thunderbolt: Add link_speed and link_width to XDomain
[linux-block.git] / drivers / thunderbolt / switch.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a25c8b2f 2/*
15c6784c 3 * Thunderbolt driver - switch/port utility functions
a25c8b2f
AN
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
15c6784c 6 * Copyright (C) 2018, Intel Corporation
a25c8b2f
AN
7 */
8
9#include <linux/delay.h>
e6b245cc
MW
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
2d8ff0b5 12#include <linux/pm_runtime.h>
09f11b6c 13#include <linux/sched/signal.h>
e6b245cc 14#include <linux/sizes.h>
10fefe56 15#include <linux/slab.h>
a25c8b2f
AN
16
17#include "tb.h"
18
e6b245cc
MW
19/* Switch NVM support */
20
e6b245cc 21#define NVM_CSS 0x10
e6b245cc
MW
22
23struct nvm_auth_status {
24 struct list_head list;
7c39ffe7 25 uuid_t uuid;
e6b245cc
MW
26 u32 status;
27};
28
4b794f80
ML
29enum nvm_write_ops {
30 WRITE_AND_AUTHENTICATE = 1,
31 WRITE_ONLY = 2,
32};
33
e6b245cc
MW
34/*
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
37 * keep it separately.
38 */
39static LIST_HEAD(nvm_auth_status_cache);
40static DEFINE_MUTEX(nvm_auth_status_lock);
41
42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43{
44 struct nvm_auth_status *st;
45
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
7c39ffe7 47 if (uuid_equal(&st->uuid, sw->uuid))
e6b245cc
MW
48 return st;
49 }
50
51 return NULL;
52}
53
54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55{
56 struct nvm_auth_status *st;
57
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
61
62 *status = st ? st->status : 0;
63}
64
65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66{
67 struct nvm_auth_status *st;
68
69 if (WARN_ON(!sw->uuid))
70 return;
71
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
74
75 if (!st) {
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
77 if (!st)
78 goto unlock;
79
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
83 }
84
85 st->status = status;
86unlock:
87 mutex_unlock(&nvm_auth_status_lock);
88}
89
90static void nvm_clear_auth_status(const struct tb_switch *sw)
91{
92 struct nvm_auth_status *st;
93
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
96 if (st) {
97 list_del(&st->list);
98 kfree(st);
99 }
100 mutex_unlock(&nvm_auth_status_lock);
101}
102
103static int nvm_validate_and_write(struct tb_switch *sw)
104{
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
107 u16 ds_size;
108 int ret;
109
110 if (!buf)
111 return -EINVAL;
112
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 return -EINVAL;
116
117 /*
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
120 */
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
123 return -EINVAL;
124
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
127 return -EINVAL;
128
129 /*
130 * Read digital section size and check that it also fits inside
131 * the image.
132 */
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
135 return -EINVAL;
136
137 if (!sw->safe_mode) {
138 u16 device_id;
139
140 /*
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
143 */
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
146 return -EINVAL;
147
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
153 if (ret)
154 return ret;
155 }
156
157 /* Skip headers in the image */
158 buf += hdr_size;
159 image_size -= hdr_size;
160 }
161
b0407983 162 if (tb_switch_is_usb4(sw))
4b794f80
ML
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 else
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 if (!ret)
167 sw->nvm->flushed = true;
168 return ret;
e6b245cc
MW
169}
170
b0407983 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
e6b245cc 172{
7a7ebfa8 173 int ret = 0;
e6b245cc
MW
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
d1ff7024 177 * existing paths first (in case it is not in safe mode
e6b245cc
MW
178 * already).
179 */
180 if (!sw->safe_mode) {
7a7ebfa8
MW
181 u32 status;
182
d1ff7024 183 ret = tb_domain_disconnect_all_paths(sw->tb);
e6b245cc
MW
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
e6b245cc
MW
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
7a7ebfa8 208 return ret;
e6b245cc
MW
209}
210
b0407983 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
e6b245cc
MW
212{
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
e6b245cc 224 return ret;
7a7ebfa8 225 }
e6b245cc
MW
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254}
255
b0407983
MW
256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257{
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
6ae72bfa 266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269}
270
271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272{
273 struct pci_dev *root_port;
274
6ae72bfa 275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278}
279
280static inline bool nvm_readable(struct tb_switch *sw)
281{
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294}
295
296static inline bool nvm_upgradeable(struct tb_switch *sw)
297{
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301}
302
303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305{
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309}
310
311static int nvm_authenticate(struct tb_switch *sw)
312{
313 int ret;
314
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
317
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
323 }
324
325 return ret;
326}
327
e6b245cc
MW
328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
330{
719a5fe8
MW
331 struct tb_nvm *nvm = priv;
332 struct tb_switch *sw = tb_to_switch(nvm->dev);
2d8ff0b5
MW
333 int ret;
334
335 pm_runtime_get_sync(&sw->dev);
4f7c2e0d
MW
336
337 if (!mutex_trylock(&sw->tb->lock)) {
338 ret = restart_syscall();
339 goto out;
340 }
341
b0407983 342 ret = nvm_read(sw, offset, val, bytes);
4f7c2e0d
MW
343 mutex_unlock(&sw->tb->lock);
344
345out:
2d8ff0b5
MW
346 pm_runtime_mark_last_busy(&sw->dev);
347 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc 348
2d8ff0b5 349 return ret;
e6b245cc
MW
350}
351
352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 size_t bytes)
354{
719a5fe8
MW
355 struct tb_nvm *nvm = priv;
356 struct tb_switch *sw = tb_to_switch(nvm->dev);
357 int ret;
e6b245cc 358
09f11b6c
MW
359 if (!mutex_trylock(&sw->tb->lock))
360 return restart_syscall();
e6b245cc
MW
361
362 /*
363 * Since writing the NVM image might require some special steps,
364 * for example when CSS headers are written, we cache the image
365 * locally here and handle the special cases when the user asks
366 * us to authenticate the image.
367 */
719a5fe8 368 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
09f11b6c 369 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
370
371 return ret;
372}
373
e6b245cc
MW
374static int tb_switch_nvm_add(struct tb_switch *sw)
375{
719a5fe8 376 struct tb_nvm *nvm;
e6b245cc
MW
377 u32 val;
378 int ret;
379
b0407983 380 if (!nvm_readable(sw))
e6b245cc
MW
381 return 0;
382
b0407983
MW
383 /*
384 * The NVM format of non-Intel hardware is not known so
385 * currently restrict NVM upgrade for Intel hardware. We may
386 * relax this in the future when we learn other NVM formats.
387 */
83d17036
MW
388 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 sw->config.vendor_id != 0x8087) {
b0407983
MW
390 dev_info(&sw->dev,
391 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 sw->config.vendor_id);
393 return 0;
394 }
395
719a5fe8
MW
396 nvm = tb_nvm_alloc(&sw->dev);
397 if (IS_ERR(nvm))
398 return PTR_ERR(nvm);
e6b245cc
MW
399
400 /*
401 * If the switch is in safe-mode the only accessible portion of
402 * the NVM is the non-active one where userspace is expected to
403 * write new functional NVM.
404 */
405 if (!sw->safe_mode) {
406 u32 nvm_size, hdr_size;
407
b0407983 408 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
e6b245cc 409 if (ret)
719a5fe8 410 goto err_nvm;
e6b245cc
MW
411
412 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 nvm_size = (SZ_1M << (val & 7)) / 8;
414 nvm_size = (nvm_size - hdr_size) / 2;
415
b0407983 416 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
e6b245cc 417 if (ret)
719a5fe8 418 goto err_nvm;
e6b245cc
MW
419
420 nvm->major = val >> 16;
421 nvm->minor = val >> 8;
422
719a5fe8
MW
423 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 if (ret)
425 goto err_nvm;
e6b245cc
MW
426 }
427
3f415e5e 428 if (!sw->no_nvm_upgrade) {
719a5fe8
MW
429 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 tb_switch_nvm_write);
431 if (ret)
432 goto err_nvm;
e6b245cc 433 }
e6b245cc 434
e6b245cc 435 sw->nvm = nvm;
e6b245cc
MW
436 return 0;
437
719a5fe8
MW
438err_nvm:
439 tb_nvm_free(nvm);
e6b245cc
MW
440 return ret;
441}
442
443static void tb_switch_nvm_remove(struct tb_switch *sw)
444{
719a5fe8 445 struct tb_nvm *nvm;
e6b245cc 446
e6b245cc
MW
447 nvm = sw->nvm;
448 sw->nvm = NULL;
e6b245cc
MW
449
450 if (!nvm)
451 return;
452
453 /* Remove authentication status in case the switch is unplugged */
454 if (!nvm->authenticating)
455 nvm_clear_auth_status(sw);
456
719a5fe8 457 tb_nvm_free(nvm);
e6b245cc
MW
458}
459
a25c8b2f
AN
460/* port utility functions */
461
462static const char *tb_port_type(struct tb_regs_port_header *port)
463{
464 switch (port->type >> 16) {
465 case 0:
466 switch ((u8) port->type) {
467 case 0:
468 return "Inactive";
469 case 1:
470 return "Port";
471 case 2:
472 return "NHI";
473 default:
474 return "unknown";
475 }
476 case 0x2:
477 return "Ethernet";
478 case 0x8:
479 return "SATA";
480 case 0xe:
481 return "DP/HDMI";
482 case 0x10:
483 return "PCIe";
484 case 0x20:
485 return "USB";
486 default:
487 return "unknown";
488 }
489}
490
491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492{
daa5140f
MW
493 tb_dbg(tb,
494 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 port->port_number, port->vendor_id, port->device_id,
496 port->revision, port->thunderbolt_version, tb_port_type(port),
497 port->type);
498 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
499 port->max_in_hop_id, port->max_out_hop_id);
500 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
501 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
a25c8b2f
AN
502}
503
9da672a4
AN
504/**
505 * tb_port_state() - get connectedness state of a port
506 *
507 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
508 *
509 * Return: Returns an enum tb_port_state on success or an error code on failure.
510 */
511static int tb_port_state(struct tb_port *port)
512{
513 struct tb_cap_phy phy;
514 int res;
515 if (port->cap_phy == 0) {
516 tb_port_WARN(port, "does not have a PHY\n");
517 return -EINVAL;
518 }
519 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
520 if (res)
521 return res;
522 return phy.state;
523}
524
525/**
526 * tb_wait_for_port() - wait for a port to become ready
527 *
528 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
529 * wait_if_unplugged is set then we also wait if the port is in state
530 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
531 * switch resume). Otherwise we only wait if a device is registered but the link
532 * has not yet been established.
533 *
534 * Return: Returns an error code on failure. Returns 0 if the port is not
535 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
536 * if the port is connected and in state TB_PORT_UP.
537 */
538int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
539{
540 int retries = 10;
541 int state;
542 if (!port->cap_phy) {
543 tb_port_WARN(port, "does not have PHY\n");
544 return -EINVAL;
545 }
546 if (tb_is_upstream_port(port)) {
547 tb_port_WARN(port, "is the upstream port\n");
548 return -EINVAL;
549 }
550
551 while (retries--) {
552 state = tb_port_state(port);
553 if (state < 0)
554 return state;
555 if (state == TB_PORT_DISABLED) {
62efe699 556 tb_port_dbg(port, "is disabled (state: 0)\n");
9da672a4
AN
557 return 0;
558 }
559 if (state == TB_PORT_UNPLUGGED) {
560 if (wait_if_unplugged) {
561 /* used during resume */
62efe699
MW
562 tb_port_dbg(port,
563 "is unplugged (state: 7), retrying...\n");
9da672a4
AN
564 msleep(100);
565 continue;
566 }
62efe699 567 tb_port_dbg(port, "is unplugged (state: 7)\n");
9da672a4
AN
568 return 0;
569 }
570 if (state == TB_PORT_UP) {
62efe699 571 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
9da672a4
AN
572 return 1;
573 }
574
575 /*
576 * After plug-in the state is TB_PORT_CONNECTING. Give it some
577 * time.
578 */
62efe699
MW
579 tb_port_dbg(port,
580 "is connected, link is not up (state: %d), retrying...\n",
581 state);
9da672a4
AN
582 msleep(100);
583 }
584 tb_port_warn(port,
585 "failed to reach state TB_PORT_UP. Ignoring port...\n");
586 return 0;
587}
588
520b6702
AN
589/**
590 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
591 *
592 * Change the number of NFC credits allocated to @port by @credits. To remove
593 * NFC credits pass a negative amount of credits.
594 *
595 * Return: Returns 0 on success or an error code on failure.
596 */
597int tb_port_add_nfc_credits(struct tb_port *port, int credits)
598{
c5ee6feb
MW
599 u32 nfc_credits;
600
601 if (credits == 0 || port->sw->is_unplugged)
520b6702 602 return 0;
c5ee6feb 603
edfbd68b
MW
604 /*
605 * USB4 restricts programming NFC buffers to lane adapters only
606 * so skip other ports.
607 */
608 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
609 return 0;
610
8f57d478 611 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
c5ee6feb
MW
612 nfc_credits += credits;
613
8f57d478
MW
614 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
615 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
c5ee6feb 616
8f57d478 617 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
c5ee6feb
MW
618 port->config.nfc_credits |= nfc_credits;
619
520b6702 620 return tb_port_write(port, &port->config.nfc_credits,
8f57d478 621 TB_CFG_PORT, ADP_CS_4, 1);
520b6702
AN
622}
623
44242d6c
MW
624/**
625 * tb_port_set_initial_credits() - Set initial port link credits allocated
626 * @port: Port to set the initial credits
627 * @credits: Number of credits to to allocate
628 *
629 * Set initial credits value to be used for ingress shared buffering.
630 */
631int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
632{
633 u32 data;
634 int ret;
635
8f57d478 636 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
44242d6c
MW
637 if (ret)
638 return ret;
639
8f57d478
MW
640 data &= ~ADP_CS_5_LCA_MASK;
641 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
44242d6c 642
8f57d478 643 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
44242d6c
MW
644}
645
520b6702
AN
646/**
647 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
648 *
649 * Return: Returns 0 on success or an error code on failure.
650 */
651int tb_port_clear_counter(struct tb_port *port, int counter)
652{
653 u32 zero[3] = { 0, 0, 0 };
62efe699 654 tb_port_dbg(port, "clearing counter %d\n", counter);
520b6702
AN
655 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
656}
657
b0407983
MW
658/**
659 * tb_port_unlock() - Unlock downstream port
660 * @port: Port to unlock
661 *
662 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
663 * downstream router accessible for CM.
664 */
665int tb_port_unlock(struct tb_port *port)
666{
667 if (tb_switch_is_icm(port->sw))
668 return 0;
669 if (!tb_port_is_null(port))
670 return -EINVAL;
671 if (tb_switch_is_usb4(port->sw))
672 return usb4_port_unlock(port);
673 return 0;
674}
675
341d4518
MW
676static int __tb_port_enable(struct tb_port *port, bool enable)
677{
678 int ret;
679 u32 phy;
680
681 if (!tb_port_is_null(port))
682 return -EINVAL;
683
684 ret = tb_port_read(port, &phy, TB_CFG_PORT,
685 port->cap_phy + LANE_ADP_CS_1, 1);
686 if (ret)
687 return ret;
688
689 if (enable)
690 phy &= ~LANE_ADP_CS_1_LD;
691 else
692 phy |= LANE_ADP_CS_1_LD;
693
694 return tb_port_write(port, &phy, TB_CFG_PORT,
695 port->cap_phy + LANE_ADP_CS_1, 1);
696}
697
698/**
699 * tb_port_enable() - Enable lane adapter
700 * @port: Port to enable (can be %NULL)
701 *
702 * This is used for lane 0 and 1 adapters to enable it.
703 */
704int tb_port_enable(struct tb_port *port)
705{
706 return __tb_port_enable(port, true);
707}
708
709/**
710 * tb_port_disable() - Disable lane adapter
711 * @port: Port to disable (can be %NULL)
712 *
713 * This is used for lane 0 and 1 adapters to disable it.
714 */
715int tb_port_disable(struct tb_port *port)
716{
717 return __tb_port_enable(port, false);
718}
719
a25c8b2f
AN
720/**
721 * tb_init_port() - initialize a port
722 *
723 * This is a helper method for tb_switch_alloc. Does not check or initialize
724 * any downstream switches.
725 *
726 * Return: Returns 0 on success or an error code on failure.
727 */
343fcb8c 728static int tb_init_port(struct tb_port *port)
a25c8b2f
AN
729{
730 int res;
9da672a4 731 int cap;
343fcb8c 732
a25c8b2f 733 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
d94dcbb1
MW
734 if (res) {
735 if (res == -ENODEV) {
736 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
737 port->port);
8824d19b 738 port->disabled = true;
d94dcbb1
MW
739 return 0;
740 }
a25c8b2f 741 return res;
d94dcbb1 742 }
a25c8b2f 743
9da672a4 744 /* Port 0 is the switch itself and has no PHY. */
343fcb8c 745 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
da2da04b 746 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
9da672a4
AN
747
748 if (cap > 0)
749 port->cap_phy = cap;
750 else
751 tb_port_WARN(port, "non switch port without a PHY\n");
b0407983
MW
752
753 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
754 if (cap > 0)
755 port->cap_usb4 = cap;
56183c88
MW
756 } else if (port->port != 0) {
757 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
758 if (cap > 0)
759 port->cap_adap = cap;
9da672a4
AN
760 }
761
343fcb8c 762 tb_dump_port(port->sw->tb, &port->config);
a25c8b2f 763
0b2863ac
MW
764 /* Control port does not need HopID allocation */
765 if (port->port) {
766 ida_init(&port->in_hopids);
767 ida_init(&port->out_hopids);
768 }
769
8afe909b 770 INIT_LIST_HEAD(&port->list);
a25c8b2f
AN
771 return 0;
772
773}
774
0b2863ac
MW
775static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
776 int max_hopid)
777{
778 int port_max_hopid;
779 struct ida *ida;
780
781 if (in) {
782 port_max_hopid = port->config.max_in_hop_id;
783 ida = &port->in_hopids;
784 } else {
785 port_max_hopid = port->config.max_out_hop_id;
786 ida = &port->out_hopids;
787 }
788
12676423
MW
789 /*
790 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
791 * reserved.
792 */
a3cfebdc 793 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
0b2863ac
MW
794 min_hopid = TB_PATH_MIN_HOPID;
795
796 if (max_hopid < 0 || max_hopid > port_max_hopid)
797 max_hopid = port_max_hopid;
798
799 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
800}
801
802/**
803 * tb_port_alloc_in_hopid() - Allocate input HopID from port
804 * @port: Port to allocate HopID for
805 * @min_hopid: Minimum acceptable input HopID
806 * @max_hopid: Maximum acceptable input HopID
807 *
808 * Return: HopID between @min_hopid and @max_hopid or negative errno in
809 * case of error.
810 */
811int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
812{
813 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
814}
815
816/**
817 * tb_port_alloc_out_hopid() - Allocate output HopID from port
818 * @port: Port to allocate HopID for
819 * @min_hopid: Minimum acceptable output HopID
820 * @max_hopid: Maximum acceptable output HopID
821 *
822 * Return: HopID between @min_hopid and @max_hopid or negative errno in
823 * case of error.
824 */
825int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
826{
827 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
828}
829
830/**
831 * tb_port_release_in_hopid() - Release allocated input HopID from port
832 * @port: Port whose HopID to release
833 * @hopid: HopID to release
834 */
835void tb_port_release_in_hopid(struct tb_port *port, int hopid)
836{
837 ida_simple_remove(&port->in_hopids, hopid);
838}
839
840/**
841 * tb_port_release_out_hopid() - Release allocated output HopID from port
842 * @port: Port whose HopID to release
843 * @hopid: HopID to release
844 */
845void tb_port_release_out_hopid(struct tb_port *port, int hopid)
846{
847 ida_simple_remove(&port->out_hopids, hopid);
848}
849
69eb79f7
MW
850static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
851 const struct tb_switch *sw)
852{
853 u64 mask = (1ULL << parent->config.depth * 8) - 1;
854 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
855}
856
fb19fac1
MW
857/**
858 * tb_next_port_on_path() - Return next port for given port on a path
859 * @start: Start port of the walk
860 * @end: End port of the walk
861 * @prev: Previous port (%NULL if this is the first)
862 *
863 * This function can be used to walk from one port to another if they
864 * are connected through zero or more switches. If the @prev is dual
865 * link port, the function follows that link and returns another end on
866 * that same link.
867 *
868 * If the @end port has been reached, return %NULL.
869 *
870 * Domain tb->lock must be held when this function is called.
871 */
872struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
873 struct tb_port *prev)
874{
875 struct tb_port *next;
876
877 if (!prev)
878 return start;
879
880 if (prev->sw == end->sw) {
881 if (prev == end)
882 return NULL;
883 return end;
884 }
885
69eb79f7
MW
886 if (tb_switch_is_reachable(prev->sw, end->sw)) {
887 next = tb_port_at(tb_route(end->sw), prev->sw);
888 /* Walk down the topology if next == prev */
fb19fac1 889 if (prev->remote &&
69eb79f7 890 (next == prev || next->dual_link_port == prev))
fb19fac1 891 next = prev->remote;
fb19fac1
MW
892 } else {
893 if (tb_is_upstream_port(prev)) {
894 next = prev->remote;
895 } else {
896 next = tb_upstream_port(prev->sw);
897 /*
898 * Keep the same link if prev and next are both
899 * dual link ports.
900 */
901 if (next->dual_link_port &&
902 next->link_nr != prev->link_nr) {
903 next = next->dual_link_port;
904 }
905 }
906 }
907
69eb79f7 908 return next != prev ? next : NULL;
fb19fac1
MW
909}
910
5b7b8c0a
MW
911/**
912 * tb_port_get_link_speed() - Get current link speed
913 * @port: Port to check (USB4 or CIO)
914 *
915 * Returns link speed in Gb/s or negative errno in case of failure.
916 */
917int tb_port_get_link_speed(struct tb_port *port)
91c0c120
MW
918{
919 u32 val, speed;
920 int ret;
921
922 if (!port->cap_phy)
923 return -EINVAL;
924
925 ret = tb_port_read(port, &val, TB_CFG_PORT,
926 port->cap_phy + LANE_ADP_CS_1, 1);
927 if (ret)
928 return ret;
929
930 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
931 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
932 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
933}
934
4210d50f
IH
935/**
936 * tb_port_get_link_width() - Get current link width
937 * @port: Port to check (USB4 or CIO)
938 *
939 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
940 * or negative errno in case of failure.
941 */
942int tb_port_get_link_width(struct tb_port *port)
91c0c120
MW
943{
944 u32 val;
945 int ret;
946
947 if (!port->cap_phy)
948 return -EINVAL;
949
950 ret = tb_port_read(port, &val, TB_CFG_PORT,
951 port->cap_phy + LANE_ADP_CS_1, 1);
952 if (ret)
953 return ret;
954
955 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
956 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
957}
958
959static bool tb_port_is_width_supported(struct tb_port *port, int width)
960{
961 u32 phy, widths;
962 int ret;
963
964 if (!port->cap_phy)
965 return false;
966
967 ret = tb_port_read(port, &phy, TB_CFG_PORT,
968 port->cap_phy + LANE_ADP_CS_0, 1);
969 if (ret)
e9d0e751 970 return false;
91c0c120
MW
971
972 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
973 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
974
975 return !!(widths & width);
976}
977
978static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
979{
980 u32 val;
981 int ret;
982
983 if (!port->cap_phy)
984 return -EINVAL;
985
986 ret = tb_port_read(port, &val, TB_CFG_PORT,
987 port->cap_phy + LANE_ADP_CS_1, 1);
988 if (ret)
989 return ret;
990
991 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
992 switch (width) {
993 case 1:
994 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
995 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
996 break;
997 case 2:
998 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
999 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1000 break;
1001 default:
1002 return -EINVAL;
1003 }
1004
1005 val |= LANE_ADP_CS_1_LB;
1006
1007 return tb_port_write(port, &val, TB_CFG_PORT,
1008 port->cap_phy + LANE_ADP_CS_1, 1);
1009}
1010
1011static int tb_port_lane_bonding_enable(struct tb_port *port)
1012{
1013 int ret;
1014
1015 /*
1016 * Enable lane bonding for both links if not already enabled by
1017 * for example the boot firmware.
1018 */
1019 ret = tb_port_get_link_width(port);
1020 if (ret == 1) {
1021 ret = tb_port_set_link_width(port, 2);
1022 if (ret)
1023 return ret;
1024 }
1025
1026 ret = tb_port_get_link_width(port->dual_link_port);
1027 if (ret == 1) {
1028 ret = tb_port_set_link_width(port->dual_link_port, 2);
1029 if (ret) {
1030 tb_port_set_link_width(port, 1);
1031 return ret;
1032 }
1033 }
1034
1035 port->bonded = true;
1036 port->dual_link_port->bonded = true;
1037
1038 return 0;
1039}
1040
1041static void tb_port_lane_bonding_disable(struct tb_port *port)
1042{
1043 port->dual_link_port->bonded = false;
1044 port->bonded = false;
1045
1046 tb_port_set_link_width(port->dual_link_port, 1);
1047 tb_port_set_link_width(port, 1);
1048}
1049
e78db6f0
MW
1050/**
1051 * tb_port_is_enabled() - Is the adapter port enabled
1052 * @port: Port to check
1053 */
1054bool tb_port_is_enabled(struct tb_port *port)
1055{
1056 switch (port->config.type) {
1057 case TB_TYPE_PCIE_UP:
1058 case TB_TYPE_PCIE_DOWN:
1059 return tb_pci_port_is_enabled(port);
1060
4f807e47
MW
1061 case TB_TYPE_DP_HDMI_IN:
1062 case TB_TYPE_DP_HDMI_OUT:
1063 return tb_dp_port_is_enabled(port);
1064
e6f81858
RM
1065 case TB_TYPE_USB3_UP:
1066 case TB_TYPE_USB3_DOWN:
1067 return tb_usb3_port_is_enabled(port);
1068
e78db6f0
MW
1069 default:
1070 return false;
1071 }
1072}
1073
e6f81858
RM
1074/**
1075 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1076 * @port: USB3 adapter port to check
1077 */
1078bool tb_usb3_port_is_enabled(struct tb_port *port)
1079{
1080 u32 data;
1081
1082 if (tb_port_read(port, &data, TB_CFG_PORT,
1083 port->cap_adap + ADP_USB3_CS_0, 1))
1084 return false;
1085
1086 return !!(data & ADP_USB3_CS_0_PE);
1087}
1088
1089/**
1090 * tb_usb3_port_enable() - Enable USB3 adapter port
1091 * @port: USB3 adapter port to enable
1092 * @enable: Enable/disable the USB3 adapter
1093 */
1094int tb_usb3_port_enable(struct tb_port *port, bool enable)
1095{
1096 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1097 : ADP_USB3_CS_0_V;
1098
1099 if (!port->cap_adap)
1100 return -ENXIO;
1101 return tb_port_write(port, &word, TB_CFG_PORT,
1102 port->cap_adap + ADP_USB3_CS_0, 1);
1103}
1104
0414bec5
MW
1105/**
1106 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1107 * @port: PCIe port to check
1108 */
1109bool tb_pci_port_is_enabled(struct tb_port *port)
1110{
1111 u32 data;
1112
778bfca3
MW
1113 if (tb_port_read(port, &data, TB_CFG_PORT,
1114 port->cap_adap + ADP_PCIE_CS_0, 1))
0414bec5
MW
1115 return false;
1116
778bfca3 1117 return !!(data & ADP_PCIE_CS_0_PE);
0414bec5
MW
1118}
1119
93f36ade
MW
1120/**
1121 * tb_pci_port_enable() - Enable PCIe adapter port
1122 * @port: PCIe port to enable
1123 * @enable: Enable/disable the PCIe adapter
1124 */
1125int tb_pci_port_enable(struct tb_port *port, bool enable)
1126{
778bfca3 1127 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
93f36ade
MW
1128 if (!port->cap_adap)
1129 return -ENXIO;
778bfca3
MW
1130 return tb_port_write(port, &word, TB_CFG_PORT,
1131 port->cap_adap + ADP_PCIE_CS_0, 1);
93f36ade
MW
1132}
1133
4f807e47
MW
1134/**
1135 * tb_dp_port_hpd_is_active() - Is HPD already active
1136 * @port: DP out port to check
1137 *
1138 * Checks if the DP OUT adapter port has HDP bit already set.
1139 */
1140int tb_dp_port_hpd_is_active(struct tb_port *port)
1141{
1142 u32 data;
1143 int ret;
1144
98176380
MW
1145 ret = tb_port_read(port, &data, TB_CFG_PORT,
1146 port->cap_adap + ADP_DP_CS_2, 1);
4f807e47
MW
1147 if (ret)
1148 return ret;
1149
98176380 1150 return !!(data & ADP_DP_CS_2_HDP);
4f807e47
MW
1151}
1152
1153/**
1154 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1155 * @port: Port to clear HPD
1156 *
1157 * If the DP IN port has HDP set, this function can be used to clear it.
1158 */
1159int tb_dp_port_hpd_clear(struct tb_port *port)
1160{
1161 u32 data;
1162 int ret;
1163
98176380
MW
1164 ret = tb_port_read(port, &data, TB_CFG_PORT,
1165 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1166 if (ret)
1167 return ret;
1168
98176380
MW
1169 data |= ADP_DP_CS_3_HDPC;
1170 return tb_port_write(port, &data, TB_CFG_PORT,
1171 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1172}
1173
1174/**
1175 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1176 * @port: DP IN/OUT port to set hops
1177 * @video: Video Hop ID
1178 * @aux_tx: AUX TX Hop ID
1179 * @aux_rx: AUX RX Hop ID
1180 *
1181 * Programs specified Hop IDs for DP IN/OUT port.
1182 */
1183int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1184 unsigned int aux_tx, unsigned int aux_rx)
1185{
1186 u32 data[2];
1187 int ret;
1188
98176380
MW
1189 ret = tb_port_read(port, data, TB_CFG_PORT,
1190 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1191 if (ret)
1192 return ret;
1193
98176380
MW
1194 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1195 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1196 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1197
98176380
MW
1198 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1199 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1200 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1201 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1202 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1203
98176380
MW
1204 return tb_port_write(port, data, TB_CFG_PORT,
1205 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1206}
1207
1208/**
1209 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1210 * @port: DP adapter port to check
1211 */
1212bool tb_dp_port_is_enabled(struct tb_port *port)
1213{
fd5c46b7 1214 u32 data[2];
4f807e47 1215
98176380 1216 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
fd5c46b7 1217 ARRAY_SIZE(data)))
4f807e47
MW
1218 return false;
1219
98176380 1220 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
4f807e47
MW
1221}
1222
1223/**
1224 * tb_dp_port_enable() - Enables/disables DP paths of a port
1225 * @port: DP IN/OUT port
1226 * @enable: Enable/disable DP path
1227 *
1228 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1229 * calling this function.
1230 */
1231int tb_dp_port_enable(struct tb_port *port, bool enable)
1232{
fd5c46b7 1233 u32 data[2];
4f807e47
MW
1234 int ret;
1235
98176380
MW
1236 ret = tb_port_read(port, data, TB_CFG_PORT,
1237 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1238 if (ret)
1239 return ret;
1240
1241 if (enable)
98176380 1242 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
4f807e47 1243 else
98176380 1244 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
4f807e47 1245
98176380
MW
1246 return tb_port_write(port, data, TB_CFG_PORT,
1247 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1248}
1249
a25c8b2f
AN
1250/* switch utility functions */
1251
b0407983
MW
1252static const char *tb_switch_generation_name(const struct tb_switch *sw)
1253{
1254 switch (sw->generation) {
1255 case 1:
1256 return "Thunderbolt 1";
1257 case 2:
1258 return "Thunderbolt 2";
1259 case 3:
1260 return "Thunderbolt 3";
1261 case 4:
1262 return "USB4";
1263 default:
1264 return "Unknown";
1265 }
1266}
1267
1268static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
a25c8b2f 1269{
b0407983
MW
1270 const struct tb_regs_switch_header *regs = &sw->config;
1271
1272 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1273 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1274 regs->revision, regs->thunderbolt_version);
1275 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
daa5140f
MW
1276 tb_dbg(tb, " Config:\n");
1277 tb_dbg(tb,
a25c8b2f 1278 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
b0407983
MW
1279 regs->upstream_port_number, regs->depth,
1280 (((u64) regs->route_hi) << 32) | regs->route_lo,
1281 regs->enabled, regs->plug_events_delay);
daa5140f 1282 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
b0407983 1283 regs->__unknown1, regs->__unknown4);
a25c8b2f
AN
1284}
1285
23dd5bb4
AN
1286/**
1287 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
356b6c4e 1288 * @sw: Switch to reset
23dd5bb4
AN
1289 *
1290 * Return: Returns 0 on success or an error code on failure.
1291 */
356b6c4e 1292int tb_switch_reset(struct tb_switch *sw)
23dd5bb4
AN
1293{
1294 struct tb_cfg_result res;
356b6c4e
MW
1295
1296 if (sw->generation > 1)
1297 return 0;
1298
1299 tb_sw_dbg(sw, "resetting switch\n");
1300
1301 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1302 TB_CFG_SWITCH, 2, 2);
23dd5bb4
AN
1303 if (res.err)
1304 return res.err;
356b6c4e 1305 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw), TB_CFG_DEFAULT_TIMEOUT);
23dd5bb4
AN
1306 if (res.err > 0)
1307 return -EIO;
1308 return res.err;
1309}
1310
ca389f71
AN
1311/**
1312 * tb_plug_events_active() - enable/disable plug events on a switch
1313 *
1314 * Also configures a sane plug_events_delay of 255ms.
1315 *
1316 * Return: Returns 0 on success or an error code on failure.
1317 */
1318static int tb_plug_events_active(struct tb_switch *sw, bool active)
1319{
1320 u32 data;
1321 int res;
1322
5cb6ed31 1323 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
bfe778ac
MW
1324 return 0;
1325
ca389f71
AN
1326 sw->config.plug_events_delay = 0xff;
1327 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1328 if (res)
1329 return res;
1330
1331 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1332 if (res)
1333 return res;
1334
1335 if (active) {
1336 data = data & 0xFFFFFF83;
1337 switch (sw->config.device_id) {
1d111406
LW
1338 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1339 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1340 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
ca389f71
AN
1341 break;
1342 default:
1343 data |= 4;
1344 }
1345 } else {
1346 data = data | 0x7c;
1347 }
1348 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1349 sw->cap_plug_events + 1, 1);
1350}
1351
f67cf491
MW
1352static ssize_t authorized_show(struct device *dev,
1353 struct device_attribute *attr,
1354 char *buf)
1355{
1356 struct tb_switch *sw = tb_to_switch(dev);
1357
1358 return sprintf(buf, "%u\n", sw->authorized);
1359}
1360
1361static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1362{
1363 int ret = -EINVAL;
1364
09f11b6c
MW
1365 if (!mutex_trylock(&sw->tb->lock))
1366 return restart_syscall();
f67cf491
MW
1367
1368 if (sw->authorized)
1369 goto unlock;
1370
1371 switch (val) {
1372 /* Approve switch */
1373 case 1:
1374 if (sw->key)
1375 ret = tb_domain_approve_switch_key(sw->tb, sw);
1376 else
1377 ret = tb_domain_approve_switch(sw->tb, sw);
1378 break;
1379
1380 /* Challenge switch */
1381 case 2:
1382 if (sw->key)
1383 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1384 break;
1385
1386 default:
1387 break;
1388 }
1389
1390 if (!ret) {
1391 sw->authorized = val;
1392 /* Notify status change to the userspace */
1393 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1394 }
1395
1396unlock:
09f11b6c 1397 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1398 return ret;
1399}
1400
1401static ssize_t authorized_store(struct device *dev,
1402 struct device_attribute *attr,
1403 const char *buf, size_t count)
1404{
1405 struct tb_switch *sw = tb_to_switch(dev);
1406 unsigned int val;
1407 ssize_t ret;
1408
1409 ret = kstrtouint(buf, 0, &val);
1410 if (ret)
1411 return ret;
1412 if (val > 2)
1413 return -EINVAL;
1414
4f7c2e0d 1415 pm_runtime_get_sync(&sw->dev);
f67cf491 1416 ret = tb_switch_set_authorized(sw, val);
4f7c2e0d
MW
1417 pm_runtime_mark_last_busy(&sw->dev);
1418 pm_runtime_put_autosuspend(&sw->dev);
f67cf491
MW
1419
1420 return ret ? ret : count;
1421}
1422static DEVICE_ATTR_RW(authorized);
1423
14862ee3
YB
1424static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1425 char *buf)
1426{
1427 struct tb_switch *sw = tb_to_switch(dev);
1428
1429 return sprintf(buf, "%u\n", sw->boot);
1430}
1431static DEVICE_ATTR_RO(boot);
1432
bfe778ac
MW
1433static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1434 char *buf)
1435{
1436 struct tb_switch *sw = tb_to_switch(dev);
ca389f71 1437
bfe778ac
MW
1438 return sprintf(buf, "%#x\n", sw->device);
1439}
1440static DEVICE_ATTR_RO(device);
1441
72ee3390
MW
1442static ssize_t
1443device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1444{
1445 struct tb_switch *sw = tb_to_switch(dev);
1446
1447 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1448}
1449static DEVICE_ATTR_RO(device_name);
1450
b406357c
CK
1451static ssize_t
1452generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1453{
1454 struct tb_switch *sw = tb_to_switch(dev);
1455
1456 return sprintf(buf, "%u\n", sw->generation);
1457}
1458static DEVICE_ATTR_RO(generation);
1459
f67cf491
MW
1460static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1461 char *buf)
1462{
1463 struct tb_switch *sw = tb_to_switch(dev);
1464 ssize_t ret;
1465
09f11b6c
MW
1466 if (!mutex_trylock(&sw->tb->lock))
1467 return restart_syscall();
f67cf491
MW
1468
1469 if (sw->key)
1470 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1471 else
1472 ret = sprintf(buf, "\n");
1473
09f11b6c 1474 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1475 return ret;
1476}
1477
1478static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1479 const char *buf, size_t count)
1480{
1481 struct tb_switch *sw = tb_to_switch(dev);
1482 u8 key[TB_SWITCH_KEY_SIZE];
1483 ssize_t ret = count;
e545f0d8 1484 bool clear = false;
f67cf491 1485
e545f0d8
BY
1486 if (!strcmp(buf, "\n"))
1487 clear = true;
1488 else if (hex2bin(key, buf, sizeof(key)))
f67cf491
MW
1489 return -EINVAL;
1490
09f11b6c
MW
1491 if (!mutex_trylock(&sw->tb->lock))
1492 return restart_syscall();
f67cf491
MW
1493
1494 if (sw->authorized) {
1495 ret = -EBUSY;
1496 } else {
1497 kfree(sw->key);
e545f0d8
BY
1498 if (clear) {
1499 sw->key = NULL;
1500 } else {
1501 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1502 if (!sw->key)
1503 ret = -ENOMEM;
1504 }
f67cf491
MW
1505 }
1506
09f11b6c 1507 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1508 return ret;
1509}
0956e411 1510static DEVICE_ATTR(key, 0600, key_show, key_store);
f67cf491 1511
91c0c120
MW
1512static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1513 char *buf)
1514{
1515 struct tb_switch *sw = tb_to_switch(dev);
1516
1517 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1518}
1519
1520/*
1521 * Currently all lanes must run at the same speed but we expose here
1522 * both directions to allow possible asymmetric links in the future.
1523 */
1524static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1525static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1526
1527static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1528 char *buf)
1529{
1530 struct tb_switch *sw = tb_to_switch(dev);
1531
1532 return sprintf(buf, "%u\n", sw->link_width);
1533}
1534
1535/*
1536 * Currently link has same amount of lanes both directions (1 or 2) but
1537 * expose them separately to allow possible asymmetric links in the future.
1538 */
1539static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1540static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1541
e6b245cc
MW
1542static ssize_t nvm_authenticate_show(struct device *dev,
1543 struct device_attribute *attr, char *buf)
1544{
1545 struct tb_switch *sw = tb_to_switch(dev);
1546 u32 status;
1547
1548 nvm_get_auth_status(sw, &status);
1549 return sprintf(buf, "%#x\n", status);
1550}
1551
1cb36293
ML
1552static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1553 bool disconnect)
e6b245cc
MW
1554{
1555 struct tb_switch *sw = tb_to_switch(dev);
4b794f80 1556 int val;
e6b245cc
MW
1557 int ret;
1558
4f7c2e0d
MW
1559 pm_runtime_get_sync(&sw->dev);
1560
1561 if (!mutex_trylock(&sw->tb->lock)) {
1562 ret = restart_syscall();
1563 goto exit_rpm;
1564 }
e6b245cc
MW
1565
1566 /* If NVMem devices are not yet added */
1567 if (!sw->nvm) {
1568 ret = -EAGAIN;
1569 goto exit_unlock;
1570 }
1571
4b794f80 1572 ret = kstrtoint(buf, 10, &val);
e6b245cc
MW
1573 if (ret)
1574 goto exit_unlock;
1575
1576 /* Always clear the authentication status */
1577 nvm_clear_auth_status(sw);
1578
4b794f80
ML
1579 if (val > 0) {
1580 if (!sw->nvm->flushed) {
1581 if (!sw->nvm->buf) {
1582 ret = -EINVAL;
1583 goto exit_unlock;
1584 }
e6b245cc 1585
4b794f80
ML
1586 ret = nvm_validate_and_write(sw);
1587 if (ret || val == WRITE_ONLY)
1588 goto exit_unlock;
1589 }
1590 if (val == WRITE_AND_AUTHENTICATE) {
1cb36293
ML
1591 if (disconnect) {
1592 ret = tb_lc_force_power(sw);
1593 } else {
1594 sw->nvm->authenticating = true;
1595 ret = nvm_authenticate(sw);
1596 }
4b794f80 1597 }
e6b245cc
MW
1598 }
1599
1600exit_unlock:
09f11b6c 1601 mutex_unlock(&sw->tb->lock);
4f7c2e0d
MW
1602exit_rpm:
1603 pm_runtime_mark_last_busy(&sw->dev);
1604 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc 1605
1cb36293
ML
1606 return ret;
1607}
1608
1609static ssize_t nvm_authenticate_store(struct device *dev,
1610 struct device_attribute *attr, const char *buf, size_t count)
1611{
1612 int ret = nvm_authenticate_sysfs(dev, buf, false);
e6b245cc
MW
1613 if (ret)
1614 return ret;
1615 return count;
1616}
1617static DEVICE_ATTR_RW(nvm_authenticate);
1618
1cb36293
ML
1619static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1620 struct device_attribute *attr, char *buf)
1621{
1622 return nvm_authenticate_show(dev, attr, buf);
1623}
1624
1625static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1626 struct device_attribute *attr, const char *buf, size_t count)
1627{
1628 int ret;
1629
1630 ret = nvm_authenticate_sysfs(dev, buf, true);
1631 return ret ? ret : count;
1632}
1633static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1634
e6b245cc
MW
1635static ssize_t nvm_version_show(struct device *dev,
1636 struct device_attribute *attr, char *buf)
1637{
1638 struct tb_switch *sw = tb_to_switch(dev);
1639 int ret;
1640
09f11b6c
MW
1641 if (!mutex_trylock(&sw->tb->lock))
1642 return restart_syscall();
e6b245cc
MW
1643
1644 if (sw->safe_mode)
1645 ret = -ENODATA;
1646 else if (!sw->nvm)
1647 ret = -EAGAIN;
1648 else
1649 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1650
09f11b6c 1651 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
1652
1653 return ret;
1654}
1655static DEVICE_ATTR_RO(nvm_version);
1656
bfe778ac
MW
1657static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1658 char *buf)
a25c8b2f 1659{
bfe778ac 1660 struct tb_switch *sw = tb_to_switch(dev);
a25c8b2f 1661
bfe778ac
MW
1662 return sprintf(buf, "%#x\n", sw->vendor);
1663}
1664static DEVICE_ATTR_RO(vendor);
1665
72ee3390
MW
1666static ssize_t
1667vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1668{
1669 struct tb_switch *sw = tb_to_switch(dev);
1670
1671 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1672}
1673static DEVICE_ATTR_RO(vendor_name);
1674
bfe778ac
MW
1675static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1676 char *buf)
1677{
1678 struct tb_switch *sw = tb_to_switch(dev);
1679
1680 return sprintf(buf, "%pUb\n", sw->uuid);
1681}
1682static DEVICE_ATTR_RO(unique_id);
1683
1684static struct attribute *switch_attrs[] = {
f67cf491 1685 &dev_attr_authorized.attr,
14862ee3 1686 &dev_attr_boot.attr,
bfe778ac 1687 &dev_attr_device.attr,
72ee3390 1688 &dev_attr_device_name.attr,
b406357c 1689 &dev_attr_generation.attr,
f67cf491 1690 &dev_attr_key.attr,
e6b245cc 1691 &dev_attr_nvm_authenticate.attr,
1cb36293 1692 &dev_attr_nvm_authenticate_on_disconnect.attr,
e6b245cc 1693 &dev_attr_nvm_version.attr,
91c0c120
MW
1694 &dev_attr_rx_speed.attr,
1695 &dev_attr_rx_lanes.attr,
1696 &dev_attr_tx_speed.attr,
1697 &dev_attr_tx_lanes.attr,
bfe778ac 1698 &dev_attr_vendor.attr,
72ee3390 1699 &dev_attr_vendor_name.attr,
bfe778ac
MW
1700 &dev_attr_unique_id.attr,
1701 NULL,
1702};
1703
f67cf491
MW
1704static umode_t switch_attr_is_visible(struct kobject *kobj,
1705 struct attribute *attr, int n)
1706{
fff15f23 1707 struct device *dev = kobj_to_dev(kobj);
f67cf491
MW
1708 struct tb_switch *sw = tb_to_switch(dev);
1709
58f414fa
MW
1710 if (attr == &dev_attr_device.attr) {
1711 if (!sw->device)
1712 return 0;
1713 } else if (attr == &dev_attr_device_name.attr) {
1714 if (!sw->device_name)
1715 return 0;
1716 } else if (attr == &dev_attr_vendor.attr) {
1717 if (!sw->vendor)
1718 return 0;
1719 } else if (attr == &dev_attr_vendor_name.attr) {
1720 if (!sw->vendor_name)
1721 return 0;
1722 } else if (attr == &dev_attr_key.attr) {
f67cf491
MW
1723 if (tb_route(sw) &&
1724 sw->tb->security_level == TB_SECURITY_SECURE &&
1725 sw->security_level == TB_SECURITY_SECURE)
1726 return attr->mode;
1727 return 0;
91c0c120
MW
1728 } else if (attr == &dev_attr_rx_speed.attr ||
1729 attr == &dev_attr_rx_lanes.attr ||
1730 attr == &dev_attr_tx_speed.attr ||
1731 attr == &dev_attr_tx_lanes.attr) {
1732 if (tb_route(sw))
1733 return attr->mode;
1734 return 0;
3f415e5e 1735 } else if (attr == &dev_attr_nvm_authenticate.attr) {
b0407983 1736 if (nvm_upgradeable(sw))
3f415e5e
MW
1737 return attr->mode;
1738 return 0;
1739 } else if (attr == &dev_attr_nvm_version.attr) {
b0407983 1740 if (nvm_readable(sw))
e6b245cc
MW
1741 return attr->mode;
1742 return 0;
14862ee3
YB
1743 } else if (attr == &dev_attr_boot.attr) {
1744 if (tb_route(sw))
1745 return attr->mode;
1746 return 0;
1cb36293
ML
1747 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1748 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1749 return attr->mode;
1750 return 0;
f67cf491
MW
1751 }
1752
e6b245cc 1753 return sw->safe_mode ? 0 : attr->mode;
f67cf491
MW
1754}
1755
bfe778ac 1756static struct attribute_group switch_group = {
f67cf491 1757 .is_visible = switch_attr_is_visible,
bfe778ac
MW
1758 .attrs = switch_attrs,
1759};
ca389f71 1760
bfe778ac
MW
1761static const struct attribute_group *switch_groups[] = {
1762 &switch_group,
1763 NULL,
1764};
1765
1766static void tb_switch_release(struct device *dev)
1767{
1768 struct tb_switch *sw = tb_to_switch(dev);
b433d010 1769 struct tb_port *port;
bfe778ac 1770
3e136768
MW
1771 dma_port_free(sw->dma_port);
1772
b433d010
MW
1773 tb_switch_for_each_port(sw, port) {
1774 if (!port->disabled) {
1775 ida_destroy(&port->in_hopids);
1776 ida_destroy(&port->out_hopids);
0b2863ac
MW
1777 }
1778 }
1779
bfe778ac 1780 kfree(sw->uuid);
72ee3390
MW
1781 kfree(sw->device_name);
1782 kfree(sw->vendor_name);
a25c8b2f 1783 kfree(sw->ports);
343fcb8c 1784 kfree(sw->drom);
f67cf491 1785 kfree(sw->key);
a25c8b2f
AN
1786 kfree(sw);
1787}
1788
2d8ff0b5
MW
1789/*
1790 * Currently only need to provide the callbacks. Everything else is handled
1791 * in the connection manager.
1792 */
1793static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1794{
4f7c2e0d
MW
1795 struct tb_switch *sw = tb_to_switch(dev);
1796 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1797
1798 if (cm_ops->runtime_suspend_switch)
1799 return cm_ops->runtime_suspend_switch(sw);
1800
2d8ff0b5
MW
1801 return 0;
1802}
1803
1804static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1805{
4f7c2e0d
MW
1806 struct tb_switch *sw = tb_to_switch(dev);
1807 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1808
1809 if (cm_ops->runtime_resume_switch)
1810 return cm_ops->runtime_resume_switch(sw);
2d8ff0b5
MW
1811 return 0;
1812}
1813
1814static const struct dev_pm_ops tb_switch_pm_ops = {
1815 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1816 NULL)
1817};
1818
bfe778ac
MW
1819struct device_type tb_switch_type = {
1820 .name = "thunderbolt_device",
1821 .release = tb_switch_release,
2d8ff0b5 1822 .pm = &tb_switch_pm_ops,
bfe778ac
MW
1823};
1824
2c3c4197
MW
1825static int tb_switch_get_generation(struct tb_switch *sw)
1826{
1827 switch (sw->config.device_id) {
1828 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1829 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1830 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1831 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1832 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1833 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1834 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1835 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1836 return 1;
1837
1838 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1839 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1840 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1841 return 2;
1842
1843 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1844 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1845 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1846 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1847 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
4bac471d
RM
1848 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1849 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1850 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
3cdb9446
MW
1851 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1852 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2c3c4197
MW
1853 return 3;
1854
1855 default:
b0407983
MW
1856 if (tb_switch_is_usb4(sw))
1857 return 4;
1858
2c3c4197
MW
1859 /*
1860 * For unknown switches assume generation to be 1 to be
1861 * on the safe side.
1862 */
1863 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1864 sw->config.device_id);
1865 return 1;
1866 }
1867}
1868
b0407983
MW
1869static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1870{
1871 int max_depth;
1872
1873 if (tb_switch_is_usb4(sw) ||
1874 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1875 max_depth = USB4_SWITCH_MAX_DEPTH;
1876 else
1877 max_depth = TB_SWITCH_MAX_DEPTH;
1878
1879 return depth > max_depth;
1880}
1881
a25c8b2f 1882/**
bfe778ac
MW
1883 * tb_switch_alloc() - allocate a switch
1884 * @tb: Pointer to the owning domain
1885 * @parent: Parent device for this switch
1886 * @route: Route string for this switch
a25c8b2f 1887 *
bfe778ac
MW
1888 * Allocates and initializes a switch. Will not upload configuration to
1889 * the switch. For that you need to call tb_switch_configure()
1890 * separately. The returned switch should be released by calling
1891 * tb_switch_put().
1892 *
444ac384
MW
1893 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1894 * failure.
a25c8b2f 1895 */
bfe778ac
MW
1896struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1897 u64 route)
a25c8b2f 1898{
a25c8b2f 1899 struct tb_switch *sw;
f0342e75 1900 int upstream_port;
444ac384 1901 int i, ret, depth;
f0342e75 1902
b0407983
MW
1903 /* Unlock the downstream port so we can access the switch below */
1904 if (route) {
1905 struct tb_switch *parent_sw = tb_to_switch(parent);
1906 struct tb_port *down;
1907
1908 down = tb_port_at(route, parent_sw);
1909 tb_port_unlock(down);
1910 }
1911
f0342e75 1912 depth = tb_route_length(route);
f0342e75
MW
1913
1914 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
a25c8b2f 1915 if (upstream_port < 0)
444ac384 1916 return ERR_PTR(upstream_port);
a25c8b2f
AN
1917
1918 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1919 if (!sw)
444ac384 1920 return ERR_PTR(-ENOMEM);
a25c8b2f
AN
1921
1922 sw->tb = tb;
444ac384
MW
1923 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1924 if (ret)
bfe778ac
MW
1925 goto err_free_sw_ports;
1926
b0407983
MW
1927 sw->generation = tb_switch_get_generation(sw);
1928
daa5140f 1929 tb_dbg(tb, "current switch config:\n");
b0407983 1930 tb_dump_switch(tb, sw);
a25c8b2f
AN
1931
1932 /* configure switch */
1933 sw->config.upstream_port_number = upstream_port;
f0342e75
MW
1934 sw->config.depth = depth;
1935 sw->config.route_hi = upper_32_bits(route);
1936 sw->config.route_lo = lower_32_bits(route);
bfe778ac 1937 sw->config.enabled = 0;
a25c8b2f 1938
b0407983 1939 /* Make sure we do not exceed maximum topology limit */
704a940d
CIK
1940 if (tb_switch_exceeds_max_depth(sw, depth)) {
1941 ret = -EADDRNOTAVAIL;
1942 goto err_free_sw_ports;
1943 }
b0407983 1944
a25c8b2f
AN
1945 /* initialize ports */
1946 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
343fcb8c 1947 GFP_KERNEL);
444ac384
MW
1948 if (!sw->ports) {
1949 ret = -ENOMEM;
bfe778ac 1950 goto err_free_sw_ports;
444ac384 1951 }
a25c8b2f
AN
1952
1953 for (i = 0; i <= sw->config.max_port_number; i++) {
343fcb8c
AN
1954 /* minimum setup for tb_find_cap and tb_drom_read to work */
1955 sw->ports[i].sw = sw;
1956 sw->ports[i].port = i;
a25c8b2f
AN
1957 }
1958
444ac384 1959 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
b0407983
MW
1960 if (ret > 0)
1961 sw->cap_plug_events = ret;
ca389f71 1962
444ac384
MW
1963 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1964 if (ret > 0)
1965 sw->cap_lc = ret;
a9be5582 1966
f67cf491
MW
1967 /* Root switch is always authorized */
1968 if (!route)
1969 sw->authorized = true;
1970
bfe778ac
MW
1971 device_initialize(&sw->dev);
1972 sw->dev.parent = parent;
1973 sw->dev.bus = &tb_bus_type;
1974 sw->dev.type = &tb_switch_type;
1975 sw->dev.groups = switch_groups;
1976 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1977
1978 return sw;
1979
1980err_free_sw_ports:
1981 kfree(sw->ports);
1982 kfree(sw);
1983
444ac384 1984 return ERR_PTR(ret);
bfe778ac
MW
1985}
1986
e6b245cc
MW
1987/**
1988 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1989 * @tb: Pointer to the owning domain
1990 * @parent: Parent device for this switch
1991 * @route: Route string for this switch
1992 *
1993 * This creates a switch in safe mode. This means the switch pretty much
1994 * lacks all capabilities except DMA configuration port before it is
1995 * flashed with a valid NVM firmware.
1996 *
1997 * The returned switch must be released by calling tb_switch_put().
1998 *
444ac384 1999 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
e6b245cc
MW
2000 */
2001struct tb_switch *
2002tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2003{
2004 struct tb_switch *sw;
2005
2006 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2007 if (!sw)
444ac384 2008 return ERR_PTR(-ENOMEM);
e6b245cc
MW
2009
2010 sw->tb = tb;
2011 sw->config.depth = tb_route_length(route);
2012 sw->config.route_hi = upper_32_bits(route);
2013 sw->config.route_lo = lower_32_bits(route);
2014 sw->safe_mode = true;
2015
2016 device_initialize(&sw->dev);
2017 sw->dev.parent = parent;
2018 sw->dev.bus = &tb_bus_type;
2019 sw->dev.type = &tb_switch_type;
2020 sw->dev.groups = switch_groups;
2021 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2022
2023 return sw;
2024}
2025
bfe778ac
MW
2026/**
2027 * tb_switch_configure() - Uploads configuration to the switch
2028 * @sw: Switch to configure
2029 *
2030 * Call this function before the switch is added to the system. It will
2031 * upload configuration to the switch and makes it available for the
b0407983
MW
2032 * connection manager to use. Can be called to the switch again after
2033 * resume from low power states to re-initialize it.
bfe778ac
MW
2034 *
2035 * Return: %0 in case of success and negative errno in case of failure
2036 */
2037int tb_switch_configure(struct tb_switch *sw)
2038{
2039 struct tb *tb = sw->tb;
2040 u64 route;
2041 int ret;
2042
2043 route = tb_route(sw);
bfe778ac 2044
b0407983 2045 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
b2911a59 2046 sw->config.enabled ? "restoring" : "initializing", route,
b0407983 2047 tb_route_length(route), sw->config.upstream_port_number);
bfe778ac 2048
bfe778ac
MW
2049 sw->config.enabled = 1;
2050
b0407983
MW
2051 if (tb_switch_is_usb4(sw)) {
2052 /*
2053 * For USB4 devices, we need to program the CM version
2054 * accordingly so that it knows to expose all the
2055 * additional capabilities.
2056 */
2057 sw->config.cmuv = USB4_VERSION_1_0;
2058
2059 /* Enumerate the switch */
2060 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2061 ROUTER_CS_1, 4);
2062 if (ret)
2063 return ret;
bfe778ac 2064
b0407983 2065 ret = usb4_switch_setup(sw);
b0407983
MW
2066 } else {
2067 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2068 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2069 sw->config.vendor_id);
2070
2071 if (!sw->cap_plug_events) {
2072 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2073 return -ENODEV;
2074 }
2075
2076 /* Enumerate the switch */
2077 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2078 ROUTER_CS_1, 3);
b0407983 2079 }
e879a709
MW
2080 if (ret)
2081 return ret;
2082
bfe778ac
MW
2083 return tb_plug_events_active(sw, true);
2084}
2085
2cc12751 2086static int tb_switch_set_uuid(struct tb_switch *sw)
bfe778ac 2087{
b0407983 2088 bool uid = false;
bfe778ac 2089 u32 uuid[4];
a9be5582 2090 int ret;
bfe778ac
MW
2091
2092 if (sw->uuid)
a9be5582 2093 return 0;
bfe778ac 2094
b0407983
MW
2095 if (tb_switch_is_usb4(sw)) {
2096 ret = usb4_switch_read_uid(sw, &sw->uid);
2097 if (ret)
2098 return ret;
2099 uid = true;
2100 } else {
2101 /*
2102 * The newer controllers include fused UUID as part of
2103 * link controller specific registers
2104 */
2105 ret = tb_lc_read_uuid(sw, uuid);
2106 if (ret) {
2107 if (ret != -EINVAL)
2108 return ret;
2109 uid = true;
2110 }
2111 }
2112
2113 if (uid) {
bfe778ac
MW
2114 /*
2115 * ICM generates UUID based on UID and fills the upper
2116 * two words with ones. This is not strictly following
2117 * UUID format but we want to be compatible with it so
2118 * we do the same here.
2119 */
2120 uuid[0] = sw->uid & 0xffffffff;
2121 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2122 uuid[2] = 0xffffffff;
2123 uuid[3] = 0xffffffff;
2124 }
2125
2126 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2cc12751 2127 if (!sw->uuid)
a9be5582
MW
2128 return -ENOMEM;
2129 return 0;
bfe778ac
MW
2130}
2131
e6b245cc 2132static int tb_switch_add_dma_port(struct tb_switch *sw)
3e136768 2133{
e6b245cc
MW
2134 u32 status;
2135 int ret;
2136
3e136768 2137 switch (sw->generation) {
3e136768
MW
2138 case 2:
2139 /* Only root switch can be upgraded */
2140 if (tb_route(sw))
e6b245cc 2141 return 0;
7a7ebfa8 2142
df561f66 2143 fallthrough;
7a7ebfa8
MW
2144 case 3:
2145 ret = tb_switch_set_uuid(sw);
2146 if (ret)
2147 return ret;
3e136768
MW
2148 break;
2149
2150 default:
e6b245cc
MW
2151 /*
2152 * DMA port is the only thing available when the switch
2153 * is in safe mode.
2154 */
2155 if (!sw->safe_mode)
2156 return 0;
2157 break;
3e136768
MW
2158 }
2159
3f415e5e 2160 /* Root switch DMA port requires running firmware */
f07a3608 2161 if (!tb_route(sw) && !tb_switch_is_icm(sw))
e6b245cc
MW
2162 return 0;
2163
3e136768 2164 sw->dma_port = dma_port_alloc(sw);
e6b245cc
MW
2165 if (!sw->dma_port)
2166 return 0;
2167
3f415e5e
MW
2168 if (sw->no_nvm_upgrade)
2169 return 0;
2170
7a7ebfa8
MW
2171 /*
2172 * If there is status already set then authentication failed
2173 * when the dma_port_flash_update_auth() returned. Power cycling
2174 * is not needed (it was done already) so only thing we do here
2175 * is to unblock runtime PM of the root port.
2176 */
2177 nvm_get_auth_status(sw, &status);
2178 if (status) {
2179 if (!tb_route(sw))
b0407983 2180 nvm_authenticate_complete_dma_port(sw);
7a7ebfa8
MW
2181 return 0;
2182 }
2183
e6b245cc
MW
2184 /*
2185 * Check status of the previous flash authentication. If there
2186 * is one we need to power cycle the switch in any case to make
2187 * it functional again.
2188 */
2189 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2190 if (ret <= 0)
2191 return ret;
2192
1830b6ee
MW
2193 /* Now we can allow root port to suspend again */
2194 if (!tb_route(sw))
b0407983 2195 nvm_authenticate_complete_dma_port(sw);
1830b6ee 2196
e6b245cc
MW
2197 if (status) {
2198 tb_sw_info(sw, "switch flash authentication failed\n");
e6b245cc
MW
2199 nvm_set_auth_status(sw, status);
2200 }
2201
2202 tb_sw_info(sw, "power cycling the switch now\n");
2203 dma_port_power_cycle(sw->dma_port);
2204
2205 /*
2206 * We return error here which causes the switch adding failure.
2207 * It should appear back after power cycle is complete.
2208 */
2209 return -ESHUTDOWN;
3e136768
MW
2210}
2211
0d46c08d
MW
2212static void tb_switch_default_link_ports(struct tb_switch *sw)
2213{
2214 int i;
2215
2216 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2217 struct tb_port *port = &sw->ports[i];
2218 struct tb_port *subordinate;
2219
2220 if (!tb_port_is_null(port))
2221 continue;
2222
2223 /* Check for the subordinate port */
2224 if (i == sw->config.max_port_number ||
2225 !tb_port_is_null(&sw->ports[i + 1]))
2226 continue;
2227
2228 /* Link them if not already done so (by DROM) */
2229 subordinate = &sw->ports[i + 1];
2230 if (!port->dual_link_port && !subordinate->dual_link_port) {
2231 port->link_nr = 0;
2232 port->dual_link_port = subordinate;
2233 subordinate->link_nr = 1;
2234 subordinate->dual_link_port = port;
2235
2236 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2237 port->port, subordinate->port);
2238 }
2239 }
2240}
2241
91c0c120
MW
2242static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2243{
2244 const struct tb_port *up = tb_upstream_port(sw);
2245
2246 if (!up->dual_link_port || !up->dual_link_port->remote)
2247 return false;
2248
b0407983
MW
2249 if (tb_switch_is_usb4(sw))
2250 return usb4_switch_lane_bonding_possible(sw);
91c0c120
MW
2251 return tb_lc_lane_bonding_possible(sw);
2252}
2253
2254static int tb_switch_update_link_attributes(struct tb_switch *sw)
2255{
2256 struct tb_port *up;
2257 bool change = false;
2258 int ret;
2259
2260 if (!tb_route(sw) || tb_switch_is_icm(sw))
2261 return 0;
2262
2263 up = tb_upstream_port(sw);
2264
2265 ret = tb_port_get_link_speed(up);
2266 if (ret < 0)
2267 return ret;
2268 if (sw->link_speed != ret)
2269 change = true;
2270 sw->link_speed = ret;
2271
2272 ret = tb_port_get_link_width(up);
2273 if (ret < 0)
2274 return ret;
2275 if (sw->link_width != ret)
2276 change = true;
2277 sw->link_width = ret;
2278
2279 /* Notify userspace that there is possible link attribute change */
2280 if (device_is_registered(&sw->dev) && change)
2281 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2282
2283 return 0;
2284}
2285
2286/**
2287 * tb_switch_lane_bonding_enable() - Enable lane bonding
2288 * @sw: Switch to enable lane bonding
2289 *
2290 * Connection manager can call this function to enable lane bonding of a
2291 * switch. If conditions are correct and both switches support the feature,
2292 * lanes are bonded. It is safe to call this to any switch.
2293 */
2294int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2295{
2296 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2297 struct tb_port *up, *down;
2298 u64 route = tb_route(sw);
2299 int ret;
2300
2301 if (!route)
2302 return 0;
2303
2304 if (!tb_switch_lane_bonding_possible(sw))
2305 return 0;
2306
2307 up = tb_upstream_port(sw);
2308 down = tb_port_at(route, parent);
2309
2310 if (!tb_port_is_width_supported(up, 2) ||
2311 !tb_port_is_width_supported(down, 2))
2312 return 0;
2313
2314 ret = tb_port_lane_bonding_enable(up);
2315 if (ret) {
2316 tb_port_warn(up, "failed to enable lane bonding\n");
2317 return ret;
2318 }
2319
2320 ret = tb_port_lane_bonding_enable(down);
2321 if (ret) {
2322 tb_port_warn(down, "failed to enable lane bonding\n");
2323 tb_port_lane_bonding_disable(up);
2324 return ret;
2325 }
2326
2327 tb_switch_update_link_attributes(sw);
2328
2329 tb_sw_dbg(sw, "lane bonding enabled\n");
2330 return ret;
2331}
2332
2333/**
2334 * tb_switch_lane_bonding_disable() - Disable lane bonding
2335 * @sw: Switch whose lane bonding to disable
2336 *
2337 * Disables lane bonding between @sw and parent. This can be called even
2338 * if lanes were not bonded originally.
2339 */
2340void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2341{
2342 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2343 struct tb_port *up, *down;
2344
2345 if (!tb_route(sw))
2346 return;
2347
2348 up = tb_upstream_port(sw);
2349 if (!up->bonded)
2350 return;
2351
2352 down = tb_port_at(tb_route(sw), parent);
2353
2354 tb_port_lane_bonding_disable(up);
2355 tb_port_lane_bonding_disable(down);
2356
2357 tb_switch_update_link_attributes(sw);
2358 tb_sw_dbg(sw, "lane bonding disabled\n");
2359}
2360
de462039
MW
2361/**
2362 * tb_switch_configure_link() - Set link configured
2363 * @sw: Switch whose link is configured
2364 *
2365 * Sets the link upstream from @sw configured (from both ends) so that
2366 * it will not be disconnected when the domain exits sleep. Can be
2367 * called for any switch.
2368 *
2369 * It is recommended that this is called after lane bonding is enabled.
2370 *
2371 * Returns %0 on success and negative errno in case of error.
2372 */
2373int tb_switch_configure_link(struct tb_switch *sw)
2374{
e28178bf
MW
2375 struct tb_port *up, *down;
2376 int ret;
2377
de462039
MW
2378 if (!tb_route(sw) || tb_switch_is_icm(sw))
2379 return 0;
2380
e28178bf
MW
2381 up = tb_upstream_port(sw);
2382 if (tb_switch_is_usb4(up->sw))
2383 ret = usb4_port_configure(up);
2384 else
2385 ret = tb_lc_configure_port(up);
2386 if (ret)
2387 return ret;
2388
2389 down = up->remote;
2390 if (tb_switch_is_usb4(down->sw))
2391 return usb4_port_configure(down);
2392 return tb_lc_configure_port(down);
de462039
MW
2393}
2394
2395/**
2396 * tb_switch_unconfigure_link() - Unconfigure link
2397 * @sw: Switch whose link is unconfigured
2398 *
2399 * Sets the link unconfigured so the @sw will be disconnected if the
2400 * domain exists sleep.
2401 */
2402void tb_switch_unconfigure_link(struct tb_switch *sw)
2403{
e28178bf
MW
2404 struct tb_port *up, *down;
2405
de462039
MW
2406 if (sw->is_unplugged)
2407 return;
2408 if (!tb_route(sw) || tb_switch_is_icm(sw))
2409 return;
2410
e28178bf
MW
2411 up = tb_upstream_port(sw);
2412 if (tb_switch_is_usb4(up->sw))
2413 usb4_port_unconfigure(up);
2414 else
2415 tb_lc_unconfigure_port(up);
2416
2417 down = up->remote;
2418 if (tb_switch_is_usb4(down->sw))
2419 usb4_port_unconfigure(down);
de462039 2420 else
e28178bf 2421 tb_lc_unconfigure_port(down);
de462039
MW
2422}
2423
bfe778ac
MW
2424/**
2425 * tb_switch_add() - Add a switch to the domain
2426 * @sw: Switch to add
2427 *
2428 * This is the last step in adding switch to the domain. It will read
2429 * identification information from DROM and initializes ports so that
2430 * they can be used to connect other switches. The switch will be
2431 * exposed to the userspace when this function successfully returns. To
2432 * remove and release the switch, call tb_switch_remove().
2433 *
2434 * Return: %0 in case of success and negative errno in case of failure
2435 */
2436int tb_switch_add(struct tb_switch *sw)
2437{
2438 int i, ret;
2439
3e136768
MW
2440 /*
2441 * Initialize DMA control port now before we read DROM. Recent
2442 * host controllers have more complete DROM on NVM that includes
2443 * vendor and model identification strings which we then expose
2444 * to the userspace. NVM can be accessed through DMA
2445 * configuration based mailbox.
2446 */
e6b245cc 2447 ret = tb_switch_add_dma_port(sw);
af99f696
MW
2448 if (ret) {
2449 dev_err(&sw->dev, "failed to add DMA port\n");
f53e7676 2450 return ret;
af99f696 2451 }
343fcb8c 2452
e6b245cc
MW
2453 if (!sw->safe_mode) {
2454 /* read drom */
2455 ret = tb_drom_read(sw);
2456 if (ret) {
af99f696 2457 dev_err(&sw->dev, "reading DROM failed\n");
e6b245cc
MW
2458 return ret;
2459 }
daa5140f 2460 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
bfe778ac 2461
2cc12751 2462 ret = tb_switch_set_uuid(sw);
af99f696
MW
2463 if (ret) {
2464 dev_err(&sw->dev, "failed to set UUID\n");
2cc12751 2465 return ret;
af99f696 2466 }
e6b245cc
MW
2467
2468 for (i = 0; i <= sw->config.max_port_number; i++) {
2469 if (sw->ports[i].disabled) {
daa5140f 2470 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
e6b245cc
MW
2471 continue;
2472 }
2473 ret = tb_init_port(&sw->ports[i]);
af99f696
MW
2474 if (ret) {
2475 dev_err(&sw->dev, "failed to initialize port %d\n", i);
e6b245cc 2476 return ret;
af99f696 2477 }
343fcb8c 2478 }
91c0c120 2479
0d46c08d
MW
2480 tb_switch_default_link_ports(sw);
2481
91c0c120
MW
2482 ret = tb_switch_update_link_attributes(sw);
2483 if (ret)
2484 return ret;
cf29b9af
RM
2485
2486 ret = tb_switch_tmu_init(sw);
2487 if (ret)
2488 return ret;
343fcb8c
AN
2489 }
2490
e6b245cc 2491 ret = device_add(&sw->dev);
af99f696
MW
2492 if (ret) {
2493 dev_err(&sw->dev, "failed to add device: %d\n", ret);
e6b245cc 2494 return ret;
af99f696 2495 }
e6b245cc 2496
a83bc4a5
MW
2497 if (tb_route(sw)) {
2498 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2499 sw->vendor, sw->device);
2500 if (sw->vendor_name && sw->device_name)
2501 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2502 sw->device_name);
2503 }
2504
e6b245cc 2505 ret = tb_switch_nvm_add(sw);
2d8ff0b5 2506 if (ret) {
af99f696 2507 dev_err(&sw->dev, "failed to add NVM devices\n");
e6b245cc 2508 device_del(&sw->dev);
2d8ff0b5
MW
2509 return ret;
2510 }
e6b245cc 2511
b2911a59
MW
2512 /*
2513 * Thunderbolt routers do not generate wakeups themselves but
2514 * they forward wakeups from tunneled protocols, so enable it
2515 * here.
2516 */
2517 device_init_wakeup(&sw->dev, true);
2518
2d8ff0b5
MW
2519 pm_runtime_set_active(&sw->dev);
2520 if (sw->rpm) {
2521 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2522 pm_runtime_use_autosuspend(&sw->dev);
2523 pm_runtime_mark_last_busy(&sw->dev);
2524 pm_runtime_enable(&sw->dev);
2525 pm_request_autosuspend(&sw->dev);
2526 }
2527
54e41810 2528 tb_switch_debugfs_init(sw);
2d8ff0b5 2529 return 0;
bfe778ac 2530}
c90553b3 2531
bfe778ac
MW
2532/**
2533 * tb_switch_remove() - Remove and release a switch
2534 * @sw: Switch to remove
2535 *
2536 * This will remove the switch from the domain and release it after last
2537 * reference count drops to zero. If there are switches connected below
2538 * this switch, they will be removed as well.
2539 */
2540void tb_switch_remove(struct tb_switch *sw)
2541{
b433d010 2542 struct tb_port *port;
ca389f71 2543
54e41810
GF
2544 tb_switch_debugfs_remove(sw);
2545
2d8ff0b5
MW
2546 if (sw->rpm) {
2547 pm_runtime_get_sync(&sw->dev);
2548 pm_runtime_disable(&sw->dev);
2549 }
2550
bfe778ac 2551 /* port 0 is the switch itself and never has a remote */
b433d010
MW
2552 tb_switch_for_each_port(sw, port) {
2553 if (tb_port_has_remote(port)) {
2554 tb_switch_remove(port->remote->sw);
2555 port->remote = NULL;
2556 } else if (port->xdomain) {
2557 tb_xdomain_remove(port->xdomain);
2558 port->xdomain = NULL;
dfe40ca4 2559 }
dacb1287
KK
2560
2561 /* Remove any downstream retimers */
2562 tb_retimer_remove_all(port);
bfe778ac
MW
2563 }
2564
2565 if (!sw->is_unplugged)
2566 tb_plug_events_active(sw, false);
b0407983 2567
e6b245cc 2568 tb_switch_nvm_remove(sw);
a83bc4a5
MW
2569
2570 if (tb_route(sw))
2571 dev_info(&sw->dev, "device disconnected\n");
bfe778ac 2572 device_unregister(&sw->dev);
a25c8b2f
AN
2573}
2574
053596d9 2575/**
aae20bb6 2576 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
053596d9 2577 */
aae20bb6 2578void tb_sw_set_unplugged(struct tb_switch *sw)
053596d9 2579{
b433d010
MW
2580 struct tb_port *port;
2581
053596d9
AN
2582 if (sw == sw->tb->root_switch) {
2583 tb_sw_WARN(sw, "cannot unplug root switch\n");
2584 return;
2585 }
2586 if (sw->is_unplugged) {
2587 tb_sw_WARN(sw, "is_unplugged already set\n");
2588 return;
2589 }
2590 sw->is_unplugged = true;
b433d010
MW
2591 tb_switch_for_each_port(sw, port) {
2592 if (tb_port_has_remote(port))
2593 tb_sw_set_unplugged(port->remote->sw);
2594 else if (port->xdomain)
2595 port->xdomain->is_unplugged = true;
053596d9
AN
2596 }
2597}
2598
b2911a59
MW
2599static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2600{
2601 if (flags)
2602 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2603 else
2604 tb_sw_dbg(sw, "disabling wakeup\n");
2605
2606 if (tb_switch_is_usb4(sw))
2607 return usb4_switch_set_wake(sw, flags);
2608 return tb_lc_set_wake(sw, flags);
2609}
2610
23dd5bb4
AN
2611int tb_switch_resume(struct tb_switch *sw)
2612{
b433d010
MW
2613 struct tb_port *port;
2614 int err;
2615
daa5140f 2616 tb_sw_dbg(sw, "resuming switch\n");
23dd5bb4 2617
08a5e4ce
MW
2618 /*
2619 * Check for UID of the connected switches except for root
2620 * switch which we assume cannot be removed.
2621 */
2622 if (tb_route(sw)) {
2623 u64 uid;
2624
7ea4cd6b
MW
2625 /*
2626 * Check first that we can still read the switch config
2627 * space. It may be that there is now another domain
2628 * connected.
2629 */
2630 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2631 if (err < 0) {
2632 tb_sw_info(sw, "switch not present anymore\n");
2633 return err;
2634 }
2635
b0407983
MW
2636 if (tb_switch_is_usb4(sw))
2637 err = usb4_switch_read_uid(sw, &uid);
2638 else
2639 err = tb_drom_read_uid_only(sw, &uid);
08a5e4ce
MW
2640 if (err) {
2641 tb_sw_warn(sw, "uid read failed\n");
2642 return err;
2643 }
2644 if (sw->uid != uid) {
2645 tb_sw_info(sw,
2646 "changed while suspended (uid %#llx -> %#llx)\n",
2647 sw->uid, uid);
2648 return -ENODEV;
2649 }
23dd5bb4
AN
2650 }
2651
b0407983 2652 err = tb_switch_configure(sw);
23dd5bb4
AN
2653 if (err)
2654 return err;
2655
b2911a59
MW
2656 /* Disable wakes */
2657 tb_switch_set_wake(sw, 0);
2658
8145c435
MW
2659 err = tb_switch_tmu_init(sw);
2660 if (err)
2661 return err;
2662
23dd5bb4 2663 /* check for surviving downstream switches */
b433d010 2664 tb_switch_for_each_port(sw, port) {
7ea4cd6b 2665 if (!tb_port_has_remote(port) && !port->xdomain)
23dd5bb4 2666 continue;
dfe40ca4 2667
7ea4cd6b 2668 if (tb_wait_for_port(port, true) <= 0) {
23dd5bb4
AN
2669 tb_port_warn(port,
2670 "lost during suspend, disconnecting\n");
7ea4cd6b
MW
2671 if (tb_port_has_remote(port))
2672 tb_sw_set_unplugged(port->remote->sw);
2673 else if (port->xdomain)
2674 port->xdomain->is_unplugged = true;
b0407983
MW
2675 } else if (tb_port_has_remote(port) || port->xdomain) {
2676 /*
2677 * Always unlock the port so the downstream
2678 * switch/domain is accessible.
2679 */
2680 if (tb_port_unlock(port))
2681 tb_port_warn(port, "failed to unlock port\n");
2682 if (port->remote && tb_switch_resume(port->remote->sw)) {
7ea4cd6b
MW
2683 tb_port_warn(port,
2684 "lost during suspend, disconnecting\n");
2685 tb_sw_set_unplugged(port->remote->sw);
2686 }
23dd5bb4
AN
2687 }
2688 }
2689 return 0;
2690}
2691
6ac6faee
MW
2692/**
2693 * tb_switch_suspend() - Put a switch to sleep
2694 * @sw: Switch to suspend
2695 * @runtime: Is this runtime suspend or system sleep
2696 *
2697 * Suspends router and all its children. Enables wakes according to
2698 * value of @runtime and then sets sleep bit for the router. If @sw is
2699 * host router the domain is ready to go to sleep once this function
2700 * returns.
2701 */
2702void tb_switch_suspend(struct tb_switch *sw, bool runtime)
23dd5bb4 2703{
b2911a59 2704 unsigned int flags = 0;
b433d010
MW
2705 struct tb_port *port;
2706 int err;
2707
6ac6faee
MW
2708 tb_sw_dbg(sw, "suspending switch\n");
2709
23dd5bb4
AN
2710 err = tb_plug_events_active(sw, false);
2711 if (err)
2712 return;
2713
b433d010
MW
2714 tb_switch_for_each_port(sw, port) {
2715 if (tb_port_has_remote(port))
6ac6faee 2716 tb_switch_suspend(port->remote->sw, runtime);
23dd5bb4 2717 }
5480dfc2 2718
6ac6faee
MW
2719 if (runtime) {
2720 /* Trigger wake when something is plugged in/out */
2721 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
2722 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2723 } else if (device_may_wakeup(&sw->dev)) {
2724 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2725 }
b2911a59
MW
2726
2727 tb_switch_set_wake(sw, flags);
2728
b0407983
MW
2729 if (tb_switch_is_usb4(sw))
2730 usb4_switch_set_sleep(sw);
2731 else
2732 tb_lc_set_sleep(sw);
23dd5bb4 2733}
f67cf491 2734
8afe909b
MW
2735/**
2736 * tb_switch_query_dp_resource() - Query availability of DP resource
2737 * @sw: Switch whose DP resource is queried
2738 * @in: DP IN port
2739 *
2740 * Queries availability of DP resource for DP tunneling using switch
2741 * specific means. Returns %true if resource is available.
2742 */
2743bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2744{
b0407983
MW
2745 if (tb_switch_is_usb4(sw))
2746 return usb4_switch_query_dp_resource(sw, in);
8afe909b
MW
2747 return tb_lc_dp_sink_query(sw, in);
2748}
2749
2750/**
2751 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2752 * @sw: Switch whose DP resource is allocated
2753 * @in: DP IN port
2754 *
2755 * Allocates DP resource for DP tunneling. The resource must be
2756 * available for this to succeed (see tb_switch_query_dp_resource()).
2757 * Returns %0 in success and negative errno otherwise.
2758 */
2759int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2760{
b0407983
MW
2761 if (tb_switch_is_usb4(sw))
2762 return usb4_switch_alloc_dp_resource(sw, in);
8afe909b
MW
2763 return tb_lc_dp_sink_alloc(sw, in);
2764}
2765
2766/**
2767 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2768 * @sw: Switch whose DP resource is de-allocated
2769 * @in: DP IN port
2770 *
2771 * De-allocates DP resource that was previously allocated for DP
2772 * tunneling.
2773 */
2774void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2775{
b0407983
MW
2776 int ret;
2777
2778 if (tb_switch_is_usb4(sw))
2779 ret = usb4_switch_dealloc_dp_resource(sw, in);
2780 else
2781 ret = tb_lc_dp_sink_dealloc(sw, in);
2782
2783 if (ret)
8afe909b
MW
2784 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2785 in->port);
8afe909b
MW
2786}
2787
f67cf491
MW
2788struct tb_sw_lookup {
2789 struct tb *tb;
2790 u8 link;
2791 u8 depth;
7c39ffe7 2792 const uuid_t *uuid;
8e9267bb 2793 u64 route;
f67cf491
MW
2794};
2795
418e3ea1 2796static int tb_switch_match(struct device *dev, const void *data)
f67cf491
MW
2797{
2798 struct tb_switch *sw = tb_to_switch(dev);
418e3ea1 2799 const struct tb_sw_lookup *lookup = data;
f67cf491
MW
2800
2801 if (!sw)
2802 return 0;
2803 if (sw->tb != lookup->tb)
2804 return 0;
2805
2806 if (lookup->uuid)
2807 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2808
8e9267bb
RM
2809 if (lookup->route) {
2810 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2811 sw->config.route_hi == upper_32_bits(lookup->route);
2812 }
2813
f67cf491
MW
2814 /* Root switch is matched only by depth */
2815 if (!lookup->depth)
2816 return !sw->depth;
2817
2818 return sw->link == lookup->link && sw->depth == lookup->depth;
2819}
2820
2821/**
2822 * tb_switch_find_by_link_depth() - Find switch by link and depth
2823 * @tb: Domain the switch belongs
2824 * @link: Link number the switch is connected
2825 * @depth: Depth of the switch in link
2826 *
2827 * Returned switch has reference count increased so the caller needs to
2828 * call tb_switch_put() when done with the switch.
2829 */
2830struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2831{
2832 struct tb_sw_lookup lookup;
2833 struct device *dev;
2834
2835 memset(&lookup, 0, sizeof(lookup));
2836 lookup.tb = tb;
2837 lookup.link = link;
2838 lookup.depth = depth;
2839
2840 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2841 if (dev)
2842 return tb_to_switch(dev);
2843
2844 return NULL;
2845}
2846
2847/**
432019d6 2848 * tb_switch_find_by_uuid() - Find switch by UUID
f67cf491
MW
2849 * @tb: Domain the switch belongs
2850 * @uuid: UUID to look for
2851 *
2852 * Returned switch has reference count increased so the caller needs to
2853 * call tb_switch_put() when done with the switch.
2854 */
7c39ffe7 2855struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
f67cf491
MW
2856{
2857 struct tb_sw_lookup lookup;
2858 struct device *dev;
2859
2860 memset(&lookup, 0, sizeof(lookup));
2861 lookup.tb = tb;
2862 lookup.uuid = uuid;
2863
2864 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2865 if (dev)
2866 return tb_to_switch(dev);
2867
2868 return NULL;
2869}
e6b245cc 2870
8e9267bb
RM
2871/**
2872 * tb_switch_find_by_route() - Find switch by route string
2873 * @tb: Domain the switch belongs
2874 * @route: Route string to look for
2875 *
2876 * Returned switch has reference count increased so the caller needs to
2877 * call tb_switch_put() when done with the switch.
2878 */
2879struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2880{
2881 struct tb_sw_lookup lookup;
2882 struct device *dev;
2883
2884 if (!route)
2885 return tb_switch_get(tb->root_switch);
2886
2887 memset(&lookup, 0, sizeof(lookup));
2888 lookup.tb = tb;
2889 lookup.route = route;
2890
2891 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2892 if (dev)
2893 return tb_to_switch(dev);
2894
2895 return NULL;
2896}
2897
386e5e29
MW
2898/**
2899 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2900 * @sw: Switch to find the port from
2901 * @type: Port type to look for
2902 */
2903struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2904 enum tb_port_type type)
2905{
2906 struct tb_port *port;
2907
2908 tb_switch_for_each_port(sw, port) {
2909 if (port->config.type == type)
2910 return port;
2911 }
2912
2913 return NULL;
2914}