thunderbolt: No need to warn if NHI hop_count != 12 or hop_count != 32
[linux-block.git] / drivers / thunderbolt / switch.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a25c8b2f 2/*
15c6784c 3 * Thunderbolt driver - switch/port utility functions
a25c8b2f
AN
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
15c6784c 6 * Copyright (C) 2018, Intel Corporation
a25c8b2f
AN
7 */
8
9#include <linux/delay.h>
e6b245cc
MW
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
2d8ff0b5 12#include <linux/pm_runtime.h>
09f11b6c 13#include <linux/sched/signal.h>
e6b245cc 14#include <linux/sizes.h>
10fefe56 15#include <linux/slab.h>
e6b245cc 16#include <linux/vmalloc.h>
a25c8b2f
AN
17
18#include "tb.h"
19
e6b245cc
MW
20/* Switch NVM support */
21
22#define NVM_DEVID 0x05
23#define NVM_VERSION 0x08
24#define NVM_CSS 0x10
25#define NVM_FLASH_SIZE 0x45
26
27#define NVM_MIN_SIZE SZ_32K
28#define NVM_MAX_SIZE SZ_512K
29
30static DEFINE_IDA(nvm_ida);
31
32struct nvm_auth_status {
33 struct list_head list;
7c39ffe7 34 uuid_t uuid;
e6b245cc
MW
35 u32 status;
36};
37
38/*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43static LIST_HEAD(nvm_auth_status_cache);
44static DEFINE_MUTEX(nvm_auth_status_lock);
45
46static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47{
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
7c39ffe7 51 if (uuid_equal(&st->uuid, sw->uuid))
e6b245cc
MW
52 return st;
53 }
54
55 return NULL;
56}
57
58static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59{
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67}
68
69static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70{
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92}
93
94static void nvm_clear_auth_status(const struct tb_switch *sw)
95{
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105}
106
107static int nvm_validate_and_write(struct tb_switch *sw)
108{
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
b0407983
MW
166 if (tb_switch_is_usb4(sw))
167 return usb4_switch_nvm_write(sw, 0, buf, image_size);
e6b245cc
MW
168 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
169}
170
b0407983 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
e6b245cc 172{
7a7ebfa8 173 int ret = 0;
e6b245cc
MW
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
d1ff7024 177 * existing paths first (in case it is not in safe mode
e6b245cc
MW
178 * already).
179 */
180 if (!sw->safe_mode) {
7a7ebfa8
MW
181 u32 status;
182
d1ff7024 183 ret = tb_domain_disconnect_all_paths(sw->tb);
e6b245cc
MW
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
e6b245cc
MW
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
7a7ebfa8 208 return ret;
e6b245cc
MW
209}
210
b0407983 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
e6b245cc
MW
212{
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
e6b245cc 224 return ret;
7a7ebfa8 225 }
e6b245cc
MW
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254}
255
b0407983
MW
256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257{
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
6ae72bfa 266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269}
270
271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272{
273 struct pci_dev *root_port;
274
6ae72bfa 275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278}
279
280static inline bool nvm_readable(struct tb_switch *sw)
281{
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294}
295
296static inline bool nvm_upgradeable(struct tb_switch *sw)
297{
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301}
302
303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305{
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309}
310
311static int nvm_authenticate(struct tb_switch *sw)
312{
313 int ret;
314
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
317
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
323 }
324
325 return ret;
326}
327
e6b245cc
MW
328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
330{
331 struct tb_switch *sw = priv;
2d8ff0b5
MW
332 int ret;
333
334 pm_runtime_get_sync(&sw->dev);
4f7c2e0d
MW
335
336 if (!mutex_trylock(&sw->tb->lock)) {
337 ret = restart_syscall();
338 goto out;
339 }
340
b0407983 341 ret = nvm_read(sw, offset, val, bytes);
4f7c2e0d
MW
342 mutex_unlock(&sw->tb->lock);
343
344out:
2d8ff0b5
MW
345 pm_runtime_mark_last_busy(&sw->dev);
346 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc 347
2d8ff0b5 348 return ret;
e6b245cc
MW
349}
350
351static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
352 size_t bytes)
353{
354 struct tb_switch *sw = priv;
355 int ret = 0;
356
09f11b6c
MW
357 if (!mutex_trylock(&sw->tb->lock))
358 return restart_syscall();
e6b245cc
MW
359
360 /*
361 * Since writing the NVM image might require some special steps,
362 * for example when CSS headers are written, we cache the image
363 * locally here and handle the special cases when the user asks
364 * us to authenticate the image.
365 */
366 if (!sw->nvm->buf) {
367 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
368 if (!sw->nvm->buf) {
369 ret = -ENOMEM;
370 goto unlock;
371 }
372 }
373
374 sw->nvm->buf_data_size = offset + bytes;
375 memcpy(sw->nvm->buf + offset, val, bytes);
376
377unlock:
09f11b6c 378 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
379
380 return ret;
381}
382
383static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
384 size_t size, bool active)
385{
386 struct nvmem_config config;
387
388 memset(&config, 0, sizeof(config));
389
390 if (active) {
391 config.name = "nvm_active";
392 config.reg_read = tb_switch_nvm_read;
800161bd 393 config.read_only = true;
e6b245cc
MW
394 } else {
395 config.name = "nvm_non_active";
396 config.reg_write = tb_switch_nvm_write;
800161bd 397 config.root_only = true;
e6b245cc
MW
398 }
399
400 config.id = id;
401 config.stride = 4;
402 config.word_size = 4;
403 config.size = size;
404 config.dev = &sw->dev;
405 config.owner = THIS_MODULE;
e6b245cc
MW
406 config.priv = sw;
407
408 return nvmem_register(&config);
409}
410
411static int tb_switch_nvm_add(struct tb_switch *sw)
412{
413 struct nvmem_device *nvm_dev;
414 struct tb_switch_nvm *nvm;
415 u32 val;
416 int ret;
417
b0407983 418 if (!nvm_readable(sw))
e6b245cc
MW
419 return 0;
420
b0407983
MW
421 /*
422 * The NVM format of non-Intel hardware is not known so
423 * currently restrict NVM upgrade for Intel hardware. We may
424 * relax this in the future when we learn other NVM formats.
425 */
426 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) {
427 dev_info(&sw->dev,
428 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
429 sw->config.vendor_id);
430 return 0;
431 }
432
e6b245cc
MW
433 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
434 if (!nvm)
435 return -ENOMEM;
436
437 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
438
439 /*
440 * If the switch is in safe-mode the only accessible portion of
441 * the NVM is the non-active one where userspace is expected to
442 * write new functional NVM.
443 */
444 if (!sw->safe_mode) {
445 u32 nvm_size, hdr_size;
446
b0407983 447 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
e6b245cc
MW
448 if (ret)
449 goto err_ida;
450
451 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
452 nvm_size = (SZ_1M << (val & 7)) / 8;
453 nvm_size = (nvm_size - hdr_size) / 2;
454
b0407983 455 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
e6b245cc
MW
456 if (ret)
457 goto err_ida;
458
459 nvm->major = val >> 16;
460 nvm->minor = val >> 8;
461
462 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
463 if (IS_ERR(nvm_dev)) {
464 ret = PTR_ERR(nvm_dev);
465 goto err_ida;
466 }
467 nvm->active = nvm_dev;
468 }
469
3f415e5e
MW
470 if (!sw->no_nvm_upgrade) {
471 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
472 if (IS_ERR(nvm_dev)) {
473 ret = PTR_ERR(nvm_dev);
474 goto err_nvm_active;
475 }
476 nvm->non_active = nvm_dev;
e6b245cc 477 }
e6b245cc 478
e6b245cc 479 sw->nvm = nvm;
e6b245cc
MW
480 return 0;
481
482err_nvm_active:
483 if (nvm->active)
484 nvmem_unregister(nvm->active);
485err_ida:
486 ida_simple_remove(&nvm_ida, nvm->id);
487 kfree(nvm);
488
489 return ret;
490}
491
492static void tb_switch_nvm_remove(struct tb_switch *sw)
493{
494 struct tb_switch_nvm *nvm;
495
e6b245cc
MW
496 nvm = sw->nvm;
497 sw->nvm = NULL;
e6b245cc
MW
498
499 if (!nvm)
500 return;
501
502 /* Remove authentication status in case the switch is unplugged */
503 if (!nvm->authenticating)
504 nvm_clear_auth_status(sw);
505
3f415e5e
MW
506 if (nvm->non_active)
507 nvmem_unregister(nvm->non_active);
e6b245cc
MW
508 if (nvm->active)
509 nvmem_unregister(nvm->active);
510 ida_simple_remove(&nvm_ida, nvm->id);
511 vfree(nvm->buf);
512 kfree(nvm);
513}
514
a25c8b2f
AN
515/* port utility functions */
516
517static const char *tb_port_type(struct tb_regs_port_header *port)
518{
519 switch (port->type >> 16) {
520 case 0:
521 switch ((u8) port->type) {
522 case 0:
523 return "Inactive";
524 case 1:
525 return "Port";
526 case 2:
527 return "NHI";
528 default:
529 return "unknown";
530 }
531 case 0x2:
532 return "Ethernet";
533 case 0x8:
534 return "SATA";
535 case 0xe:
536 return "DP/HDMI";
537 case 0x10:
538 return "PCIe";
539 case 0x20:
540 return "USB";
541 default:
542 return "unknown";
543 }
544}
545
546static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
547{
daa5140f
MW
548 tb_dbg(tb,
549 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
550 port->port_number, port->vendor_id, port->device_id,
551 port->revision, port->thunderbolt_version, tb_port_type(port),
552 port->type);
553 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
554 port->max_in_hop_id, port->max_out_hop_id);
555 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
556 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
a25c8b2f
AN
557}
558
9da672a4
AN
559/**
560 * tb_port_state() - get connectedness state of a port
561 *
562 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
563 *
564 * Return: Returns an enum tb_port_state on success or an error code on failure.
565 */
566static int tb_port_state(struct tb_port *port)
567{
568 struct tb_cap_phy phy;
569 int res;
570 if (port->cap_phy == 0) {
571 tb_port_WARN(port, "does not have a PHY\n");
572 return -EINVAL;
573 }
574 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
575 if (res)
576 return res;
577 return phy.state;
578}
579
580/**
581 * tb_wait_for_port() - wait for a port to become ready
582 *
583 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
584 * wait_if_unplugged is set then we also wait if the port is in state
585 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
586 * switch resume). Otherwise we only wait if a device is registered but the link
587 * has not yet been established.
588 *
589 * Return: Returns an error code on failure. Returns 0 if the port is not
590 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
591 * if the port is connected and in state TB_PORT_UP.
592 */
593int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
594{
595 int retries = 10;
596 int state;
597 if (!port->cap_phy) {
598 tb_port_WARN(port, "does not have PHY\n");
599 return -EINVAL;
600 }
601 if (tb_is_upstream_port(port)) {
602 tb_port_WARN(port, "is the upstream port\n");
603 return -EINVAL;
604 }
605
606 while (retries--) {
607 state = tb_port_state(port);
608 if (state < 0)
609 return state;
610 if (state == TB_PORT_DISABLED) {
62efe699 611 tb_port_dbg(port, "is disabled (state: 0)\n");
9da672a4
AN
612 return 0;
613 }
614 if (state == TB_PORT_UNPLUGGED) {
615 if (wait_if_unplugged) {
616 /* used during resume */
62efe699
MW
617 tb_port_dbg(port,
618 "is unplugged (state: 7), retrying...\n");
9da672a4
AN
619 msleep(100);
620 continue;
621 }
62efe699 622 tb_port_dbg(port, "is unplugged (state: 7)\n");
9da672a4
AN
623 return 0;
624 }
625 if (state == TB_PORT_UP) {
62efe699 626 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
9da672a4
AN
627 return 1;
628 }
629
630 /*
631 * After plug-in the state is TB_PORT_CONNECTING. Give it some
632 * time.
633 */
62efe699
MW
634 tb_port_dbg(port,
635 "is connected, link is not up (state: %d), retrying...\n",
636 state);
9da672a4
AN
637 msleep(100);
638 }
639 tb_port_warn(port,
640 "failed to reach state TB_PORT_UP. Ignoring port...\n");
641 return 0;
642}
643
520b6702
AN
644/**
645 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
646 *
647 * Change the number of NFC credits allocated to @port by @credits. To remove
648 * NFC credits pass a negative amount of credits.
649 *
650 * Return: Returns 0 on success or an error code on failure.
651 */
652int tb_port_add_nfc_credits(struct tb_port *port, int credits)
653{
c5ee6feb
MW
654 u32 nfc_credits;
655
656 if (credits == 0 || port->sw->is_unplugged)
520b6702 657 return 0;
c5ee6feb 658
8f57d478 659 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
c5ee6feb
MW
660 nfc_credits += credits;
661
8f57d478
MW
662 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
663 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
c5ee6feb 664
8f57d478 665 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
c5ee6feb
MW
666 port->config.nfc_credits |= nfc_credits;
667
520b6702 668 return tb_port_write(port, &port->config.nfc_credits,
8f57d478 669 TB_CFG_PORT, ADP_CS_4, 1);
520b6702
AN
670}
671
44242d6c
MW
672/**
673 * tb_port_set_initial_credits() - Set initial port link credits allocated
674 * @port: Port to set the initial credits
675 * @credits: Number of credits to to allocate
676 *
677 * Set initial credits value to be used for ingress shared buffering.
678 */
679int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
680{
681 u32 data;
682 int ret;
683
8f57d478 684 ret = tb_port_read(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
44242d6c
MW
685 if (ret)
686 return ret;
687
8f57d478
MW
688 data &= ~ADP_CS_5_LCA_MASK;
689 data |= (credits << ADP_CS_5_LCA_SHIFT) & ADP_CS_5_LCA_MASK;
44242d6c 690
8f57d478 691 return tb_port_write(port, &data, TB_CFG_PORT, ADP_CS_5, 1);
44242d6c
MW
692}
693
520b6702
AN
694/**
695 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
696 *
697 * Return: Returns 0 on success or an error code on failure.
698 */
699int tb_port_clear_counter(struct tb_port *port, int counter)
700{
701 u32 zero[3] = { 0, 0, 0 };
62efe699 702 tb_port_dbg(port, "clearing counter %d\n", counter);
520b6702
AN
703 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
704}
705
b0407983
MW
706/**
707 * tb_port_unlock() - Unlock downstream port
708 * @port: Port to unlock
709 *
710 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
711 * downstream router accessible for CM.
712 */
713int tb_port_unlock(struct tb_port *port)
714{
715 if (tb_switch_is_icm(port->sw))
716 return 0;
717 if (!tb_port_is_null(port))
718 return -EINVAL;
719 if (tb_switch_is_usb4(port->sw))
720 return usb4_port_unlock(port);
721 return 0;
722}
723
a25c8b2f
AN
724/**
725 * tb_init_port() - initialize a port
726 *
727 * This is a helper method for tb_switch_alloc. Does not check or initialize
728 * any downstream switches.
729 *
730 * Return: Returns 0 on success or an error code on failure.
731 */
343fcb8c 732static int tb_init_port(struct tb_port *port)
a25c8b2f
AN
733{
734 int res;
9da672a4 735 int cap;
343fcb8c 736
a25c8b2f 737 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
d94dcbb1
MW
738 if (res) {
739 if (res == -ENODEV) {
740 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
741 port->port);
742 return 0;
743 }
a25c8b2f 744 return res;
d94dcbb1 745 }
a25c8b2f 746
9da672a4 747 /* Port 0 is the switch itself and has no PHY. */
343fcb8c 748 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
da2da04b 749 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
9da672a4
AN
750
751 if (cap > 0)
752 port->cap_phy = cap;
753 else
754 tb_port_WARN(port, "non switch port without a PHY\n");
b0407983
MW
755
756 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
757 if (cap > 0)
758 port->cap_usb4 = cap;
56183c88
MW
759 } else if (port->port != 0) {
760 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
761 if (cap > 0)
762 port->cap_adap = cap;
9da672a4
AN
763 }
764
343fcb8c 765 tb_dump_port(port->sw->tb, &port->config);
a25c8b2f 766
0b2863ac
MW
767 /* Control port does not need HopID allocation */
768 if (port->port) {
769 ida_init(&port->in_hopids);
770 ida_init(&port->out_hopids);
771 }
772
8afe909b 773 INIT_LIST_HEAD(&port->list);
a25c8b2f
AN
774 return 0;
775
776}
777
0b2863ac
MW
778static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
779 int max_hopid)
780{
781 int port_max_hopid;
782 struct ida *ida;
783
784 if (in) {
785 port_max_hopid = port->config.max_in_hop_id;
786 ida = &port->in_hopids;
787 } else {
788 port_max_hopid = port->config.max_out_hop_id;
789 ida = &port->out_hopids;
790 }
791
792 /* HopIDs 0-7 are reserved */
793 if (min_hopid < TB_PATH_MIN_HOPID)
794 min_hopid = TB_PATH_MIN_HOPID;
795
796 if (max_hopid < 0 || max_hopid > port_max_hopid)
797 max_hopid = port_max_hopid;
798
799 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
800}
801
802/**
803 * tb_port_alloc_in_hopid() - Allocate input HopID from port
804 * @port: Port to allocate HopID for
805 * @min_hopid: Minimum acceptable input HopID
806 * @max_hopid: Maximum acceptable input HopID
807 *
808 * Return: HopID between @min_hopid and @max_hopid or negative errno in
809 * case of error.
810 */
811int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
812{
813 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
814}
815
816/**
817 * tb_port_alloc_out_hopid() - Allocate output HopID from port
818 * @port: Port to allocate HopID for
819 * @min_hopid: Minimum acceptable output HopID
820 * @max_hopid: Maximum acceptable output HopID
821 *
822 * Return: HopID between @min_hopid and @max_hopid or negative errno in
823 * case of error.
824 */
825int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
826{
827 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
828}
829
830/**
831 * tb_port_release_in_hopid() - Release allocated input HopID from port
832 * @port: Port whose HopID to release
833 * @hopid: HopID to release
834 */
835void tb_port_release_in_hopid(struct tb_port *port, int hopid)
836{
837 ida_simple_remove(&port->in_hopids, hopid);
838}
839
840/**
841 * tb_port_release_out_hopid() - Release allocated output HopID from port
842 * @port: Port whose HopID to release
843 * @hopid: HopID to release
844 */
845void tb_port_release_out_hopid(struct tb_port *port, int hopid)
846{
847 ida_simple_remove(&port->out_hopids, hopid);
848}
849
fb19fac1
MW
850/**
851 * tb_next_port_on_path() - Return next port for given port on a path
852 * @start: Start port of the walk
853 * @end: End port of the walk
854 * @prev: Previous port (%NULL if this is the first)
855 *
856 * This function can be used to walk from one port to another if they
857 * are connected through zero or more switches. If the @prev is dual
858 * link port, the function follows that link and returns another end on
859 * that same link.
860 *
861 * If the @end port has been reached, return %NULL.
862 *
863 * Domain tb->lock must be held when this function is called.
864 */
865struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
866 struct tb_port *prev)
867{
868 struct tb_port *next;
869
870 if (!prev)
871 return start;
872
873 if (prev->sw == end->sw) {
874 if (prev == end)
875 return NULL;
876 return end;
877 }
878
879 if (start->sw->config.depth < end->sw->config.depth) {
880 if (prev->remote &&
881 prev->remote->sw->config.depth > prev->sw->config.depth)
882 next = prev->remote;
883 else
884 next = tb_port_at(tb_route(end->sw), prev->sw);
885 } else {
886 if (tb_is_upstream_port(prev)) {
887 next = prev->remote;
888 } else {
889 next = tb_upstream_port(prev->sw);
890 /*
891 * Keep the same link if prev and next are both
892 * dual link ports.
893 */
894 if (next->dual_link_port &&
895 next->link_nr != prev->link_nr) {
896 next = next->dual_link_port;
897 }
898 }
899 }
900
901 return next;
902}
903
91c0c120
MW
904static int tb_port_get_link_speed(struct tb_port *port)
905{
906 u32 val, speed;
907 int ret;
908
909 if (!port->cap_phy)
910 return -EINVAL;
911
912 ret = tb_port_read(port, &val, TB_CFG_PORT,
913 port->cap_phy + LANE_ADP_CS_1, 1);
914 if (ret)
915 return ret;
916
917 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
918 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
919 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
920}
921
922static int tb_port_get_link_width(struct tb_port *port)
923{
924 u32 val;
925 int ret;
926
927 if (!port->cap_phy)
928 return -EINVAL;
929
930 ret = tb_port_read(port, &val, TB_CFG_PORT,
931 port->cap_phy + LANE_ADP_CS_1, 1);
932 if (ret)
933 return ret;
934
935 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
936 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
937}
938
939static bool tb_port_is_width_supported(struct tb_port *port, int width)
940{
941 u32 phy, widths;
942 int ret;
943
944 if (!port->cap_phy)
945 return false;
946
947 ret = tb_port_read(port, &phy, TB_CFG_PORT,
948 port->cap_phy + LANE_ADP_CS_0, 1);
949 if (ret)
e9d0e751 950 return false;
91c0c120
MW
951
952 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
953 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
954
955 return !!(widths & width);
956}
957
958static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
959{
960 u32 val;
961 int ret;
962
963 if (!port->cap_phy)
964 return -EINVAL;
965
966 ret = tb_port_read(port, &val, TB_CFG_PORT,
967 port->cap_phy + LANE_ADP_CS_1, 1);
968 if (ret)
969 return ret;
970
971 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
972 switch (width) {
973 case 1:
974 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
975 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
976 break;
977 case 2:
978 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
979 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
980 break;
981 default:
982 return -EINVAL;
983 }
984
985 val |= LANE_ADP_CS_1_LB;
986
987 return tb_port_write(port, &val, TB_CFG_PORT,
988 port->cap_phy + LANE_ADP_CS_1, 1);
989}
990
991static int tb_port_lane_bonding_enable(struct tb_port *port)
992{
993 int ret;
994
995 /*
996 * Enable lane bonding for both links if not already enabled by
997 * for example the boot firmware.
998 */
999 ret = tb_port_get_link_width(port);
1000 if (ret == 1) {
1001 ret = tb_port_set_link_width(port, 2);
1002 if (ret)
1003 return ret;
1004 }
1005
1006 ret = tb_port_get_link_width(port->dual_link_port);
1007 if (ret == 1) {
1008 ret = tb_port_set_link_width(port->dual_link_port, 2);
1009 if (ret) {
1010 tb_port_set_link_width(port, 1);
1011 return ret;
1012 }
1013 }
1014
1015 port->bonded = true;
1016 port->dual_link_port->bonded = true;
1017
1018 return 0;
1019}
1020
1021static void tb_port_lane_bonding_disable(struct tb_port *port)
1022{
1023 port->dual_link_port->bonded = false;
1024 port->bonded = false;
1025
1026 tb_port_set_link_width(port->dual_link_port, 1);
1027 tb_port_set_link_width(port, 1);
1028}
1029
e78db6f0
MW
1030/**
1031 * tb_port_is_enabled() - Is the adapter port enabled
1032 * @port: Port to check
1033 */
1034bool tb_port_is_enabled(struct tb_port *port)
1035{
1036 switch (port->config.type) {
1037 case TB_TYPE_PCIE_UP:
1038 case TB_TYPE_PCIE_DOWN:
1039 return tb_pci_port_is_enabled(port);
1040
4f807e47
MW
1041 case TB_TYPE_DP_HDMI_IN:
1042 case TB_TYPE_DP_HDMI_OUT:
1043 return tb_dp_port_is_enabled(port);
1044
e6f81858
RM
1045 case TB_TYPE_USB3_UP:
1046 case TB_TYPE_USB3_DOWN:
1047 return tb_usb3_port_is_enabled(port);
1048
e78db6f0
MW
1049 default:
1050 return false;
1051 }
1052}
1053
e6f81858
RM
1054/**
1055 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1056 * @port: USB3 adapter port to check
1057 */
1058bool tb_usb3_port_is_enabled(struct tb_port *port)
1059{
1060 u32 data;
1061
1062 if (tb_port_read(port, &data, TB_CFG_PORT,
1063 port->cap_adap + ADP_USB3_CS_0, 1))
1064 return false;
1065
1066 return !!(data & ADP_USB3_CS_0_PE);
1067}
1068
1069/**
1070 * tb_usb3_port_enable() - Enable USB3 adapter port
1071 * @port: USB3 adapter port to enable
1072 * @enable: Enable/disable the USB3 adapter
1073 */
1074int tb_usb3_port_enable(struct tb_port *port, bool enable)
1075{
1076 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1077 : ADP_USB3_CS_0_V;
1078
1079 if (!port->cap_adap)
1080 return -ENXIO;
1081 return tb_port_write(port, &word, TB_CFG_PORT,
1082 port->cap_adap + ADP_USB3_CS_0, 1);
1083}
1084
0414bec5
MW
1085/**
1086 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1087 * @port: PCIe port to check
1088 */
1089bool tb_pci_port_is_enabled(struct tb_port *port)
1090{
1091 u32 data;
1092
778bfca3
MW
1093 if (tb_port_read(port, &data, TB_CFG_PORT,
1094 port->cap_adap + ADP_PCIE_CS_0, 1))
0414bec5
MW
1095 return false;
1096
778bfca3 1097 return !!(data & ADP_PCIE_CS_0_PE);
0414bec5
MW
1098}
1099
93f36ade
MW
1100/**
1101 * tb_pci_port_enable() - Enable PCIe adapter port
1102 * @port: PCIe port to enable
1103 * @enable: Enable/disable the PCIe adapter
1104 */
1105int tb_pci_port_enable(struct tb_port *port, bool enable)
1106{
778bfca3 1107 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
93f36ade
MW
1108 if (!port->cap_adap)
1109 return -ENXIO;
778bfca3
MW
1110 return tb_port_write(port, &word, TB_CFG_PORT,
1111 port->cap_adap + ADP_PCIE_CS_0, 1);
93f36ade
MW
1112}
1113
4f807e47
MW
1114/**
1115 * tb_dp_port_hpd_is_active() - Is HPD already active
1116 * @port: DP out port to check
1117 *
1118 * Checks if the DP OUT adapter port has HDP bit already set.
1119 */
1120int tb_dp_port_hpd_is_active(struct tb_port *port)
1121{
1122 u32 data;
1123 int ret;
1124
98176380
MW
1125 ret = tb_port_read(port, &data, TB_CFG_PORT,
1126 port->cap_adap + ADP_DP_CS_2, 1);
4f807e47
MW
1127 if (ret)
1128 return ret;
1129
98176380 1130 return !!(data & ADP_DP_CS_2_HDP);
4f807e47
MW
1131}
1132
1133/**
1134 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1135 * @port: Port to clear HPD
1136 *
1137 * If the DP IN port has HDP set, this function can be used to clear it.
1138 */
1139int tb_dp_port_hpd_clear(struct tb_port *port)
1140{
1141 u32 data;
1142 int ret;
1143
98176380
MW
1144 ret = tb_port_read(port, &data, TB_CFG_PORT,
1145 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1146 if (ret)
1147 return ret;
1148
98176380
MW
1149 data |= ADP_DP_CS_3_HDPC;
1150 return tb_port_write(port, &data, TB_CFG_PORT,
1151 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1152}
1153
1154/**
1155 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1156 * @port: DP IN/OUT port to set hops
1157 * @video: Video Hop ID
1158 * @aux_tx: AUX TX Hop ID
1159 * @aux_rx: AUX RX Hop ID
1160 *
1161 * Programs specified Hop IDs for DP IN/OUT port.
1162 */
1163int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1164 unsigned int aux_tx, unsigned int aux_rx)
1165{
1166 u32 data[2];
1167 int ret;
1168
98176380
MW
1169 ret = tb_port_read(port, data, TB_CFG_PORT,
1170 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1171 if (ret)
1172 return ret;
1173
98176380
MW
1174 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1175 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1176 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1177
98176380
MW
1178 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1179 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1180 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1181 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1182 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1183
98176380
MW
1184 return tb_port_write(port, data, TB_CFG_PORT,
1185 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1186}
1187
1188/**
1189 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1190 * @port: DP adapter port to check
1191 */
1192bool tb_dp_port_is_enabled(struct tb_port *port)
1193{
fd5c46b7 1194 u32 data[2];
4f807e47 1195
98176380 1196 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
fd5c46b7 1197 ARRAY_SIZE(data)))
4f807e47
MW
1198 return false;
1199
98176380 1200 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
4f807e47
MW
1201}
1202
1203/**
1204 * tb_dp_port_enable() - Enables/disables DP paths of a port
1205 * @port: DP IN/OUT port
1206 * @enable: Enable/disable DP path
1207 *
1208 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1209 * calling this function.
1210 */
1211int tb_dp_port_enable(struct tb_port *port, bool enable)
1212{
fd5c46b7 1213 u32 data[2];
4f807e47
MW
1214 int ret;
1215
98176380
MW
1216 ret = tb_port_read(port, data, TB_CFG_PORT,
1217 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1218 if (ret)
1219 return ret;
1220
1221 if (enable)
98176380 1222 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
4f807e47 1223 else
98176380 1224 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
4f807e47 1225
98176380
MW
1226 return tb_port_write(port, data, TB_CFG_PORT,
1227 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1228}
1229
a25c8b2f
AN
1230/* switch utility functions */
1231
b0407983
MW
1232static const char *tb_switch_generation_name(const struct tb_switch *sw)
1233{
1234 switch (sw->generation) {
1235 case 1:
1236 return "Thunderbolt 1";
1237 case 2:
1238 return "Thunderbolt 2";
1239 case 3:
1240 return "Thunderbolt 3";
1241 case 4:
1242 return "USB4";
1243 default:
1244 return "Unknown";
1245 }
1246}
1247
1248static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
a25c8b2f 1249{
b0407983
MW
1250 const struct tb_regs_switch_header *regs = &sw->config;
1251
1252 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1253 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1254 regs->revision, regs->thunderbolt_version);
1255 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
daa5140f
MW
1256 tb_dbg(tb, " Config:\n");
1257 tb_dbg(tb,
a25c8b2f 1258 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
b0407983
MW
1259 regs->upstream_port_number, regs->depth,
1260 (((u64) regs->route_hi) << 32) | regs->route_lo,
1261 regs->enabled, regs->plug_events_delay);
daa5140f 1262 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
b0407983 1263 regs->__unknown1, regs->__unknown4);
a25c8b2f
AN
1264}
1265
23dd5bb4
AN
1266/**
1267 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
1268 *
1269 * Return: Returns 0 on success or an error code on failure.
1270 */
1271int tb_switch_reset(struct tb *tb, u64 route)
1272{
1273 struct tb_cfg_result res;
1274 struct tb_regs_switch_header header = {
1275 header.route_hi = route >> 32,
1276 header.route_lo = route,
1277 header.enabled = true,
1278 };
daa5140f 1279 tb_dbg(tb, "resetting switch at %llx\n", route);
23dd5bb4
AN
1280 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
1281 0, 2, 2, 2);
1282 if (res.err)
1283 return res.err;
1284 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
1285 if (res.err > 0)
1286 return -EIO;
1287 return res.err;
1288}
1289
ca389f71
AN
1290/**
1291 * tb_plug_events_active() - enable/disable plug events on a switch
1292 *
1293 * Also configures a sane plug_events_delay of 255ms.
1294 *
1295 * Return: Returns 0 on success or an error code on failure.
1296 */
1297static int tb_plug_events_active(struct tb_switch *sw, bool active)
1298{
1299 u32 data;
1300 int res;
1301
f07a3608 1302 if (tb_switch_is_icm(sw))
bfe778ac
MW
1303 return 0;
1304
ca389f71
AN
1305 sw->config.plug_events_delay = 0xff;
1306 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1307 if (res)
1308 return res;
1309
b0407983
MW
1310 /* Plug events are always enabled in USB4 */
1311 if (tb_switch_is_usb4(sw))
1312 return 0;
1313
ca389f71
AN
1314 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1315 if (res)
1316 return res;
1317
1318 if (active) {
1319 data = data & 0xFFFFFF83;
1320 switch (sw->config.device_id) {
1d111406
LW
1321 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1322 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1323 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
ca389f71
AN
1324 break;
1325 default:
1326 data |= 4;
1327 }
1328 } else {
1329 data = data | 0x7c;
1330 }
1331 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1332 sw->cap_plug_events + 1, 1);
1333}
1334
f67cf491
MW
1335static ssize_t authorized_show(struct device *dev,
1336 struct device_attribute *attr,
1337 char *buf)
1338{
1339 struct tb_switch *sw = tb_to_switch(dev);
1340
1341 return sprintf(buf, "%u\n", sw->authorized);
1342}
1343
1344static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1345{
1346 int ret = -EINVAL;
1347
09f11b6c
MW
1348 if (!mutex_trylock(&sw->tb->lock))
1349 return restart_syscall();
f67cf491
MW
1350
1351 if (sw->authorized)
1352 goto unlock;
1353
1354 switch (val) {
1355 /* Approve switch */
1356 case 1:
1357 if (sw->key)
1358 ret = tb_domain_approve_switch_key(sw->tb, sw);
1359 else
1360 ret = tb_domain_approve_switch(sw->tb, sw);
1361 break;
1362
1363 /* Challenge switch */
1364 case 2:
1365 if (sw->key)
1366 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 if (!ret) {
1374 sw->authorized = val;
1375 /* Notify status change to the userspace */
1376 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1377 }
1378
1379unlock:
09f11b6c 1380 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1381 return ret;
1382}
1383
1384static ssize_t authorized_store(struct device *dev,
1385 struct device_attribute *attr,
1386 const char *buf, size_t count)
1387{
1388 struct tb_switch *sw = tb_to_switch(dev);
1389 unsigned int val;
1390 ssize_t ret;
1391
1392 ret = kstrtouint(buf, 0, &val);
1393 if (ret)
1394 return ret;
1395 if (val > 2)
1396 return -EINVAL;
1397
4f7c2e0d 1398 pm_runtime_get_sync(&sw->dev);
f67cf491 1399 ret = tb_switch_set_authorized(sw, val);
4f7c2e0d
MW
1400 pm_runtime_mark_last_busy(&sw->dev);
1401 pm_runtime_put_autosuspend(&sw->dev);
f67cf491
MW
1402
1403 return ret ? ret : count;
1404}
1405static DEVICE_ATTR_RW(authorized);
1406
14862ee3
YB
1407static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1408 char *buf)
1409{
1410 struct tb_switch *sw = tb_to_switch(dev);
1411
1412 return sprintf(buf, "%u\n", sw->boot);
1413}
1414static DEVICE_ATTR_RO(boot);
1415
bfe778ac
MW
1416static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1417 char *buf)
1418{
1419 struct tb_switch *sw = tb_to_switch(dev);
ca389f71 1420
bfe778ac
MW
1421 return sprintf(buf, "%#x\n", sw->device);
1422}
1423static DEVICE_ATTR_RO(device);
1424
72ee3390
MW
1425static ssize_t
1426device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1427{
1428 struct tb_switch *sw = tb_to_switch(dev);
1429
1430 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1431}
1432static DEVICE_ATTR_RO(device_name);
1433
b406357c
CK
1434static ssize_t
1435generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1436{
1437 struct tb_switch *sw = tb_to_switch(dev);
1438
1439 return sprintf(buf, "%u\n", sw->generation);
1440}
1441static DEVICE_ATTR_RO(generation);
1442
f67cf491
MW
1443static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1444 char *buf)
1445{
1446 struct tb_switch *sw = tb_to_switch(dev);
1447 ssize_t ret;
1448
09f11b6c
MW
1449 if (!mutex_trylock(&sw->tb->lock))
1450 return restart_syscall();
f67cf491
MW
1451
1452 if (sw->key)
1453 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1454 else
1455 ret = sprintf(buf, "\n");
1456
09f11b6c 1457 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1458 return ret;
1459}
1460
1461static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1462 const char *buf, size_t count)
1463{
1464 struct tb_switch *sw = tb_to_switch(dev);
1465 u8 key[TB_SWITCH_KEY_SIZE];
1466 ssize_t ret = count;
e545f0d8 1467 bool clear = false;
f67cf491 1468
e545f0d8
BY
1469 if (!strcmp(buf, "\n"))
1470 clear = true;
1471 else if (hex2bin(key, buf, sizeof(key)))
f67cf491
MW
1472 return -EINVAL;
1473
09f11b6c
MW
1474 if (!mutex_trylock(&sw->tb->lock))
1475 return restart_syscall();
f67cf491
MW
1476
1477 if (sw->authorized) {
1478 ret = -EBUSY;
1479 } else {
1480 kfree(sw->key);
e545f0d8
BY
1481 if (clear) {
1482 sw->key = NULL;
1483 } else {
1484 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1485 if (!sw->key)
1486 ret = -ENOMEM;
1487 }
f67cf491
MW
1488 }
1489
09f11b6c 1490 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1491 return ret;
1492}
0956e411 1493static DEVICE_ATTR(key, 0600, key_show, key_store);
f67cf491 1494
91c0c120
MW
1495static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1496 char *buf)
1497{
1498 struct tb_switch *sw = tb_to_switch(dev);
1499
1500 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1501}
1502
1503/*
1504 * Currently all lanes must run at the same speed but we expose here
1505 * both directions to allow possible asymmetric links in the future.
1506 */
1507static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1508static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1509
1510static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1511 char *buf)
1512{
1513 struct tb_switch *sw = tb_to_switch(dev);
1514
1515 return sprintf(buf, "%u\n", sw->link_width);
1516}
1517
1518/*
1519 * Currently link has same amount of lanes both directions (1 or 2) but
1520 * expose them separately to allow possible asymmetric links in the future.
1521 */
1522static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1523static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1524
e6b245cc
MW
1525static ssize_t nvm_authenticate_show(struct device *dev,
1526 struct device_attribute *attr, char *buf)
1527{
1528 struct tb_switch *sw = tb_to_switch(dev);
1529 u32 status;
1530
1531 nvm_get_auth_status(sw, &status);
1532 return sprintf(buf, "%#x\n", status);
1533}
1534
1535static ssize_t nvm_authenticate_store(struct device *dev,
1536 struct device_attribute *attr, const char *buf, size_t count)
1537{
1538 struct tb_switch *sw = tb_to_switch(dev);
1539 bool val;
1540 int ret;
1541
4f7c2e0d
MW
1542 pm_runtime_get_sync(&sw->dev);
1543
1544 if (!mutex_trylock(&sw->tb->lock)) {
1545 ret = restart_syscall();
1546 goto exit_rpm;
1547 }
e6b245cc
MW
1548
1549 /* If NVMem devices are not yet added */
1550 if (!sw->nvm) {
1551 ret = -EAGAIN;
1552 goto exit_unlock;
1553 }
1554
1555 ret = kstrtobool(buf, &val);
1556 if (ret)
1557 goto exit_unlock;
1558
1559 /* Always clear the authentication status */
1560 nvm_clear_auth_status(sw);
1561
1562 if (val) {
2d8ff0b5
MW
1563 if (!sw->nvm->buf) {
1564 ret = -EINVAL;
1565 goto exit_unlock;
1566 }
1567
e6b245cc 1568 ret = nvm_validate_and_write(sw);
4f7c2e0d 1569 if (ret)
e6b245cc
MW
1570 goto exit_unlock;
1571
1572 sw->nvm->authenticating = true;
b0407983 1573 ret = nvm_authenticate(sw);
e6b245cc
MW
1574 }
1575
1576exit_unlock:
09f11b6c 1577 mutex_unlock(&sw->tb->lock);
4f7c2e0d
MW
1578exit_rpm:
1579 pm_runtime_mark_last_busy(&sw->dev);
1580 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc
MW
1581
1582 if (ret)
1583 return ret;
1584 return count;
1585}
1586static DEVICE_ATTR_RW(nvm_authenticate);
1587
1588static ssize_t nvm_version_show(struct device *dev,
1589 struct device_attribute *attr, char *buf)
1590{
1591 struct tb_switch *sw = tb_to_switch(dev);
1592 int ret;
1593
09f11b6c
MW
1594 if (!mutex_trylock(&sw->tb->lock))
1595 return restart_syscall();
e6b245cc
MW
1596
1597 if (sw->safe_mode)
1598 ret = -ENODATA;
1599 else if (!sw->nvm)
1600 ret = -EAGAIN;
1601 else
1602 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1603
09f11b6c 1604 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
1605
1606 return ret;
1607}
1608static DEVICE_ATTR_RO(nvm_version);
1609
bfe778ac
MW
1610static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1611 char *buf)
a25c8b2f 1612{
bfe778ac 1613 struct tb_switch *sw = tb_to_switch(dev);
a25c8b2f 1614
bfe778ac
MW
1615 return sprintf(buf, "%#x\n", sw->vendor);
1616}
1617static DEVICE_ATTR_RO(vendor);
1618
72ee3390
MW
1619static ssize_t
1620vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1621{
1622 struct tb_switch *sw = tb_to_switch(dev);
1623
1624 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1625}
1626static DEVICE_ATTR_RO(vendor_name);
1627
bfe778ac
MW
1628static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1629 char *buf)
1630{
1631 struct tb_switch *sw = tb_to_switch(dev);
1632
1633 return sprintf(buf, "%pUb\n", sw->uuid);
1634}
1635static DEVICE_ATTR_RO(unique_id);
1636
1637static struct attribute *switch_attrs[] = {
f67cf491 1638 &dev_attr_authorized.attr,
14862ee3 1639 &dev_attr_boot.attr,
bfe778ac 1640 &dev_attr_device.attr,
72ee3390 1641 &dev_attr_device_name.attr,
b406357c 1642 &dev_attr_generation.attr,
f67cf491 1643 &dev_attr_key.attr,
e6b245cc
MW
1644 &dev_attr_nvm_authenticate.attr,
1645 &dev_attr_nvm_version.attr,
91c0c120
MW
1646 &dev_attr_rx_speed.attr,
1647 &dev_attr_rx_lanes.attr,
1648 &dev_attr_tx_speed.attr,
1649 &dev_attr_tx_lanes.attr,
bfe778ac 1650 &dev_attr_vendor.attr,
72ee3390 1651 &dev_attr_vendor_name.attr,
bfe778ac
MW
1652 &dev_attr_unique_id.attr,
1653 NULL,
1654};
1655
f67cf491
MW
1656static umode_t switch_attr_is_visible(struct kobject *kobj,
1657 struct attribute *attr, int n)
1658{
1659 struct device *dev = container_of(kobj, struct device, kobj);
1660 struct tb_switch *sw = tb_to_switch(dev);
1661
58f414fa
MW
1662 if (attr == &dev_attr_device.attr) {
1663 if (!sw->device)
1664 return 0;
1665 } else if (attr == &dev_attr_device_name.attr) {
1666 if (!sw->device_name)
1667 return 0;
1668 } else if (attr == &dev_attr_vendor.attr) {
1669 if (!sw->vendor)
1670 return 0;
1671 } else if (attr == &dev_attr_vendor_name.attr) {
1672 if (!sw->vendor_name)
1673 return 0;
1674 } else if (attr == &dev_attr_key.attr) {
f67cf491
MW
1675 if (tb_route(sw) &&
1676 sw->tb->security_level == TB_SECURITY_SECURE &&
1677 sw->security_level == TB_SECURITY_SECURE)
1678 return attr->mode;
1679 return 0;
91c0c120
MW
1680 } else if (attr == &dev_attr_rx_speed.attr ||
1681 attr == &dev_attr_rx_lanes.attr ||
1682 attr == &dev_attr_tx_speed.attr ||
1683 attr == &dev_attr_tx_lanes.attr) {
1684 if (tb_route(sw))
1685 return attr->mode;
1686 return 0;
3f415e5e 1687 } else if (attr == &dev_attr_nvm_authenticate.attr) {
b0407983 1688 if (nvm_upgradeable(sw))
3f415e5e
MW
1689 return attr->mode;
1690 return 0;
1691 } else if (attr == &dev_attr_nvm_version.attr) {
b0407983 1692 if (nvm_readable(sw))
e6b245cc
MW
1693 return attr->mode;
1694 return 0;
14862ee3
YB
1695 } else if (attr == &dev_attr_boot.attr) {
1696 if (tb_route(sw))
1697 return attr->mode;
1698 return 0;
f67cf491
MW
1699 }
1700
e6b245cc 1701 return sw->safe_mode ? 0 : attr->mode;
f67cf491
MW
1702}
1703
bfe778ac 1704static struct attribute_group switch_group = {
f67cf491 1705 .is_visible = switch_attr_is_visible,
bfe778ac
MW
1706 .attrs = switch_attrs,
1707};
ca389f71 1708
bfe778ac
MW
1709static const struct attribute_group *switch_groups[] = {
1710 &switch_group,
1711 NULL,
1712};
1713
1714static void tb_switch_release(struct device *dev)
1715{
1716 struct tb_switch *sw = tb_to_switch(dev);
b433d010 1717 struct tb_port *port;
bfe778ac 1718
3e136768
MW
1719 dma_port_free(sw->dma_port);
1720
b433d010
MW
1721 tb_switch_for_each_port(sw, port) {
1722 if (!port->disabled) {
1723 ida_destroy(&port->in_hopids);
1724 ida_destroy(&port->out_hopids);
0b2863ac
MW
1725 }
1726 }
1727
bfe778ac 1728 kfree(sw->uuid);
72ee3390
MW
1729 kfree(sw->device_name);
1730 kfree(sw->vendor_name);
a25c8b2f 1731 kfree(sw->ports);
343fcb8c 1732 kfree(sw->drom);
f67cf491 1733 kfree(sw->key);
a25c8b2f
AN
1734 kfree(sw);
1735}
1736
2d8ff0b5
MW
1737/*
1738 * Currently only need to provide the callbacks. Everything else is handled
1739 * in the connection manager.
1740 */
1741static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1742{
4f7c2e0d
MW
1743 struct tb_switch *sw = tb_to_switch(dev);
1744 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1745
1746 if (cm_ops->runtime_suspend_switch)
1747 return cm_ops->runtime_suspend_switch(sw);
1748
2d8ff0b5
MW
1749 return 0;
1750}
1751
1752static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1753{
4f7c2e0d
MW
1754 struct tb_switch *sw = tb_to_switch(dev);
1755 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1756
1757 if (cm_ops->runtime_resume_switch)
1758 return cm_ops->runtime_resume_switch(sw);
2d8ff0b5
MW
1759 return 0;
1760}
1761
1762static const struct dev_pm_ops tb_switch_pm_ops = {
1763 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1764 NULL)
1765};
1766
bfe778ac
MW
1767struct device_type tb_switch_type = {
1768 .name = "thunderbolt_device",
1769 .release = tb_switch_release,
2d8ff0b5 1770 .pm = &tb_switch_pm_ops,
bfe778ac
MW
1771};
1772
2c3c4197
MW
1773static int tb_switch_get_generation(struct tb_switch *sw)
1774{
1775 switch (sw->config.device_id) {
1776 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1777 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1778 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1779 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1780 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1781 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1782 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1783 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1784 return 1;
1785
1786 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1787 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1788 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1789 return 2;
1790
1791 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1792 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1793 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1794 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1795 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
4bac471d
RM
1796 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1797 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1798 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
3cdb9446
MW
1799 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1800 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2c3c4197
MW
1801 return 3;
1802
1803 default:
b0407983
MW
1804 if (tb_switch_is_usb4(sw))
1805 return 4;
1806
2c3c4197
MW
1807 /*
1808 * For unknown switches assume generation to be 1 to be
1809 * on the safe side.
1810 */
1811 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1812 sw->config.device_id);
1813 return 1;
1814 }
1815}
1816
b0407983
MW
1817static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1818{
1819 int max_depth;
1820
1821 if (tb_switch_is_usb4(sw) ||
1822 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1823 max_depth = USB4_SWITCH_MAX_DEPTH;
1824 else
1825 max_depth = TB_SWITCH_MAX_DEPTH;
1826
1827 return depth > max_depth;
1828}
1829
a25c8b2f 1830/**
bfe778ac
MW
1831 * tb_switch_alloc() - allocate a switch
1832 * @tb: Pointer to the owning domain
1833 * @parent: Parent device for this switch
1834 * @route: Route string for this switch
a25c8b2f 1835 *
bfe778ac
MW
1836 * Allocates and initializes a switch. Will not upload configuration to
1837 * the switch. For that you need to call tb_switch_configure()
1838 * separately. The returned switch should be released by calling
1839 * tb_switch_put().
1840 *
444ac384
MW
1841 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1842 * failure.
a25c8b2f 1843 */
bfe778ac
MW
1844struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1845 u64 route)
a25c8b2f 1846{
a25c8b2f 1847 struct tb_switch *sw;
f0342e75 1848 int upstream_port;
444ac384 1849 int i, ret, depth;
f0342e75 1850
b0407983
MW
1851 /* Unlock the downstream port so we can access the switch below */
1852 if (route) {
1853 struct tb_switch *parent_sw = tb_to_switch(parent);
1854 struct tb_port *down;
1855
1856 down = tb_port_at(route, parent_sw);
1857 tb_port_unlock(down);
1858 }
1859
f0342e75 1860 depth = tb_route_length(route);
f0342e75
MW
1861
1862 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
a25c8b2f 1863 if (upstream_port < 0)
444ac384 1864 return ERR_PTR(upstream_port);
a25c8b2f
AN
1865
1866 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1867 if (!sw)
444ac384 1868 return ERR_PTR(-ENOMEM);
a25c8b2f
AN
1869
1870 sw->tb = tb;
444ac384
MW
1871 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1872 if (ret)
bfe778ac
MW
1873 goto err_free_sw_ports;
1874
b0407983
MW
1875 sw->generation = tb_switch_get_generation(sw);
1876
daa5140f 1877 tb_dbg(tb, "current switch config:\n");
b0407983 1878 tb_dump_switch(tb, sw);
a25c8b2f
AN
1879
1880 /* configure switch */
1881 sw->config.upstream_port_number = upstream_port;
f0342e75
MW
1882 sw->config.depth = depth;
1883 sw->config.route_hi = upper_32_bits(route);
1884 sw->config.route_lo = lower_32_bits(route);
bfe778ac 1885 sw->config.enabled = 0;
a25c8b2f 1886
b0407983 1887 /* Make sure we do not exceed maximum topology limit */
704a940d
CIK
1888 if (tb_switch_exceeds_max_depth(sw, depth)) {
1889 ret = -EADDRNOTAVAIL;
1890 goto err_free_sw_ports;
1891 }
b0407983 1892
a25c8b2f
AN
1893 /* initialize ports */
1894 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
343fcb8c 1895 GFP_KERNEL);
444ac384
MW
1896 if (!sw->ports) {
1897 ret = -ENOMEM;
bfe778ac 1898 goto err_free_sw_ports;
444ac384 1899 }
a25c8b2f
AN
1900
1901 for (i = 0; i <= sw->config.max_port_number; i++) {
343fcb8c
AN
1902 /* minimum setup for tb_find_cap and tb_drom_read to work */
1903 sw->ports[i].sw = sw;
1904 sw->ports[i].port = i;
a25c8b2f
AN
1905 }
1906
444ac384 1907 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
b0407983
MW
1908 if (ret > 0)
1909 sw->cap_plug_events = ret;
ca389f71 1910
444ac384
MW
1911 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1912 if (ret > 0)
1913 sw->cap_lc = ret;
a9be5582 1914
f67cf491
MW
1915 /* Root switch is always authorized */
1916 if (!route)
1917 sw->authorized = true;
1918
bfe778ac
MW
1919 device_initialize(&sw->dev);
1920 sw->dev.parent = parent;
1921 sw->dev.bus = &tb_bus_type;
1922 sw->dev.type = &tb_switch_type;
1923 sw->dev.groups = switch_groups;
1924 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1925
1926 return sw;
1927
1928err_free_sw_ports:
1929 kfree(sw->ports);
1930 kfree(sw);
1931
444ac384 1932 return ERR_PTR(ret);
bfe778ac
MW
1933}
1934
e6b245cc
MW
1935/**
1936 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1937 * @tb: Pointer to the owning domain
1938 * @parent: Parent device for this switch
1939 * @route: Route string for this switch
1940 *
1941 * This creates a switch in safe mode. This means the switch pretty much
1942 * lacks all capabilities except DMA configuration port before it is
1943 * flashed with a valid NVM firmware.
1944 *
1945 * The returned switch must be released by calling tb_switch_put().
1946 *
444ac384 1947 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
e6b245cc
MW
1948 */
1949struct tb_switch *
1950tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1951{
1952 struct tb_switch *sw;
1953
1954 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1955 if (!sw)
444ac384 1956 return ERR_PTR(-ENOMEM);
e6b245cc
MW
1957
1958 sw->tb = tb;
1959 sw->config.depth = tb_route_length(route);
1960 sw->config.route_hi = upper_32_bits(route);
1961 sw->config.route_lo = lower_32_bits(route);
1962 sw->safe_mode = true;
1963
1964 device_initialize(&sw->dev);
1965 sw->dev.parent = parent;
1966 sw->dev.bus = &tb_bus_type;
1967 sw->dev.type = &tb_switch_type;
1968 sw->dev.groups = switch_groups;
1969 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1970
1971 return sw;
1972}
1973
bfe778ac
MW
1974/**
1975 * tb_switch_configure() - Uploads configuration to the switch
1976 * @sw: Switch to configure
1977 *
1978 * Call this function before the switch is added to the system. It will
1979 * upload configuration to the switch and makes it available for the
b0407983
MW
1980 * connection manager to use. Can be called to the switch again after
1981 * resume from low power states to re-initialize it.
bfe778ac
MW
1982 *
1983 * Return: %0 in case of success and negative errno in case of failure
1984 */
1985int tb_switch_configure(struct tb_switch *sw)
1986{
1987 struct tb *tb = sw->tb;
1988 u64 route;
1989 int ret;
1990
1991 route = tb_route(sw);
bfe778ac 1992
b0407983
MW
1993 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
1994 sw->config.enabled ? "restoring " : "initializing", route,
1995 tb_route_length(route), sw->config.upstream_port_number);
bfe778ac 1996
bfe778ac
MW
1997 sw->config.enabled = 1;
1998
b0407983
MW
1999 if (tb_switch_is_usb4(sw)) {
2000 /*
2001 * For USB4 devices, we need to program the CM version
2002 * accordingly so that it knows to expose all the
2003 * additional capabilities.
2004 */
2005 sw->config.cmuv = USB4_VERSION_1_0;
2006
2007 /* Enumerate the switch */
2008 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2009 ROUTER_CS_1, 4);
2010 if (ret)
2011 return ret;
bfe778ac 2012
b0407983
MW
2013 ret = usb4_switch_setup(sw);
2014 if (ret)
2015 return ret;
2016
2017 ret = usb4_switch_configure_link(sw);
2018 } else {
2019 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2020 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2021 sw->config.vendor_id);
2022
2023 if (!sw->cap_plug_events) {
2024 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2025 return -ENODEV;
2026 }
2027
2028 /* Enumerate the switch */
2029 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2030 ROUTER_CS_1, 3);
2031 if (ret)
2032 return ret;
2033
2034 ret = tb_lc_configure_link(sw);
2035 }
e879a709
MW
2036 if (ret)
2037 return ret;
2038
bfe778ac
MW
2039 return tb_plug_events_active(sw, true);
2040}
2041
2cc12751 2042static int tb_switch_set_uuid(struct tb_switch *sw)
bfe778ac 2043{
b0407983 2044 bool uid = false;
bfe778ac 2045 u32 uuid[4];
a9be5582 2046 int ret;
bfe778ac
MW
2047
2048 if (sw->uuid)
a9be5582 2049 return 0;
bfe778ac 2050
b0407983
MW
2051 if (tb_switch_is_usb4(sw)) {
2052 ret = usb4_switch_read_uid(sw, &sw->uid);
2053 if (ret)
2054 return ret;
2055 uid = true;
2056 } else {
2057 /*
2058 * The newer controllers include fused UUID as part of
2059 * link controller specific registers
2060 */
2061 ret = tb_lc_read_uuid(sw, uuid);
2062 if (ret) {
2063 if (ret != -EINVAL)
2064 return ret;
2065 uid = true;
2066 }
2067 }
2068
2069 if (uid) {
bfe778ac
MW
2070 /*
2071 * ICM generates UUID based on UID and fills the upper
2072 * two words with ones. This is not strictly following
2073 * UUID format but we want to be compatible with it so
2074 * we do the same here.
2075 */
2076 uuid[0] = sw->uid & 0xffffffff;
2077 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2078 uuid[2] = 0xffffffff;
2079 uuid[3] = 0xffffffff;
2080 }
2081
2082 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2cc12751 2083 if (!sw->uuid)
a9be5582
MW
2084 return -ENOMEM;
2085 return 0;
bfe778ac
MW
2086}
2087
e6b245cc 2088static int tb_switch_add_dma_port(struct tb_switch *sw)
3e136768 2089{
e6b245cc
MW
2090 u32 status;
2091 int ret;
2092
3e136768 2093 switch (sw->generation) {
3e136768
MW
2094 case 2:
2095 /* Only root switch can be upgraded */
2096 if (tb_route(sw))
e6b245cc 2097 return 0;
7a7ebfa8
MW
2098
2099 /* fallthrough */
2100 case 3:
2101 ret = tb_switch_set_uuid(sw);
2102 if (ret)
2103 return ret;
3e136768
MW
2104 break;
2105
2106 default:
e6b245cc
MW
2107 /*
2108 * DMA port is the only thing available when the switch
2109 * is in safe mode.
2110 */
2111 if (!sw->safe_mode)
2112 return 0;
2113 break;
3e136768
MW
2114 }
2115
3f415e5e 2116 /* Root switch DMA port requires running firmware */
f07a3608 2117 if (!tb_route(sw) && !tb_switch_is_icm(sw))
e6b245cc
MW
2118 return 0;
2119
3e136768 2120 sw->dma_port = dma_port_alloc(sw);
e6b245cc
MW
2121 if (!sw->dma_port)
2122 return 0;
2123
3f415e5e
MW
2124 if (sw->no_nvm_upgrade)
2125 return 0;
2126
7a7ebfa8
MW
2127 /*
2128 * If there is status already set then authentication failed
2129 * when the dma_port_flash_update_auth() returned. Power cycling
2130 * is not needed (it was done already) so only thing we do here
2131 * is to unblock runtime PM of the root port.
2132 */
2133 nvm_get_auth_status(sw, &status);
2134 if (status) {
2135 if (!tb_route(sw))
b0407983 2136 nvm_authenticate_complete_dma_port(sw);
7a7ebfa8
MW
2137 return 0;
2138 }
2139
e6b245cc
MW
2140 /*
2141 * Check status of the previous flash authentication. If there
2142 * is one we need to power cycle the switch in any case to make
2143 * it functional again.
2144 */
2145 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2146 if (ret <= 0)
2147 return ret;
2148
1830b6ee
MW
2149 /* Now we can allow root port to suspend again */
2150 if (!tb_route(sw))
b0407983 2151 nvm_authenticate_complete_dma_port(sw);
1830b6ee 2152
e6b245cc
MW
2153 if (status) {
2154 tb_sw_info(sw, "switch flash authentication failed\n");
e6b245cc
MW
2155 nvm_set_auth_status(sw, status);
2156 }
2157
2158 tb_sw_info(sw, "power cycling the switch now\n");
2159 dma_port_power_cycle(sw->dma_port);
2160
2161 /*
2162 * We return error here which causes the switch adding failure.
2163 * It should appear back after power cycle is complete.
2164 */
2165 return -ESHUTDOWN;
3e136768
MW
2166}
2167
0d46c08d
MW
2168static void tb_switch_default_link_ports(struct tb_switch *sw)
2169{
2170 int i;
2171
2172 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2173 struct tb_port *port = &sw->ports[i];
2174 struct tb_port *subordinate;
2175
2176 if (!tb_port_is_null(port))
2177 continue;
2178
2179 /* Check for the subordinate port */
2180 if (i == sw->config.max_port_number ||
2181 !tb_port_is_null(&sw->ports[i + 1]))
2182 continue;
2183
2184 /* Link them if not already done so (by DROM) */
2185 subordinate = &sw->ports[i + 1];
2186 if (!port->dual_link_port && !subordinate->dual_link_port) {
2187 port->link_nr = 0;
2188 port->dual_link_port = subordinate;
2189 subordinate->link_nr = 1;
2190 subordinate->dual_link_port = port;
2191
2192 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2193 port->port, subordinate->port);
2194 }
2195 }
2196}
2197
91c0c120
MW
2198static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2199{
2200 const struct tb_port *up = tb_upstream_port(sw);
2201
2202 if (!up->dual_link_port || !up->dual_link_port->remote)
2203 return false;
2204
b0407983
MW
2205 if (tb_switch_is_usb4(sw))
2206 return usb4_switch_lane_bonding_possible(sw);
91c0c120
MW
2207 return tb_lc_lane_bonding_possible(sw);
2208}
2209
2210static int tb_switch_update_link_attributes(struct tb_switch *sw)
2211{
2212 struct tb_port *up;
2213 bool change = false;
2214 int ret;
2215
2216 if (!tb_route(sw) || tb_switch_is_icm(sw))
2217 return 0;
2218
2219 up = tb_upstream_port(sw);
2220
2221 ret = tb_port_get_link_speed(up);
2222 if (ret < 0)
2223 return ret;
2224 if (sw->link_speed != ret)
2225 change = true;
2226 sw->link_speed = ret;
2227
2228 ret = tb_port_get_link_width(up);
2229 if (ret < 0)
2230 return ret;
2231 if (sw->link_width != ret)
2232 change = true;
2233 sw->link_width = ret;
2234
2235 /* Notify userspace that there is possible link attribute change */
2236 if (device_is_registered(&sw->dev) && change)
2237 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2238
2239 return 0;
2240}
2241
2242/**
2243 * tb_switch_lane_bonding_enable() - Enable lane bonding
2244 * @sw: Switch to enable lane bonding
2245 *
2246 * Connection manager can call this function to enable lane bonding of a
2247 * switch. If conditions are correct and both switches support the feature,
2248 * lanes are bonded. It is safe to call this to any switch.
2249 */
2250int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2251{
2252 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2253 struct tb_port *up, *down;
2254 u64 route = tb_route(sw);
2255 int ret;
2256
2257 if (!route)
2258 return 0;
2259
2260 if (!tb_switch_lane_bonding_possible(sw))
2261 return 0;
2262
2263 up = tb_upstream_port(sw);
2264 down = tb_port_at(route, parent);
2265
2266 if (!tb_port_is_width_supported(up, 2) ||
2267 !tb_port_is_width_supported(down, 2))
2268 return 0;
2269
2270 ret = tb_port_lane_bonding_enable(up);
2271 if (ret) {
2272 tb_port_warn(up, "failed to enable lane bonding\n");
2273 return ret;
2274 }
2275
2276 ret = tb_port_lane_bonding_enable(down);
2277 if (ret) {
2278 tb_port_warn(down, "failed to enable lane bonding\n");
2279 tb_port_lane_bonding_disable(up);
2280 return ret;
2281 }
2282
2283 tb_switch_update_link_attributes(sw);
2284
2285 tb_sw_dbg(sw, "lane bonding enabled\n");
2286 return ret;
2287}
2288
2289/**
2290 * tb_switch_lane_bonding_disable() - Disable lane bonding
2291 * @sw: Switch whose lane bonding to disable
2292 *
2293 * Disables lane bonding between @sw and parent. This can be called even
2294 * if lanes were not bonded originally.
2295 */
2296void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2297{
2298 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2299 struct tb_port *up, *down;
2300
2301 if (!tb_route(sw))
2302 return;
2303
2304 up = tb_upstream_port(sw);
2305 if (!up->bonded)
2306 return;
2307
2308 down = tb_port_at(tb_route(sw), parent);
2309
2310 tb_port_lane_bonding_disable(up);
2311 tb_port_lane_bonding_disable(down);
2312
2313 tb_switch_update_link_attributes(sw);
2314 tb_sw_dbg(sw, "lane bonding disabled\n");
2315}
2316
bfe778ac
MW
2317/**
2318 * tb_switch_add() - Add a switch to the domain
2319 * @sw: Switch to add
2320 *
2321 * This is the last step in adding switch to the domain. It will read
2322 * identification information from DROM and initializes ports so that
2323 * they can be used to connect other switches. The switch will be
2324 * exposed to the userspace when this function successfully returns. To
2325 * remove and release the switch, call tb_switch_remove().
2326 *
2327 * Return: %0 in case of success and negative errno in case of failure
2328 */
2329int tb_switch_add(struct tb_switch *sw)
2330{
2331 int i, ret;
2332
3e136768
MW
2333 /*
2334 * Initialize DMA control port now before we read DROM. Recent
2335 * host controllers have more complete DROM on NVM that includes
2336 * vendor and model identification strings which we then expose
2337 * to the userspace. NVM can be accessed through DMA
2338 * configuration based mailbox.
2339 */
e6b245cc 2340 ret = tb_switch_add_dma_port(sw);
af99f696
MW
2341 if (ret) {
2342 dev_err(&sw->dev, "failed to add DMA port\n");
f53e7676 2343 return ret;
af99f696 2344 }
343fcb8c 2345
e6b245cc
MW
2346 if (!sw->safe_mode) {
2347 /* read drom */
2348 ret = tb_drom_read(sw);
2349 if (ret) {
af99f696 2350 dev_err(&sw->dev, "reading DROM failed\n");
e6b245cc
MW
2351 return ret;
2352 }
daa5140f 2353 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
bfe778ac 2354
2cc12751 2355 ret = tb_switch_set_uuid(sw);
af99f696
MW
2356 if (ret) {
2357 dev_err(&sw->dev, "failed to set UUID\n");
2cc12751 2358 return ret;
af99f696 2359 }
e6b245cc
MW
2360
2361 for (i = 0; i <= sw->config.max_port_number; i++) {
2362 if (sw->ports[i].disabled) {
daa5140f 2363 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
e6b245cc
MW
2364 continue;
2365 }
2366 ret = tb_init_port(&sw->ports[i]);
af99f696
MW
2367 if (ret) {
2368 dev_err(&sw->dev, "failed to initialize port %d\n", i);
e6b245cc 2369 return ret;
af99f696 2370 }
343fcb8c 2371 }
91c0c120 2372
0d46c08d
MW
2373 tb_switch_default_link_ports(sw);
2374
91c0c120
MW
2375 ret = tb_switch_update_link_attributes(sw);
2376 if (ret)
2377 return ret;
cf29b9af
RM
2378
2379 ret = tb_switch_tmu_init(sw);
2380 if (ret)
2381 return ret;
343fcb8c
AN
2382 }
2383
e6b245cc 2384 ret = device_add(&sw->dev);
af99f696
MW
2385 if (ret) {
2386 dev_err(&sw->dev, "failed to add device: %d\n", ret);
e6b245cc 2387 return ret;
af99f696 2388 }
e6b245cc 2389
a83bc4a5
MW
2390 if (tb_route(sw)) {
2391 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2392 sw->vendor, sw->device);
2393 if (sw->vendor_name && sw->device_name)
2394 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2395 sw->device_name);
2396 }
2397
e6b245cc 2398 ret = tb_switch_nvm_add(sw);
2d8ff0b5 2399 if (ret) {
af99f696 2400 dev_err(&sw->dev, "failed to add NVM devices\n");
e6b245cc 2401 device_del(&sw->dev);
2d8ff0b5
MW
2402 return ret;
2403 }
e6b245cc 2404
2d8ff0b5
MW
2405 pm_runtime_set_active(&sw->dev);
2406 if (sw->rpm) {
2407 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2408 pm_runtime_use_autosuspend(&sw->dev);
2409 pm_runtime_mark_last_busy(&sw->dev);
2410 pm_runtime_enable(&sw->dev);
2411 pm_request_autosuspend(&sw->dev);
2412 }
2413
2414 return 0;
bfe778ac 2415}
c90553b3 2416
bfe778ac
MW
2417/**
2418 * tb_switch_remove() - Remove and release a switch
2419 * @sw: Switch to remove
2420 *
2421 * This will remove the switch from the domain and release it after last
2422 * reference count drops to zero. If there are switches connected below
2423 * this switch, they will be removed as well.
2424 */
2425void tb_switch_remove(struct tb_switch *sw)
2426{
b433d010 2427 struct tb_port *port;
ca389f71 2428
2d8ff0b5
MW
2429 if (sw->rpm) {
2430 pm_runtime_get_sync(&sw->dev);
2431 pm_runtime_disable(&sw->dev);
2432 }
2433
bfe778ac 2434 /* port 0 is the switch itself and never has a remote */
b433d010
MW
2435 tb_switch_for_each_port(sw, port) {
2436 if (tb_port_has_remote(port)) {
2437 tb_switch_remove(port->remote->sw);
2438 port->remote = NULL;
2439 } else if (port->xdomain) {
2440 tb_xdomain_remove(port->xdomain);
2441 port->xdomain = NULL;
dfe40ca4 2442 }
bfe778ac
MW
2443 }
2444
2445 if (!sw->is_unplugged)
2446 tb_plug_events_active(sw, false);
b0407983
MW
2447
2448 if (tb_switch_is_usb4(sw))
2449 usb4_switch_unconfigure_link(sw);
2450 else
2451 tb_lc_unconfigure_link(sw);
bfe778ac 2452
e6b245cc 2453 tb_switch_nvm_remove(sw);
a83bc4a5
MW
2454
2455 if (tb_route(sw))
2456 dev_info(&sw->dev, "device disconnected\n");
bfe778ac 2457 device_unregister(&sw->dev);
a25c8b2f
AN
2458}
2459
053596d9 2460/**
aae20bb6 2461 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
053596d9 2462 */
aae20bb6 2463void tb_sw_set_unplugged(struct tb_switch *sw)
053596d9 2464{
b433d010
MW
2465 struct tb_port *port;
2466
053596d9
AN
2467 if (sw == sw->tb->root_switch) {
2468 tb_sw_WARN(sw, "cannot unplug root switch\n");
2469 return;
2470 }
2471 if (sw->is_unplugged) {
2472 tb_sw_WARN(sw, "is_unplugged already set\n");
2473 return;
2474 }
2475 sw->is_unplugged = true;
b433d010
MW
2476 tb_switch_for_each_port(sw, port) {
2477 if (tb_port_has_remote(port))
2478 tb_sw_set_unplugged(port->remote->sw);
2479 else if (port->xdomain)
2480 port->xdomain->is_unplugged = true;
053596d9
AN
2481 }
2482}
2483
23dd5bb4
AN
2484int tb_switch_resume(struct tb_switch *sw)
2485{
b433d010
MW
2486 struct tb_port *port;
2487 int err;
2488
daa5140f 2489 tb_sw_dbg(sw, "resuming switch\n");
23dd5bb4 2490
08a5e4ce
MW
2491 /*
2492 * Check for UID of the connected switches except for root
2493 * switch which we assume cannot be removed.
2494 */
2495 if (tb_route(sw)) {
2496 u64 uid;
2497
7ea4cd6b
MW
2498 /*
2499 * Check first that we can still read the switch config
2500 * space. It may be that there is now another domain
2501 * connected.
2502 */
2503 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2504 if (err < 0) {
2505 tb_sw_info(sw, "switch not present anymore\n");
2506 return err;
2507 }
2508
b0407983
MW
2509 if (tb_switch_is_usb4(sw))
2510 err = usb4_switch_read_uid(sw, &uid);
2511 else
2512 err = tb_drom_read_uid_only(sw, &uid);
08a5e4ce
MW
2513 if (err) {
2514 tb_sw_warn(sw, "uid read failed\n");
2515 return err;
2516 }
2517 if (sw->uid != uid) {
2518 tb_sw_info(sw,
2519 "changed while suspended (uid %#llx -> %#llx)\n",
2520 sw->uid, uid);
2521 return -ENODEV;
2522 }
23dd5bb4
AN
2523 }
2524
b0407983 2525 err = tb_switch_configure(sw);
23dd5bb4
AN
2526 if (err)
2527 return err;
2528
2529 /* check for surviving downstream switches */
b433d010 2530 tb_switch_for_each_port(sw, port) {
7ea4cd6b 2531 if (!tb_port_has_remote(port) && !port->xdomain)
23dd5bb4 2532 continue;
dfe40ca4 2533
7ea4cd6b 2534 if (tb_wait_for_port(port, true) <= 0) {
23dd5bb4
AN
2535 tb_port_warn(port,
2536 "lost during suspend, disconnecting\n");
7ea4cd6b
MW
2537 if (tb_port_has_remote(port))
2538 tb_sw_set_unplugged(port->remote->sw);
2539 else if (port->xdomain)
2540 port->xdomain->is_unplugged = true;
b0407983
MW
2541 } else if (tb_port_has_remote(port) || port->xdomain) {
2542 /*
2543 * Always unlock the port so the downstream
2544 * switch/domain is accessible.
2545 */
2546 if (tb_port_unlock(port))
2547 tb_port_warn(port, "failed to unlock port\n");
2548 if (port->remote && tb_switch_resume(port->remote->sw)) {
7ea4cd6b
MW
2549 tb_port_warn(port,
2550 "lost during suspend, disconnecting\n");
2551 tb_sw_set_unplugged(port->remote->sw);
2552 }
23dd5bb4
AN
2553 }
2554 }
2555 return 0;
2556}
2557
2558void tb_switch_suspend(struct tb_switch *sw)
2559{
b433d010
MW
2560 struct tb_port *port;
2561 int err;
2562
23dd5bb4
AN
2563 err = tb_plug_events_active(sw, false);
2564 if (err)
2565 return;
2566
b433d010
MW
2567 tb_switch_for_each_port(sw, port) {
2568 if (tb_port_has_remote(port))
2569 tb_switch_suspend(port->remote->sw);
23dd5bb4 2570 }
5480dfc2 2571
b0407983
MW
2572 if (tb_switch_is_usb4(sw))
2573 usb4_switch_set_sleep(sw);
2574 else
2575 tb_lc_set_sleep(sw);
23dd5bb4 2576}
f67cf491 2577
8afe909b
MW
2578/**
2579 * tb_switch_query_dp_resource() - Query availability of DP resource
2580 * @sw: Switch whose DP resource is queried
2581 * @in: DP IN port
2582 *
2583 * Queries availability of DP resource for DP tunneling using switch
2584 * specific means. Returns %true if resource is available.
2585 */
2586bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2587{
b0407983
MW
2588 if (tb_switch_is_usb4(sw))
2589 return usb4_switch_query_dp_resource(sw, in);
8afe909b
MW
2590 return tb_lc_dp_sink_query(sw, in);
2591}
2592
2593/**
2594 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2595 * @sw: Switch whose DP resource is allocated
2596 * @in: DP IN port
2597 *
2598 * Allocates DP resource for DP tunneling. The resource must be
2599 * available for this to succeed (see tb_switch_query_dp_resource()).
2600 * Returns %0 in success and negative errno otherwise.
2601 */
2602int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2603{
b0407983
MW
2604 if (tb_switch_is_usb4(sw))
2605 return usb4_switch_alloc_dp_resource(sw, in);
8afe909b
MW
2606 return tb_lc_dp_sink_alloc(sw, in);
2607}
2608
2609/**
2610 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2611 * @sw: Switch whose DP resource is de-allocated
2612 * @in: DP IN port
2613 *
2614 * De-allocates DP resource that was previously allocated for DP
2615 * tunneling.
2616 */
2617void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2618{
b0407983
MW
2619 int ret;
2620
2621 if (tb_switch_is_usb4(sw))
2622 ret = usb4_switch_dealloc_dp_resource(sw, in);
2623 else
2624 ret = tb_lc_dp_sink_dealloc(sw, in);
2625
2626 if (ret)
8afe909b
MW
2627 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2628 in->port);
8afe909b
MW
2629}
2630
f67cf491
MW
2631struct tb_sw_lookup {
2632 struct tb *tb;
2633 u8 link;
2634 u8 depth;
7c39ffe7 2635 const uuid_t *uuid;
8e9267bb 2636 u64 route;
f67cf491
MW
2637};
2638
418e3ea1 2639static int tb_switch_match(struct device *dev, const void *data)
f67cf491
MW
2640{
2641 struct tb_switch *sw = tb_to_switch(dev);
418e3ea1 2642 const struct tb_sw_lookup *lookup = data;
f67cf491
MW
2643
2644 if (!sw)
2645 return 0;
2646 if (sw->tb != lookup->tb)
2647 return 0;
2648
2649 if (lookup->uuid)
2650 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2651
8e9267bb
RM
2652 if (lookup->route) {
2653 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2654 sw->config.route_hi == upper_32_bits(lookup->route);
2655 }
2656
f67cf491
MW
2657 /* Root switch is matched only by depth */
2658 if (!lookup->depth)
2659 return !sw->depth;
2660
2661 return sw->link == lookup->link && sw->depth == lookup->depth;
2662}
2663
2664/**
2665 * tb_switch_find_by_link_depth() - Find switch by link and depth
2666 * @tb: Domain the switch belongs
2667 * @link: Link number the switch is connected
2668 * @depth: Depth of the switch in link
2669 *
2670 * Returned switch has reference count increased so the caller needs to
2671 * call tb_switch_put() when done with the switch.
2672 */
2673struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2674{
2675 struct tb_sw_lookup lookup;
2676 struct device *dev;
2677
2678 memset(&lookup, 0, sizeof(lookup));
2679 lookup.tb = tb;
2680 lookup.link = link;
2681 lookup.depth = depth;
2682
2683 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2684 if (dev)
2685 return tb_to_switch(dev);
2686
2687 return NULL;
2688}
2689
2690/**
432019d6 2691 * tb_switch_find_by_uuid() - Find switch by UUID
f67cf491
MW
2692 * @tb: Domain the switch belongs
2693 * @uuid: UUID to look for
2694 *
2695 * Returned switch has reference count increased so the caller needs to
2696 * call tb_switch_put() when done with the switch.
2697 */
7c39ffe7 2698struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
f67cf491
MW
2699{
2700 struct tb_sw_lookup lookup;
2701 struct device *dev;
2702
2703 memset(&lookup, 0, sizeof(lookup));
2704 lookup.tb = tb;
2705 lookup.uuid = uuid;
2706
2707 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2708 if (dev)
2709 return tb_to_switch(dev);
2710
2711 return NULL;
2712}
e6b245cc 2713
8e9267bb
RM
2714/**
2715 * tb_switch_find_by_route() - Find switch by route string
2716 * @tb: Domain the switch belongs
2717 * @route: Route string to look for
2718 *
2719 * Returned switch has reference count increased so the caller needs to
2720 * call tb_switch_put() when done with the switch.
2721 */
2722struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2723{
2724 struct tb_sw_lookup lookup;
2725 struct device *dev;
2726
2727 if (!route)
2728 return tb_switch_get(tb->root_switch);
2729
2730 memset(&lookup, 0, sizeof(lookup));
2731 lookup.tb = tb;
2732 lookup.route = route;
2733
2734 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2735 if (dev)
2736 return tb_to_switch(dev);
2737
2738 return NULL;
2739}
2740
386e5e29
MW
2741/**
2742 * tb_switch_find_port() - return the first port of @type on @sw or NULL
2743 * @sw: Switch to find the port from
2744 * @type: Port type to look for
2745 */
2746struct tb_port *tb_switch_find_port(struct tb_switch *sw,
2747 enum tb_port_type type)
2748{
2749 struct tb_port *port;
2750
2751 tb_switch_for_each_port(sw, port) {
2752 if (port->config.type == type)
2753 return port;
2754 }
2755
2756 return NULL;
2757}
2758
e6b245cc
MW
2759void tb_switch_exit(void)
2760{
2761 ida_destroy(&nvm_ida);
2762}