thunderbolt: Use the actual buffer in tb_async_error()
[linux-block.git] / drivers / thunderbolt / switch.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a25c8b2f 2/*
15c6784c 3 * Thunderbolt driver - switch/port utility functions
a25c8b2f
AN
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
15c6784c 6 * Copyright (C) 2018, Intel Corporation
a25c8b2f
AN
7 */
8
9#include <linux/delay.h>
e6b245cc
MW
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
2d8ff0b5 12#include <linux/pm_runtime.h>
09f11b6c 13#include <linux/sched/signal.h>
e6b245cc 14#include <linux/sizes.h>
10fefe56 15#include <linux/slab.h>
fa487b2a 16#include <linux/module.h>
a25c8b2f
AN
17
18#include "tb.h"
19
e6b245cc
MW
20/* Switch NVM support */
21
e6b245cc 22#define NVM_CSS 0x10
e6b245cc
MW
23
24struct nvm_auth_status {
25 struct list_head list;
7c39ffe7 26 uuid_t uuid;
e6b245cc
MW
27 u32 status;
28};
29
fa487b2a
GF
30static bool clx_enabled = true;
31module_param_named(clx, clx_enabled, bool, 0444);
32MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)");
33
e6b245cc
MW
34/*
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
37 * keep it separately.
38 */
39static LIST_HEAD(nvm_auth_status_cache);
40static DEFINE_MUTEX(nvm_auth_status_lock);
41
42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43{
44 struct nvm_auth_status *st;
45
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
7c39ffe7 47 if (uuid_equal(&st->uuid, sw->uuid))
e6b245cc
MW
48 return st;
49 }
50
51 return NULL;
52}
53
54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55{
56 struct nvm_auth_status *st;
57
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
61
62 *status = st ? st->status : 0;
63}
64
65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66{
67 struct nvm_auth_status *st;
68
69 if (WARN_ON(!sw->uuid))
70 return;
71
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
74
75 if (!st) {
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
77 if (!st)
78 goto unlock;
79
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
83 }
84
85 st->status = status;
86unlock:
87 mutex_unlock(&nvm_auth_status_lock);
88}
89
90static void nvm_clear_auth_status(const struct tb_switch *sw)
91{
92 struct nvm_auth_status *st;
93
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
96 if (st) {
97 list_del(&st->list);
98 kfree(st);
99 }
100 mutex_unlock(&nvm_auth_status_lock);
101}
102
103static int nvm_validate_and_write(struct tb_switch *sw)
104{
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
107 u16 ds_size;
108 int ret;
109
110 if (!buf)
111 return -EINVAL;
112
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 return -EINVAL;
116
117 /*
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
120 */
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
123 return -EINVAL;
124
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
127 return -EINVAL;
128
129 /*
130 * Read digital section size and check that it also fits inside
131 * the image.
132 */
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
135 return -EINVAL;
136
137 if (!sw->safe_mode) {
138 u16 device_id;
139
140 /*
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
143 */
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
146 return -EINVAL;
147
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
153 if (ret)
154 return ret;
155 }
156
157 /* Skip headers in the image */
158 buf += hdr_size;
159 image_size -= hdr_size;
160 }
161
b0407983 162 if (tb_switch_is_usb4(sw))
4b794f80
ML
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 else
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 if (!ret)
167 sw->nvm->flushed = true;
168 return ret;
e6b245cc
MW
169}
170
b0407983 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
e6b245cc 172{
7a7ebfa8 173 int ret = 0;
e6b245cc
MW
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
d1ff7024 177 * existing paths first (in case it is not in safe mode
e6b245cc
MW
178 * already).
179 */
180 if (!sw->safe_mode) {
7a7ebfa8
MW
181 u32 status;
182
d1ff7024 183 ret = tb_domain_disconnect_all_paths(sw->tb);
e6b245cc
MW
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
e6b245cc
MW
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
7a7ebfa8 208 return ret;
e6b245cc
MW
209}
210
b0407983 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
e6b245cc
MW
212{
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
e6b245cc 224 return ret;
7a7ebfa8 225 }
e6b245cc
MW
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254}
255
b0407983
MW
256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257{
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
6ae72bfa 266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269}
270
271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272{
273 struct pci_dev *root_port;
274
6ae72bfa 275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278}
279
280static inline bool nvm_readable(struct tb_switch *sw)
281{
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294}
295
296static inline bool nvm_upgradeable(struct tb_switch *sw)
297{
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301}
302
303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305{
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309}
310
1cbf680f 311static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
b0407983
MW
312{
313 int ret;
314
1cbf680f
MW
315 if (tb_switch_is_usb4(sw)) {
316 if (auth_only) {
317 ret = usb4_switch_nvm_set_offset(sw, 0);
318 if (ret)
319 return ret;
320 }
321 sw->nvm->authenticating = true;
b0407983 322 return usb4_switch_nvm_authenticate(sw);
1cbf680f
MW
323 } else if (auth_only) {
324 return -EOPNOTSUPP;
325 }
b0407983 326
1cbf680f 327 sw->nvm->authenticating = true;
b0407983
MW
328 if (!tb_route(sw)) {
329 nvm_authenticate_start_dma_port(sw);
330 ret = nvm_authenticate_host_dma_port(sw);
331 } else {
332 ret = nvm_authenticate_device_dma_port(sw);
333 }
334
335 return ret;
336}
337
e6b245cc
MW
338static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
339 size_t bytes)
340{
719a5fe8
MW
341 struct tb_nvm *nvm = priv;
342 struct tb_switch *sw = tb_to_switch(nvm->dev);
2d8ff0b5
MW
343 int ret;
344
345 pm_runtime_get_sync(&sw->dev);
4f7c2e0d
MW
346
347 if (!mutex_trylock(&sw->tb->lock)) {
348 ret = restart_syscall();
349 goto out;
350 }
351
b0407983 352 ret = nvm_read(sw, offset, val, bytes);
4f7c2e0d
MW
353 mutex_unlock(&sw->tb->lock);
354
355out:
2d8ff0b5
MW
356 pm_runtime_mark_last_busy(&sw->dev);
357 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc 358
2d8ff0b5 359 return ret;
e6b245cc
MW
360}
361
362static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
363 size_t bytes)
364{
719a5fe8
MW
365 struct tb_nvm *nvm = priv;
366 struct tb_switch *sw = tb_to_switch(nvm->dev);
367 int ret;
e6b245cc 368
09f11b6c
MW
369 if (!mutex_trylock(&sw->tb->lock))
370 return restart_syscall();
e6b245cc
MW
371
372 /*
373 * Since writing the NVM image might require some special steps,
374 * for example when CSS headers are written, we cache the image
375 * locally here and handle the special cases when the user asks
376 * us to authenticate the image.
377 */
719a5fe8 378 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
09f11b6c 379 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
380
381 return ret;
382}
383
e6b245cc
MW
384static int tb_switch_nvm_add(struct tb_switch *sw)
385{
719a5fe8 386 struct tb_nvm *nvm;
e6b245cc
MW
387 u32 val;
388 int ret;
389
b0407983 390 if (!nvm_readable(sw))
e6b245cc
MW
391 return 0;
392
b0407983
MW
393 /*
394 * The NVM format of non-Intel hardware is not known so
395 * currently restrict NVM upgrade for Intel hardware. We may
396 * relax this in the future when we learn other NVM formats.
397 */
83d17036
MW
398 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
399 sw->config.vendor_id != 0x8087) {
b0407983
MW
400 dev_info(&sw->dev,
401 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
402 sw->config.vendor_id);
403 return 0;
404 }
405
719a5fe8
MW
406 nvm = tb_nvm_alloc(&sw->dev);
407 if (IS_ERR(nvm))
408 return PTR_ERR(nvm);
e6b245cc
MW
409
410 /*
411 * If the switch is in safe-mode the only accessible portion of
412 * the NVM is the non-active one where userspace is expected to
413 * write new functional NVM.
414 */
415 if (!sw->safe_mode) {
416 u32 nvm_size, hdr_size;
417
b0407983 418 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
e6b245cc 419 if (ret)
719a5fe8 420 goto err_nvm;
e6b245cc
MW
421
422 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
423 nvm_size = (SZ_1M << (val & 7)) / 8;
424 nvm_size = (nvm_size - hdr_size) / 2;
425
b0407983 426 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
e6b245cc 427 if (ret)
719a5fe8 428 goto err_nvm;
e6b245cc
MW
429
430 nvm->major = val >> 16;
431 nvm->minor = val >> 8;
432
719a5fe8
MW
433 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
434 if (ret)
435 goto err_nvm;
e6b245cc
MW
436 }
437
3f415e5e 438 if (!sw->no_nvm_upgrade) {
719a5fe8
MW
439 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
440 tb_switch_nvm_write);
441 if (ret)
442 goto err_nvm;
e6b245cc 443 }
e6b245cc 444
e6b245cc 445 sw->nvm = nvm;
e6b245cc
MW
446 return 0;
447
719a5fe8
MW
448err_nvm:
449 tb_nvm_free(nvm);
e6b245cc
MW
450 return ret;
451}
452
453static void tb_switch_nvm_remove(struct tb_switch *sw)
454{
719a5fe8 455 struct tb_nvm *nvm;
e6b245cc 456
e6b245cc
MW
457 nvm = sw->nvm;
458 sw->nvm = NULL;
e6b245cc
MW
459
460 if (!nvm)
461 return;
462
463 /* Remove authentication status in case the switch is unplugged */
464 if (!nvm->authenticating)
465 nvm_clear_auth_status(sw);
466
719a5fe8 467 tb_nvm_free(nvm);
e6b245cc
MW
468}
469
a25c8b2f
AN
470/* port utility functions */
471
1c561e4e 472static const char *tb_port_type(const struct tb_regs_port_header *port)
a25c8b2f
AN
473{
474 switch (port->type >> 16) {
475 case 0:
476 switch ((u8) port->type) {
477 case 0:
478 return "Inactive";
479 case 1:
480 return "Port";
481 case 2:
482 return "NHI";
483 default:
484 return "unknown";
485 }
486 case 0x2:
487 return "Ethernet";
488 case 0x8:
489 return "SATA";
490 case 0xe:
491 return "DP/HDMI";
492 case 0x10:
493 return "PCIe";
494 case 0x20:
495 return "USB";
496 default:
497 return "unknown";
498 }
499}
500
56ad3aef 501static void tb_dump_port(struct tb *tb, const struct tb_port *port)
a25c8b2f 502{
56ad3aef
MW
503 const struct tb_regs_port_header *regs = &port->config;
504
daa5140f
MW
505 tb_dbg(tb,
506 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
56ad3aef
MW
507 regs->port_number, regs->vendor_id, regs->device_id,
508 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
509 regs->type);
daa5140f 510 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
56ad3aef
MW
511 regs->max_in_hop_id, regs->max_out_hop_id);
512 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
513 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
514 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
515 port->ctl_credits);
a25c8b2f
AN
516}
517
9da672a4
AN
518/**
519 * tb_port_state() - get connectedness state of a port
5cc0df9c 520 * @port: the port to check
9da672a4
AN
521 *
522 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
523 *
524 * Return: Returns an enum tb_port_state on success or an error code on failure.
525 */
5cc0df9c 526int tb_port_state(struct tb_port *port)
9da672a4
AN
527{
528 struct tb_cap_phy phy;
529 int res;
530 if (port->cap_phy == 0) {
531 tb_port_WARN(port, "does not have a PHY\n");
532 return -EINVAL;
533 }
534 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
535 if (res)
536 return res;
537 return phy.state;
538}
539
540/**
541 * tb_wait_for_port() - wait for a port to become ready
5c6b471b
MW
542 * @port: Port to wait
543 * @wait_if_unplugged: Wait also when port is unplugged
9da672a4
AN
544 *
545 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
546 * wait_if_unplugged is set then we also wait if the port is in state
547 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
548 * switch resume). Otherwise we only wait if a device is registered but the link
549 * has not yet been established.
550 *
551 * Return: Returns an error code on failure. Returns 0 if the port is not
552 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
553 * if the port is connected and in state TB_PORT_UP.
554 */
555int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
556{
557 int retries = 10;
558 int state;
559 if (!port->cap_phy) {
560 tb_port_WARN(port, "does not have PHY\n");
561 return -EINVAL;
562 }
563 if (tb_is_upstream_port(port)) {
564 tb_port_WARN(port, "is the upstream port\n");
565 return -EINVAL;
566 }
567
568 while (retries--) {
569 state = tb_port_state(port);
570 if (state < 0)
571 return state;
572 if (state == TB_PORT_DISABLED) {
62efe699 573 tb_port_dbg(port, "is disabled (state: 0)\n");
9da672a4
AN
574 return 0;
575 }
576 if (state == TB_PORT_UNPLUGGED) {
577 if (wait_if_unplugged) {
578 /* used during resume */
62efe699
MW
579 tb_port_dbg(port,
580 "is unplugged (state: 7), retrying...\n");
9da672a4
AN
581 msleep(100);
582 continue;
583 }
62efe699 584 tb_port_dbg(port, "is unplugged (state: 7)\n");
9da672a4
AN
585 return 0;
586 }
587 if (state == TB_PORT_UP) {
62efe699 588 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
9da672a4
AN
589 return 1;
590 }
591
592 /*
593 * After plug-in the state is TB_PORT_CONNECTING. Give it some
594 * time.
595 */
62efe699
MW
596 tb_port_dbg(port,
597 "is connected, link is not up (state: %d), retrying...\n",
598 state);
9da672a4
AN
599 msleep(100);
600 }
601 tb_port_warn(port,
602 "failed to reach state TB_PORT_UP. Ignoring port...\n");
603 return 0;
604}
605
520b6702
AN
606/**
607 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
5c6b471b
MW
608 * @port: Port to add/remove NFC credits
609 * @credits: Credits to add/remove
520b6702
AN
610 *
611 * Change the number of NFC credits allocated to @port by @credits. To remove
612 * NFC credits pass a negative amount of credits.
613 *
614 * Return: Returns 0 on success or an error code on failure.
615 */
616int tb_port_add_nfc_credits(struct tb_port *port, int credits)
617{
c5ee6feb
MW
618 u32 nfc_credits;
619
620 if (credits == 0 || port->sw->is_unplugged)
520b6702 621 return 0;
c5ee6feb 622
edfbd68b
MW
623 /*
624 * USB4 restricts programming NFC buffers to lane adapters only
625 * so skip other ports.
626 */
627 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
628 return 0;
629
8f57d478 630 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
6cb27a04
MW
631 if (credits < 0)
632 credits = max_t(int, -nfc_credits, credits);
633
c5ee6feb
MW
634 nfc_credits += credits;
635
8f57d478
MW
636 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
637 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
c5ee6feb 638
8f57d478 639 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
c5ee6feb
MW
640 port->config.nfc_credits |= nfc_credits;
641
520b6702 642 return tb_port_write(port, &port->config.nfc_credits,
8f57d478 643 TB_CFG_PORT, ADP_CS_4, 1);
520b6702
AN
644}
645
646/**
647 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
5c6b471b
MW
648 * @port: Port whose counters to clear
649 * @counter: Counter index to clear
520b6702
AN
650 *
651 * Return: Returns 0 on success or an error code on failure.
652 */
653int tb_port_clear_counter(struct tb_port *port, int counter)
654{
655 u32 zero[3] = { 0, 0, 0 };
62efe699 656 tb_port_dbg(port, "clearing counter %d\n", counter);
520b6702
AN
657 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
658}
659
b0407983
MW
660/**
661 * tb_port_unlock() - Unlock downstream port
662 * @port: Port to unlock
663 *
664 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
665 * downstream router accessible for CM.
666 */
667int tb_port_unlock(struct tb_port *port)
668{
669 if (tb_switch_is_icm(port->sw))
670 return 0;
671 if (!tb_port_is_null(port))
672 return -EINVAL;
673 if (tb_switch_is_usb4(port->sw))
674 return usb4_port_unlock(port);
675 return 0;
676}
677
341d4518
MW
678static int __tb_port_enable(struct tb_port *port, bool enable)
679{
680 int ret;
681 u32 phy;
682
683 if (!tb_port_is_null(port))
684 return -EINVAL;
685
686 ret = tb_port_read(port, &phy, TB_CFG_PORT,
687 port->cap_phy + LANE_ADP_CS_1, 1);
688 if (ret)
689 return ret;
690
691 if (enable)
692 phy &= ~LANE_ADP_CS_1_LD;
693 else
694 phy |= LANE_ADP_CS_1_LD;
695
90f720d2
MW
696
697 ret = tb_port_write(port, &phy, TB_CFG_PORT,
698 port->cap_phy + LANE_ADP_CS_1, 1);
699 if (ret)
700 return ret;
701
702 tb_port_dbg(port, "lane %sabled\n", enable ? "en" : "dis");
703 return 0;
341d4518
MW
704}
705
706/**
707 * tb_port_enable() - Enable lane adapter
708 * @port: Port to enable (can be %NULL)
709 *
710 * This is used for lane 0 and 1 adapters to enable it.
711 */
712int tb_port_enable(struct tb_port *port)
713{
714 return __tb_port_enable(port, true);
715}
716
717/**
718 * tb_port_disable() - Disable lane adapter
719 * @port: Port to disable (can be %NULL)
720 *
721 * This is used for lane 0 and 1 adapters to disable it.
722 */
723int tb_port_disable(struct tb_port *port)
724{
725 return __tb_port_enable(port, false);
726}
727
47ba5ae4 728/*
a25c8b2f
AN
729 * tb_init_port() - initialize a port
730 *
731 * This is a helper method for tb_switch_alloc. Does not check or initialize
732 * any downstream switches.
733 *
734 * Return: Returns 0 on success or an error code on failure.
735 */
343fcb8c 736static int tb_init_port(struct tb_port *port)
a25c8b2f
AN
737{
738 int res;
9da672a4 739 int cap;
343fcb8c 740
fb7a89ad
SM
741 INIT_LIST_HEAD(&port->list);
742
743 /* Control adapter does not have configuration space */
744 if (!port->port)
745 return 0;
746
a25c8b2f 747 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
d94dcbb1
MW
748 if (res) {
749 if (res == -ENODEV) {
750 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
751 port->port);
8824d19b 752 port->disabled = true;
d94dcbb1
MW
753 return 0;
754 }
a25c8b2f 755 return res;
d94dcbb1 756 }
a25c8b2f 757
9da672a4 758 /* Port 0 is the switch itself and has no PHY. */
fb7a89ad 759 if (port->config.type == TB_TYPE_PORT) {
da2da04b 760 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
9da672a4
AN
761
762 if (cap > 0)
763 port->cap_phy = cap;
764 else
765 tb_port_WARN(port, "non switch port without a PHY\n");
b0407983
MW
766
767 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
768 if (cap > 0)
769 port->cap_usb4 = cap;
56ad3aef
MW
770
771 /*
772 * USB4 ports the buffers allocated for the control path
773 * can be read from the path config space. Legacy
774 * devices we use hard-coded value.
775 */
776 if (tb_switch_is_usb4(port->sw)) {
777 struct tb_regs_hop hop;
778
779 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
780 port->ctl_credits = hop.initial_credits;
781 }
782 if (!port->ctl_credits)
783 port->ctl_credits = 2;
784
fb7a89ad 785 } else {
56183c88
MW
786 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
787 if (cap > 0)
788 port->cap_adap = cap;
9da672a4
AN
789 }
790
56ad3aef
MW
791 port->total_credits =
792 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
793 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
794
795 tb_dump_port(port->sw->tb, port);
a25c8b2f 796 return 0;
a25c8b2f
AN
797}
798
0b2863ac
MW
799static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
800 int max_hopid)
801{
802 int port_max_hopid;
803 struct ida *ida;
804
805 if (in) {
806 port_max_hopid = port->config.max_in_hop_id;
807 ida = &port->in_hopids;
808 } else {
809 port_max_hopid = port->config.max_out_hop_id;
810 ida = &port->out_hopids;
811 }
812
12676423
MW
813 /*
814 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
815 * reserved.
816 */
a3cfebdc 817 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
0b2863ac
MW
818 min_hopid = TB_PATH_MIN_HOPID;
819
820 if (max_hopid < 0 || max_hopid > port_max_hopid)
821 max_hopid = port_max_hopid;
822
823 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
824}
825
826/**
827 * tb_port_alloc_in_hopid() - Allocate input HopID from port
828 * @port: Port to allocate HopID for
829 * @min_hopid: Minimum acceptable input HopID
830 * @max_hopid: Maximum acceptable input HopID
831 *
832 * Return: HopID between @min_hopid and @max_hopid or negative errno in
833 * case of error.
834 */
835int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
836{
837 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
838}
839
840/**
841 * tb_port_alloc_out_hopid() - Allocate output HopID from port
842 * @port: Port to allocate HopID for
843 * @min_hopid: Minimum acceptable output HopID
844 * @max_hopid: Maximum acceptable output HopID
845 *
846 * Return: HopID between @min_hopid and @max_hopid or negative errno in
847 * case of error.
848 */
849int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
850{
851 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
852}
853
854/**
855 * tb_port_release_in_hopid() - Release allocated input HopID from port
856 * @port: Port whose HopID to release
857 * @hopid: HopID to release
858 */
859void tb_port_release_in_hopid(struct tb_port *port, int hopid)
860{
861 ida_simple_remove(&port->in_hopids, hopid);
862}
863
864/**
865 * tb_port_release_out_hopid() - Release allocated output HopID from port
866 * @port: Port whose HopID to release
867 * @hopid: HopID to release
868 */
869void tb_port_release_out_hopid(struct tb_port *port, int hopid)
870{
871 ida_simple_remove(&port->out_hopids, hopid);
872}
873
69eb79f7
MW
874static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
875 const struct tb_switch *sw)
876{
877 u64 mask = (1ULL << parent->config.depth * 8) - 1;
878 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
879}
880
fb19fac1
MW
881/**
882 * tb_next_port_on_path() - Return next port for given port on a path
883 * @start: Start port of the walk
884 * @end: End port of the walk
885 * @prev: Previous port (%NULL if this is the first)
886 *
887 * This function can be used to walk from one port to another if they
888 * are connected through zero or more switches. If the @prev is dual
889 * link port, the function follows that link and returns another end on
890 * that same link.
891 *
892 * If the @end port has been reached, return %NULL.
893 *
894 * Domain tb->lock must be held when this function is called.
895 */
896struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
897 struct tb_port *prev)
898{
899 struct tb_port *next;
900
901 if (!prev)
902 return start;
903
904 if (prev->sw == end->sw) {
905 if (prev == end)
906 return NULL;
907 return end;
908 }
909
69eb79f7
MW
910 if (tb_switch_is_reachable(prev->sw, end->sw)) {
911 next = tb_port_at(tb_route(end->sw), prev->sw);
912 /* Walk down the topology if next == prev */
fb19fac1 913 if (prev->remote &&
69eb79f7 914 (next == prev || next->dual_link_port == prev))
fb19fac1 915 next = prev->remote;
fb19fac1
MW
916 } else {
917 if (tb_is_upstream_port(prev)) {
918 next = prev->remote;
919 } else {
920 next = tb_upstream_port(prev->sw);
921 /*
922 * Keep the same link if prev and next are both
923 * dual link ports.
924 */
925 if (next->dual_link_port &&
926 next->link_nr != prev->link_nr) {
927 next = next->dual_link_port;
928 }
929 }
930 }
931
69eb79f7 932 return next != prev ? next : NULL;
fb19fac1
MW
933}
934
5b7b8c0a
MW
935/**
936 * tb_port_get_link_speed() - Get current link speed
937 * @port: Port to check (USB4 or CIO)
938 *
939 * Returns link speed in Gb/s or negative errno in case of failure.
940 */
941int tb_port_get_link_speed(struct tb_port *port)
91c0c120
MW
942{
943 u32 val, speed;
944 int ret;
945
946 if (!port->cap_phy)
947 return -EINVAL;
948
949 ret = tb_port_read(port, &val, TB_CFG_PORT,
950 port->cap_phy + LANE_ADP_CS_1, 1);
951 if (ret)
952 return ret;
953
954 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
955 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
956 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
957}
958
4210d50f
IH
959/**
960 * tb_port_get_link_width() - Get current link width
961 * @port: Port to check (USB4 or CIO)
962 *
963 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
964 * or negative errno in case of failure.
965 */
966int tb_port_get_link_width(struct tb_port *port)
91c0c120
MW
967{
968 u32 val;
969 int ret;
970
971 if (!port->cap_phy)
972 return -EINVAL;
973
974 ret = tb_port_read(port, &val, TB_CFG_PORT,
975 port->cap_phy + LANE_ADP_CS_1, 1);
976 if (ret)
977 return ret;
978
979 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
980 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
981}
982
983static bool tb_port_is_width_supported(struct tb_port *port, int width)
984{
985 u32 phy, widths;
986 int ret;
987
988 if (!port->cap_phy)
989 return false;
990
991 ret = tb_port_read(port, &phy, TB_CFG_PORT,
992 port->cap_phy + LANE_ADP_CS_0, 1);
993 if (ret)
e9d0e751 994 return false;
91c0c120
MW
995
996 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
997 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
998
999 return !!(widths & width);
1000}
1001
0e14dd5e
MW
1002/**
1003 * tb_port_set_link_width() - Set target link width of the lane adapter
1004 * @port: Lane adapter
1005 * @width: Target link width (%1 or %2)
1006 *
1007 * Sets the target link width of the lane adapter to @width. Does not
1008 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1009 *
1010 * Return: %0 in case of success and negative errno in case of error
1011 */
1012int tb_port_set_link_width(struct tb_port *port, unsigned int width)
91c0c120
MW
1013{
1014 u32 val;
1015 int ret;
1016
1017 if (!port->cap_phy)
1018 return -EINVAL;
1019
1020 ret = tb_port_read(port, &val, TB_CFG_PORT,
1021 port->cap_phy + LANE_ADP_CS_1, 1);
1022 if (ret)
1023 return ret;
1024
1025 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1026 switch (width) {
1027 case 1:
1028 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1029 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1030 break;
1031 case 2:
1032 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1033 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1034 break;
1035 default:
1036 return -EINVAL;
1037 }
1038
91c0c120
MW
1039 return tb_port_write(port, &val, TB_CFG_PORT,
1040 port->cap_phy + LANE_ADP_CS_1, 1);
1041}
1042
0e14dd5e
MW
1043/**
1044 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1045 * @port: Lane adapter
1046 * @bonding: enable/disable bonding
1047 *
1048 * Enables or disables lane bonding. This should be called after target
1049 * link width has been set (tb_port_set_link_width()). Note in most
1050 * cases one should use tb_port_lane_bonding_enable() instead to enable
1051 * lane bonding.
1052 *
1053 * As a side effect sets @port->bonding accordingly (and does the same
1054 * for lane 1 too).
1055 *
1056 * Return: %0 in case of success and negative errno in case of error
1057 */
1058int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1059{
1060 u32 val;
1061 int ret;
1062
1063 if (!port->cap_phy)
1064 return -EINVAL;
1065
1066 ret = tb_port_read(port, &val, TB_CFG_PORT,
1067 port->cap_phy + LANE_ADP_CS_1, 1);
1068 if (ret)
1069 return ret;
1070
1071 if (bonding)
1072 val |= LANE_ADP_CS_1_LB;
1073 else
1074 val &= ~LANE_ADP_CS_1_LB;
1075
1076 ret = tb_port_write(port, &val, TB_CFG_PORT,
1077 port->cap_phy + LANE_ADP_CS_1, 1);
1078 if (ret)
1079 return ret;
1080
1081 /*
1082 * When lane 0 bonding is set it will affect lane 1 too so
1083 * update both.
1084 */
1085 port->bonded = bonding;
1086 port->dual_link_port->bonded = bonding;
1087
1088 return 0;
1089}
1090
5cc0df9c
IH
1091/**
1092 * tb_port_lane_bonding_enable() - Enable bonding on port
1093 * @port: port to enable
1094 *
e7051bea
MW
1095 * Enable bonding by setting the link width of the port and the other
1096 * port in case of dual link port. Does not wait for the link to
1097 * actually reach the bonded state so caller needs to call
1098 * tb_port_wait_for_link_width() before enabling any paths through the
1099 * link to make sure the link is in expected state.
5cc0df9c
IH
1100 *
1101 * Return: %0 in case of success and negative errno in case of error
1102 */
1103int tb_port_lane_bonding_enable(struct tb_port *port)
91c0c120
MW
1104{
1105 int ret;
1106
1107 /*
1108 * Enable lane bonding for both links if not already enabled by
1109 * for example the boot firmware.
1110 */
1111 ret = tb_port_get_link_width(port);
1112 if (ret == 1) {
1113 ret = tb_port_set_link_width(port, 2);
1114 if (ret)
0e14dd5e 1115 goto err_lane0;
91c0c120
MW
1116 }
1117
1118 ret = tb_port_get_link_width(port->dual_link_port);
1119 if (ret == 1) {
1120 ret = tb_port_set_link_width(port->dual_link_port, 2);
0e14dd5e
MW
1121 if (ret)
1122 goto err_lane0;
91c0c120
MW
1123 }
1124
0e14dd5e
MW
1125 ret = tb_port_set_lane_bonding(port, true);
1126 if (ret)
1127 goto err_lane1;
91c0c120
MW
1128
1129 return 0;
0e14dd5e
MW
1130
1131err_lane1:
1132 tb_port_set_link_width(port->dual_link_port, 1);
1133err_lane0:
1134 tb_port_set_link_width(port, 1);
1135 return ret;
91c0c120
MW
1136}
1137
5cc0df9c
IH
1138/**
1139 * tb_port_lane_bonding_disable() - Disable bonding on port
1140 * @port: port to disable
1141 *
1142 * Disable bonding by setting the link width of the port and the
1143 * other port in case of dual link port.
5cc0df9c
IH
1144 */
1145void tb_port_lane_bonding_disable(struct tb_port *port)
91c0c120 1146{
0e14dd5e 1147 tb_port_set_lane_bonding(port, false);
91c0c120
MW
1148 tb_port_set_link_width(port->dual_link_port, 1);
1149 tb_port_set_link_width(port, 1);
1150}
1151
e7051bea
MW
1152/**
1153 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1154 * @port: Port to wait for
1155 * @width: Expected link width (%1 or %2)
1156 * @timeout_msec: Timeout in ms how long to wait
1157 *
1158 * Should be used after both ends of the link have been bonded (or
1159 * bonding has been disabled) to wait until the link actually reaches
1160 * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1161 * within the given timeout, %0 if it did.
1162 */
1163int tb_port_wait_for_link_width(struct tb_port *port, int width,
1164 int timeout_msec)
1165{
1166 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1167 int ret;
1168
1169 do {
1170 ret = tb_port_get_link_width(port);
0a2e1667
MW
1171 if (ret < 0) {
1172 /*
1173 * Sometimes we get port locked error when
1174 * polling the lanes so we can ignore it and
1175 * retry.
1176 */
1177 if (ret != -EACCES)
1178 return ret;
1179 } else if (ret == width) {
e7051bea 1180 return 0;
0a2e1667 1181 }
e7051bea
MW
1182
1183 usleep_range(1000, 2000);
1184 } while (ktime_before(ktime_get(), timeout));
1185
1186 return -ETIMEDOUT;
1187}
1188
69fea377
MW
1189static int tb_port_do_update_credits(struct tb_port *port)
1190{
1191 u32 nfc_credits;
1192 int ret;
1193
1194 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1195 if (ret)
1196 return ret;
1197
1198 if (nfc_credits != port->config.nfc_credits) {
1199 u32 total;
1200
1201 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1202 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1203
1204 tb_port_dbg(port, "total credits changed %u -> %u\n",
1205 port->total_credits, total);
1206
1207 port->config.nfc_credits = nfc_credits;
1208 port->total_credits = total;
1209 }
1210
1211 return 0;
1212}
1213
1214/**
1215 * tb_port_update_credits() - Re-read port total credits
1216 * @port: Port to update
1217 *
1218 * After the link is bonded (or bonding was disabled) the port total
1219 * credits may change, so this function needs to be called to re-read
1220 * the credits. Updates also the second lane adapter.
1221 */
1222int tb_port_update_credits(struct tb_port *port)
1223{
1224 int ret;
1225
1226 ret = tb_port_do_update_credits(port);
1227 if (ret)
1228 return ret;
1229 return tb_port_do_update_credits(port->dual_link_port);
1230}
1231
fdb0887c
MW
1232static int tb_port_start_lane_initialization(struct tb_port *port)
1233{
1234 int ret;
1235
1236 if (tb_switch_is_usb4(port->sw))
1237 return 0;
1238
1239 ret = tb_lc_start_lane_initialization(port);
1240 return ret == -EINVAL ? 0 : ret;
1241}
1242
3fb10ea4
RM
1243/*
1244 * Returns true if the port had something (router, XDomain) connected
1245 * before suspend.
1246 */
1247static bool tb_port_resume(struct tb_port *port)
1248{
1249 bool has_remote = tb_port_has_remote(port);
1250
1251 if (port->usb4) {
1252 usb4_port_device_resume(port->usb4);
1253 } else if (!has_remote) {
1254 /*
1255 * For disconnected downstream lane adapters start lane
1256 * initialization now so we detect future connects.
1257 *
1258 * For XDomain start the lane initialzation now so the
1259 * link gets re-established.
1260 *
1261 * This is only needed for non-USB4 ports.
1262 */
1263 if (!tb_is_upstream_port(port) || port->xdomain)
1264 tb_port_start_lane_initialization(port);
1265 }
1266
1267 return has_remote || port->xdomain;
1268}
1269
e78db6f0
MW
1270/**
1271 * tb_port_is_enabled() - Is the adapter port enabled
1272 * @port: Port to check
1273 */
1274bool tb_port_is_enabled(struct tb_port *port)
1275{
1276 switch (port->config.type) {
1277 case TB_TYPE_PCIE_UP:
1278 case TB_TYPE_PCIE_DOWN:
1279 return tb_pci_port_is_enabled(port);
1280
4f807e47
MW
1281 case TB_TYPE_DP_HDMI_IN:
1282 case TB_TYPE_DP_HDMI_OUT:
1283 return tb_dp_port_is_enabled(port);
1284
e6f81858
RM
1285 case TB_TYPE_USB3_UP:
1286 case TB_TYPE_USB3_DOWN:
1287 return tb_usb3_port_is_enabled(port);
1288
e78db6f0
MW
1289 default:
1290 return false;
1291 }
1292}
1293
e6f81858
RM
1294/**
1295 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1296 * @port: USB3 adapter port to check
1297 */
1298bool tb_usb3_port_is_enabled(struct tb_port *port)
1299{
1300 u32 data;
1301
1302 if (tb_port_read(port, &data, TB_CFG_PORT,
1303 port->cap_adap + ADP_USB3_CS_0, 1))
1304 return false;
1305
1306 return !!(data & ADP_USB3_CS_0_PE);
1307}
1308
1309/**
1310 * tb_usb3_port_enable() - Enable USB3 adapter port
1311 * @port: USB3 adapter port to enable
1312 * @enable: Enable/disable the USB3 adapter
1313 */
1314int tb_usb3_port_enable(struct tb_port *port, bool enable)
1315{
1316 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1317 : ADP_USB3_CS_0_V;
1318
1319 if (!port->cap_adap)
1320 return -ENXIO;
1321 return tb_port_write(port, &word, TB_CFG_PORT,
1322 port->cap_adap + ADP_USB3_CS_0, 1);
1323}
1324
0414bec5
MW
1325/**
1326 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1327 * @port: PCIe port to check
1328 */
1329bool tb_pci_port_is_enabled(struct tb_port *port)
1330{
1331 u32 data;
1332
778bfca3
MW
1333 if (tb_port_read(port, &data, TB_CFG_PORT,
1334 port->cap_adap + ADP_PCIE_CS_0, 1))
0414bec5
MW
1335 return false;
1336
778bfca3 1337 return !!(data & ADP_PCIE_CS_0_PE);
0414bec5
MW
1338}
1339
93f36ade
MW
1340/**
1341 * tb_pci_port_enable() - Enable PCIe adapter port
1342 * @port: PCIe port to enable
1343 * @enable: Enable/disable the PCIe adapter
1344 */
1345int tb_pci_port_enable(struct tb_port *port, bool enable)
1346{
778bfca3 1347 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
93f36ade
MW
1348 if (!port->cap_adap)
1349 return -ENXIO;
778bfca3
MW
1350 return tb_port_write(port, &word, TB_CFG_PORT,
1351 port->cap_adap + ADP_PCIE_CS_0, 1);
93f36ade
MW
1352}
1353
4f807e47
MW
1354/**
1355 * tb_dp_port_hpd_is_active() - Is HPD already active
1356 * @port: DP out port to check
1357 *
1358 * Checks if the DP OUT adapter port has HDP bit already set.
1359 */
1360int tb_dp_port_hpd_is_active(struct tb_port *port)
1361{
1362 u32 data;
1363 int ret;
1364
98176380
MW
1365 ret = tb_port_read(port, &data, TB_CFG_PORT,
1366 port->cap_adap + ADP_DP_CS_2, 1);
4f807e47
MW
1367 if (ret)
1368 return ret;
1369
98176380 1370 return !!(data & ADP_DP_CS_2_HDP);
4f807e47
MW
1371}
1372
1373/**
1374 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1375 * @port: Port to clear HPD
1376 *
1377 * If the DP IN port has HDP set, this function can be used to clear it.
1378 */
1379int tb_dp_port_hpd_clear(struct tb_port *port)
1380{
1381 u32 data;
1382 int ret;
1383
98176380
MW
1384 ret = tb_port_read(port, &data, TB_CFG_PORT,
1385 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1386 if (ret)
1387 return ret;
1388
98176380
MW
1389 data |= ADP_DP_CS_3_HDPC;
1390 return tb_port_write(port, &data, TB_CFG_PORT,
1391 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1392}
1393
1394/**
1395 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1396 * @port: DP IN/OUT port to set hops
1397 * @video: Video Hop ID
1398 * @aux_tx: AUX TX Hop ID
1399 * @aux_rx: AUX RX Hop ID
1400 *
e5bb88e9
MW
1401 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1402 * router DP adapters too but does not program the values as the fields
1403 * are read-only.
4f807e47
MW
1404 */
1405int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1406 unsigned int aux_tx, unsigned int aux_rx)
1407{
1408 u32 data[2];
1409 int ret;
1410
e5bb88e9
MW
1411 if (tb_switch_is_usb4(port->sw))
1412 return 0;
1413
98176380
MW
1414 ret = tb_port_read(port, data, TB_CFG_PORT,
1415 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1416 if (ret)
1417 return ret;
1418
98176380
MW
1419 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1420 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1421 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1422
98176380
MW
1423 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1424 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1425 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1426 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1427 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1428
98176380
MW
1429 return tb_port_write(port, data, TB_CFG_PORT,
1430 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1431}
1432
1433/**
1434 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1435 * @port: DP adapter port to check
1436 */
1437bool tb_dp_port_is_enabled(struct tb_port *port)
1438{
fd5c46b7 1439 u32 data[2];
4f807e47 1440
98176380 1441 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
fd5c46b7 1442 ARRAY_SIZE(data)))
4f807e47
MW
1443 return false;
1444
98176380 1445 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
4f807e47
MW
1446}
1447
1448/**
1449 * tb_dp_port_enable() - Enables/disables DP paths of a port
1450 * @port: DP IN/OUT port
1451 * @enable: Enable/disable DP path
1452 *
1453 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1454 * calling this function.
1455 */
1456int tb_dp_port_enable(struct tb_port *port, bool enable)
1457{
fd5c46b7 1458 u32 data[2];
4f807e47
MW
1459 int ret;
1460
98176380
MW
1461 ret = tb_port_read(port, data, TB_CFG_PORT,
1462 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1463 if (ret)
1464 return ret;
1465
1466 if (enable)
98176380 1467 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
4f807e47 1468 else
98176380 1469 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
4f807e47 1470
98176380
MW
1471 return tb_port_write(port, data, TB_CFG_PORT,
1472 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1473}
1474
a25c8b2f
AN
1475/* switch utility functions */
1476
b0407983
MW
1477static const char *tb_switch_generation_name(const struct tb_switch *sw)
1478{
1479 switch (sw->generation) {
1480 case 1:
1481 return "Thunderbolt 1";
1482 case 2:
1483 return "Thunderbolt 2";
1484 case 3:
1485 return "Thunderbolt 3";
1486 case 4:
1487 return "USB4";
1488 default:
1489 return "Unknown";
1490 }
1491}
1492
1493static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
a25c8b2f 1494{
b0407983
MW
1495 const struct tb_regs_switch_header *regs = &sw->config;
1496
1497 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1498 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1499 regs->revision, regs->thunderbolt_version);
1500 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
daa5140f
MW
1501 tb_dbg(tb, " Config:\n");
1502 tb_dbg(tb,
a25c8b2f 1503 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
b0407983
MW
1504 regs->upstream_port_number, regs->depth,
1505 (((u64) regs->route_hi) << 32) | regs->route_lo,
1506 regs->enabled, regs->plug_events_delay);
daa5140f 1507 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
b0407983 1508 regs->__unknown1, regs->__unknown4);
a25c8b2f
AN
1509}
1510
23dd5bb4 1511/**
2c2a2327 1512 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
356b6c4e 1513 * @sw: Switch to reset
23dd5bb4
AN
1514 *
1515 * Return: Returns 0 on success or an error code on failure.
1516 */
356b6c4e 1517int tb_switch_reset(struct tb_switch *sw)
23dd5bb4
AN
1518{
1519 struct tb_cfg_result res;
356b6c4e
MW
1520
1521 if (sw->generation > 1)
1522 return 0;
1523
1524 tb_sw_dbg(sw, "resetting switch\n");
1525
1526 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1527 TB_CFG_SWITCH, 2, 2);
23dd5bb4
AN
1528 if (res.err)
1529 return res.err;
bda83aec 1530 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
23dd5bb4
AN
1531 if (res.err > 0)
1532 return -EIO;
1533 return res.err;
1534}
1535
1639664f
GF
1536/**
1537 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1538 * @sw: Router to read the offset value from
1539 * @offset: Offset in the router config space to read from
1540 * @bit: Bit mask in the offset to wait for
1541 * @value: Value of the bits to wait for
1542 * @timeout_msec: Timeout in ms how long to wait
1543 *
1544 * Wait till the specified bits in specified offset reach specified value.
1545 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1546 * within the given timeout or a negative errno in case of failure.
1547 */
1548int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1549 u32 value, int timeout_msec)
1550{
1551 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1552
1553 do {
1554 u32 val;
1555 int ret;
1556
1557 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1558 if (ret)
1559 return ret;
1560
1561 if ((val & bit) == value)
1562 return 0;
1563
1564 usleep_range(50, 100);
1565 } while (ktime_before(ktime_get(), timeout));
1566
1567 return -ETIMEDOUT;
1568}
1569
47ba5ae4 1570/*
ca389f71
AN
1571 * tb_plug_events_active() - enable/disable plug events on a switch
1572 *
1573 * Also configures a sane plug_events_delay of 255ms.
1574 *
1575 * Return: Returns 0 on success or an error code on failure.
1576 */
1577static int tb_plug_events_active(struct tb_switch *sw, bool active)
1578{
1579 u32 data;
1580 int res;
1581
5cb6ed31 1582 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
bfe778ac
MW
1583 return 0;
1584
ca389f71
AN
1585 sw->config.plug_events_delay = 0xff;
1586 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1587 if (res)
1588 return res;
1589
1590 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1591 if (res)
1592 return res;
1593
1594 if (active) {
1595 data = data & 0xFFFFFF83;
1596 switch (sw->config.device_id) {
1d111406
LW
1597 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1598 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1599 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
ca389f71
AN
1600 break;
1601 default:
30a4eca6
MW
1602 /*
1603 * Skip Alpine Ridge, it needs to have vendor
1604 * specific USB hotplug event enabled for the
1605 * internal xHCI to work.
1606 */
1607 if (!tb_switch_is_alpine_ridge(sw))
1608 data |= TB_PLUG_EVENTS_USB_DISABLE;
ca389f71
AN
1609 }
1610 } else {
1611 data = data | 0x7c;
1612 }
1613 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1614 sw->cap_plug_events + 1, 1);
1615}
1616
f67cf491
MW
1617static ssize_t authorized_show(struct device *dev,
1618 struct device_attribute *attr,
1619 char *buf)
1620{
1621 struct tb_switch *sw = tb_to_switch(dev);
1622
1623 return sprintf(buf, "%u\n", sw->authorized);
1624}
1625
3da88be2
MW
1626static int disapprove_switch(struct device *dev, void *not_used)
1627{
1651d9e7 1628 char *envp[] = { "AUTHORIZED=0", NULL };
3da88be2
MW
1629 struct tb_switch *sw;
1630
1631 sw = tb_to_switch(dev);
1632 if (sw && sw->authorized) {
1633 int ret;
1634
1635 /* First children */
1636 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1637 if (ret)
1638 return ret;
1639
1640 ret = tb_domain_disapprove_switch(sw->tb, sw);
1641 if (ret)
1642 return ret;
1643
1644 sw->authorized = 0;
1651d9e7 1645 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
3da88be2
MW
1646 }
1647
1648 return 0;
1649}
1650
f67cf491
MW
1651static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1652{
1651d9e7 1653 char envp_string[13];
f67cf491 1654 int ret = -EINVAL;
1651d9e7 1655 char *envp[] = { envp_string, NULL };
f67cf491 1656
09f11b6c
MW
1657 if (!mutex_trylock(&sw->tb->lock))
1658 return restart_syscall();
f67cf491 1659
3da88be2 1660 if (!!sw->authorized == !!val)
f67cf491
MW
1661 goto unlock;
1662
1663 switch (val) {
3da88be2
MW
1664 /* Disapprove switch */
1665 case 0:
1666 if (tb_route(sw)) {
1667 ret = disapprove_switch(&sw->dev, NULL);
1668 goto unlock;
1669 }
1670 break;
1671
f67cf491
MW
1672 /* Approve switch */
1673 case 1:
1674 if (sw->key)
1675 ret = tb_domain_approve_switch_key(sw->tb, sw);
1676 else
1677 ret = tb_domain_approve_switch(sw->tb, sw);
1678 break;
1679
1680 /* Challenge switch */
1681 case 2:
1682 if (sw->key)
1683 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1684 break;
1685
1686 default:
1687 break;
1688 }
1689
1690 if (!ret) {
1691 sw->authorized = val;
1651d9e7
RJ
1692 /*
1693 * Notify status change to the userspace, informing the new
1694 * value of /sys/bus/thunderbolt/devices/.../authorized.
1695 */
1696 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1697 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
f67cf491
MW
1698 }
1699
1700unlock:
09f11b6c 1701 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1702 return ret;
1703}
1704
1705static ssize_t authorized_store(struct device *dev,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1708{
1709 struct tb_switch *sw = tb_to_switch(dev);
1710 unsigned int val;
1711 ssize_t ret;
1712
1713 ret = kstrtouint(buf, 0, &val);
1714 if (ret)
1715 return ret;
1716 if (val > 2)
1717 return -EINVAL;
1718
4f7c2e0d 1719 pm_runtime_get_sync(&sw->dev);
f67cf491 1720 ret = tb_switch_set_authorized(sw, val);
4f7c2e0d
MW
1721 pm_runtime_mark_last_busy(&sw->dev);
1722 pm_runtime_put_autosuspend(&sw->dev);
f67cf491
MW
1723
1724 return ret ? ret : count;
1725}
1726static DEVICE_ATTR_RW(authorized);
1727
14862ee3
YB
1728static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1729 char *buf)
1730{
1731 struct tb_switch *sw = tb_to_switch(dev);
1732
1733 return sprintf(buf, "%u\n", sw->boot);
1734}
1735static DEVICE_ATTR_RO(boot);
1736
bfe778ac
MW
1737static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1738 char *buf)
1739{
1740 struct tb_switch *sw = tb_to_switch(dev);
ca389f71 1741
bfe778ac
MW
1742 return sprintf(buf, "%#x\n", sw->device);
1743}
1744static DEVICE_ATTR_RO(device);
1745
72ee3390
MW
1746static ssize_t
1747device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1748{
1749 struct tb_switch *sw = tb_to_switch(dev);
1750
1751 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1752}
1753static DEVICE_ATTR_RO(device_name);
1754
b406357c
CK
1755static ssize_t
1756generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1757{
1758 struct tb_switch *sw = tb_to_switch(dev);
1759
1760 return sprintf(buf, "%u\n", sw->generation);
1761}
1762static DEVICE_ATTR_RO(generation);
1763
f67cf491
MW
1764static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1765 char *buf)
1766{
1767 struct tb_switch *sw = tb_to_switch(dev);
1768 ssize_t ret;
1769
09f11b6c
MW
1770 if (!mutex_trylock(&sw->tb->lock))
1771 return restart_syscall();
f67cf491
MW
1772
1773 if (sw->key)
1774 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1775 else
1776 ret = sprintf(buf, "\n");
1777
09f11b6c 1778 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1779 return ret;
1780}
1781
1782static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1783 const char *buf, size_t count)
1784{
1785 struct tb_switch *sw = tb_to_switch(dev);
1786 u8 key[TB_SWITCH_KEY_SIZE];
1787 ssize_t ret = count;
e545f0d8 1788 bool clear = false;
f67cf491 1789
e545f0d8
BY
1790 if (!strcmp(buf, "\n"))
1791 clear = true;
1792 else if (hex2bin(key, buf, sizeof(key)))
f67cf491
MW
1793 return -EINVAL;
1794
09f11b6c
MW
1795 if (!mutex_trylock(&sw->tb->lock))
1796 return restart_syscall();
f67cf491
MW
1797
1798 if (sw->authorized) {
1799 ret = -EBUSY;
1800 } else {
1801 kfree(sw->key);
e545f0d8
BY
1802 if (clear) {
1803 sw->key = NULL;
1804 } else {
1805 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1806 if (!sw->key)
1807 ret = -ENOMEM;
1808 }
f67cf491
MW
1809 }
1810
09f11b6c 1811 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1812 return ret;
1813}
0956e411 1814static DEVICE_ATTR(key, 0600, key_show, key_store);
f67cf491 1815
91c0c120
MW
1816static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1817 char *buf)
1818{
1819 struct tb_switch *sw = tb_to_switch(dev);
1820
1821 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1822}
1823
1824/*
1825 * Currently all lanes must run at the same speed but we expose here
1826 * both directions to allow possible asymmetric links in the future.
1827 */
1828static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1829static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1830
1831static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1832 char *buf)
1833{
1834 struct tb_switch *sw = tb_to_switch(dev);
1835
1836 return sprintf(buf, "%u\n", sw->link_width);
1837}
1838
1839/*
1840 * Currently link has same amount of lanes both directions (1 or 2) but
1841 * expose them separately to allow possible asymmetric links in the future.
1842 */
1843static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1844static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1845
e6b245cc
MW
1846static ssize_t nvm_authenticate_show(struct device *dev,
1847 struct device_attribute *attr, char *buf)
1848{
1849 struct tb_switch *sw = tb_to_switch(dev);
1850 u32 status;
1851
1852 nvm_get_auth_status(sw, &status);
1853 return sprintf(buf, "%#x\n", status);
1854}
1855
1cb36293
ML
1856static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1857 bool disconnect)
e6b245cc
MW
1858{
1859 struct tb_switch *sw = tb_to_switch(dev);
1cbf680f 1860 int val, ret;
e6b245cc 1861
4f7c2e0d
MW
1862 pm_runtime_get_sync(&sw->dev);
1863
1864 if (!mutex_trylock(&sw->tb->lock)) {
1865 ret = restart_syscall();
1866 goto exit_rpm;
1867 }
e6b245cc
MW
1868
1869 /* If NVMem devices are not yet added */
1870 if (!sw->nvm) {
1871 ret = -EAGAIN;
1872 goto exit_unlock;
1873 }
1874
4b794f80 1875 ret = kstrtoint(buf, 10, &val);
e6b245cc
MW
1876 if (ret)
1877 goto exit_unlock;
1878
1879 /* Always clear the authentication status */
1880 nvm_clear_auth_status(sw);
1881
4b794f80 1882 if (val > 0) {
1cbf680f
MW
1883 if (val == AUTHENTICATE_ONLY) {
1884 if (disconnect)
4b794f80 1885 ret = -EINVAL;
1cbf680f
MW
1886 else
1887 ret = nvm_authenticate(sw, true);
1888 } else {
1889 if (!sw->nvm->flushed) {
1890 if (!sw->nvm->buf) {
1891 ret = -EINVAL;
1892 goto exit_unlock;
1893 }
1894
1895 ret = nvm_validate_and_write(sw);
1896 if (ret || val == WRITE_ONLY)
1897 goto exit_unlock;
4b794f80 1898 }
1cbf680f
MW
1899 if (val == WRITE_AND_AUTHENTICATE) {
1900 if (disconnect)
1901 ret = tb_lc_force_power(sw);
1902 else
1903 ret = nvm_authenticate(sw, false);
1cb36293 1904 }
4b794f80 1905 }
e6b245cc
MW
1906 }
1907
1908exit_unlock:
09f11b6c 1909 mutex_unlock(&sw->tb->lock);
4f7c2e0d
MW
1910exit_rpm:
1911 pm_runtime_mark_last_busy(&sw->dev);
1912 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc 1913
1cb36293
ML
1914 return ret;
1915}
1916
1917static ssize_t nvm_authenticate_store(struct device *dev,
1918 struct device_attribute *attr, const char *buf, size_t count)
1919{
1920 int ret = nvm_authenticate_sysfs(dev, buf, false);
e6b245cc
MW
1921 if (ret)
1922 return ret;
1923 return count;
1924}
1925static DEVICE_ATTR_RW(nvm_authenticate);
1926
1cb36293
ML
1927static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1928 struct device_attribute *attr, char *buf)
1929{
1930 return nvm_authenticate_show(dev, attr, buf);
1931}
1932
1933static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1934 struct device_attribute *attr, const char *buf, size_t count)
1935{
1936 int ret;
1937
1938 ret = nvm_authenticate_sysfs(dev, buf, true);
1939 return ret ? ret : count;
1940}
1941static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1942
e6b245cc
MW
1943static ssize_t nvm_version_show(struct device *dev,
1944 struct device_attribute *attr, char *buf)
1945{
1946 struct tb_switch *sw = tb_to_switch(dev);
1947 int ret;
1948
09f11b6c
MW
1949 if (!mutex_trylock(&sw->tb->lock))
1950 return restart_syscall();
e6b245cc
MW
1951
1952 if (sw->safe_mode)
1953 ret = -ENODATA;
1954 else if (!sw->nvm)
1955 ret = -EAGAIN;
1956 else
1957 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1958
09f11b6c 1959 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
1960
1961 return ret;
1962}
1963static DEVICE_ATTR_RO(nvm_version);
1964
bfe778ac
MW
1965static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1966 char *buf)
a25c8b2f 1967{
bfe778ac 1968 struct tb_switch *sw = tb_to_switch(dev);
a25c8b2f 1969
bfe778ac
MW
1970 return sprintf(buf, "%#x\n", sw->vendor);
1971}
1972static DEVICE_ATTR_RO(vendor);
1973
72ee3390
MW
1974static ssize_t
1975vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1976{
1977 struct tb_switch *sw = tb_to_switch(dev);
1978
1979 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1980}
1981static DEVICE_ATTR_RO(vendor_name);
1982
bfe778ac
MW
1983static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1984 char *buf)
1985{
1986 struct tb_switch *sw = tb_to_switch(dev);
1987
1988 return sprintf(buf, "%pUb\n", sw->uuid);
1989}
1990static DEVICE_ATTR_RO(unique_id);
1991
1992static struct attribute *switch_attrs[] = {
f67cf491 1993 &dev_attr_authorized.attr,
14862ee3 1994 &dev_attr_boot.attr,
bfe778ac 1995 &dev_attr_device.attr,
72ee3390 1996 &dev_attr_device_name.attr,
b406357c 1997 &dev_attr_generation.attr,
f67cf491 1998 &dev_attr_key.attr,
e6b245cc 1999 &dev_attr_nvm_authenticate.attr,
1cb36293 2000 &dev_attr_nvm_authenticate_on_disconnect.attr,
e6b245cc 2001 &dev_attr_nvm_version.attr,
91c0c120
MW
2002 &dev_attr_rx_speed.attr,
2003 &dev_attr_rx_lanes.attr,
2004 &dev_attr_tx_speed.attr,
2005 &dev_attr_tx_lanes.attr,
bfe778ac 2006 &dev_attr_vendor.attr,
72ee3390 2007 &dev_attr_vendor_name.attr,
bfe778ac
MW
2008 &dev_attr_unique_id.attr,
2009 NULL,
2010};
2011
f67cf491
MW
2012static umode_t switch_attr_is_visible(struct kobject *kobj,
2013 struct attribute *attr, int n)
2014{
fff15f23 2015 struct device *dev = kobj_to_dev(kobj);
f67cf491
MW
2016 struct tb_switch *sw = tb_to_switch(dev);
2017
3cd542e6
MW
2018 if (attr == &dev_attr_authorized.attr) {
2019 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
8e334125 2020 sw->tb->security_level == TB_SECURITY_DPONLY)
3cd542e6
MW
2021 return 0;
2022 } else if (attr == &dev_attr_device.attr) {
58f414fa
MW
2023 if (!sw->device)
2024 return 0;
2025 } else if (attr == &dev_attr_device_name.attr) {
2026 if (!sw->device_name)
2027 return 0;
2028 } else if (attr == &dev_attr_vendor.attr) {
2029 if (!sw->vendor)
2030 return 0;
2031 } else if (attr == &dev_attr_vendor_name.attr) {
2032 if (!sw->vendor_name)
2033 return 0;
2034 } else if (attr == &dev_attr_key.attr) {
f67cf491
MW
2035 if (tb_route(sw) &&
2036 sw->tb->security_level == TB_SECURITY_SECURE &&
2037 sw->security_level == TB_SECURITY_SECURE)
2038 return attr->mode;
2039 return 0;
91c0c120
MW
2040 } else if (attr == &dev_attr_rx_speed.attr ||
2041 attr == &dev_attr_rx_lanes.attr ||
2042 attr == &dev_attr_tx_speed.attr ||
2043 attr == &dev_attr_tx_lanes.attr) {
2044 if (tb_route(sw))
2045 return attr->mode;
2046 return 0;
3f415e5e 2047 } else if (attr == &dev_attr_nvm_authenticate.attr) {
b0407983 2048 if (nvm_upgradeable(sw))
3f415e5e
MW
2049 return attr->mode;
2050 return 0;
2051 } else if (attr == &dev_attr_nvm_version.attr) {
b0407983 2052 if (nvm_readable(sw))
e6b245cc
MW
2053 return attr->mode;
2054 return 0;
14862ee3
YB
2055 } else if (attr == &dev_attr_boot.attr) {
2056 if (tb_route(sw))
2057 return attr->mode;
2058 return 0;
1cb36293
ML
2059 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2060 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2061 return attr->mode;
2062 return 0;
f67cf491
MW
2063 }
2064
e6b245cc 2065 return sw->safe_mode ? 0 : attr->mode;
f67cf491
MW
2066}
2067
6889e00f 2068static const struct attribute_group switch_group = {
f67cf491 2069 .is_visible = switch_attr_is_visible,
bfe778ac
MW
2070 .attrs = switch_attrs,
2071};
ca389f71 2072
bfe778ac
MW
2073static const struct attribute_group *switch_groups[] = {
2074 &switch_group,
2075 NULL,
2076};
2077
2078static void tb_switch_release(struct device *dev)
2079{
2080 struct tb_switch *sw = tb_to_switch(dev);
b433d010 2081 struct tb_port *port;
bfe778ac 2082
3e136768
MW
2083 dma_port_free(sw->dma_port);
2084
b433d010 2085 tb_switch_for_each_port(sw, port) {
781e14ea
MW
2086 ida_destroy(&port->in_hopids);
2087 ida_destroy(&port->out_hopids);
0b2863ac
MW
2088 }
2089
bfe778ac 2090 kfree(sw->uuid);
72ee3390
MW
2091 kfree(sw->device_name);
2092 kfree(sw->vendor_name);
a25c8b2f 2093 kfree(sw->ports);
343fcb8c 2094 kfree(sw->drom);
f67cf491 2095 kfree(sw->key);
a25c8b2f
AN
2096 kfree(sw);
2097}
2098
2f608ba1
MW
2099static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
2100{
2101 struct tb_switch *sw = tb_to_switch(dev);
2102 const char *type;
2103
2104 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
2105 if (add_uevent_var(env, "USB4_VERSION=1.0"))
2106 return -ENOMEM;
2107 }
2108
2109 if (!tb_route(sw)) {
2110 type = "host";
2111 } else {
2112 const struct tb_port *port;
2113 bool hub = false;
2114
2115 /* Device is hub if it has any downstream ports */
2116 tb_switch_for_each_port(sw, port) {
2117 if (!port->disabled && !tb_is_upstream_port(port) &&
2118 tb_port_is_null(port)) {
2119 hub = true;
2120 break;
2121 }
2122 }
2123
2124 type = hub ? "hub" : "device";
2125 }
2126
2127 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2128 return -ENOMEM;
2129 return 0;
2130}
2131
2d8ff0b5
MW
2132/*
2133 * Currently only need to provide the callbacks. Everything else is handled
2134 * in the connection manager.
2135 */
2136static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2137{
4f7c2e0d
MW
2138 struct tb_switch *sw = tb_to_switch(dev);
2139 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2140
2141 if (cm_ops->runtime_suspend_switch)
2142 return cm_ops->runtime_suspend_switch(sw);
2143
2d8ff0b5
MW
2144 return 0;
2145}
2146
2147static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2148{
4f7c2e0d
MW
2149 struct tb_switch *sw = tb_to_switch(dev);
2150 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2151
2152 if (cm_ops->runtime_resume_switch)
2153 return cm_ops->runtime_resume_switch(sw);
2d8ff0b5
MW
2154 return 0;
2155}
2156
2157static const struct dev_pm_ops tb_switch_pm_ops = {
2158 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2159 NULL)
2160};
2161
bfe778ac
MW
2162struct device_type tb_switch_type = {
2163 .name = "thunderbolt_device",
2164 .release = tb_switch_release,
2f608ba1 2165 .uevent = tb_switch_uevent,
2d8ff0b5 2166 .pm = &tb_switch_pm_ops,
bfe778ac
MW
2167};
2168
2c3c4197
MW
2169static int tb_switch_get_generation(struct tb_switch *sw)
2170{
2171 switch (sw->config.device_id) {
2172 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2173 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2174 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2175 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2176 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2177 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2178 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2179 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2180 return 1;
2181
2182 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2183 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2184 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2185 return 2;
2186
2187 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2188 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2189 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2190 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2191 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
4bac471d
RM
2192 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2193 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2194 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
3cdb9446
MW
2195 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2196 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2c3c4197
MW
2197 return 3;
2198
2199 default:
b0407983
MW
2200 if (tb_switch_is_usb4(sw))
2201 return 4;
2202
2c3c4197
MW
2203 /*
2204 * For unknown switches assume generation to be 1 to be
2205 * on the safe side.
2206 */
2207 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2208 sw->config.device_id);
2209 return 1;
2210 }
2211}
2212
b0407983
MW
2213static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2214{
2215 int max_depth;
2216
2217 if (tb_switch_is_usb4(sw) ||
2218 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2219 max_depth = USB4_SWITCH_MAX_DEPTH;
2220 else
2221 max_depth = TB_SWITCH_MAX_DEPTH;
2222
2223 return depth > max_depth;
2224}
2225
a25c8b2f 2226/**
bfe778ac
MW
2227 * tb_switch_alloc() - allocate a switch
2228 * @tb: Pointer to the owning domain
2229 * @parent: Parent device for this switch
2230 * @route: Route string for this switch
a25c8b2f 2231 *
bfe778ac
MW
2232 * Allocates and initializes a switch. Will not upload configuration to
2233 * the switch. For that you need to call tb_switch_configure()
2234 * separately. The returned switch should be released by calling
2235 * tb_switch_put().
2236 *
444ac384
MW
2237 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2238 * failure.
a25c8b2f 2239 */
bfe778ac
MW
2240struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2241 u64 route)
a25c8b2f 2242{
a25c8b2f 2243 struct tb_switch *sw;
f0342e75 2244 int upstream_port;
444ac384 2245 int i, ret, depth;
f0342e75 2246
b0407983
MW
2247 /* Unlock the downstream port so we can access the switch below */
2248 if (route) {
2249 struct tb_switch *parent_sw = tb_to_switch(parent);
2250 struct tb_port *down;
2251
2252 down = tb_port_at(route, parent_sw);
2253 tb_port_unlock(down);
2254 }
2255
f0342e75 2256 depth = tb_route_length(route);
f0342e75
MW
2257
2258 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
a25c8b2f 2259 if (upstream_port < 0)
444ac384 2260 return ERR_PTR(upstream_port);
a25c8b2f
AN
2261
2262 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2263 if (!sw)
444ac384 2264 return ERR_PTR(-ENOMEM);
a25c8b2f
AN
2265
2266 sw->tb = tb;
444ac384
MW
2267 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2268 if (ret)
bfe778ac
MW
2269 goto err_free_sw_ports;
2270
b0407983
MW
2271 sw->generation = tb_switch_get_generation(sw);
2272
daa5140f 2273 tb_dbg(tb, "current switch config:\n");
b0407983 2274 tb_dump_switch(tb, sw);
a25c8b2f
AN
2275
2276 /* configure switch */
2277 sw->config.upstream_port_number = upstream_port;
f0342e75
MW
2278 sw->config.depth = depth;
2279 sw->config.route_hi = upper_32_bits(route);
2280 sw->config.route_lo = lower_32_bits(route);
bfe778ac 2281 sw->config.enabled = 0;
a25c8b2f 2282
b0407983 2283 /* Make sure we do not exceed maximum topology limit */
704a940d
CIK
2284 if (tb_switch_exceeds_max_depth(sw, depth)) {
2285 ret = -EADDRNOTAVAIL;
2286 goto err_free_sw_ports;
2287 }
b0407983 2288
a25c8b2f
AN
2289 /* initialize ports */
2290 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
343fcb8c 2291 GFP_KERNEL);
444ac384
MW
2292 if (!sw->ports) {
2293 ret = -ENOMEM;
bfe778ac 2294 goto err_free_sw_ports;
444ac384 2295 }
a25c8b2f
AN
2296
2297 for (i = 0; i <= sw->config.max_port_number; i++) {
343fcb8c
AN
2298 /* minimum setup for tb_find_cap and tb_drom_read to work */
2299 sw->ports[i].sw = sw;
2300 sw->ports[i].port = i;
781e14ea
MW
2301
2302 /* Control port does not need HopID allocation */
2303 if (i) {
2304 ida_init(&sw->ports[i].in_hopids);
2305 ida_init(&sw->ports[i].out_hopids);
2306 }
a25c8b2f
AN
2307 }
2308
444ac384 2309 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
b0407983
MW
2310 if (ret > 0)
2311 sw->cap_plug_events = ret;
ca389f71 2312
23ccd21c
GF
2313 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2314 if (ret > 0)
2315 sw->cap_vsec_tmu = ret;
2316
444ac384
MW
2317 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2318 if (ret > 0)
2319 sw->cap_lc = ret;
a9be5582 2320
43f977bc
GF
2321 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2322 if (ret > 0)
2323 sw->cap_lp = ret;
2324
f67cf491
MW
2325 /* Root switch is always authorized */
2326 if (!route)
2327 sw->authorized = true;
2328
bfe778ac
MW
2329 device_initialize(&sw->dev);
2330 sw->dev.parent = parent;
2331 sw->dev.bus = &tb_bus_type;
2332 sw->dev.type = &tb_switch_type;
2333 sw->dev.groups = switch_groups;
2334 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2335
2336 return sw;
2337
2338err_free_sw_ports:
2339 kfree(sw->ports);
2340 kfree(sw);
2341
444ac384 2342 return ERR_PTR(ret);
bfe778ac
MW
2343}
2344
e6b245cc
MW
2345/**
2346 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2347 * @tb: Pointer to the owning domain
2348 * @parent: Parent device for this switch
2349 * @route: Route string for this switch
2350 *
2351 * This creates a switch in safe mode. This means the switch pretty much
2352 * lacks all capabilities except DMA configuration port before it is
2353 * flashed with a valid NVM firmware.
2354 *
2355 * The returned switch must be released by calling tb_switch_put().
2356 *
444ac384 2357 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
e6b245cc
MW
2358 */
2359struct tb_switch *
2360tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2361{
2362 struct tb_switch *sw;
2363
2364 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2365 if (!sw)
444ac384 2366 return ERR_PTR(-ENOMEM);
e6b245cc
MW
2367
2368 sw->tb = tb;
2369 sw->config.depth = tb_route_length(route);
2370 sw->config.route_hi = upper_32_bits(route);
2371 sw->config.route_lo = lower_32_bits(route);
2372 sw->safe_mode = true;
2373
2374 device_initialize(&sw->dev);
2375 sw->dev.parent = parent;
2376 sw->dev.bus = &tb_bus_type;
2377 sw->dev.type = &tb_switch_type;
2378 sw->dev.groups = switch_groups;
2379 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2380
2381 return sw;
2382}
2383
bfe778ac
MW
2384/**
2385 * tb_switch_configure() - Uploads configuration to the switch
2386 * @sw: Switch to configure
2387 *
2388 * Call this function before the switch is added to the system. It will
2389 * upload configuration to the switch and makes it available for the
b0407983
MW
2390 * connection manager to use. Can be called to the switch again after
2391 * resume from low power states to re-initialize it.
bfe778ac
MW
2392 *
2393 * Return: %0 in case of success and negative errno in case of failure
2394 */
2395int tb_switch_configure(struct tb_switch *sw)
2396{
2397 struct tb *tb = sw->tb;
2398 u64 route;
2399 int ret;
2400
2401 route = tb_route(sw);
bfe778ac 2402
b0407983 2403 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
b2911a59 2404 sw->config.enabled ? "restoring" : "initializing", route,
b0407983 2405 tb_route_length(route), sw->config.upstream_port_number);
bfe778ac 2406
bfe778ac
MW
2407 sw->config.enabled = 1;
2408
b0407983
MW
2409 if (tb_switch_is_usb4(sw)) {
2410 /*
2411 * For USB4 devices, we need to program the CM version
2412 * accordingly so that it knows to expose all the
2413 * additional capabilities.
2414 */
2415 sw->config.cmuv = USB4_VERSION_1_0;
2416
2417 /* Enumerate the switch */
2418 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2419 ROUTER_CS_1, 4);
2420 if (ret)
2421 return ret;
bfe778ac 2422
b0407983 2423 ret = usb4_switch_setup(sw);
b0407983
MW
2424 } else {
2425 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2426 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2427 sw->config.vendor_id);
2428
2429 if (!sw->cap_plug_events) {
2430 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2431 return -ENODEV;
2432 }
2433
2434 /* Enumerate the switch */
2435 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2436 ROUTER_CS_1, 3);
b0407983 2437 }
e879a709
MW
2438 if (ret)
2439 return ret;
2440
bfe778ac
MW
2441 return tb_plug_events_active(sw, true);
2442}
2443
2cc12751 2444static int tb_switch_set_uuid(struct tb_switch *sw)
bfe778ac 2445{
b0407983 2446 bool uid = false;
bfe778ac 2447 u32 uuid[4];
a9be5582 2448 int ret;
bfe778ac
MW
2449
2450 if (sw->uuid)
a9be5582 2451 return 0;
bfe778ac 2452
b0407983
MW
2453 if (tb_switch_is_usb4(sw)) {
2454 ret = usb4_switch_read_uid(sw, &sw->uid);
2455 if (ret)
2456 return ret;
2457 uid = true;
2458 } else {
2459 /*
2460 * The newer controllers include fused UUID as part of
2461 * link controller specific registers
2462 */
2463 ret = tb_lc_read_uuid(sw, uuid);
2464 if (ret) {
2465 if (ret != -EINVAL)
2466 return ret;
2467 uid = true;
2468 }
2469 }
2470
2471 if (uid) {
bfe778ac
MW
2472 /*
2473 * ICM generates UUID based on UID and fills the upper
2474 * two words with ones. This is not strictly following
2475 * UUID format but we want to be compatible with it so
2476 * we do the same here.
2477 */
2478 uuid[0] = sw->uid & 0xffffffff;
2479 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2480 uuid[2] = 0xffffffff;
2481 uuid[3] = 0xffffffff;
2482 }
2483
2484 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2cc12751 2485 if (!sw->uuid)
a9be5582
MW
2486 return -ENOMEM;
2487 return 0;
bfe778ac
MW
2488}
2489
e6b245cc 2490static int tb_switch_add_dma_port(struct tb_switch *sw)
3e136768 2491{
e6b245cc
MW
2492 u32 status;
2493 int ret;
2494
3e136768 2495 switch (sw->generation) {
3e136768
MW
2496 case 2:
2497 /* Only root switch can be upgraded */
2498 if (tb_route(sw))
e6b245cc 2499 return 0;
7a7ebfa8 2500
df561f66 2501 fallthrough;
7a7ebfa8 2502 case 3:
661b1947 2503 case 4:
7a7ebfa8
MW
2504 ret = tb_switch_set_uuid(sw);
2505 if (ret)
2506 return ret;
3e136768
MW
2507 break;
2508
2509 default:
e6b245cc
MW
2510 /*
2511 * DMA port is the only thing available when the switch
2512 * is in safe mode.
2513 */
2514 if (!sw->safe_mode)
2515 return 0;
2516 break;
3e136768
MW
2517 }
2518
661b1947
MW
2519 if (sw->no_nvm_upgrade)
2520 return 0;
2521
2522 if (tb_switch_is_usb4(sw)) {
2523 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2524 if (ret)
2525 return ret;
2526
2527 if (status) {
2528 tb_sw_info(sw, "switch flash authentication failed\n");
2529 nvm_set_auth_status(sw, status);
2530 }
2531
2532 return 0;
2533 }
2534
3f415e5e 2535 /* Root switch DMA port requires running firmware */
f07a3608 2536 if (!tb_route(sw) && !tb_switch_is_icm(sw))
e6b245cc
MW
2537 return 0;
2538
3e136768 2539 sw->dma_port = dma_port_alloc(sw);
e6b245cc
MW
2540 if (!sw->dma_port)
2541 return 0;
2542
7a7ebfa8
MW
2543 /*
2544 * If there is status already set then authentication failed
2545 * when the dma_port_flash_update_auth() returned. Power cycling
2546 * is not needed (it was done already) so only thing we do here
2547 * is to unblock runtime PM of the root port.
2548 */
2549 nvm_get_auth_status(sw, &status);
2550 if (status) {
2551 if (!tb_route(sw))
b0407983 2552 nvm_authenticate_complete_dma_port(sw);
7a7ebfa8
MW
2553 return 0;
2554 }
2555
e6b245cc
MW
2556 /*
2557 * Check status of the previous flash authentication. If there
2558 * is one we need to power cycle the switch in any case to make
2559 * it functional again.
2560 */
2561 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2562 if (ret <= 0)
2563 return ret;
2564
1830b6ee
MW
2565 /* Now we can allow root port to suspend again */
2566 if (!tb_route(sw))
b0407983 2567 nvm_authenticate_complete_dma_port(sw);
1830b6ee 2568
e6b245cc
MW
2569 if (status) {
2570 tb_sw_info(sw, "switch flash authentication failed\n");
e6b245cc
MW
2571 nvm_set_auth_status(sw, status);
2572 }
2573
2574 tb_sw_info(sw, "power cycling the switch now\n");
2575 dma_port_power_cycle(sw->dma_port);
2576
2577 /*
2578 * We return error here which causes the switch adding failure.
2579 * It should appear back after power cycle is complete.
2580 */
2581 return -ESHUTDOWN;
3e136768
MW
2582}
2583
0d46c08d
MW
2584static void tb_switch_default_link_ports(struct tb_switch *sw)
2585{
2586 int i;
2587
42716425 2588 for (i = 1; i <= sw->config.max_port_number; i++) {
0d46c08d
MW
2589 struct tb_port *port = &sw->ports[i];
2590 struct tb_port *subordinate;
2591
2592 if (!tb_port_is_null(port))
2593 continue;
2594
2595 /* Check for the subordinate port */
2596 if (i == sw->config.max_port_number ||
2597 !tb_port_is_null(&sw->ports[i + 1]))
2598 continue;
2599
2600 /* Link them if not already done so (by DROM) */
2601 subordinate = &sw->ports[i + 1];
2602 if (!port->dual_link_port && !subordinate->dual_link_port) {
2603 port->link_nr = 0;
2604 port->dual_link_port = subordinate;
2605 subordinate->link_nr = 1;
2606 subordinate->dual_link_port = port;
2607
2608 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2609 port->port, subordinate->port);
2610 }
2611 }
2612}
2613
91c0c120
MW
2614static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2615{
2616 const struct tb_port *up = tb_upstream_port(sw);
2617
2618 if (!up->dual_link_port || !up->dual_link_port->remote)
2619 return false;
2620
b0407983
MW
2621 if (tb_switch_is_usb4(sw))
2622 return usb4_switch_lane_bonding_possible(sw);
91c0c120
MW
2623 return tb_lc_lane_bonding_possible(sw);
2624}
2625
2626static int tb_switch_update_link_attributes(struct tb_switch *sw)
2627{
2628 struct tb_port *up;
2629 bool change = false;
2630 int ret;
2631
2632 if (!tb_route(sw) || tb_switch_is_icm(sw))
2633 return 0;
2634
2635 up = tb_upstream_port(sw);
2636
2637 ret = tb_port_get_link_speed(up);
2638 if (ret < 0)
2639 return ret;
2640 if (sw->link_speed != ret)
2641 change = true;
2642 sw->link_speed = ret;
2643
2644 ret = tb_port_get_link_width(up);
2645 if (ret < 0)
2646 return ret;
2647 if (sw->link_width != ret)
2648 change = true;
2649 sw->link_width = ret;
2650
2651 /* Notify userspace that there is possible link attribute change */
2652 if (device_is_registered(&sw->dev) && change)
2653 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2654
2655 return 0;
2656}
2657
2658/**
2659 * tb_switch_lane_bonding_enable() - Enable lane bonding
2660 * @sw: Switch to enable lane bonding
2661 *
2662 * Connection manager can call this function to enable lane bonding of a
2663 * switch. If conditions are correct and both switches support the feature,
2664 * lanes are bonded. It is safe to call this to any switch.
2665 */
2666int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2667{
2668 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2669 struct tb_port *up, *down;
2670 u64 route = tb_route(sw);
2671 int ret;
2672
2673 if (!route)
2674 return 0;
2675
2676 if (!tb_switch_lane_bonding_possible(sw))
2677 return 0;
2678
2679 up = tb_upstream_port(sw);
2680 down = tb_port_at(route, parent);
2681
2682 if (!tb_port_is_width_supported(up, 2) ||
2683 !tb_port_is_width_supported(down, 2))
2684 return 0;
2685
2686 ret = tb_port_lane_bonding_enable(up);
2687 if (ret) {
2688 tb_port_warn(up, "failed to enable lane bonding\n");
2689 return ret;
2690 }
2691
2692 ret = tb_port_lane_bonding_enable(down);
2693 if (ret) {
2694 tb_port_warn(down, "failed to enable lane bonding\n");
2695 tb_port_lane_bonding_disable(up);
2696 return ret;
2697 }
2698
e7051bea
MW
2699 ret = tb_port_wait_for_link_width(down, 2, 100);
2700 if (ret) {
2701 tb_port_warn(down, "timeout enabling lane bonding\n");
2702 return ret;
2703 }
2704
69fea377
MW
2705 tb_port_update_credits(down);
2706 tb_port_update_credits(up);
91c0c120
MW
2707 tb_switch_update_link_attributes(sw);
2708
2709 tb_sw_dbg(sw, "lane bonding enabled\n");
2710 return ret;
2711}
2712
2713/**
2714 * tb_switch_lane_bonding_disable() - Disable lane bonding
2715 * @sw: Switch whose lane bonding to disable
2716 *
2717 * Disables lane bonding between @sw and parent. This can be called even
2718 * if lanes were not bonded originally.
2719 */
2720void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2721{
2722 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2723 struct tb_port *up, *down;
2724
2725 if (!tb_route(sw))
2726 return;
2727
2728 up = tb_upstream_port(sw);
2729 if (!up->bonded)
2730 return;
2731
2732 down = tb_port_at(tb_route(sw), parent);
2733
2734 tb_port_lane_bonding_disable(up);
2735 tb_port_lane_bonding_disable(down);
2736
e7051bea
MW
2737 /*
2738 * It is fine if we get other errors as the router might have
2739 * been unplugged.
2740 */
2741 if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2742 tb_sw_warn(sw, "timeout disabling lane bonding\n");
2743
69fea377
MW
2744 tb_port_update_credits(down);
2745 tb_port_update_credits(up);
91c0c120 2746 tb_switch_update_link_attributes(sw);
69fea377 2747
91c0c120
MW
2748 tb_sw_dbg(sw, "lane bonding disabled\n");
2749}
2750
de462039
MW
2751/**
2752 * tb_switch_configure_link() - Set link configured
2753 * @sw: Switch whose link is configured
2754 *
2755 * Sets the link upstream from @sw configured (from both ends) so that
2756 * it will not be disconnected when the domain exits sleep. Can be
2757 * called for any switch.
2758 *
2759 * It is recommended that this is called after lane bonding is enabled.
2760 *
2761 * Returns %0 on success and negative errno in case of error.
2762 */
2763int tb_switch_configure_link(struct tb_switch *sw)
2764{
e28178bf
MW
2765 struct tb_port *up, *down;
2766 int ret;
2767
de462039
MW
2768 if (!tb_route(sw) || tb_switch_is_icm(sw))
2769 return 0;
2770
e28178bf
MW
2771 up = tb_upstream_port(sw);
2772 if (tb_switch_is_usb4(up->sw))
2773 ret = usb4_port_configure(up);
2774 else
2775 ret = tb_lc_configure_port(up);
2776 if (ret)
2777 return ret;
2778
2779 down = up->remote;
2780 if (tb_switch_is_usb4(down->sw))
2781 return usb4_port_configure(down);
2782 return tb_lc_configure_port(down);
de462039
MW
2783}
2784
2785/**
2786 * tb_switch_unconfigure_link() - Unconfigure link
2787 * @sw: Switch whose link is unconfigured
2788 *
2789 * Sets the link unconfigured so the @sw will be disconnected if the
2790 * domain exists sleep.
2791 */
2792void tb_switch_unconfigure_link(struct tb_switch *sw)
2793{
e28178bf
MW
2794 struct tb_port *up, *down;
2795
de462039
MW
2796 if (sw->is_unplugged)
2797 return;
2798 if (!tb_route(sw) || tb_switch_is_icm(sw))
2799 return;
2800
e28178bf
MW
2801 up = tb_upstream_port(sw);
2802 if (tb_switch_is_usb4(up->sw))
2803 usb4_port_unconfigure(up);
2804 else
2805 tb_lc_unconfigure_port(up);
2806
2807 down = up->remote;
2808 if (tb_switch_is_usb4(down->sw))
2809 usb4_port_unconfigure(down);
de462039 2810 else
e28178bf 2811 tb_lc_unconfigure_port(down);
de462039
MW
2812}
2813
56ad3aef
MW
2814static void tb_switch_credits_init(struct tb_switch *sw)
2815{
2816 if (tb_switch_is_icm(sw))
2817 return;
2818 if (!tb_switch_is_usb4(sw))
2819 return;
2820 if (usb4_switch_credits_init(sw))
2821 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2822}
2823
bfe778ac
MW
2824/**
2825 * tb_switch_add() - Add a switch to the domain
2826 * @sw: Switch to add
2827 *
2828 * This is the last step in adding switch to the domain. It will read
2829 * identification information from DROM and initializes ports so that
2830 * they can be used to connect other switches. The switch will be
2831 * exposed to the userspace when this function successfully returns. To
2832 * remove and release the switch, call tb_switch_remove().
2833 *
2834 * Return: %0 in case of success and negative errno in case of failure
2835 */
2836int tb_switch_add(struct tb_switch *sw)
2837{
2838 int i, ret;
2839
3e136768
MW
2840 /*
2841 * Initialize DMA control port now before we read DROM. Recent
2842 * host controllers have more complete DROM on NVM that includes
2843 * vendor and model identification strings which we then expose
2844 * to the userspace. NVM can be accessed through DMA
2845 * configuration based mailbox.
2846 */
e6b245cc 2847 ret = tb_switch_add_dma_port(sw);
af99f696
MW
2848 if (ret) {
2849 dev_err(&sw->dev, "failed to add DMA port\n");
f53e7676 2850 return ret;
af99f696 2851 }
343fcb8c 2852
e6b245cc 2853 if (!sw->safe_mode) {
56ad3aef
MW
2854 tb_switch_credits_init(sw);
2855
e6b245cc
MW
2856 /* read drom */
2857 ret = tb_drom_read(sw);
6915812b
ML
2858 if (ret)
2859 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
daa5140f 2860 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
bfe778ac 2861
e23a5afd
MW
2862 tb_check_quirks(sw);
2863
2cc12751 2864 ret = tb_switch_set_uuid(sw);
af99f696
MW
2865 if (ret) {
2866 dev_err(&sw->dev, "failed to set UUID\n");
2cc12751 2867 return ret;
af99f696 2868 }
e6b245cc
MW
2869
2870 for (i = 0; i <= sw->config.max_port_number; i++) {
2871 if (sw->ports[i].disabled) {
daa5140f 2872 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
e6b245cc
MW
2873 continue;
2874 }
2875 ret = tb_init_port(&sw->ports[i]);
af99f696
MW
2876 if (ret) {
2877 dev_err(&sw->dev, "failed to initialize port %d\n", i);
e6b245cc 2878 return ret;
af99f696 2879 }
343fcb8c 2880 }
91c0c120 2881
0d46c08d
MW
2882 tb_switch_default_link_ports(sw);
2883
91c0c120
MW
2884 ret = tb_switch_update_link_attributes(sw);
2885 if (ret)
2886 return ret;
cf29b9af
RM
2887
2888 ret = tb_switch_tmu_init(sw);
2889 if (ret)
2890 return ret;
343fcb8c
AN
2891 }
2892
e6b245cc 2893 ret = device_add(&sw->dev);
af99f696
MW
2894 if (ret) {
2895 dev_err(&sw->dev, "failed to add device: %d\n", ret);
e6b245cc 2896 return ret;
af99f696 2897 }
e6b245cc 2898
a83bc4a5
MW
2899 if (tb_route(sw)) {
2900 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2901 sw->vendor, sw->device);
2902 if (sw->vendor_name && sw->device_name)
2903 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2904 sw->device_name);
2905 }
2906
cae5f515
MW
2907 ret = usb4_switch_add_ports(sw);
2908 if (ret) {
2909 dev_err(&sw->dev, "failed to add USB4 ports\n");
2910 goto err_del;
2911 }
2912
e6b245cc 2913 ret = tb_switch_nvm_add(sw);
2d8ff0b5 2914 if (ret) {
af99f696 2915 dev_err(&sw->dev, "failed to add NVM devices\n");
cae5f515 2916 goto err_ports;
2d8ff0b5 2917 }
e6b245cc 2918
b2911a59
MW
2919 /*
2920 * Thunderbolt routers do not generate wakeups themselves but
2921 * they forward wakeups from tunneled protocols, so enable it
2922 * here.
2923 */
2924 device_init_wakeup(&sw->dev, true);
2925
2d8ff0b5
MW
2926 pm_runtime_set_active(&sw->dev);
2927 if (sw->rpm) {
2928 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2929 pm_runtime_use_autosuspend(&sw->dev);
2930 pm_runtime_mark_last_busy(&sw->dev);
2931 pm_runtime_enable(&sw->dev);
2932 pm_request_autosuspend(&sw->dev);
2933 }
2934
54e41810 2935 tb_switch_debugfs_init(sw);
2d8ff0b5 2936 return 0;
cae5f515
MW
2937
2938err_ports:
2939 usb4_switch_remove_ports(sw);
2940err_del:
2941 device_del(&sw->dev);
2942
2943 return ret;
bfe778ac 2944}
c90553b3 2945
bfe778ac
MW
2946/**
2947 * tb_switch_remove() - Remove and release a switch
2948 * @sw: Switch to remove
2949 *
2950 * This will remove the switch from the domain and release it after last
2951 * reference count drops to zero. If there are switches connected below
2952 * this switch, they will be removed as well.
2953 */
2954void tb_switch_remove(struct tb_switch *sw)
2955{
b433d010 2956 struct tb_port *port;
ca389f71 2957
54e41810
GF
2958 tb_switch_debugfs_remove(sw);
2959
2d8ff0b5
MW
2960 if (sw->rpm) {
2961 pm_runtime_get_sync(&sw->dev);
2962 pm_runtime_disable(&sw->dev);
2963 }
2964
bfe778ac 2965 /* port 0 is the switch itself and never has a remote */
b433d010
MW
2966 tb_switch_for_each_port(sw, port) {
2967 if (tb_port_has_remote(port)) {
2968 tb_switch_remove(port->remote->sw);
2969 port->remote = NULL;
2970 } else if (port->xdomain) {
2971 tb_xdomain_remove(port->xdomain);
2972 port->xdomain = NULL;
dfe40ca4 2973 }
dacb1287
KK
2974
2975 /* Remove any downstream retimers */
2976 tb_retimer_remove_all(port);
bfe778ac
MW
2977 }
2978
2979 if (!sw->is_unplugged)
2980 tb_plug_events_active(sw, false);
b0407983 2981
e6b245cc 2982 tb_switch_nvm_remove(sw);
cae5f515 2983 usb4_switch_remove_ports(sw);
a83bc4a5
MW
2984
2985 if (tb_route(sw))
2986 dev_info(&sw->dev, "device disconnected\n");
bfe778ac 2987 device_unregister(&sw->dev);
a25c8b2f
AN
2988}
2989
053596d9 2990/**
aae20bb6 2991 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
5c6b471b 2992 * @sw: Router to mark unplugged
053596d9 2993 */
aae20bb6 2994void tb_sw_set_unplugged(struct tb_switch *sw)
053596d9 2995{
b433d010
MW
2996 struct tb_port *port;
2997
053596d9
AN
2998 if (sw == sw->tb->root_switch) {
2999 tb_sw_WARN(sw, "cannot unplug root switch\n");
3000 return;
3001 }
3002 if (sw->is_unplugged) {
3003 tb_sw_WARN(sw, "is_unplugged already set\n");
3004 return;
3005 }
3006 sw->is_unplugged = true;
b433d010
MW
3007 tb_switch_for_each_port(sw, port) {
3008 if (tb_port_has_remote(port))
3009 tb_sw_set_unplugged(port->remote->sw);
3010 else if (port->xdomain)
3011 port->xdomain->is_unplugged = true;
053596d9
AN
3012 }
3013}
3014
b2911a59
MW
3015static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3016{
3017 if (flags)
3018 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3019 else
3020 tb_sw_dbg(sw, "disabling wakeup\n");
3021
3022 if (tb_switch_is_usb4(sw))
3023 return usb4_switch_set_wake(sw, flags);
3024 return tb_lc_set_wake(sw, flags);
3025}
3026
23dd5bb4
AN
3027int tb_switch_resume(struct tb_switch *sw)
3028{
b433d010
MW
3029 struct tb_port *port;
3030 int err;
3031
daa5140f 3032 tb_sw_dbg(sw, "resuming switch\n");
23dd5bb4 3033
08a5e4ce
MW
3034 /*
3035 * Check for UID of the connected switches except for root
3036 * switch which we assume cannot be removed.
3037 */
3038 if (tb_route(sw)) {
3039 u64 uid;
3040
7ea4cd6b
MW
3041 /*
3042 * Check first that we can still read the switch config
3043 * space. It may be that there is now another domain
3044 * connected.
3045 */
3046 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3047 if (err < 0) {
3048 tb_sw_info(sw, "switch not present anymore\n");
3049 return err;
3050 }
3051
a283de3e
ML
3052 /* We don't have any way to confirm this was the same device */
3053 if (!sw->uid)
3054 return -ENODEV;
3055
b0407983
MW
3056 if (tb_switch_is_usb4(sw))
3057 err = usb4_switch_read_uid(sw, &uid);
3058 else
3059 err = tb_drom_read_uid_only(sw, &uid);
08a5e4ce
MW
3060 if (err) {
3061 tb_sw_warn(sw, "uid read failed\n");
3062 return err;
3063 }
3064 if (sw->uid != uid) {
3065 tb_sw_info(sw,
3066 "changed while suspended (uid %#llx -> %#llx)\n",
3067 sw->uid, uid);
3068 return -ENODEV;
3069 }
23dd5bb4
AN
3070 }
3071
b0407983 3072 err = tb_switch_configure(sw);
23dd5bb4
AN
3073 if (err)
3074 return err;
3075
b2911a59
MW
3076 /* Disable wakes */
3077 tb_switch_set_wake(sw, 0);
3078
8145c435
MW
3079 err = tb_switch_tmu_init(sw);
3080 if (err)
3081 return err;
3082
23dd5bb4 3083 /* check for surviving downstream switches */
b433d010 3084 tb_switch_for_each_port(sw, port) {
3fb10ea4
RM
3085 if (!tb_port_is_null(port))
3086 continue;
3087
3088 if (!tb_port_resume(port))
23dd5bb4 3089 continue;
dfe40ca4 3090
7ea4cd6b 3091 if (tb_wait_for_port(port, true) <= 0) {
23dd5bb4
AN
3092 tb_port_warn(port,
3093 "lost during suspend, disconnecting\n");
7ea4cd6b
MW
3094 if (tb_port_has_remote(port))
3095 tb_sw_set_unplugged(port->remote->sw);
3096 else if (port->xdomain)
3097 port->xdomain->is_unplugged = true;
3fb10ea4 3098 } else {
b0407983
MW
3099 /*
3100 * Always unlock the port so the downstream
3101 * switch/domain is accessible.
3102 */
3103 if (tb_port_unlock(port))
3104 tb_port_warn(port, "failed to unlock port\n");
3105 if (port->remote && tb_switch_resume(port->remote->sw)) {
7ea4cd6b
MW
3106 tb_port_warn(port,
3107 "lost during suspend, disconnecting\n");
3108 tb_sw_set_unplugged(port->remote->sw);
3109 }
23dd5bb4
AN
3110 }
3111 }
3112 return 0;
3113}
3114
6ac6faee
MW
3115/**
3116 * tb_switch_suspend() - Put a switch to sleep
3117 * @sw: Switch to suspend
3118 * @runtime: Is this runtime suspend or system sleep
3119 *
3120 * Suspends router and all its children. Enables wakes according to
3121 * value of @runtime and then sets sleep bit for the router. If @sw is
3122 * host router the domain is ready to go to sleep once this function
3123 * returns.
3124 */
3125void tb_switch_suspend(struct tb_switch *sw, bool runtime)
23dd5bb4 3126{
b2911a59 3127 unsigned int flags = 0;
b433d010
MW
3128 struct tb_port *port;
3129 int err;
3130
6ac6faee
MW
3131 tb_sw_dbg(sw, "suspending switch\n");
3132
43f977bc
GF
3133 /*
3134 * Actually only needed for Titan Ridge but for simplicity can be
3135 * done for USB4 device too as CLx is re-enabled at resume.
b017a46d 3136 * CL0s and CL1 are enabled and supported together.
43f977bc 3137 */
b017a46d
GF
3138 if (tb_switch_is_clx_enabled(sw, TB_CL1)) {
3139 if (tb_switch_disable_clx(sw, TB_CL1))
3140 tb_sw_warn(sw, "failed to disable %s on upstream port\n",
3141 tb_switch_clx_name(TB_CL1));
418a5a3d 3142 }
43f977bc 3143
23dd5bb4
AN
3144 err = tb_plug_events_active(sw, false);
3145 if (err)
3146 return;
3147
b433d010
MW
3148 tb_switch_for_each_port(sw, port) {
3149 if (tb_port_has_remote(port))
6ac6faee 3150 tb_switch_suspend(port->remote->sw, runtime);
23dd5bb4 3151 }
5480dfc2 3152
6ac6faee
MW
3153 if (runtime) {
3154 /* Trigger wake when something is plugged in/out */
3155 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
6026b703
MW
3156 flags |= TB_WAKE_ON_USB4;
3157 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
6ac6faee
MW
3158 } else if (device_may_wakeup(&sw->dev)) {
3159 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3160 }
b2911a59
MW
3161
3162 tb_switch_set_wake(sw, flags);
3163
b0407983
MW
3164 if (tb_switch_is_usb4(sw))
3165 usb4_switch_set_sleep(sw);
3166 else
3167 tb_lc_set_sleep(sw);
23dd5bb4 3168}
f67cf491 3169
8afe909b
MW
3170/**
3171 * tb_switch_query_dp_resource() - Query availability of DP resource
3172 * @sw: Switch whose DP resource is queried
3173 * @in: DP IN port
3174 *
3175 * Queries availability of DP resource for DP tunneling using switch
3176 * specific means. Returns %true if resource is available.
3177 */
3178bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3179{
b0407983
MW
3180 if (tb_switch_is_usb4(sw))
3181 return usb4_switch_query_dp_resource(sw, in);
8afe909b
MW
3182 return tb_lc_dp_sink_query(sw, in);
3183}
3184
3185/**
3186 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3187 * @sw: Switch whose DP resource is allocated
3188 * @in: DP IN port
3189 *
3190 * Allocates DP resource for DP tunneling. The resource must be
3191 * available for this to succeed (see tb_switch_query_dp_resource()).
3192 * Returns %0 in success and negative errno otherwise.
3193 */
3194int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3195{
ce05b997
MW
3196 int ret;
3197
b0407983 3198 if (tb_switch_is_usb4(sw))
ce05b997
MW
3199 ret = usb4_switch_alloc_dp_resource(sw, in);
3200 else
3201 ret = tb_lc_dp_sink_alloc(sw, in);
3202
3203 if (ret)
3204 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3205 in->port);
3206 else
3207 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3208
3209 return ret;
8afe909b
MW
3210}
3211
3212/**
3213 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3214 * @sw: Switch whose DP resource is de-allocated
3215 * @in: DP IN port
3216 *
3217 * De-allocates DP resource that was previously allocated for DP
3218 * tunneling.
3219 */
3220void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3221{
b0407983
MW
3222 int ret;
3223
3224 if (tb_switch_is_usb4(sw))
3225 ret = usb4_switch_dealloc_dp_resource(sw, in);
3226 else
3227 ret = tb_lc_dp_sink_dealloc(sw, in);
3228
3229 if (ret)
8afe909b
MW
3230 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3231 in->port);
ce05b997
MW
3232 else
3233 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
8afe909b
MW
3234}
3235
f67cf491
MW
3236struct tb_sw_lookup {
3237 struct tb *tb;
3238 u8 link;
3239 u8 depth;
7c39ffe7 3240 const uuid_t *uuid;
8e9267bb 3241 u64 route;
f67cf491
MW
3242};
3243
418e3ea1 3244static int tb_switch_match(struct device *dev, const void *data)
f67cf491
MW
3245{
3246 struct tb_switch *sw = tb_to_switch(dev);
418e3ea1 3247 const struct tb_sw_lookup *lookup = data;
f67cf491
MW
3248
3249 if (!sw)
3250 return 0;
3251 if (sw->tb != lookup->tb)
3252 return 0;
3253
3254 if (lookup->uuid)
3255 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3256
8e9267bb
RM
3257 if (lookup->route) {
3258 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3259 sw->config.route_hi == upper_32_bits(lookup->route);
3260 }
3261
f67cf491
MW
3262 /* Root switch is matched only by depth */
3263 if (!lookup->depth)
3264 return !sw->depth;
3265
3266 return sw->link == lookup->link && sw->depth == lookup->depth;
3267}
3268
3269/**
3270 * tb_switch_find_by_link_depth() - Find switch by link and depth
3271 * @tb: Domain the switch belongs
3272 * @link: Link number the switch is connected
3273 * @depth: Depth of the switch in link
3274 *
3275 * Returned switch has reference count increased so the caller needs to
3276 * call tb_switch_put() when done with the switch.
3277 */
3278struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3279{
3280 struct tb_sw_lookup lookup;
3281 struct device *dev;
3282
3283 memset(&lookup, 0, sizeof(lookup));
3284 lookup.tb = tb;
3285 lookup.link = link;
3286 lookup.depth = depth;
3287
3288 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3289 if (dev)
3290 return tb_to_switch(dev);
3291
3292 return NULL;
3293}
3294
3295/**
432019d6 3296 * tb_switch_find_by_uuid() - Find switch by UUID
f67cf491
MW
3297 * @tb: Domain the switch belongs
3298 * @uuid: UUID to look for
3299 *
3300 * Returned switch has reference count increased so the caller needs to
3301 * call tb_switch_put() when done with the switch.
3302 */
7c39ffe7 3303struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
f67cf491
MW
3304{
3305 struct tb_sw_lookup lookup;
3306 struct device *dev;
3307
3308 memset(&lookup, 0, sizeof(lookup));
3309 lookup.tb = tb;
3310 lookup.uuid = uuid;
3311
3312 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3313 if (dev)
3314 return tb_to_switch(dev);
3315
3316 return NULL;
3317}
e6b245cc 3318
8e9267bb
RM
3319/**
3320 * tb_switch_find_by_route() - Find switch by route string
3321 * @tb: Domain the switch belongs
3322 * @route: Route string to look for
3323 *
3324 * Returned switch has reference count increased so the caller needs to
3325 * call tb_switch_put() when done with the switch.
3326 */
3327struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3328{
3329 struct tb_sw_lookup lookup;
3330 struct device *dev;
3331
3332 if (!route)
3333 return tb_switch_get(tb->root_switch);
3334
3335 memset(&lookup, 0, sizeof(lookup));
3336 lookup.tb = tb;
3337 lookup.route = route;
3338
3339 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3340 if (dev)
3341 return tb_to_switch(dev);
3342
3343 return NULL;
3344}
3345
386e5e29
MW
3346/**
3347 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3348 * @sw: Switch to find the port from
3349 * @type: Port type to look for
3350 */
3351struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3352 enum tb_port_type type)
3353{
3354 struct tb_port *port;
3355
3356 tb_switch_for_each_port(sw, port) {
3357 if (port->config.type == type)
3358 return port;
3359 }
3360
3361 return NULL;
3362}
8a90e4fa
GF
3363
3364static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary)
3365{
3366 u32 phy;
3367 int ret;
3368
3369 ret = tb_port_read(port, &phy, TB_CFG_PORT,
3370 port->cap_phy + LANE_ADP_CS_1, 1);
3371 if (ret)
3372 return ret;
3373
3374 if (secondary)
3375 phy |= LANE_ADP_CS_1_PMS;
3376 else
3377 phy &= ~LANE_ADP_CS_1_PMS;
3378
3379 return tb_port_write(port, &phy, TB_CFG_PORT,
3380 port->cap_phy + LANE_ADP_CS_1, 1);
3381}
3382
3383static int tb_port_pm_secondary_enable(struct tb_port *port)
3384{
3385 return __tb_port_pm_secondary_set(port, true);
3386}
3387
3388static int tb_port_pm_secondary_disable(struct tb_port *port)
3389{
3390 return __tb_port_pm_secondary_set(port, false);
3391}
3392
3393static int tb_switch_pm_secondary_resolve(struct tb_switch *sw)
3394{
3395 struct tb_switch *parent = tb_switch_parent(sw);
3396 struct tb_port *up, *down;
3397 int ret;
3398
3399 if (!tb_route(sw))
3400 return 0;
3401
3402 up = tb_upstream_port(sw);
3403 down = tb_port_at(tb_route(sw), parent);
3404 ret = tb_port_pm_secondary_enable(up);
3405 if (ret)
3406 return ret;
3407
3408 return tb_port_pm_secondary_disable(down);
3409}
3410
43f977bc 3411/* Called for USB4 or Titan Ridge routers only */
8a90e4fa
GF
3412static bool tb_port_clx_supported(struct tb_port *port, enum tb_clx clx)
3413{
3414 u32 mask, val;
3415 bool ret;
3416
3417 /* Don't enable CLx in case of two single-lane links */
3418 if (!port->bonded && port->dual_link_port)
3419 return false;
3420
3421 /* Don't enable CLx in case of inter-domain link */
3422 if (port->xdomain)
3423 return false;
3424
43f977bc
GF
3425 if (tb_switch_is_usb4(port->sw)) {
3426 if (!usb4_port_clx_supported(port))
3427 return false;
3428 } else if (!tb_lc_is_clx_supported(port)) {
8a90e4fa 3429 return false;
43f977bc 3430 }
8a90e4fa
GF
3431
3432 switch (clx) {
b017a46d
GF
3433 case TB_CL1:
3434 /* CL0s and CL1 are enabled and supported together */
8a90e4fa
GF
3435 mask = LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT;
3436 break;
3437
b017a46d 3438 /* For now we support only CL0s and CL1. Not CL2 */
8a90e4fa
GF
3439 case TB_CL2:
3440 default:
3441 return false;
3442 }
3443
3444 ret = tb_port_read(port, &val, TB_CFG_PORT,
3445 port->cap_phy + LANE_ADP_CS_0, 1);
3446 if (ret)
3447 return false;
3448
3449 return !!(val & mask);
3450}
3451
b017a46d 3452static int __tb_port_clx_set(struct tb_port *port, enum tb_clx clx, bool enable)
8a90e4fa
GF
3453{
3454 u32 phy, mask;
3455 int ret;
3456
b017a46d
GF
3457 /* CL0s and CL1 are enabled and supported together */
3458 if (clx == TB_CL1)
3459 mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE;
3460 else
3461 /* For now we support only CL0s and CL1. Not CL2 */
3462 return -EOPNOTSUPP;
3463
8a90e4fa
GF
3464 ret = tb_port_read(port, &phy, TB_CFG_PORT,
3465 port->cap_phy + LANE_ADP_CS_1, 1);
3466 if (ret)
3467 return ret;
3468
3469 if (enable)
3470 phy |= mask;
3471 else
3472 phy &= ~mask;
3473
3474 return tb_port_write(port, &phy, TB_CFG_PORT,
3475 port->cap_phy + LANE_ADP_CS_1, 1);
3476}
3477
b017a46d 3478static int tb_port_clx_disable(struct tb_port *port, enum tb_clx clx)
8a90e4fa 3479{
b017a46d 3480 return __tb_port_clx_set(port, clx, false);
8a90e4fa
GF
3481}
3482
b017a46d 3483static int tb_port_clx_enable(struct tb_port *port, enum tb_clx clx)
8a90e4fa 3484{
b017a46d 3485 return __tb_port_clx_set(port, clx, true);
8a90e4fa
GF
3486}
3487
b017a46d 3488static int __tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
8a90e4fa
GF
3489{
3490 struct tb_switch *parent = tb_switch_parent(sw);
b017a46d 3491 bool up_clx_support, down_clx_support;
8a90e4fa
GF
3492 struct tb_port *up, *down;
3493 int ret;
3494
43f977bc 3495 if (!tb_switch_is_clx_supported(sw))
8a90e4fa
GF
3496 return 0;
3497
3498 /*
3499 * Enable CLx for host router's downstream port as part of the
3500 * downstream router enabling procedure.
3501 */
3502 if (!tb_route(sw))
3503 return 0;
3504
3505 /* Enable CLx only for first hop router (depth = 1) */
3506 if (tb_route(parent))
3507 return 0;
3508
3509 ret = tb_switch_pm_secondary_resolve(sw);
3510 if (ret)
3511 return ret;
3512
3513 up = tb_upstream_port(sw);
3514 down = tb_port_at(tb_route(sw), parent);
3515
b017a46d
GF
3516 up_clx_support = tb_port_clx_supported(up, clx);
3517 down_clx_support = tb_port_clx_supported(down, clx);
8a90e4fa 3518
b017a46d
GF
3519 tb_port_dbg(up, "%s %ssupported\n", tb_switch_clx_name(clx),
3520 up_clx_support ? "" : "not ");
3521 tb_port_dbg(down, "%s %ssupported\n", tb_switch_clx_name(clx),
3522 down_clx_support ? "" : "not ");
8a90e4fa 3523
b017a46d 3524 if (!up_clx_support || !down_clx_support)
8a90e4fa
GF
3525 return -EOPNOTSUPP;
3526
b017a46d 3527 ret = tb_port_clx_enable(up, clx);
8a90e4fa
GF
3528 if (ret)
3529 return ret;
3530
b017a46d 3531 ret = tb_port_clx_enable(down, clx);
8a90e4fa 3532 if (ret) {
b017a46d 3533 tb_port_clx_disable(up, clx);
8a90e4fa
GF
3534 return ret;
3535 }
3536
43f977bc
GF
3537 ret = tb_switch_mask_clx_objections(sw);
3538 if (ret) {
b017a46d
GF
3539 tb_port_clx_disable(up, clx);
3540 tb_port_clx_disable(down, clx);
43f977bc
GF
3541 return ret;
3542 }
3543
b017a46d 3544 sw->clx = clx;
8a90e4fa 3545
b017a46d 3546 tb_port_dbg(up, "%s enabled\n", tb_switch_clx_name(clx));
8a90e4fa
GF
3547 return 0;
3548}
3549
3550/**
3551 * tb_switch_enable_clx() - Enable CLx on upstream port of specified router
3552 * @sw: Router to enable CLx for
3553 * @clx: The CLx state to enable
3554 *
3555 * Enable CLx state only for first hop router. That is the most common
3556 * use-case, that is intended for better thermal management, and so helps
3557 * to improve performance. CLx is enabled only if both sides of the link
3558 * support CLx, and if both sides of the link are not configured as two
3559 * single lane links and only if the link is not inter-domain link. The
b4e08d5d 3560 * complete set of conditions is described in CM Guide 1.0 section 8.1.
8a90e4fa
GF
3561 *
3562 * Return: Returns 0 on success or an error code on failure.
3563 */
3564int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx)
3565{
3566 struct tb_switch *root_sw = sw->tb->root_switch;
3567
fa487b2a
GF
3568 if (!clx_enabled)
3569 return 0;
3570
8a90e4fa
GF
3571 /*
3572 * CLx is not enabled and validated on Intel USB4 platforms before
3573 * Alder Lake.
3574 */
3575 if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw))
3576 return 0;
3577
3578 switch (clx) {
b017a46d
GF
3579 case TB_CL1:
3580 /* CL0s and CL1 are enabled and supported together */
3581 return __tb_switch_enable_clx(sw, clx);
8a90e4fa
GF
3582
3583 default:
3584 return -EOPNOTSUPP;
3585 }
3586}
3587
b017a46d 3588static int __tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
8a90e4fa
GF
3589{
3590 struct tb_switch *parent = tb_switch_parent(sw);
3591 struct tb_port *up, *down;
3592 int ret;
3593
43f977bc 3594 if (!tb_switch_is_clx_supported(sw))
8a90e4fa
GF
3595 return 0;
3596
3597 /*
3598 * Disable CLx for host router's downstream port as part of the
3599 * downstream router enabling procedure.
3600 */
3601 if (!tb_route(sw))
3602 return 0;
3603
3604 /* Disable CLx only for first hop router (depth = 1) */
3605 if (tb_route(parent))
3606 return 0;
3607
3608 up = tb_upstream_port(sw);
3609 down = tb_port_at(tb_route(sw), parent);
b017a46d 3610 ret = tb_port_clx_disable(up, clx);
8a90e4fa
GF
3611 if (ret)
3612 return ret;
3613
b017a46d 3614 ret = tb_port_clx_disable(down, clx);
8a90e4fa
GF
3615 if (ret)
3616 return ret;
3617
3618 sw->clx = TB_CLX_DISABLE;
3619
b017a46d 3620 tb_port_dbg(up, "%s disabled\n", tb_switch_clx_name(clx));
8a90e4fa
GF
3621 return 0;
3622}
3623
3624/**
3625 * tb_switch_disable_clx() - Disable CLx on upstream port of specified router
3626 * @sw: Router to disable CLx for
3627 * @clx: The CLx state to disable
3628 *
3629 * Return: Returns 0 on success or an error code on failure.
3630 */
3631int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx)
3632{
fa487b2a
GF
3633 if (!clx_enabled)
3634 return 0;
3635
8a90e4fa 3636 switch (clx) {
b017a46d
GF
3637 case TB_CL1:
3638 /* CL0s and CL1 are enabled and supported together */
3639 return __tb_switch_disable_clx(sw, clx);
8a90e4fa
GF
3640
3641 default:
3642 return -EOPNOTSUPP;
3643 }
3644}
43f977bc
GF
3645
3646/**
3647 * tb_switch_mask_clx_objections() - Mask CLx objections for a router
3648 * @sw: Router to mask objections for
3649 *
3650 * Mask the objections coming from the second depth routers in order to
3651 * stop these objections from interfering with the CLx states of the first
3652 * depth link.
3653 */
3654int tb_switch_mask_clx_objections(struct tb_switch *sw)
3655{
3656 int up_port = sw->config.upstream_port_number;
3657 u32 offset, val[2], mask_obj, unmask_obj;
3658 int ret, i;
3659
3660 /* Only Titan Ridge of pre-USB4 devices support CLx states */
3661 if (!tb_switch_is_titan_ridge(sw))
3662 return 0;
3663
3664 if (!tb_route(sw))
3665 return 0;
3666
3667 /*
3668 * In Titan Ridge there are only 2 dual-lane Thunderbolt ports:
3669 * Port A consists of lane adapters 1,2 and
3670 * Port B consists of lane adapters 3,4
3671 * If upstream port is A, (lanes are 1,2), we mask objections from
3672 * port B (lanes 3,4) and unmask objections from Port A and vice-versa.
3673 */
3674 if (up_port == 1) {
3675 mask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3676 unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3677 offset = TB_LOW_PWR_C1_CL1;
3678 } else {
3679 mask_obj = TB_LOW_PWR_C1_PORT_A_MASK;
3680 unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK;
3681 offset = TB_LOW_PWR_C3_CL1;
3682 }
3683
3684 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH,
3685 sw->cap_lp + offset, ARRAY_SIZE(val));
3686 if (ret)
3687 return ret;
3688
3689 for (i = 0; i < ARRAY_SIZE(val); i++) {
3690 val[i] |= mask_obj;
3691 val[i] &= ~unmask_obj;
3692 }
3693
3694 return tb_sw_write(sw, &val, TB_CFG_SWITCH,
3695 sw->cap_lp + offset, ARRAY_SIZE(val));
3696}
3697
3698/*
3699 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3700 * device. For now used only for Titan Ridge.
3701 */
3702static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3703 unsigned int pcie_offset, u32 value)
3704{
3705 u32 offset, command, val;
3706 int ret;
3707
3708 if (sw->generation != 3)
3709 return -EOPNOTSUPP;
3710
3711 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3712 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3713 if (ret)
3714 return ret;
3715
3716 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3717 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3718 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3719 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3720 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3721 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3722
3723 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3724
3725 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3726 if (ret)
3727 return ret;
3728
3729 ret = tb_switch_wait_for_bit(sw, offset,
3730 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3731 if (ret)
3732 return ret;
3733
3734 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3735 if (ret)
3736 return ret;
3737
3738 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3739 return -ETIMEDOUT;
3740
3741 return 0;
3742}
3743
3744/**
3745 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3746 * @sw: Router to enable PCIe L1
3747 *
3748 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3749 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3750 * was configured. Due to Intel platforms limitation, shall be called only
3751 * for first hop switch.
3752 */
3753int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3754{
3755 struct tb_switch *parent = tb_switch_parent(sw);
3756 int ret;
3757
3758 if (!tb_route(sw))
3759 return 0;
3760
3761 if (!tb_switch_is_titan_ridge(sw))
3762 return 0;
3763
3764 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3765 if (tb_route(parent))
3766 return 0;
3767
3768 /* Write to downstream PCIe bridge #5 aka Dn4 */
3769 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3770 if (ret)
3771 return ret;
3772
3773 /* Write to Upstream PCIe bridge #0 aka Up0 */
3774 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3775}
30a4eca6
MW
3776
3777/**
3778 * tb_switch_xhci_connect() - Connect internal xHCI
3779 * @sw: Router whose xHCI to connect
3780 *
3781 * Can be called to any router. For Alpine Ridge and Titan Ridge
3782 * performs special flows that bring the xHCI functional for any device
3783 * connected to the type-C port. Call only after PCIe tunnel has been
3784 * established. The function only does the connect if not done already
3785 * so can be called several times for the same router.
3786 */
3787int tb_switch_xhci_connect(struct tb_switch *sw)
3788{
3789 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3790 struct tb_port *port1, *port3;
3791 int ret;
3792
3793 port1 = &sw->ports[1];
3794 port3 = &sw->ports[3];
3795
3796 if (tb_switch_is_alpine_ridge(sw)) {
3797 usb_port1 = tb_lc_is_usb_plugged(port1);
3798 usb_port3 = tb_lc_is_usb_plugged(port3);
3799 xhci_port1 = tb_lc_is_xhci_connected(port1);
3800 xhci_port3 = tb_lc_is_xhci_connected(port3);
3801
3802 /* Figure out correct USB port to connect */
3803 if (usb_port1 && !xhci_port1) {
3804 ret = tb_lc_xhci_connect(port1);
3805 if (ret)
3806 return ret;
3807 }
3808 if (usb_port3 && !xhci_port3)
3809 return tb_lc_xhci_connect(port3);
3810 } else if (tb_switch_is_titan_ridge(sw)) {
3811 ret = tb_lc_xhci_connect(port1);
3812 if (ret)
3813 return ret;
3814 return tb_lc_xhci_connect(port3);
3815 }
3816
3817 return 0;
3818}
3819
3820/**
3821 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3822 * @sw: Router whose xHCI to disconnect
3823 *
3824 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3825 * ports.
3826 */
3827void tb_switch_xhci_disconnect(struct tb_switch *sw)
3828{
3829 if (sw->generation == 3) {
3830 struct tb_port *port1 = &sw->ports[1];
3831 struct tb_port *port3 = &sw->ports[3];
3832
3833 tb_lc_xhci_disconnect(port1);
3834 tb_port_dbg(port1, "disconnected xHCI\n");
3835 tb_lc_xhci_disconnect(port3);
3836 tb_port_dbg(port3, "disconnected xHCI\n");
3837 }
3838}