360
2361 ret = tb_port_read(port, &val, TB_CFG_PORT,
2362 port->cap_adap + ADP_DP_CS_2, 1);
2363 if (ret)
2364 return ret;
2365
2366 return (val & ADP_DP_CS_2_GROUP_ID_MASK) >> ADP_DP_CS_2_GROUP_ID_SHIFT;
2367}
2368
2369/**
2370 * usb4_dp_port_set_group_id() - Set adapter Group ID
2371 * @port: DP IN adapter
2372 * @group_id: Group ID for the adapter
2373 *
2374 * Sets bandwidth allocation mode Group ID for the DP IN adapter.
2375 * Returns %0 in case of success and negative errno otherwise.
2376 * Specifically returns %-EOPNOTSUPP if the adapter does not support
2377 * this.
2378 */
2379int usb4_dp_port_set_group_id(struct tb_port *port, int group_id)
2380{
2381 u32 val;
2382 int ret;
2383
2384 if (!is_usb4_dpin(port))
2385 return -EOPNOTSUPP;
2386
2387 ret = tb_port_read(port, &val, TB_CFG_PORT,
2388 port->cap_adap + ADP_DP_CS_2, 1);
2389 if (ret)
2390 return ret;
2391
2392 val &= ~ADP_DP_CS_2_GROUP_ID_MASK;
2393 val |= group_id << ADP_DP_CS_2_GROUP_ID_SHIFT;
2394
2395 return tb_port_write(port, &val, TB_CFG_PORT,
2396 port->cap_adap + ADP_DP_CS_2, 1);
2397}
2398
2399/**
2400 * usb4_dp_port_nrd() - Read non-reduced rate and lanes
2401 * @port: DP IN adapter
2402 * @rate: Non-reduced rate in Mb/s is placed here
2403 * @lanes: Non-reduced lanes are placed here
2404 *
2405 * Reads the non-reduced rate and lanes from the DP IN adapter. Returns
2406 * %0 in success and negative errno otherwise. Specifically returns
2407 * %-EOPNOTSUPP if the adapter does not support this.
2408 */
2409int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes)
2410{
2411 u32 val, tmp;
2412 int ret;
2413
2414 if (!is_usb4_dpin(port))
2415 return -EOPNOTSUPP;
2416
2417 ret = tb_port_read(port, &val, TB_CFG_PORT,
2418 port->cap_adap + ADP_DP_CS_2, 1);
2419 if (ret)
2420 return ret;
2421
2422 tmp = (val & ADP_DP_CS_2_NRD_MLR_MASK) >> ADP_DP_CS_2_NRD_MLR_SHIFT;
2423 switch (tmp) {
2424 case DP_COMMON_CAP_RATE_RBR:
2425 *rate = 1620;
2426 break;
2427 case DP_COMMON_CAP_RATE_HBR:
2428 *rate = 2700;
2429 break;
2430 case DP_COMMON_CAP_RATE_HBR2:
2431 *rate = 5400;
2432 break;
2433 case DP_COMMON_CAP_RATE_HBR3:
2434 *rate = 8100;
2435 break;
2436 }
2437
2438 tmp = val & ADP_DP_CS_2_NRD_MLC_MASK;
2439 switch (tmp) {
2440 case DP_COMMON_CAP_1_LANE:
2441 *lanes = 1;
2442 break;
2443 case DP_COMMON_CAP_2_LANES:
2444 *lanes = 2;
2445 break;
2446 case DP_COMMON_CAP_4_LANES:
2447 *lanes = 4;
2448 break;
2449 }
2450
2451 return 0;
2452}
2453
2454/**
2455 * usb4_dp_port_set_nrd() - Set non-reduced rate and lanes
2456 * @port: DP IN adapter
2457 * @rate: Non-reduced rate in Mb/s
2458 * @lanes: Non-reduced lanes
2459 *
2460 * Before the capabilities reduction this function can be used to set
2461 * the non-reduced values for the DP IN adapter. Returns %0 in success
2462 * and negative errno otherwise. If the adapter does not support this
2463 * %-EOPNOTSUPP is returned.
2464 */
2465int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes)
2466{
2467 u32 val;
2468 int ret;
2469
2470 if (!is_usb4_dpin(port))
2471 return -EOPNOTSUPP;
2472
2473 ret = tb_port_read(port, &val, TB_CFG_PORT,
2474 port->cap_adap + ADP_DP_CS_2, 1);
2475 if (ret)
2476 return ret;
2477
2478 val &= ~ADP_DP_CS_2_NRD_MLR_MASK;
2479
2480 switch (rate) {
2481 case 1620:
2482 break;
2483 case 2700:
2484 val |= (DP_COMMON_CAP_RATE_HBR << ADP_DP_CS_2_NRD_MLR_SHIFT)
2485 & ADP_DP_CS_2_NRD_MLR_MASK;
2486 break;
2487 case 5400:
2488 val |= (DP_COMMON_CAP_RATE_HBR2 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2489 & ADP_DP_CS_2_NRD_MLR_MASK;
2490 break;
2491 case 8100:
2492 val |= (DP_COMMON_CAP_RATE_HBR3 << ADP_DP_CS_2_NRD_MLR_SHIFT)
2493 & ADP_DP_CS_2_NRD_MLR_MASK;
2494 break;
2495 default:
2496 return -EINVAL;
2497 }
2498
2499 val &= ~ADP_DP_CS_2_NRD_MLC_MASK;
2500
2501 switch (lanes) {
2502 case 1:
2503 break;
2504 case 2:
2505 val |= DP_COMMON_CAP_2_LANES;
2506 break;
2507 case 4:
2508 val |= DP_COMMON_CAP_4_LANES;
2509 break;
2510 default:
2511 return -EINVAL;
2512 }
2513
2514 return tb_port_write(port, &val, TB_CFG_PORT,
2515 port->cap_adap + ADP_DP_CS_2, 1);
2516}
2517
2518/**
2519 * usb4_dp_port_granularity() - Return granularity for the bandwidth values
2520 * @port: DP IN adapter
2521 *
2522 * Reads the programmed granularity from @port. If the DP IN adapter does
2523 * not support bandwidth allocation mode returns %-EOPNOTSUPP and negative
2524 * errno in other error cases.
2525 */
2526int usb4_dp_port_granularity(struct tb_port *port)
2527{
2528 u32 val;
2529 int ret;
2530
2531 if (!is_usb4_dpin(port))
2532 return -EOPNOTSUPP;
2533
2534 ret = tb_port_read(port, &val, TB_CFG_PORT,
2535 port->cap_adap + ADP_DP_CS_2, 1);
2536 if (ret)
2537 return ret;
2538
2539 val &= ADP_DP_CS_2_GR_MASK;
2540 val >>= ADP_DP_CS_2_GR_SHIFT;
2541
2542 switch (val) {
2543 case ADP_DP_CS_2_GR_0_25G:
2544 return 250;
2545 case ADP_DP_CS_2_GR_0_5G:
2546 return 500;
2547 case ADP_DP_CS_2_GR_1G:
2548 return 1000;
2549 }
2550
2551 return -EINVAL;
2552}
2553
2554/**
2555 * usb4_dp_port_set_granularity() - Set granularity for the bandwidth values
2556 * @port: DP IN adapter
2557 * @granularity: Granularity in Mb/s. Supported values: 1000, 500 and 250.
2558 *
2559 * Sets the granularity used with the estimated, allocated and requested
2560 * bandwidth. Returns %0 in success and negative errno otherwise. If the
2561 * adapter does not support this %-EOPNOTSUPP is returned.
2562 */
2563int usb4_dp_port_set_granularity(struct tb_port *port, int granularity)
2564{
2565 u32 val;
2566 int ret;
2567
2568 if (!is_usb4_dpin(port))
2569 return -EOPNOTSUPP;
2570
2571 ret = tb_port_read(port, &val, TB_CFG_PORT,
2572 port->cap_adap + ADP_DP_CS_2, 1);
2573 if (ret)
2574 return ret;
2575
2576 val &= ~ADP_DP_CS_2_GR_MASK;
2577
2578 switch (granularity) {
2579 case 250:
2580 val |= ADP_DP_CS_2_GR_0_25G << ADP_DP_CS_2_GR_SHIFT;
2581 break;
2582 case 500:
2583 val |= ADP_DP_CS_2_GR_0_5G << ADP_DP_CS_2_GR_SHIFT;
2584 break;
2585 case 1000:
2586 val |= ADP_DP_CS_2_GR_1G << ADP_DP_CS_2_GR_SHIFT;
2587 break;
2588 default:
2589 return -EINVAL;
2590 }
2591
2592 return tb_port_write(port, &val, TB_CFG_PORT,
2593 port->cap_adap + ADP_DP_CS_2, 1);
2594}
2595
2596/**
2597 * usb4_dp_port_set_estimated_bw() - Set estimated bandwidth
2598 * @port: DP IN adapter
2599 * @bw: Estimated bandwidth in Mb/s.
2600 *
2601 * Sets the estimated bandwidth to @bw. Set the granularity by calling
2602 * usb4_dp_port_set_granularity() before calling this. The @bw is round
2603 * down to the closest granularity multiplier. Returns %0 in success
2604 * and negative errno otherwise. Specifically returns %-EOPNOTSUPP if
2605 * the adapter does not support this.
2606 */
2607int usb4_dp_port_set_estimated_bw(struct tb_port *port, int bw)
2608{
2609 u32 val, granularity;
2610 int ret;
2611
2612 if (!is_usb4_dpin(port))
2613 return -EOPNOTSUPP;
2614
2615 ret = usb4_dp_port_granularity(port);
2616 if (ret < 0)
2617 return ret;
2618 granularity = ret;
2619
2620 ret = tb_port_read(port, &val, TB_CFG_PORT,
2621 port->cap_adap + ADP_DP_CS_2, 1);
2622 if (ret)
2623 return ret;
2624
2625 val &= ~ADP_DP_CS_2_ESTIMATED_BW_MASK;
2626 val |= (bw / granularity) << ADP_DP_CS_2_ESTIMATED_BW_SHIFT;
2627
2628 return tb_port_write(port, &val, TB_CFG_PORT,
2629 port->cap_adap + ADP_DP_CS_2, 1);
2630}
2631
2632/**
2633 * usb4_dp_port_allocated_bw() - Return allocated bandwidth
2634 * @port: DP IN adapter
2635 *
2636 * Reads and returns allocated bandwidth for @port in Mb/s (taking into
2637 * account the programmed granularity). Returns negative errno in case
2638 * of error.
2639 */
2640int usb4_dp_port_allocated_bw(struct tb_port *port)
2641{
2642 u32 val, granularity;
2643 int ret;
2644
2645 if (!is_usb4_dpin(port))
2646 return -EOPNOTSUPP;
2647
2648 ret = usb4_dp_port_granularity(port);
2649 if (ret < 0)
2650 return ret;
2651 granularity = ret;
2652
2653 ret = tb_port_read(port, &val, TB_CFG_PORT,
2654 port->cap_adap + DP_STATUS, 1);
2655 if (ret)
2656 return ret;
2657
2658 val &= DP_STATUS_ALLOCATED_BW_MASK;
2659 val >>= DP_STATUS_ALLOCATED_BW_SHIFT;
2660
2661 return val * granularity;
2662}
2663
2664static int __usb4_dp_port_set_cm_ack(struct tb_port *port, bool ack)
2665{
2666 u32 val;
2667 int ret;
2668
2669 ret = tb_port_read(port, &val, TB_CFG_PORT,
2670 port->cap_adap + ADP_DP_CS_2, 1);
2671 if (ret)
2672 return ret;
2673
2674 if (ack)
2675 val |= ADP_DP_CS_2_CA;
2676 else
2677 val &= ~ADP_DP_CS_2_CA;
2678
2679 return tb_port_write(port, &val, TB_CFG_PORT,
2680 port->cap_adap + ADP_DP_CS_2, 1);
2681}
2682
2683static inline int usb4_dp_port_set_cm_ack(struct tb_port *port)
2684{
2685 return __usb4_dp_port_set_cm_ack(port, true);
2686}
2687
2688static int usb4_dp_port_wait_and_clear_cm_ack(struct tb_port *port,
2689 int timeout_msec)
2690{
2691 ktime_t end;
2692 u32 val;
2693 int ret;
2694
2695 ret = __usb4_dp_port_set_cm_ack(port, false);
2696 if (ret)
2697 return ret;
2698
2699 end = ktime_add_ms(ktime_get(), timeout_msec);
2700 do {
2701 ret = tb_port_read(port, &val, TB_CFG_PORT,
2702 port->cap_adap + ADP_DP_CS_8, 1);
2703 if (ret)
2704 return ret;
2705
2706 if (!(val & ADP_DP_CS_8_DR))
2707 break;
2708
2709 usleep_range(50, 100);
2710 } while (ktime_before(ktime_get(), end));
2711
2712 if (val & ADP_DP_CS_8_DR)
2713 return -ETIMEDOUT;
2714
2715 ret = tb_port_read(port, &val, TB_CFG_PORT,
2716 port->cap_adap + ADP_DP_CS_2, 1);
2717 if (ret)
2718 return ret;
2719
2720 val &= ~ADP_DP_CS_2_CA;
2721 return tb_port_write(port, &val, TB_CFG_PORT,
2722 port->cap_adap + ADP_DP_CS_2, 1);
2723}
2724
2725/**
2726 * usb4_dp_port_allocate_bw() - Set allocated bandwidth
2727 * @port: DP IN adapter
2728 * @bw: New allocated bandwidth in Mb/s
2729 *
2730 * Communicates the new allocated bandwidth with the DPCD (graphics
2731 * driver). Takes into account the programmed granularity. Returns %0 in
2732 * success and negative errno in case of error.
2733 */
2734int usb4_dp_port_allocate_bw(struct tb_port *port, int bw)
2735{
2736 u32 val, granularity;
2737 int ret;
2738
2739 if (!is_usb4_dpin(port))
2740 return -EOPNOTSUPP;
2741
2742 ret = usb4_dp_port_granularity(port);
2743 if (ret < 0)
2744 return ret;
2745 granularity = ret;
2746
2747 ret = tb_port_read(port, &val, TB_CFG_PORT,
2748 port->cap_adap + DP_STATUS, 1);
2749 if (ret)
2750 return ret;
2751
2752 val &= ~DP_STATUS_ALLOCATED_BW_MASK;
2753 val |= (bw / granularity) << DP_STATUS_ALLOCATED_BW_SHIFT;
2754
2755 ret = tb_port_write(port, &val, TB_CFG_PORT,
2756 port->cap_adap + DP_STATUS, 1);
2757 if (ret)
2758 return ret;
2759
2760 ret = usb4_dp_port_set_cm_ack(port);
2761 if (ret)
2762 return ret;
2763
2764 return usb4_dp_port_wait_and_clear_cm_ack(port, 500);
2765}
2766
2767/**
2768 * usb4_dp_port_requested_bw() - Read requested bandwidth
2769 * @port: DP IN adapter
2770 *
2771 * Reads the DPCD (graphics driver) requested bandwidth and returns it
2772 * in Mb/s. Takes the programmed granularity into account. In case of
2773 * error returns negative errno. Specifically returns %-EOPNOTSUPP if
ace75e18
MW
2774 * the adapter does not support bandwidth allocation mode, and %ENODATA
2775 * if there is no active bandwidth request from the graphics driver.
e3273801
MW
2776 */
2777int usb4_dp_port_requested_bw(struct tb_port *port)
2778{
2779 u32 val, granularity;
2780 int ret;
2781
2782 if (!is_usb4_dpin(port))
2783 return -EOPNOTSUPP;
2784
2785 ret = usb4_dp_port_granularity(port);
2786 if (ret < 0)
2787 return ret;
2788 granularity = ret;
2789
2790 ret = tb_port_read(port, &val, TB_CFG_PORT,
2791 port->cap_adap + ADP_DP_CS_8, 1);
2792 if (ret)
ace75e18 2793 return ret;
e3273801
MW
2794
2795 if (!(val & ADP_DP_CS_8_DR))
ace75e18 2796 return -ENODATA;
e3273801
MW
2797
2798 return (val & ADP_DP_CS_8_REQUESTED_BW_MASK) * granularity;
2799}