thunderbolt: Move nfc_credits field to struct tb_path_hop
[linux-block.git] / drivers / thunderbolt / switch.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a25c8b2f 2/*
15c6784c 3 * Thunderbolt driver - switch/port utility functions
a25c8b2f
AN
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
15c6784c 6 * Copyright (C) 2018, Intel Corporation
a25c8b2f
AN
7 */
8
9#include <linux/delay.h>
e6b245cc
MW
10#include <linux/idr.h>
11#include <linux/nvmem-provider.h>
2d8ff0b5 12#include <linux/pm_runtime.h>
09f11b6c 13#include <linux/sched/signal.h>
e6b245cc 14#include <linux/sizes.h>
10fefe56 15#include <linux/slab.h>
a25c8b2f
AN
16
17#include "tb.h"
18
e6b245cc
MW
19/* Switch NVM support */
20
e6b245cc 21#define NVM_CSS 0x10
e6b245cc
MW
22
23struct nvm_auth_status {
24 struct list_head list;
7c39ffe7 25 uuid_t uuid;
e6b245cc
MW
26 u32 status;
27};
28
4b794f80
ML
29enum nvm_write_ops {
30 WRITE_AND_AUTHENTICATE = 1,
31 WRITE_ONLY = 2,
32};
33
e6b245cc
MW
34/*
35 * Hold NVM authentication failure status per switch This information
36 * needs to stay around even when the switch gets power cycled so we
37 * keep it separately.
38 */
39static LIST_HEAD(nvm_auth_status_cache);
40static DEFINE_MUTEX(nvm_auth_status_lock);
41
42static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
43{
44 struct nvm_auth_status *st;
45
46 list_for_each_entry(st, &nvm_auth_status_cache, list) {
7c39ffe7 47 if (uuid_equal(&st->uuid, sw->uuid))
e6b245cc
MW
48 return st;
49 }
50
51 return NULL;
52}
53
54static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
55{
56 struct nvm_auth_status *st;
57
58 mutex_lock(&nvm_auth_status_lock);
59 st = __nvm_get_auth_status(sw);
60 mutex_unlock(&nvm_auth_status_lock);
61
62 *status = st ? st->status : 0;
63}
64
65static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
66{
67 struct nvm_auth_status *st;
68
69 if (WARN_ON(!sw->uuid))
70 return;
71
72 mutex_lock(&nvm_auth_status_lock);
73 st = __nvm_get_auth_status(sw);
74
75 if (!st) {
76 st = kzalloc(sizeof(*st), GFP_KERNEL);
77 if (!st)
78 goto unlock;
79
80 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
81 INIT_LIST_HEAD(&st->list);
82 list_add_tail(&st->list, &nvm_auth_status_cache);
83 }
84
85 st->status = status;
86unlock:
87 mutex_unlock(&nvm_auth_status_lock);
88}
89
90static void nvm_clear_auth_status(const struct tb_switch *sw)
91{
92 struct nvm_auth_status *st;
93
94 mutex_lock(&nvm_auth_status_lock);
95 st = __nvm_get_auth_status(sw);
96 if (st) {
97 list_del(&st->list);
98 kfree(st);
99 }
100 mutex_unlock(&nvm_auth_status_lock);
101}
102
103static int nvm_validate_and_write(struct tb_switch *sw)
104{
105 unsigned int image_size, hdr_size;
106 const u8 *buf = sw->nvm->buf;
107 u16 ds_size;
108 int ret;
109
110 if (!buf)
111 return -EINVAL;
112
113 image_size = sw->nvm->buf_data_size;
114 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
115 return -EINVAL;
116
117 /*
118 * FARB pointer must point inside the image and must at least
119 * contain parts of the digital section we will be reading here.
120 */
121 hdr_size = (*(u32 *)buf) & 0xffffff;
122 if (hdr_size + NVM_DEVID + 2 >= image_size)
123 return -EINVAL;
124
125 /* Digital section start should be aligned to 4k page */
126 if (!IS_ALIGNED(hdr_size, SZ_4K))
127 return -EINVAL;
128
129 /*
130 * Read digital section size and check that it also fits inside
131 * the image.
132 */
133 ds_size = *(u16 *)(buf + hdr_size);
134 if (ds_size >= image_size)
135 return -EINVAL;
136
137 if (!sw->safe_mode) {
138 u16 device_id;
139
140 /*
141 * Make sure the device ID in the image matches the one
142 * we read from the switch config space.
143 */
144 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
145 if (device_id != sw->config.device_id)
146 return -EINVAL;
147
148 if (sw->generation < 3) {
149 /* Write CSS headers first */
150 ret = dma_port_flash_write(sw->dma_port,
151 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
152 DMA_PORT_CSS_MAX_SIZE);
153 if (ret)
154 return ret;
155 }
156
157 /* Skip headers in the image */
158 buf += hdr_size;
159 image_size -= hdr_size;
160 }
161
b0407983 162 if (tb_switch_is_usb4(sw))
4b794f80
ML
163 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
164 else
165 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
166 if (!ret)
167 sw->nvm->flushed = true;
168 return ret;
e6b245cc
MW
169}
170
b0407983 171static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
e6b245cc 172{
7a7ebfa8 173 int ret = 0;
e6b245cc
MW
174
175 /*
176 * Root switch NVM upgrade requires that we disconnect the
d1ff7024 177 * existing paths first (in case it is not in safe mode
e6b245cc
MW
178 * already).
179 */
180 if (!sw->safe_mode) {
7a7ebfa8
MW
181 u32 status;
182
d1ff7024 183 ret = tb_domain_disconnect_all_paths(sw->tb);
e6b245cc
MW
184 if (ret)
185 return ret;
186 /*
187 * The host controller goes away pretty soon after this if
188 * everything goes well so getting timeout is expected.
189 */
190 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
191 if (!ret || ret == -ETIMEDOUT)
192 return 0;
193
194 /*
195 * Any error from update auth operation requires power
196 * cycling of the host router.
197 */
198 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
199 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
200 nvm_set_auth_status(sw, status);
e6b245cc
MW
201 }
202
203 /*
204 * From safe mode we can get out by just power cycling the
205 * switch.
206 */
207 dma_port_power_cycle(sw->dma_port);
7a7ebfa8 208 return ret;
e6b245cc
MW
209}
210
b0407983 211static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
e6b245cc
MW
212{
213 int ret, retries = 10;
214
215 ret = dma_port_flash_update_auth(sw->dma_port);
7a7ebfa8
MW
216 switch (ret) {
217 case 0:
218 case -ETIMEDOUT:
219 case -EACCES:
220 case -EINVAL:
221 /* Power cycle is required */
222 break;
223 default:
e6b245cc 224 return ret;
7a7ebfa8 225 }
e6b245cc
MW
226
227 /*
228 * Poll here for the authentication status. It takes some time
229 * for the device to respond (we get timeout for a while). Once
230 * we get response the device needs to be power cycled in order
231 * to the new NVM to be taken into use.
232 */
233 do {
234 u32 status;
235
236 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
237 if (ret < 0 && ret != -ETIMEDOUT)
238 return ret;
239 if (ret > 0) {
240 if (status) {
241 tb_sw_warn(sw, "failed to authenticate NVM\n");
242 nvm_set_auth_status(sw, status);
243 }
244
245 tb_sw_info(sw, "power cycling the switch now\n");
246 dma_port_power_cycle(sw->dma_port);
247 return 0;
248 }
249
250 msleep(500);
251 } while (--retries);
252
253 return -ETIMEDOUT;
254}
255
b0407983
MW
256static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
257{
258 struct pci_dev *root_port;
259
260 /*
261 * During host router NVM upgrade we should not allow root port to
262 * go into D3cold because some root ports cannot trigger PME
263 * itself. To be on the safe side keep the root port in D0 during
264 * the whole upgrade process.
265 */
6ae72bfa 266 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
267 if (root_port)
268 pm_runtime_get_noresume(&root_port->dev);
269}
270
271static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
272{
273 struct pci_dev *root_port;
274
6ae72bfa 275 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
b0407983
MW
276 if (root_port)
277 pm_runtime_put(&root_port->dev);
278}
279
280static inline bool nvm_readable(struct tb_switch *sw)
281{
282 if (tb_switch_is_usb4(sw)) {
283 /*
284 * USB4 devices must support NVM operations but it is
285 * optional for hosts. Therefore we query the NVM sector
286 * size here and if it is supported assume NVM
287 * operations are implemented.
288 */
289 return usb4_switch_nvm_sector_size(sw) > 0;
290 }
291
292 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
293 return !!sw->dma_port;
294}
295
296static inline bool nvm_upgradeable(struct tb_switch *sw)
297{
298 if (sw->no_nvm_upgrade)
299 return false;
300 return nvm_readable(sw);
301}
302
303static inline int nvm_read(struct tb_switch *sw, unsigned int address,
304 void *buf, size_t size)
305{
306 if (tb_switch_is_usb4(sw))
307 return usb4_switch_nvm_read(sw, address, buf, size);
308 return dma_port_flash_read(sw->dma_port, address, buf, size);
309}
310
311static int nvm_authenticate(struct tb_switch *sw)
312{
313 int ret;
314
315 if (tb_switch_is_usb4(sw))
316 return usb4_switch_nvm_authenticate(sw);
317
318 if (!tb_route(sw)) {
319 nvm_authenticate_start_dma_port(sw);
320 ret = nvm_authenticate_host_dma_port(sw);
321 } else {
322 ret = nvm_authenticate_device_dma_port(sw);
323 }
324
325 return ret;
326}
327
e6b245cc
MW
328static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
329 size_t bytes)
330{
719a5fe8
MW
331 struct tb_nvm *nvm = priv;
332 struct tb_switch *sw = tb_to_switch(nvm->dev);
2d8ff0b5
MW
333 int ret;
334
335 pm_runtime_get_sync(&sw->dev);
4f7c2e0d
MW
336
337 if (!mutex_trylock(&sw->tb->lock)) {
338 ret = restart_syscall();
339 goto out;
340 }
341
b0407983 342 ret = nvm_read(sw, offset, val, bytes);
4f7c2e0d
MW
343 mutex_unlock(&sw->tb->lock);
344
345out:
2d8ff0b5
MW
346 pm_runtime_mark_last_busy(&sw->dev);
347 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc 348
2d8ff0b5 349 return ret;
e6b245cc
MW
350}
351
352static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
353 size_t bytes)
354{
719a5fe8
MW
355 struct tb_nvm *nvm = priv;
356 struct tb_switch *sw = tb_to_switch(nvm->dev);
357 int ret;
e6b245cc 358
09f11b6c
MW
359 if (!mutex_trylock(&sw->tb->lock))
360 return restart_syscall();
e6b245cc
MW
361
362 /*
363 * Since writing the NVM image might require some special steps,
364 * for example when CSS headers are written, we cache the image
365 * locally here and handle the special cases when the user asks
366 * us to authenticate the image.
367 */
719a5fe8 368 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
09f11b6c 369 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
370
371 return ret;
372}
373
e6b245cc
MW
374static int tb_switch_nvm_add(struct tb_switch *sw)
375{
719a5fe8 376 struct tb_nvm *nvm;
e6b245cc
MW
377 u32 val;
378 int ret;
379
b0407983 380 if (!nvm_readable(sw))
e6b245cc
MW
381 return 0;
382
b0407983
MW
383 /*
384 * The NVM format of non-Intel hardware is not known so
385 * currently restrict NVM upgrade for Intel hardware. We may
386 * relax this in the future when we learn other NVM formats.
387 */
83d17036
MW
388 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
389 sw->config.vendor_id != 0x8087) {
b0407983
MW
390 dev_info(&sw->dev,
391 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
392 sw->config.vendor_id);
393 return 0;
394 }
395
719a5fe8
MW
396 nvm = tb_nvm_alloc(&sw->dev);
397 if (IS_ERR(nvm))
398 return PTR_ERR(nvm);
e6b245cc
MW
399
400 /*
401 * If the switch is in safe-mode the only accessible portion of
402 * the NVM is the non-active one where userspace is expected to
403 * write new functional NVM.
404 */
405 if (!sw->safe_mode) {
406 u32 nvm_size, hdr_size;
407
b0407983 408 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
e6b245cc 409 if (ret)
719a5fe8 410 goto err_nvm;
e6b245cc
MW
411
412 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
413 nvm_size = (SZ_1M << (val & 7)) / 8;
414 nvm_size = (nvm_size - hdr_size) / 2;
415
b0407983 416 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
e6b245cc 417 if (ret)
719a5fe8 418 goto err_nvm;
e6b245cc
MW
419
420 nvm->major = val >> 16;
421 nvm->minor = val >> 8;
422
719a5fe8
MW
423 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
424 if (ret)
425 goto err_nvm;
e6b245cc
MW
426 }
427
3f415e5e 428 if (!sw->no_nvm_upgrade) {
719a5fe8
MW
429 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
430 tb_switch_nvm_write);
431 if (ret)
432 goto err_nvm;
e6b245cc 433 }
e6b245cc 434
e6b245cc 435 sw->nvm = nvm;
e6b245cc
MW
436 return 0;
437
719a5fe8
MW
438err_nvm:
439 tb_nvm_free(nvm);
e6b245cc
MW
440 return ret;
441}
442
443static void tb_switch_nvm_remove(struct tb_switch *sw)
444{
719a5fe8 445 struct tb_nvm *nvm;
e6b245cc 446
e6b245cc
MW
447 nvm = sw->nvm;
448 sw->nvm = NULL;
e6b245cc
MW
449
450 if (!nvm)
451 return;
452
453 /* Remove authentication status in case the switch is unplugged */
454 if (!nvm->authenticating)
455 nvm_clear_auth_status(sw);
456
719a5fe8 457 tb_nvm_free(nvm);
e6b245cc
MW
458}
459
a25c8b2f
AN
460/* port utility functions */
461
1c561e4e 462static const char *tb_port_type(const struct tb_regs_port_header *port)
a25c8b2f
AN
463{
464 switch (port->type >> 16) {
465 case 0:
466 switch ((u8) port->type) {
467 case 0:
468 return "Inactive";
469 case 1:
470 return "Port";
471 case 2:
472 return "NHI";
473 default:
474 return "unknown";
475 }
476 case 0x2:
477 return "Ethernet";
478 case 0x8:
479 return "SATA";
480 case 0xe:
481 return "DP/HDMI";
482 case 0x10:
483 return "PCIe";
484 case 0x20:
485 return "USB";
486 default:
487 return "unknown";
488 }
489}
490
491static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
492{
daa5140f
MW
493 tb_dbg(tb,
494 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
495 port->port_number, port->vendor_id, port->device_id,
496 port->revision, port->thunderbolt_version, tb_port_type(port),
497 port->type);
498 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
499 port->max_in_hop_id, port->max_out_hop_id);
500 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
501 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
a25c8b2f
AN
502}
503
9da672a4
AN
504/**
505 * tb_port_state() - get connectedness state of a port
5cc0df9c 506 * @port: the port to check
9da672a4
AN
507 *
508 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
509 *
510 * Return: Returns an enum tb_port_state on success or an error code on failure.
511 */
5cc0df9c 512int tb_port_state(struct tb_port *port)
9da672a4
AN
513{
514 struct tb_cap_phy phy;
515 int res;
516 if (port->cap_phy == 0) {
517 tb_port_WARN(port, "does not have a PHY\n");
518 return -EINVAL;
519 }
520 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
521 if (res)
522 return res;
523 return phy.state;
524}
525
526/**
527 * tb_wait_for_port() - wait for a port to become ready
5c6b471b
MW
528 * @port: Port to wait
529 * @wait_if_unplugged: Wait also when port is unplugged
9da672a4
AN
530 *
531 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
532 * wait_if_unplugged is set then we also wait if the port is in state
533 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
534 * switch resume). Otherwise we only wait if a device is registered but the link
535 * has not yet been established.
536 *
537 * Return: Returns an error code on failure. Returns 0 if the port is not
538 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
539 * if the port is connected and in state TB_PORT_UP.
540 */
541int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
542{
543 int retries = 10;
544 int state;
545 if (!port->cap_phy) {
546 tb_port_WARN(port, "does not have PHY\n");
547 return -EINVAL;
548 }
549 if (tb_is_upstream_port(port)) {
550 tb_port_WARN(port, "is the upstream port\n");
551 return -EINVAL;
552 }
553
554 while (retries--) {
555 state = tb_port_state(port);
556 if (state < 0)
557 return state;
558 if (state == TB_PORT_DISABLED) {
62efe699 559 tb_port_dbg(port, "is disabled (state: 0)\n");
9da672a4
AN
560 return 0;
561 }
562 if (state == TB_PORT_UNPLUGGED) {
563 if (wait_if_unplugged) {
564 /* used during resume */
62efe699
MW
565 tb_port_dbg(port,
566 "is unplugged (state: 7), retrying...\n");
9da672a4
AN
567 msleep(100);
568 continue;
569 }
62efe699 570 tb_port_dbg(port, "is unplugged (state: 7)\n");
9da672a4
AN
571 return 0;
572 }
573 if (state == TB_PORT_UP) {
62efe699 574 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
9da672a4
AN
575 return 1;
576 }
577
578 /*
579 * After plug-in the state is TB_PORT_CONNECTING. Give it some
580 * time.
581 */
62efe699
MW
582 tb_port_dbg(port,
583 "is connected, link is not up (state: %d), retrying...\n",
584 state);
9da672a4
AN
585 msleep(100);
586 }
587 tb_port_warn(port,
588 "failed to reach state TB_PORT_UP. Ignoring port...\n");
589 return 0;
590}
591
520b6702
AN
592/**
593 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
5c6b471b
MW
594 * @port: Port to add/remove NFC credits
595 * @credits: Credits to add/remove
520b6702
AN
596 *
597 * Change the number of NFC credits allocated to @port by @credits. To remove
598 * NFC credits pass a negative amount of credits.
599 *
600 * Return: Returns 0 on success or an error code on failure.
601 */
602int tb_port_add_nfc_credits(struct tb_port *port, int credits)
603{
c5ee6feb
MW
604 u32 nfc_credits;
605
606 if (credits == 0 || port->sw->is_unplugged)
520b6702 607 return 0;
c5ee6feb 608
edfbd68b
MW
609 /*
610 * USB4 restricts programming NFC buffers to lane adapters only
611 * so skip other ports.
612 */
613 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
614 return 0;
615
8f57d478 616 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
c5ee6feb
MW
617 nfc_credits += credits;
618
8f57d478
MW
619 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
620 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
c5ee6feb 621
8f57d478 622 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
c5ee6feb
MW
623 port->config.nfc_credits |= nfc_credits;
624
520b6702 625 return tb_port_write(port, &port->config.nfc_credits,
8f57d478 626 TB_CFG_PORT, ADP_CS_4, 1);
520b6702
AN
627}
628
629/**
630 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
5c6b471b
MW
631 * @port: Port whose counters to clear
632 * @counter: Counter index to clear
520b6702
AN
633 *
634 * Return: Returns 0 on success or an error code on failure.
635 */
636int tb_port_clear_counter(struct tb_port *port, int counter)
637{
638 u32 zero[3] = { 0, 0, 0 };
62efe699 639 tb_port_dbg(port, "clearing counter %d\n", counter);
520b6702
AN
640 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
641}
642
b0407983
MW
643/**
644 * tb_port_unlock() - Unlock downstream port
645 * @port: Port to unlock
646 *
647 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
648 * downstream router accessible for CM.
649 */
650int tb_port_unlock(struct tb_port *port)
651{
652 if (tb_switch_is_icm(port->sw))
653 return 0;
654 if (!tb_port_is_null(port))
655 return -EINVAL;
656 if (tb_switch_is_usb4(port->sw))
657 return usb4_port_unlock(port);
658 return 0;
659}
660
341d4518
MW
661static int __tb_port_enable(struct tb_port *port, bool enable)
662{
663 int ret;
664 u32 phy;
665
666 if (!tb_port_is_null(port))
667 return -EINVAL;
668
669 ret = tb_port_read(port, &phy, TB_CFG_PORT,
670 port->cap_phy + LANE_ADP_CS_1, 1);
671 if (ret)
672 return ret;
673
674 if (enable)
675 phy &= ~LANE_ADP_CS_1_LD;
676 else
677 phy |= LANE_ADP_CS_1_LD;
678
679 return tb_port_write(port, &phy, TB_CFG_PORT,
680 port->cap_phy + LANE_ADP_CS_1, 1);
681}
682
683/**
684 * tb_port_enable() - Enable lane adapter
685 * @port: Port to enable (can be %NULL)
686 *
687 * This is used for lane 0 and 1 adapters to enable it.
688 */
689int tb_port_enable(struct tb_port *port)
690{
691 return __tb_port_enable(port, true);
692}
693
694/**
695 * tb_port_disable() - Disable lane adapter
696 * @port: Port to disable (can be %NULL)
697 *
698 * This is used for lane 0 and 1 adapters to disable it.
699 */
700int tb_port_disable(struct tb_port *port)
701{
702 return __tb_port_enable(port, false);
703}
704
47ba5ae4 705/*
a25c8b2f
AN
706 * tb_init_port() - initialize a port
707 *
708 * This is a helper method for tb_switch_alloc. Does not check or initialize
709 * any downstream switches.
710 *
711 * Return: Returns 0 on success or an error code on failure.
712 */
343fcb8c 713static int tb_init_port(struct tb_port *port)
a25c8b2f
AN
714{
715 int res;
9da672a4 716 int cap;
343fcb8c 717
a25c8b2f 718 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
d94dcbb1
MW
719 if (res) {
720 if (res == -ENODEV) {
721 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
722 port->port);
8824d19b 723 port->disabled = true;
d94dcbb1
MW
724 return 0;
725 }
a25c8b2f 726 return res;
d94dcbb1 727 }
a25c8b2f 728
9da672a4 729 /* Port 0 is the switch itself and has no PHY. */
343fcb8c 730 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
da2da04b 731 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
9da672a4
AN
732
733 if (cap > 0)
734 port->cap_phy = cap;
735 else
736 tb_port_WARN(port, "non switch port without a PHY\n");
b0407983
MW
737
738 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
739 if (cap > 0)
740 port->cap_usb4 = cap;
56183c88
MW
741 } else if (port->port != 0) {
742 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
743 if (cap > 0)
744 port->cap_adap = cap;
9da672a4
AN
745 }
746
343fcb8c 747 tb_dump_port(port->sw->tb, &port->config);
a25c8b2f 748
8afe909b 749 INIT_LIST_HEAD(&port->list);
a25c8b2f
AN
750 return 0;
751
752}
753
0b2863ac
MW
754static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
755 int max_hopid)
756{
757 int port_max_hopid;
758 struct ida *ida;
759
760 if (in) {
761 port_max_hopid = port->config.max_in_hop_id;
762 ida = &port->in_hopids;
763 } else {
764 port_max_hopid = port->config.max_out_hop_id;
765 ida = &port->out_hopids;
766 }
767
12676423
MW
768 /*
769 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
770 * reserved.
771 */
a3cfebdc 772 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
0b2863ac
MW
773 min_hopid = TB_PATH_MIN_HOPID;
774
775 if (max_hopid < 0 || max_hopid > port_max_hopid)
776 max_hopid = port_max_hopid;
777
778 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
779}
780
781/**
782 * tb_port_alloc_in_hopid() - Allocate input HopID from port
783 * @port: Port to allocate HopID for
784 * @min_hopid: Minimum acceptable input HopID
785 * @max_hopid: Maximum acceptable input HopID
786 *
787 * Return: HopID between @min_hopid and @max_hopid or negative errno in
788 * case of error.
789 */
790int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
791{
792 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
793}
794
795/**
796 * tb_port_alloc_out_hopid() - Allocate output HopID from port
797 * @port: Port to allocate HopID for
798 * @min_hopid: Minimum acceptable output HopID
799 * @max_hopid: Maximum acceptable output HopID
800 *
801 * Return: HopID between @min_hopid and @max_hopid or negative errno in
802 * case of error.
803 */
804int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
805{
806 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
807}
808
809/**
810 * tb_port_release_in_hopid() - Release allocated input HopID from port
811 * @port: Port whose HopID to release
812 * @hopid: HopID to release
813 */
814void tb_port_release_in_hopid(struct tb_port *port, int hopid)
815{
816 ida_simple_remove(&port->in_hopids, hopid);
817}
818
819/**
820 * tb_port_release_out_hopid() - Release allocated output HopID from port
821 * @port: Port whose HopID to release
822 * @hopid: HopID to release
823 */
824void tb_port_release_out_hopid(struct tb_port *port, int hopid)
825{
826 ida_simple_remove(&port->out_hopids, hopid);
827}
828
69eb79f7
MW
829static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
830 const struct tb_switch *sw)
831{
832 u64 mask = (1ULL << parent->config.depth * 8) - 1;
833 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
834}
835
fb19fac1
MW
836/**
837 * tb_next_port_on_path() - Return next port for given port on a path
838 * @start: Start port of the walk
839 * @end: End port of the walk
840 * @prev: Previous port (%NULL if this is the first)
841 *
842 * This function can be used to walk from one port to another if they
843 * are connected through zero or more switches. If the @prev is dual
844 * link port, the function follows that link and returns another end on
845 * that same link.
846 *
847 * If the @end port has been reached, return %NULL.
848 *
849 * Domain tb->lock must be held when this function is called.
850 */
851struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
852 struct tb_port *prev)
853{
854 struct tb_port *next;
855
856 if (!prev)
857 return start;
858
859 if (prev->sw == end->sw) {
860 if (prev == end)
861 return NULL;
862 return end;
863 }
864
69eb79f7
MW
865 if (tb_switch_is_reachable(prev->sw, end->sw)) {
866 next = tb_port_at(tb_route(end->sw), prev->sw);
867 /* Walk down the topology if next == prev */
fb19fac1 868 if (prev->remote &&
69eb79f7 869 (next == prev || next->dual_link_port == prev))
fb19fac1 870 next = prev->remote;
fb19fac1
MW
871 } else {
872 if (tb_is_upstream_port(prev)) {
873 next = prev->remote;
874 } else {
875 next = tb_upstream_port(prev->sw);
876 /*
877 * Keep the same link if prev and next are both
878 * dual link ports.
879 */
880 if (next->dual_link_port &&
881 next->link_nr != prev->link_nr) {
882 next = next->dual_link_port;
883 }
884 }
885 }
886
69eb79f7 887 return next != prev ? next : NULL;
fb19fac1
MW
888}
889
5b7b8c0a
MW
890/**
891 * tb_port_get_link_speed() - Get current link speed
892 * @port: Port to check (USB4 or CIO)
893 *
894 * Returns link speed in Gb/s or negative errno in case of failure.
895 */
896int tb_port_get_link_speed(struct tb_port *port)
91c0c120
MW
897{
898 u32 val, speed;
899 int ret;
900
901 if (!port->cap_phy)
902 return -EINVAL;
903
904 ret = tb_port_read(port, &val, TB_CFG_PORT,
905 port->cap_phy + LANE_ADP_CS_1, 1);
906 if (ret)
907 return ret;
908
909 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
910 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
911 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
912}
913
4210d50f
IH
914/**
915 * tb_port_get_link_width() - Get current link width
916 * @port: Port to check (USB4 or CIO)
917 *
918 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
919 * or negative errno in case of failure.
920 */
921int tb_port_get_link_width(struct tb_port *port)
91c0c120
MW
922{
923 u32 val;
924 int ret;
925
926 if (!port->cap_phy)
927 return -EINVAL;
928
929 ret = tb_port_read(port, &val, TB_CFG_PORT,
930 port->cap_phy + LANE_ADP_CS_1, 1);
931 if (ret)
932 return ret;
933
934 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
935 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
936}
937
938static bool tb_port_is_width_supported(struct tb_port *port, int width)
939{
940 u32 phy, widths;
941 int ret;
942
943 if (!port->cap_phy)
944 return false;
945
946 ret = tb_port_read(port, &phy, TB_CFG_PORT,
947 port->cap_phy + LANE_ADP_CS_0, 1);
948 if (ret)
e9d0e751 949 return false;
91c0c120
MW
950
951 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
952 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
953
954 return !!(widths & width);
955}
956
957static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
958{
959 u32 val;
960 int ret;
961
962 if (!port->cap_phy)
963 return -EINVAL;
964
965 ret = tb_port_read(port, &val, TB_CFG_PORT,
966 port->cap_phy + LANE_ADP_CS_1, 1);
967 if (ret)
968 return ret;
969
970 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
971 switch (width) {
972 case 1:
973 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
974 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
975 break;
976 case 2:
977 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
978 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
979 break;
980 default:
981 return -EINVAL;
982 }
983
984 val |= LANE_ADP_CS_1_LB;
985
986 return tb_port_write(port, &val, TB_CFG_PORT,
987 port->cap_phy + LANE_ADP_CS_1, 1);
988}
989
5cc0df9c
IH
990/**
991 * tb_port_lane_bonding_enable() - Enable bonding on port
992 * @port: port to enable
993 *
994 * Enable bonding by setting the link width of the port and the
995 * other port in case of dual link port.
996 *
997 * Return: %0 in case of success and negative errno in case of error
998 */
999int tb_port_lane_bonding_enable(struct tb_port *port)
91c0c120
MW
1000{
1001 int ret;
1002
1003 /*
1004 * Enable lane bonding for both links if not already enabled by
1005 * for example the boot firmware.
1006 */
1007 ret = tb_port_get_link_width(port);
1008 if (ret == 1) {
1009 ret = tb_port_set_link_width(port, 2);
1010 if (ret)
1011 return ret;
1012 }
1013
1014 ret = tb_port_get_link_width(port->dual_link_port);
1015 if (ret == 1) {
1016 ret = tb_port_set_link_width(port->dual_link_port, 2);
1017 if (ret) {
1018 tb_port_set_link_width(port, 1);
1019 return ret;
1020 }
1021 }
1022
1023 port->bonded = true;
1024 port->dual_link_port->bonded = true;
1025
1026 return 0;
1027}
1028
5cc0df9c
IH
1029/**
1030 * tb_port_lane_bonding_disable() - Disable bonding on port
1031 * @port: port to disable
1032 *
1033 * Disable bonding by setting the link width of the port and the
1034 * other port in case of dual link port.
1035 *
1036 */
1037void tb_port_lane_bonding_disable(struct tb_port *port)
91c0c120
MW
1038{
1039 port->dual_link_port->bonded = false;
1040 port->bonded = false;
1041
1042 tb_port_set_link_width(port->dual_link_port, 1);
1043 tb_port_set_link_width(port, 1);
1044}
1045
fdb0887c
MW
1046static int tb_port_start_lane_initialization(struct tb_port *port)
1047{
1048 int ret;
1049
1050 if (tb_switch_is_usb4(port->sw))
1051 return 0;
1052
1053 ret = tb_lc_start_lane_initialization(port);
1054 return ret == -EINVAL ? 0 : ret;
1055}
1056
e78db6f0
MW
1057/**
1058 * tb_port_is_enabled() - Is the adapter port enabled
1059 * @port: Port to check
1060 */
1061bool tb_port_is_enabled(struct tb_port *port)
1062{
1063 switch (port->config.type) {
1064 case TB_TYPE_PCIE_UP:
1065 case TB_TYPE_PCIE_DOWN:
1066 return tb_pci_port_is_enabled(port);
1067
4f807e47
MW
1068 case TB_TYPE_DP_HDMI_IN:
1069 case TB_TYPE_DP_HDMI_OUT:
1070 return tb_dp_port_is_enabled(port);
1071
e6f81858
RM
1072 case TB_TYPE_USB3_UP:
1073 case TB_TYPE_USB3_DOWN:
1074 return tb_usb3_port_is_enabled(port);
1075
e78db6f0
MW
1076 default:
1077 return false;
1078 }
1079}
1080
e6f81858
RM
1081/**
1082 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1083 * @port: USB3 adapter port to check
1084 */
1085bool tb_usb3_port_is_enabled(struct tb_port *port)
1086{
1087 u32 data;
1088
1089 if (tb_port_read(port, &data, TB_CFG_PORT,
1090 port->cap_adap + ADP_USB3_CS_0, 1))
1091 return false;
1092
1093 return !!(data & ADP_USB3_CS_0_PE);
1094}
1095
1096/**
1097 * tb_usb3_port_enable() - Enable USB3 adapter port
1098 * @port: USB3 adapter port to enable
1099 * @enable: Enable/disable the USB3 adapter
1100 */
1101int tb_usb3_port_enable(struct tb_port *port, bool enable)
1102{
1103 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1104 : ADP_USB3_CS_0_V;
1105
1106 if (!port->cap_adap)
1107 return -ENXIO;
1108 return tb_port_write(port, &word, TB_CFG_PORT,
1109 port->cap_adap + ADP_USB3_CS_0, 1);
1110}
1111
0414bec5
MW
1112/**
1113 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1114 * @port: PCIe port to check
1115 */
1116bool tb_pci_port_is_enabled(struct tb_port *port)
1117{
1118 u32 data;
1119
778bfca3
MW
1120 if (tb_port_read(port, &data, TB_CFG_PORT,
1121 port->cap_adap + ADP_PCIE_CS_0, 1))
0414bec5
MW
1122 return false;
1123
778bfca3 1124 return !!(data & ADP_PCIE_CS_0_PE);
0414bec5
MW
1125}
1126
93f36ade
MW
1127/**
1128 * tb_pci_port_enable() - Enable PCIe adapter port
1129 * @port: PCIe port to enable
1130 * @enable: Enable/disable the PCIe adapter
1131 */
1132int tb_pci_port_enable(struct tb_port *port, bool enable)
1133{
778bfca3 1134 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
93f36ade
MW
1135 if (!port->cap_adap)
1136 return -ENXIO;
778bfca3
MW
1137 return tb_port_write(port, &word, TB_CFG_PORT,
1138 port->cap_adap + ADP_PCIE_CS_0, 1);
93f36ade
MW
1139}
1140
4f807e47
MW
1141/**
1142 * tb_dp_port_hpd_is_active() - Is HPD already active
1143 * @port: DP out port to check
1144 *
1145 * Checks if the DP OUT adapter port has HDP bit already set.
1146 */
1147int tb_dp_port_hpd_is_active(struct tb_port *port)
1148{
1149 u32 data;
1150 int ret;
1151
98176380
MW
1152 ret = tb_port_read(port, &data, TB_CFG_PORT,
1153 port->cap_adap + ADP_DP_CS_2, 1);
4f807e47
MW
1154 if (ret)
1155 return ret;
1156
98176380 1157 return !!(data & ADP_DP_CS_2_HDP);
4f807e47
MW
1158}
1159
1160/**
1161 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1162 * @port: Port to clear HPD
1163 *
1164 * If the DP IN port has HDP set, this function can be used to clear it.
1165 */
1166int tb_dp_port_hpd_clear(struct tb_port *port)
1167{
1168 u32 data;
1169 int ret;
1170
98176380
MW
1171 ret = tb_port_read(port, &data, TB_CFG_PORT,
1172 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1173 if (ret)
1174 return ret;
1175
98176380
MW
1176 data |= ADP_DP_CS_3_HDPC;
1177 return tb_port_write(port, &data, TB_CFG_PORT,
1178 port->cap_adap + ADP_DP_CS_3, 1);
4f807e47
MW
1179}
1180
1181/**
1182 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1183 * @port: DP IN/OUT port to set hops
1184 * @video: Video Hop ID
1185 * @aux_tx: AUX TX Hop ID
1186 * @aux_rx: AUX RX Hop ID
1187 *
1188 * Programs specified Hop IDs for DP IN/OUT port.
1189 */
1190int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1191 unsigned int aux_tx, unsigned int aux_rx)
1192{
1193 u32 data[2];
1194 int ret;
1195
98176380
MW
1196 ret = tb_port_read(port, data, TB_CFG_PORT,
1197 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1198 if (ret)
1199 return ret;
1200
98176380
MW
1201 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1202 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1203 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1204
98176380
MW
1205 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1206 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1207 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1208 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1209 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
4f807e47 1210
98176380
MW
1211 return tb_port_write(port, data, TB_CFG_PORT,
1212 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1213}
1214
1215/**
1216 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1217 * @port: DP adapter port to check
1218 */
1219bool tb_dp_port_is_enabled(struct tb_port *port)
1220{
fd5c46b7 1221 u32 data[2];
4f807e47 1222
98176380 1223 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
fd5c46b7 1224 ARRAY_SIZE(data)))
4f807e47
MW
1225 return false;
1226
98176380 1227 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
4f807e47
MW
1228}
1229
1230/**
1231 * tb_dp_port_enable() - Enables/disables DP paths of a port
1232 * @port: DP IN/OUT port
1233 * @enable: Enable/disable DP path
1234 *
1235 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1236 * calling this function.
1237 */
1238int tb_dp_port_enable(struct tb_port *port, bool enable)
1239{
fd5c46b7 1240 u32 data[2];
4f807e47
MW
1241 int ret;
1242
98176380
MW
1243 ret = tb_port_read(port, data, TB_CFG_PORT,
1244 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1245 if (ret)
1246 return ret;
1247
1248 if (enable)
98176380 1249 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
4f807e47 1250 else
98176380 1251 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
4f807e47 1252
98176380
MW
1253 return tb_port_write(port, data, TB_CFG_PORT,
1254 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
4f807e47
MW
1255}
1256
a25c8b2f
AN
1257/* switch utility functions */
1258
b0407983
MW
1259static const char *tb_switch_generation_name(const struct tb_switch *sw)
1260{
1261 switch (sw->generation) {
1262 case 1:
1263 return "Thunderbolt 1";
1264 case 2:
1265 return "Thunderbolt 2";
1266 case 3:
1267 return "Thunderbolt 3";
1268 case 4:
1269 return "USB4";
1270 default:
1271 return "Unknown";
1272 }
1273}
1274
1275static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
a25c8b2f 1276{
b0407983
MW
1277 const struct tb_regs_switch_header *regs = &sw->config;
1278
1279 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1280 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1281 regs->revision, regs->thunderbolt_version);
1282 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
daa5140f
MW
1283 tb_dbg(tb, " Config:\n");
1284 tb_dbg(tb,
a25c8b2f 1285 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
b0407983
MW
1286 regs->upstream_port_number, regs->depth,
1287 (((u64) regs->route_hi) << 32) | regs->route_lo,
1288 regs->enabled, regs->plug_events_delay);
daa5140f 1289 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
b0407983 1290 regs->__unknown1, regs->__unknown4);
a25c8b2f
AN
1291}
1292
23dd5bb4 1293/**
2c2a2327 1294 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
356b6c4e 1295 * @sw: Switch to reset
23dd5bb4
AN
1296 *
1297 * Return: Returns 0 on success or an error code on failure.
1298 */
356b6c4e 1299int tb_switch_reset(struct tb_switch *sw)
23dd5bb4
AN
1300{
1301 struct tb_cfg_result res;
356b6c4e
MW
1302
1303 if (sw->generation > 1)
1304 return 0;
1305
1306 tb_sw_dbg(sw, "resetting switch\n");
1307
1308 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1309 TB_CFG_SWITCH, 2, 2);
23dd5bb4
AN
1310 if (res.err)
1311 return res.err;
bda83aec 1312 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
23dd5bb4
AN
1313 if (res.err > 0)
1314 return -EIO;
1315 return res.err;
1316}
1317
47ba5ae4 1318/*
ca389f71
AN
1319 * tb_plug_events_active() - enable/disable plug events on a switch
1320 *
1321 * Also configures a sane plug_events_delay of 255ms.
1322 *
1323 * Return: Returns 0 on success or an error code on failure.
1324 */
1325static int tb_plug_events_active(struct tb_switch *sw, bool active)
1326{
1327 u32 data;
1328 int res;
1329
5cb6ed31 1330 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
bfe778ac
MW
1331 return 0;
1332
ca389f71
AN
1333 sw->config.plug_events_delay = 0xff;
1334 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1335 if (res)
1336 return res;
1337
1338 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1339 if (res)
1340 return res;
1341
1342 if (active) {
1343 data = data & 0xFFFFFF83;
1344 switch (sw->config.device_id) {
1d111406
LW
1345 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1346 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1347 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
ca389f71
AN
1348 break;
1349 default:
1350 data |= 4;
1351 }
1352 } else {
1353 data = data | 0x7c;
1354 }
1355 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1356 sw->cap_plug_events + 1, 1);
1357}
1358
f67cf491
MW
1359static ssize_t authorized_show(struct device *dev,
1360 struct device_attribute *attr,
1361 char *buf)
1362{
1363 struct tb_switch *sw = tb_to_switch(dev);
1364
1365 return sprintf(buf, "%u\n", sw->authorized);
1366}
1367
3da88be2
MW
1368static int disapprove_switch(struct device *dev, void *not_used)
1369{
1370 struct tb_switch *sw;
1371
1372 sw = tb_to_switch(dev);
1373 if (sw && sw->authorized) {
1374 int ret;
1375
1376 /* First children */
1377 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1378 if (ret)
1379 return ret;
1380
1381 ret = tb_domain_disapprove_switch(sw->tb, sw);
1382 if (ret)
1383 return ret;
1384
1385 sw->authorized = 0;
1386 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1387 }
1388
1389 return 0;
1390}
1391
f67cf491
MW
1392static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1393{
1394 int ret = -EINVAL;
1395
09f11b6c
MW
1396 if (!mutex_trylock(&sw->tb->lock))
1397 return restart_syscall();
f67cf491 1398
3da88be2 1399 if (!!sw->authorized == !!val)
f67cf491
MW
1400 goto unlock;
1401
1402 switch (val) {
3da88be2
MW
1403 /* Disapprove switch */
1404 case 0:
1405 if (tb_route(sw)) {
1406 ret = disapprove_switch(&sw->dev, NULL);
1407 goto unlock;
1408 }
1409 break;
1410
f67cf491
MW
1411 /* Approve switch */
1412 case 1:
1413 if (sw->key)
1414 ret = tb_domain_approve_switch_key(sw->tb, sw);
1415 else
1416 ret = tb_domain_approve_switch(sw->tb, sw);
1417 break;
1418
1419 /* Challenge switch */
1420 case 2:
1421 if (sw->key)
1422 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1423 break;
1424
1425 default:
1426 break;
1427 }
1428
1429 if (!ret) {
1430 sw->authorized = val;
1431 /* Notify status change to the userspace */
1432 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1433 }
1434
1435unlock:
09f11b6c 1436 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1437 return ret;
1438}
1439
1440static ssize_t authorized_store(struct device *dev,
1441 struct device_attribute *attr,
1442 const char *buf, size_t count)
1443{
1444 struct tb_switch *sw = tb_to_switch(dev);
1445 unsigned int val;
1446 ssize_t ret;
1447
1448 ret = kstrtouint(buf, 0, &val);
1449 if (ret)
1450 return ret;
1451 if (val > 2)
1452 return -EINVAL;
1453
4f7c2e0d 1454 pm_runtime_get_sync(&sw->dev);
f67cf491 1455 ret = tb_switch_set_authorized(sw, val);
4f7c2e0d
MW
1456 pm_runtime_mark_last_busy(&sw->dev);
1457 pm_runtime_put_autosuspend(&sw->dev);
f67cf491
MW
1458
1459 return ret ? ret : count;
1460}
1461static DEVICE_ATTR_RW(authorized);
1462
14862ee3
YB
1463static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1464 char *buf)
1465{
1466 struct tb_switch *sw = tb_to_switch(dev);
1467
1468 return sprintf(buf, "%u\n", sw->boot);
1469}
1470static DEVICE_ATTR_RO(boot);
1471
bfe778ac
MW
1472static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1473 char *buf)
1474{
1475 struct tb_switch *sw = tb_to_switch(dev);
ca389f71 1476
bfe778ac
MW
1477 return sprintf(buf, "%#x\n", sw->device);
1478}
1479static DEVICE_ATTR_RO(device);
1480
72ee3390
MW
1481static ssize_t
1482device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1483{
1484 struct tb_switch *sw = tb_to_switch(dev);
1485
1486 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1487}
1488static DEVICE_ATTR_RO(device_name);
1489
b406357c
CK
1490static ssize_t
1491generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1492{
1493 struct tb_switch *sw = tb_to_switch(dev);
1494
1495 return sprintf(buf, "%u\n", sw->generation);
1496}
1497static DEVICE_ATTR_RO(generation);
1498
f67cf491
MW
1499static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1500 char *buf)
1501{
1502 struct tb_switch *sw = tb_to_switch(dev);
1503 ssize_t ret;
1504
09f11b6c
MW
1505 if (!mutex_trylock(&sw->tb->lock))
1506 return restart_syscall();
f67cf491
MW
1507
1508 if (sw->key)
1509 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1510 else
1511 ret = sprintf(buf, "\n");
1512
09f11b6c 1513 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1514 return ret;
1515}
1516
1517static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1518 const char *buf, size_t count)
1519{
1520 struct tb_switch *sw = tb_to_switch(dev);
1521 u8 key[TB_SWITCH_KEY_SIZE];
1522 ssize_t ret = count;
e545f0d8 1523 bool clear = false;
f67cf491 1524
e545f0d8
BY
1525 if (!strcmp(buf, "\n"))
1526 clear = true;
1527 else if (hex2bin(key, buf, sizeof(key)))
f67cf491
MW
1528 return -EINVAL;
1529
09f11b6c
MW
1530 if (!mutex_trylock(&sw->tb->lock))
1531 return restart_syscall();
f67cf491
MW
1532
1533 if (sw->authorized) {
1534 ret = -EBUSY;
1535 } else {
1536 kfree(sw->key);
e545f0d8
BY
1537 if (clear) {
1538 sw->key = NULL;
1539 } else {
1540 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1541 if (!sw->key)
1542 ret = -ENOMEM;
1543 }
f67cf491
MW
1544 }
1545
09f11b6c 1546 mutex_unlock(&sw->tb->lock);
f67cf491
MW
1547 return ret;
1548}
0956e411 1549static DEVICE_ATTR(key, 0600, key_show, key_store);
f67cf491 1550
91c0c120
MW
1551static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1552 char *buf)
1553{
1554 struct tb_switch *sw = tb_to_switch(dev);
1555
1556 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1557}
1558
1559/*
1560 * Currently all lanes must run at the same speed but we expose here
1561 * both directions to allow possible asymmetric links in the future.
1562 */
1563static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1564static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1565
1566static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1567 char *buf)
1568{
1569 struct tb_switch *sw = tb_to_switch(dev);
1570
1571 return sprintf(buf, "%u\n", sw->link_width);
1572}
1573
1574/*
1575 * Currently link has same amount of lanes both directions (1 or 2) but
1576 * expose them separately to allow possible asymmetric links in the future.
1577 */
1578static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1579static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1580
e6b245cc
MW
1581static ssize_t nvm_authenticate_show(struct device *dev,
1582 struct device_attribute *attr, char *buf)
1583{
1584 struct tb_switch *sw = tb_to_switch(dev);
1585 u32 status;
1586
1587 nvm_get_auth_status(sw, &status);
1588 return sprintf(buf, "%#x\n", status);
1589}
1590
1cb36293
ML
1591static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1592 bool disconnect)
e6b245cc
MW
1593{
1594 struct tb_switch *sw = tb_to_switch(dev);
4b794f80 1595 int val;
e6b245cc
MW
1596 int ret;
1597
4f7c2e0d
MW
1598 pm_runtime_get_sync(&sw->dev);
1599
1600 if (!mutex_trylock(&sw->tb->lock)) {
1601 ret = restart_syscall();
1602 goto exit_rpm;
1603 }
e6b245cc
MW
1604
1605 /* If NVMem devices are not yet added */
1606 if (!sw->nvm) {
1607 ret = -EAGAIN;
1608 goto exit_unlock;
1609 }
1610
4b794f80 1611 ret = kstrtoint(buf, 10, &val);
e6b245cc
MW
1612 if (ret)
1613 goto exit_unlock;
1614
1615 /* Always clear the authentication status */
1616 nvm_clear_auth_status(sw);
1617
4b794f80
ML
1618 if (val > 0) {
1619 if (!sw->nvm->flushed) {
1620 if (!sw->nvm->buf) {
1621 ret = -EINVAL;
1622 goto exit_unlock;
1623 }
e6b245cc 1624
4b794f80
ML
1625 ret = nvm_validate_and_write(sw);
1626 if (ret || val == WRITE_ONLY)
1627 goto exit_unlock;
1628 }
1629 if (val == WRITE_AND_AUTHENTICATE) {
1cb36293
ML
1630 if (disconnect) {
1631 ret = tb_lc_force_power(sw);
1632 } else {
1633 sw->nvm->authenticating = true;
1634 ret = nvm_authenticate(sw);
1635 }
4b794f80 1636 }
e6b245cc
MW
1637 }
1638
1639exit_unlock:
09f11b6c 1640 mutex_unlock(&sw->tb->lock);
4f7c2e0d
MW
1641exit_rpm:
1642 pm_runtime_mark_last_busy(&sw->dev);
1643 pm_runtime_put_autosuspend(&sw->dev);
e6b245cc 1644
1cb36293
ML
1645 return ret;
1646}
1647
1648static ssize_t nvm_authenticate_store(struct device *dev,
1649 struct device_attribute *attr, const char *buf, size_t count)
1650{
1651 int ret = nvm_authenticate_sysfs(dev, buf, false);
e6b245cc
MW
1652 if (ret)
1653 return ret;
1654 return count;
1655}
1656static DEVICE_ATTR_RW(nvm_authenticate);
1657
1cb36293
ML
1658static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1659 struct device_attribute *attr, char *buf)
1660{
1661 return nvm_authenticate_show(dev, attr, buf);
1662}
1663
1664static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1665 struct device_attribute *attr, const char *buf, size_t count)
1666{
1667 int ret;
1668
1669 ret = nvm_authenticate_sysfs(dev, buf, true);
1670 return ret ? ret : count;
1671}
1672static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1673
e6b245cc
MW
1674static ssize_t nvm_version_show(struct device *dev,
1675 struct device_attribute *attr, char *buf)
1676{
1677 struct tb_switch *sw = tb_to_switch(dev);
1678 int ret;
1679
09f11b6c
MW
1680 if (!mutex_trylock(&sw->tb->lock))
1681 return restart_syscall();
e6b245cc
MW
1682
1683 if (sw->safe_mode)
1684 ret = -ENODATA;
1685 else if (!sw->nvm)
1686 ret = -EAGAIN;
1687 else
1688 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1689
09f11b6c 1690 mutex_unlock(&sw->tb->lock);
e6b245cc
MW
1691
1692 return ret;
1693}
1694static DEVICE_ATTR_RO(nvm_version);
1695
bfe778ac
MW
1696static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1697 char *buf)
a25c8b2f 1698{
bfe778ac 1699 struct tb_switch *sw = tb_to_switch(dev);
a25c8b2f 1700
bfe778ac
MW
1701 return sprintf(buf, "%#x\n", sw->vendor);
1702}
1703static DEVICE_ATTR_RO(vendor);
1704
72ee3390
MW
1705static ssize_t
1706vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1707{
1708 struct tb_switch *sw = tb_to_switch(dev);
1709
1710 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1711}
1712static DEVICE_ATTR_RO(vendor_name);
1713
bfe778ac
MW
1714static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1715 char *buf)
1716{
1717 struct tb_switch *sw = tb_to_switch(dev);
1718
1719 return sprintf(buf, "%pUb\n", sw->uuid);
1720}
1721static DEVICE_ATTR_RO(unique_id);
1722
1723static struct attribute *switch_attrs[] = {
f67cf491 1724 &dev_attr_authorized.attr,
14862ee3 1725 &dev_attr_boot.attr,
bfe778ac 1726 &dev_attr_device.attr,
72ee3390 1727 &dev_attr_device_name.attr,
b406357c 1728 &dev_attr_generation.attr,
f67cf491 1729 &dev_attr_key.attr,
e6b245cc 1730 &dev_attr_nvm_authenticate.attr,
1cb36293 1731 &dev_attr_nvm_authenticate_on_disconnect.attr,
e6b245cc 1732 &dev_attr_nvm_version.attr,
91c0c120
MW
1733 &dev_attr_rx_speed.attr,
1734 &dev_attr_rx_lanes.attr,
1735 &dev_attr_tx_speed.attr,
1736 &dev_attr_tx_lanes.attr,
bfe778ac 1737 &dev_attr_vendor.attr,
72ee3390 1738 &dev_attr_vendor_name.attr,
bfe778ac
MW
1739 &dev_attr_unique_id.attr,
1740 NULL,
1741};
1742
6f3badea
MW
1743static bool has_port(const struct tb_switch *sw, enum tb_port_type type)
1744{
1745 const struct tb_port *port;
1746
1747 tb_switch_for_each_port(sw, port) {
1748 if (!port->disabled && port->config.type == type)
1749 return true;
1750 }
1751
1752 return false;
1753}
1754
f67cf491
MW
1755static umode_t switch_attr_is_visible(struct kobject *kobj,
1756 struct attribute *attr, int n)
1757{
fff15f23 1758 struct device *dev = kobj_to_dev(kobj);
f67cf491
MW
1759 struct tb_switch *sw = tb_to_switch(dev);
1760
3cd542e6
MW
1761 if (attr == &dev_attr_authorized.attr) {
1762 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
6f3badea
MW
1763 sw->tb->security_level == TB_SECURITY_DPONLY ||
1764 !has_port(sw, TB_TYPE_PCIE_UP))
3cd542e6
MW
1765 return 0;
1766 } else if (attr == &dev_attr_device.attr) {
58f414fa
MW
1767 if (!sw->device)
1768 return 0;
1769 } else if (attr == &dev_attr_device_name.attr) {
1770 if (!sw->device_name)
1771 return 0;
1772 } else if (attr == &dev_attr_vendor.attr) {
1773 if (!sw->vendor)
1774 return 0;
1775 } else if (attr == &dev_attr_vendor_name.attr) {
1776 if (!sw->vendor_name)
1777 return 0;
1778 } else if (attr == &dev_attr_key.attr) {
f67cf491
MW
1779 if (tb_route(sw) &&
1780 sw->tb->security_level == TB_SECURITY_SECURE &&
1781 sw->security_level == TB_SECURITY_SECURE)
1782 return attr->mode;
1783 return 0;
91c0c120
MW
1784 } else if (attr == &dev_attr_rx_speed.attr ||
1785 attr == &dev_attr_rx_lanes.attr ||
1786 attr == &dev_attr_tx_speed.attr ||
1787 attr == &dev_attr_tx_lanes.attr) {
1788 if (tb_route(sw))
1789 return attr->mode;
1790 return 0;
3f415e5e 1791 } else if (attr == &dev_attr_nvm_authenticate.attr) {
b0407983 1792 if (nvm_upgradeable(sw))
3f415e5e
MW
1793 return attr->mode;
1794 return 0;
1795 } else if (attr == &dev_attr_nvm_version.attr) {
b0407983 1796 if (nvm_readable(sw))
e6b245cc
MW
1797 return attr->mode;
1798 return 0;
14862ee3
YB
1799 } else if (attr == &dev_attr_boot.attr) {
1800 if (tb_route(sw))
1801 return attr->mode;
1802 return 0;
1cb36293
ML
1803 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1804 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1805 return attr->mode;
1806 return 0;
f67cf491
MW
1807 }
1808
e6b245cc 1809 return sw->safe_mode ? 0 : attr->mode;
f67cf491
MW
1810}
1811
6889e00f 1812static const struct attribute_group switch_group = {
f67cf491 1813 .is_visible = switch_attr_is_visible,
bfe778ac
MW
1814 .attrs = switch_attrs,
1815};
ca389f71 1816
bfe778ac
MW
1817static const struct attribute_group *switch_groups[] = {
1818 &switch_group,
1819 NULL,
1820};
1821
1822static void tb_switch_release(struct device *dev)
1823{
1824 struct tb_switch *sw = tb_to_switch(dev);
b433d010 1825 struct tb_port *port;
bfe778ac 1826
3e136768
MW
1827 dma_port_free(sw->dma_port);
1828
b433d010 1829 tb_switch_for_each_port(sw, port) {
781e14ea
MW
1830 ida_destroy(&port->in_hopids);
1831 ida_destroy(&port->out_hopids);
0b2863ac
MW
1832 }
1833
bfe778ac 1834 kfree(sw->uuid);
72ee3390
MW
1835 kfree(sw->device_name);
1836 kfree(sw->vendor_name);
a25c8b2f 1837 kfree(sw->ports);
343fcb8c 1838 kfree(sw->drom);
f67cf491 1839 kfree(sw->key);
a25c8b2f
AN
1840 kfree(sw);
1841}
1842
2f608ba1
MW
1843static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
1844{
1845 struct tb_switch *sw = tb_to_switch(dev);
1846 const char *type;
1847
1848 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
1849 if (add_uevent_var(env, "USB4_VERSION=1.0"))
1850 return -ENOMEM;
1851 }
1852
1853 if (!tb_route(sw)) {
1854 type = "host";
1855 } else {
1856 const struct tb_port *port;
1857 bool hub = false;
1858
1859 /* Device is hub if it has any downstream ports */
1860 tb_switch_for_each_port(sw, port) {
1861 if (!port->disabled && !tb_is_upstream_port(port) &&
1862 tb_port_is_null(port)) {
1863 hub = true;
1864 break;
1865 }
1866 }
1867
1868 type = hub ? "hub" : "device";
1869 }
1870
1871 if (add_uevent_var(env, "USB4_TYPE=%s", type))
1872 return -ENOMEM;
1873 return 0;
1874}
1875
2d8ff0b5
MW
1876/*
1877 * Currently only need to provide the callbacks. Everything else is handled
1878 * in the connection manager.
1879 */
1880static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1881{
4f7c2e0d
MW
1882 struct tb_switch *sw = tb_to_switch(dev);
1883 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1884
1885 if (cm_ops->runtime_suspend_switch)
1886 return cm_ops->runtime_suspend_switch(sw);
1887
2d8ff0b5
MW
1888 return 0;
1889}
1890
1891static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1892{
4f7c2e0d
MW
1893 struct tb_switch *sw = tb_to_switch(dev);
1894 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1895
1896 if (cm_ops->runtime_resume_switch)
1897 return cm_ops->runtime_resume_switch(sw);
2d8ff0b5
MW
1898 return 0;
1899}
1900
1901static const struct dev_pm_ops tb_switch_pm_ops = {
1902 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1903 NULL)
1904};
1905
bfe778ac
MW
1906struct device_type tb_switch_type = {
1907 .name = "thunderbolt_device",
1908 .release = tb_switch_release,
2f608ba1 1909 .uevent = tb_switch_uevent,
2d8ff0b5 1910 .pm = &tb_switch_pm_ops,
bfe778ac
MW
1911};
1912
2c3c4197
MW
1913static int tb_switch_get_generation(struct tb_switch *sw)
1914{
1915 switch (sw->config.device_id) {
1916 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1917 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1918 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1919 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1920 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1921 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1922 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1923 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1924 return 1;
1925
1926 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1927 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1928 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1929 return 2;
1930
1931 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1932 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1933 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1934 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1935 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
4bac471d
RM
1936 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1937 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1938 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
3cdb9446
MW
1939 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1940 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2c3c4197
MW
1941 return 3;
1942
1943 default:
b0407983
MW
1944 if (tb_switch_is_usb4(sw))
1945 return 4;
1946
2c3c4197
MW
1947 /*
1948 * For unknown switches assume generation to be 1 to be
1949 * on the safe side.
1950 */
1951 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1952 sw->config.device_id);
1953 return 1;
1954 }
1955}
1956
b0407983
MW
1957static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
1958{
1959 int max_depth;
1960
1961 if (tb_switch_is_usb4(sw) ||
1962 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
1963 max_depth = USB4_SWITCH_MAX_DEPTH;
1964 else
1965 max_depth = TB_SWITCH_MAX_DEPTH;
1966
1967 return depth > max_depth;
1968}
1969
a25c8b2f 1970/**
bfe778ac
MW
1971 * tb_switch_alloc() - allocate a switch
1972 * @tb: Pointer to the owning domain
1973 * @parent: Parent device for this switch
1974 * @route: Route string for this switch
a25c8b2f 1975 *
bfe778ac
MW
1976 * Allocates and initializes a switch. Will not upload configuration to
1977 * the switch. For that you need to call tb_switch_configure()
1978 * separately. The returned switch should be released by calling
1979 * tb_switch_put().
1980 *
444ac384
MW
1981 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1982 * failure.
a25c8b2f 1983 */
bfe778ac
MW
1984struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1985 u64 route)
a25c8b2f 1986{
a25c8b2f 1987 struct tb_switch *sw;
f0342e75 1988 int upstream_port;
444ac384 1989 int i, ret, depth;
f0342e75 1990
b0407983
MW
1991 /* Unlock the downstream port so we can access the switch below */
1992 if (route) {
1993 struct tb_switch *parent_sw = tb_to_switch(parent);
1994 struct tb_port *down;
1995
1996 down = tb_port_at(route, parent_sw);
1997 tb_port_unlock(down);
1998 }
1999
f0342e75 2000 depth = tb_route_length(route);
f0342e75
MW
2001
2002 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
a25c8b2f 2003 if (upstream_port < 0)
444ac384 2004 return ERR_PTR(upstream_port);
a25c8b2f
AN
2005
2006 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2007 if (!sw)
444ac384 2008 return ERR_PTR(-ENOMEM);
a25c8b2f
AN
2009
2010 sw->tb = tb;
444ac384
MW
2011 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2012 if (ret)
bfe778ac
MW
2013 goto err_free_sw_ports;
2014
b0407983
MW
2015 sw->generation = tb_switch_get_generation(sw);
2016
daa5140f 2017 tb_dbg(tb, "current switch config:\n");
b0407983 2018 tb_dump_switch(tb, sw);
a25c8b2f
AN
2019
2020 /* configure switch */
2021 sw->config.upstream_port_number = upstream_port;
f0342e75
MW
2022 sw->config.depth = depth;
2023 sw->config.route_hi = upper_32_bits(route);
2024 sw->config.route_lo = lower_32_bits(route);
bfe778ac 2025 sw->config.enabled = 0;
a25c8b2f 2026
b0407983 2027 /* Make sure we do not exceed maximum topology limit */
704a940d
CIK
2028 if (tb_switch_exceeds_max_depth(sw, depth)) {
2029 ret = -EADDRNOTAVAIL;
2030 goto err_free_sw_ports;
2031 }
b0407983 2032
a25c8b2f
AN
2033 /* initialize ports */
2034 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
343fcb8c 2035 GFP_KERNEL);
444ac384
MW
2036 if (!sw->ports) {
2037 ret = -ENOMEM;
bfe778ac 2038 goto err_free_sw_ports;
444ac384 2039 }
a25c8b2f
AN
2040
2041 for (i = 0; i <= sw->config.max_port_number; i++) {
343fcb8c
AN
2042 /* minimum setup for tb_find_cap and tb_drom_read to work */
2043 sw->ports[i].sw = sw;
2044 sw->ports[i].port = i;
781e14ea
MW
2045
2046 /* Control port does not need HopID allocation */
2047 if (i) {
2048 ida_init(&sw->ports[i].in_hopids);
2049 ida_init(&sw->ports[i].out_hopids);
2050 }
a25c8b2f
AN
2051 }
2052
444ac384 2053 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
b0407983
MW
2054 if (ret > 0)
2055 sw->cap_plug_events = ret;
ca389f71 2056
444ac384
MW
2057 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2058 if (ret > 0)
2059 sw->cap_lc = ret;
a9be5582 2060
f67cf491
MW
2061 /* Root switch is always authorized */
2062 if (!route)
2063 sw->authorized = true;
2064
bfe778ac
MW
2065 device_initialize(&sw->dev);
2066 sw->dev.parent = parent;
2067 sw->dev.bus = &tb_bus_type;
2068 sw->dev.type = &tb_switch_type;
2069 sw->dev.groups = switch_groups;
2070 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2071
2072 return sw;
2073
2074err_free_sw_ports:
2075 kfree(sw->ports);
2076 kfree(sw);
2077
444ac384 2078 return ERR_PTR(ret);
bfe778ac
MW
2079}
2080
e6b245cc
MW
2081/**
2082 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2083 * @tb: Pointer to the owning domain
2084 * @parent: Parent device for this switch
2085 * @route: Route string for this switch
2086 *
2087 * This creates a switch in safe mode. This means the switch pretty much
2088 * lacks all capabilities except DMA configuration port before it is
2089 * flashed with a valid NVM firmware.
2090 *
2091 * The returned switch must be released by calling tb_switch_put().
2092 *
444ac384 2093 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
e6b245cc
MW
2094 */
2095struct tb_switch *
2096tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2097{
2098 struct tb_switch *sw;
2099
2100 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2101 if (!sw)
444ac384 2102 return ERR_PTR(-ENOMEM);
e6b245cc
MW
2103
2104 sw->tb = tb;
2105 sw->config.depth = tb_route_length(route);
2106 sw->config.route_hi = upper_32_bits(route);
2107 sw->config.route_lo = lower_32_bits(route);
2108 sw->safe_mode = true;
2109
2110 device_initialize(&sw->dev);
2111 sw->dev.parent = parent;
2112 sw->dev.bus = &tb_bus_type;
2113 sw->dev.type = &tb_switch_type;
2114 sw->dev.groups = switch_groups;
2115 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2116
2117 return sw;
2118}
2119
bfe778ac
MW
2120/**
2121 * tb_switch_configure() - Uploads configuration to the switch
2122 * @sw: Switch to configure
2123 *
2124 * Call this function before the switch is added to the system. It will
2125 * upload configuration to the switch and makes it available for the
b0407983
MW
2126 * connection manager to use. Can be called to the switch again after
2127 * resume from low power states to re-initialize it.
bfe778ac
MW
2128 *
2129 * Return: %0 in case of success and negative errno in case of failure
2130 */
2131int tb_switch_configure(struct tb_switch *sw)
2132{
2133 struct tb *tb = sw->tb;
2134 u64 route;
2135 int ret;
2136
2137 route = tb_route(sw);
bfe778ac 2138
b0407983 2139 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
b2911a59 2140 sw->config.enabled ? "restoring" : "initializing", route,
b0407983 2141 tb_route_length(route), sw->config.upstream_port_number);
bfe778ac 2142
bfe778ac
MW
2143 sw->config.enabled = 1;
2144
b0407983
MW
2145 if (tb_switch_is_usb4(sw)) {
2146 /*
2147 * For USB4 devices, we need to program the CM version
2148 * accordingly so that it knows to expose all the
2149 * additional capabilities.
2150 */
2151 sw->config.cmuv = USB4_VERSION_1_0;
2152
2153 /* Enumerate the switch */
2154 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2155 ROUTER_CS_1, 4);
2156 if (ret)
2157 return ret;
bfe778ac 2158
b0407983 2159 ret = usb4_switch_setup(sw);
b0407983
MW
2160 } else {
2161 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2162 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2163 sw->config.vendor_id);
2164
2165 if (!sw->cap_plug_events) {
2166 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2167 return -ENODEV;
2168 }
2169
2170 /* Enumerate the switch */
2171 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2172 ROUTER_CS_1, 3);
b0407983 2173 }
e879a709
MW
2174 if (ret)
2175 return ret;
2176
bfe778ac
MW
2177 return tb_plug_events_active(sw, true);
2178}
2179
2cc12751 2180static int tb_switch_set_uuid(struct tb_switch *sw)
bfe778ac 2181{
b0407983 2182 bool uid = false;
bfe778ac 2183 u32 uuid[4];
a9be5582 2184 int ret;
bfe778ac
MW
2185
2186 if (sw->uuid)
a9be5582 2187 return 0;
bfe778ac 2188
b0407983
MW
2189 if (tb_switch_is_usb4(sw)) {
2190 ret = usb4_switch_read_uid(sw, &sw->uid);
2191 if (ret)
2192 return ret;
2193 uid = true;
2194 } else {
2195 /*
2196 * The newer controllers include fused UUID as part of
2197 * link controller specific registers
2198 */
2199 ret = tb_lc_read_uuid(sw, uuid);
2200 if (ret) {
2201 if (ret != -EINVAL)
2202 return ret;
2203 uid = true;
2204 }
2205 }
2206
2207 if (uid) {
bfe778ac
MW
2208 /*
2209 * ICM generates UUID based on UID and fills the upper
2210 * two words with ones. This is not strictly following
2211 * UUID format but we want to be compatible with it so
2212 * we do the same here.
2213 */
2214 uuid[0] = sw->uid & 0xffffffff;
2215 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2216 uuid[2] = 0xffffffff;
2217 uuid[3] = 0xffffffff;
2218 }
2219
2220 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2cc12751 2221 if (!sw->uuid)
a9be5582
MW
2222 return -ENOMEM;
2223 return 0;
bfe778ac
MW
2224}
2225
e6b245cc 2226static int tb_switch_add_dma_port(struct tb_switch *sw)
3e136768 2227{
e6b245cc
MW
2228 u32 status;
2229 int ret;
2230
3e136768 2231 switch (sw->generation) {
3e136768
MW
2232 case 2:
2233 /* Only root switch can be upgraded */
2234 if (tb_route(sw))
e6b245cc 2235 return 0;
7a7ebfa8 2236
df561f66 2237 fallthrough;
7a7ebfa8 2238 case 3:
661b1947 2239 case 4:
7a7ebfa8
MW
2240 ret = tb_switch_set_uuid(sw);
2241 if (ret)
2242 return ret;
3e136768
MW
2243 break;
2244
2245 default:
e6b245cc
MW
2246 /*
2247 * DMA port is the only thing available when the switch
2248 * is in safe mode.
2249 */
2250 if (!sw->safe_mode)
2251 return 0;
2252 break;
3e136768
MW
2253 }
2254
661b1947
MW
2255 if (sw->no_nvm_upgrade)
2256 return 0;
2257
2258 if (tb_switch_is_usb4(sw)) {
2259 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2260 if (ret)
2261 return ret;
2262
2263 if (status) {
2264 tb_sw_info(sw, "switch flash authentication failed\n");
2265 nvm_set_auth_status(sw, status);
2266 }
2267
2268 return 0;
2269 }
2270
3f415e5e 2271 /* Root switch DMA port requires running firmware */
f07a3608 2272 if (!tb_route(sw) && !tb_switch_is_icm(sw))
e6b245cc
MW
2273 return 0;
2274
3e136768 2275 sw->dma_port = dma_port_alloc(sw);
e6b245cc
MW
2276 if (!sw->dma_port)
2277 return 0;
2278
7a7ebfa8
MW
2279 /*
2280 * If there is status already set then authentication failed
2281 * when the dma_port_flash_update_auth() returned. Power cycling
2282 * is not needed (it was done already) so only thing we do here
2283 * is to unblock runtime PM of the root port.
2284 */
2285 nvm_get_auth_status(sw, &status);
2286 if (status) {
2287 if (!tb_route(sw))
b0407983 2288 nvm_authenticate_complete_dma_port(sw);
7a7ebfa8
MW
2289 return 0;
2290 }
2291
e6b245cc
MW
2292 /*
2293 * Check status of the previous flash authentication. If there
2294 * is one we need to power cycle the switch in any case to make
2295 * it functional again.
2296 */
2297 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2298 if (ret <= 0)
2299 return ret;
2300
1830b6ee
MW
2301 /* Now we can allow root port to suspend again */
2302 if (!tb_route(sw))
b0407983 2303 nvm_authenticate_complete_dma_port(sw);
1830b6ee 2304
e6b245cc
MW
2305 if (status) {
2306 tb_sw_info(sw, "switch flash authentication failed\n");
e6b245cc
MW
2307 nvm_set_auth_status(sw, status);
2308 }
2309
2310 tb_sw_info(sw, "power cycling the switch now\n");
2311 dma_port_power_cycle(sw->dma_port);
2312
2313 /*
2314 * We return error here which causes the switch adding failure.
2315 * It should appear back after power cycle is complete.
2316 */
2317 return -ESHUTDOWN;
3e136768
MW
2318}
2319
0d46c08d
MW
2320static void tb_switch_default_link_ports(struct tb_switch *sw)
2321{
2322 int i;
2323
2324 for (i = 1; i <= sw->config.max_port_number; i += 2) {
2325 struct tb_port *port = &sw->ports[i];
2326 struct tb_port *subordinate;
2327
2328 if (!tb_port_is_null(port))
2329 continue;
2330
2331 /* Check for the subordinate port */
2332 if (i == sw->config.max_port_number ||
2333 !tb_port_is_null(&sw->ports[i + 1]))
2334 continue;
2335
2336 /* Link them if not already done so (by DROM) */
2337 subordinate = &sw->ports[i + 1];
2338 if (!port->dual_link_port && !subordinate->dual_link_port) {
2339 port->link_nr = 0;
2340 port->dual_link_port = subordinate;
2341 subordinate->link_nr = 1;
2342 subordinate->dual_link_port = port;
2343
2344 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2345 port->port, subordinate->port);
2346 }
2347 }
2348}
2349
91c0c120
MW
2350static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2351{
2352 const struct tb_port *up = tb_upstream_port(sw);
2353
2354 if (!up->dual_link_port || !up->dual_link_port->remote)
2355 return false;
2356
b0407983
MW
2357 if (tb_switch_is_usb4(sw))
2358 return usb4_switch_lane_bonding_possible(sw);
91c0c120
MW
2359 return tb_lc_lane_bonding_possible(sw);
2360}
2361
2362static int tb_switch_update_link_attributes(struct tb_switch *sw)
2363{
2364 struct tb_port *up;
2365 bool change = false;
2366 int ret;
2367
2368 if (!tb_route(sw) || tb_switch_is_icm(sw))
2369 return 0;
2370
2371 up = tb_upstream_port(sw);
2372
2373 ret = tb_port_get_link_speed(up);
2374 if (ret < 0)
2375 return ret;
2376 if (sw->link_speed != ret)
2377 change = true;
2378 sw->link_speed = ret;
2379
2380 ret = tb_port_get_link_width(up);
2381 if (ret < 0)
2382 return ret;
2383 if (sw->link_width != ret)
2384 change = true;
2385 sw->link_width = ret;
2386
2387 /* Notify userspace that there is possible link attribute change */
2388 if (device_is_registered(&sw->dev) && change)
2389 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2390
2391 return 0;
2392}
2393
2394/**
2395 * tb_switch_lane_bonding_enable() - Enable lane bonding
2396 * @sw: Switch to enable lane bonding
2397 *
2398 * Connection manager can call this function to enable lane bonding of a
2399 * switch. If conditions are correct and both switches support the feature,
2400 * lanes are bonded. It is safe to call this to any switch.
2401 */
2402int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2403{
2404 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2405 struct tb_port *up, *down;
2406 u64 route = tb_route(sw);
2407 int ret;
2408
2409 if (!route)
2410 return 0;
2411
2412 if (!tb_switch_lane_bonding_possible(sw))
2413 return 0;
2414
2415 up = tb_upstream_port(sw);
2416 down = tb_port_at(route, parent);
2417
2418 if (!tb_port_is_width_supported(up, 2) ||
2419 !tb_port_is_width_supported(down, 2))
2420 return 0;
2421
2422 ret = tb_port_lane_bonding_enable(up);
2423 if (ret) {
2424 tb_port_warn(up, "failed to enable lane bonding\n");
2425 return ret;
2426 }
2427
2428 ret = tb_port_lane_bonding_enable(down);
2429 if (ret) {
2430 tb_port_warn(down, "failed to enable lane bonding\n");
2431 tb_port_lane_bonding_disable(up);
2432 return ret;
2433 }
2434
2435 tb_switch_update_link_attributes(sw);
2436
2437 tb_sw_dbg(sw, "lane bonding enabled\n");
2438 return ret;
2439}
2440
2441/**
2442 * tb_switch_lane_bonding_disable() - Disable lane bonding
2443 * @sw: Switch whose lane bonding to disable
2444 *
2445 * Disables lane bonding between @sw and parent. This can be called even
2446 * if lanes were not bonded originally.
2447 */
2448void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2449{
2450 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2451 struct tb_port *up, *down;
2452
2453 if (!tb_route(sw))
2454 return;
2455
2456 up = tb_upstream_port(sw);
2457 if (!up->bonded)
2458 return;
2459
2460 down = tb_port_at(tb_route(sw), parent);
2461
2462 tb_port_lane_bonding_disable(up);
2463 tb_port_lane_bonding_disable(down);
2464
2465 tb_switch_update_link_attributes(sw);
2466 tb_sw_dbg(sw, "lane bonding disabled\n");
2467}
2468
de462039
MW
2469/**
2470 * tb_switch_configure_link() - Set link configured
2471 * @sw: Switch whose link is configured
2472 *
2473 * Sets the link upstream from @sw configured (from both ends) so that
2474 * it will not be disconnected when the domain exits sleep. Can be
2475 * called for any switch.
2476 *
2477 * It is recommended that this is called after lane bonding is enabled.
2478 *
2479 * Returns %0 on success and negative errno in case of error.
2480 */
2481int tb_switch_configure_link(struct tb_switch *sw)
2482{
e28178bf
MW
2483 struct tb_port *up, *down;
2484 int ret;
2485
de462039
MW
2486 if (!tb_route(sw) || tb_switch_is_icm(sw))
2487 return 0;
2488
e28178bf
MW
2489 up = tb_upstream_port(sw);
2490 if (tb_switch_is_usb4(up->sw))
2491 ret = usb4_port_configure(up);
2492 else
2493 ret = tb_lc_configure_port(up);
2494 if (ret)
2495 return ret;
2496
2497 down = up->remote;
2498 if (tb_switch_is_usb4(down->sw))
2499 return usb4_port_configure(down);
2500 return tb_lc_configure_port(down);
de462039
MW
2501}
2502
2503/**
2504 * tb_switch_unconfigure_link() - Unconfigure link
2505 * @sw: Switch whose link is unconfigured
2506 *
2507 * Sets the link unconfigured so the @sw will be disconnected if the
2508 * domain exists sleep.
2509 */
2510void tb_switch_unconfigure_link(struct tb_switch *sw)
2511{
e28178bf
MW
2512 struct tb_port *up, *down;
2513
de462039
MW
2514 if (sw->is_unplugged)
2515 return;
2516 if (!tb_route(sw) || tb_switch_is_icm(sw))
2517 return;
2518
e28178bf
MW
2519 up = tb_upstream_port(sw);
2520 if (tb_switch_is_usb4(up->sw))
2521 usb4_port_unconfigure(up);
2522 else
2523 tb_lc_unconfigure_port(up);
2524
2525 down = up->remote;
2526 if (tb_switch_is_usb4(down->sw))
2527 usb4_port_unconfigure(down);
de462039 2528 else
e28178bf 2529 tb_lc_unconfigure_port(down);
de462039
MW
2530}
2531
bfe778ac
MW
2532/**
2533 * tb_switch_add() - Add a switch to the domain
2534 * @sw: Switch to add
2535 *
2536 * This is the last step in adding switch to the domain. It will read
2537 * identification information from DROM and initializes ports so that
2538 * they can be used to connect other switches. The switch will be
2539 * exposed to the userspace when this function successfully returns. To
2540 * remove and release the switch, call tb_switch_remove().
2541 *
2542 * Return: %0 in case of success and negative errno in case of failure
2543 */
2544int tb_switch_add(struct tb_switch *sw)
2545{
2546 int i, ret;
2547
3e136768
MW
2548 /*
2549 * Initialize DMA control port now before we read DROM. Recent
2550 * host controllers have more complete DROM on NVM that includes
2551 * vendor and model identification strings which we then expose
2552 * to the userspace. NVM can be accessed through DMA
2553 * configuration based mailbox.
2554 */
e6b245cc 2555 ret = tb_switch_add_dma_port(sw);
af99f696
MW
2556 if (ret) {
2557 dev_err(&sw->dev, "failed to add DMA port\n");
f53e7676 2558 return ret;
af99f696 2559 }
343fcb8c 2560
e6b245cc
MW
2561 if (!sw->safe_mode) {
2562 /* read drom */
2563 ret = tb_drom_read(sw);
2564 if (ret) {
af99f696 2565 dev_err(&sw->dev, "reading DROM failed\n");
e6b245cc
MW
2566 return ret;
2567 }
daa5140f 2568 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
bfe778ac 2569
e23a5afd
MW
2570 tb_check_quirks(sw);
2571
2cc12751 2572 ret = tb_switch_set_uuid(sw);
af99f696
MW
2573 if (ret) {
2574 dev_err(&sw->dev, "failed to set UUID\n");
2cc12751 2575 return ret;
af99f696 2576 }
e6b245cc
MW
2577
2578 for (i = 0; i <= sw->config.max_port_number; i++) {
2579 if (sw->ports[i].disabled) {
daa5140f 2580 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
e6b245cc
MW
2581 continue;
2582 }
2583 ret = tb_init_port(&sw->ports[i]);
af99f696
MW
2584 if (ret) {
2585 dev_err(&sw->dev, "failed to initialize port %d\n", i);
e6b245cc 2586 return ret;
af99f696 2587 }
343fcb8c 2588 }
91c0c120 2589
0d46c08d
MW
2590 tb_switch_default_link_ports(sw);
2591
91c0c120
MW
2592 ret = tb_switch_update_link_attributes(sw);
2593 if (ret)
2594 return ret;
cf29b9af
RM
2595
2596 ret = tb_switch_tmu_init(sw);
2597 if (ret)
2598 return ret;
343fcb8c
AN
2599 }
2600
e6b245cc 2601 ret = device_add(&sw->dev);
af99f696
MW
2602 if (ret) {
2603 dev_err(&sw->dev, "failed to add device: %d\n", ret);
e6b245cc 2604 return ret;
af99f696 2605 }
e6b245cc 2606
a83bc4a5
MW
2607 if (tb_route(sw)) {
2608 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2609 sw->vendor, sw->device);
2610 if (sw->vendor_name && sw->device_name)
2611 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2612 sw->device_name);
2613 }
2614
e6b245cc 2615 ret = tb_switch_nvm_add(sw);
2d8ff0b5 2616 if (ret) {
af99f696 2617 dev_err(&sw->dev, "failed to add NVM devices\n");
e6b245cc 2618 device_del(&sw->dev);
2d8ff0b5
MW
2619 return ret;
2620 }
e6b245cc 2621
b2911a59
MW
2622 /*
2623 * Thunderbolt routers do not generate wakeups themselves but
2624 * they forward wakeups from tunneled protocols, so enable it
2625 * here.
2626 */
2627 device_init_wakeup(&sw->dev, true);
2628
2d8ff0b5
MW
2629 pm_runtime_set_active(&sw->dev);
2630 if (sw->rpm) {
2631 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2632 pm_runtime_use_autosuspend(&sw->dev);
2633 pm_runtime_mark_last_busy(&sw->dev);
2634 pm_runtime_enable(&sw->dev);
2635 pm_request_autosuspend(&sw->dev);
2636 }
2637
54e41810 2638 tb_switch_debugfs_init(sw);
2d8ff0b5 2639 return 0;
bfe778ac 2640}
c90553b3 2641
bfe778ac
MW
2642/**
2643 * tb_switch_remove() - Remove and release a switch
2644 * @sw: Switch to remove
2645 *
2646 * This will remove the switch from the domain and release it after last
2647 * reference count drops to zero. If there are switches connected below
2648 * this switch, they will be removed as well.
2649 */
2650void tb_switch_remove(struct tb_switch *sw)
2651{
b433d010 2652 struct tb_port *port;
ca389f71 2653
54e41810
GF
2654 tb_switch_debugfs_remove(sw);
2655
2d8ff0b5
MW
2656 if (sw->rpm) {
2657 pm_runtime_get_sync(&sw->dev);
2658 pm_runtime_disable(&sw->dev);
2659 }
2660
bfe778ac 2661 /* port 0 is the switch itself and never has a remote */
b433d010
MW
2662 tb_switch_for_each_port(sw, port) {
2663 if (tb_port_has_remote(port)) {
2664 tb_switch_remove(port->remote->sw);
2665 port->remote = NULL;
2666 } else if (port->xdomain) {
2667 tb_xdomain_remove(port->xdomain);
2668 port->xdomain = NULL;
dfe40ca4 2669 }
dacb1287
KK
2670
2671 /* Remove any downstream retimers */
2672 tb_retimer_remove_all(port);
bfe778ac
MW
2673 }
2674
2675 if (!sw->is_unplugged)
2676 tb_plug_events_active(sw, false);
b0407983 2677
e6b245cc 2678 tb_switch_nvm_remove(sw);
a83bc4a5
MW
2679
2680 if (tb_route(sw))
2681 dev_info(&sw->dev, "device disconnected\n");
bfe778ac 2682 device_unregister(&sw->dev);
a25c8b2f
AN
2683}
2684
053596d9 2685/**
aae20bb6 2686 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
5c6b471b 2687 * @sw: Router to mark unplugged
053596d9 2688 */
aae20bb6 2689void tb_sw_set_unplugged(struct tb_switch *sw)
053596d9 2690{
b433d010
MW
2691 struct tb_port *port;
2692
053596d9
AN
2693 if (sw == sw->tb->root_switch) {
2694 tb_sw_WARN(sw, "cannot unplug root switch\n");
2695 return;
2696 }
2697 if (sw->is_unplugged) {
2698 tb_sw_WARN(sw, "is_unplugged already set\n");
2699 return;
2700 }
2701 sw->is_unplugged = true;
b433d010
MW
2702 tb_switch_for_each_port(sw, port) {
2703 if (tb_port_has_remote(port))
2704 tb_sw_set_unplugged(port->remote->sw);
2705 else if (port->xdomain)
2706 port->xdomain->is_unplugged = true;
053596d9
AN
2707 }
2708}
2709
b2911a59
MW
2710static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2711{
2712 if (flags)
2713 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2714 else
2715 tb_sw_dbg(sw, "disabling wakeup\n");
2716
2717 if (tb_switch_is_usb4(sw))
2718 return usb4_switch_set_wake(sw, flags);
2719 return tb_lc_set_wake(sw, flags);
2720}
2721
23dd5bb4
AN
2722int tb_switch_resume(struct tb_switch *sw)
2723{
b433d010
MW
2724 struct tb_port *port;
2725 int err;
2726
daa5140f 2727 tb_sw_dbg(sw, "resuming switch\n");
23dd5bb4 2728
08a5e4ce
MW
2729 /*
2730 * Check for UID of the connected switches except for root
2731 * switch which we assume cannot be removed.
2732 */
2733 if (tb_route(sw)) {
2734 u64 uid;
2735
7ea4cd6b
MW
2736 /*
2737 * Check first that we can still read the switch config
2738 * space. It may be that there is now another domain
2739 * connected.
2740 */
2741 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2742 if (err < 0) {
2743 tb_sw_info(sw, "switch not present anymore\n");
2744 return err;
2745 }
2746
b0407983
MW
2747 if (tb_switch_is_usb4(sw))
2748 err = usb4_switch_read_uid(sw, &uid);
2749 else
2750 err = tb_drom_read_uid_only(sw, &uid);
08a5e4ce
MW
2751 if (err) {
2752 tb_sw_warn(sw, "uid read failed\n");
2753 return err;
2754 }
2755 if (sw->uid != uid) {
2756 tb_sw_info(sw,
2757 "changed while suspended (uid %#llx -> %#llx)\n",
2758 sw->uid, uid);
2759 return -ENODEV;
2760 }
23dd5bb4
AN
2761 }
2762
b0407983 2763 err = tb_switch_configure(sw);
23dd5bb4
AN
2764 if (err)
2765 return err;
2766
b2911a59
MW
2767 /* Disable wakes */
2768 tb_switch_set_wake(sw, 0);
2769
8145c435
MW
2770 err = tb_switch_tmu_init(sw);
2771 if (err)
2772 return err;
2773
23dd5bb4 2774 /* check for surviving downstream switches */
b433d010 2775 tb_switch_for_each_port(sw, port) {
fdb0887c
MW
2776 if (!tb_port_has_remote(port) && !port->xdomain) {
2777 /*
2778 * For disconnected downstream lane adapters
2779 * start lane initialization now so we detect
2780 * future connects.
2781 */
2782 if (!tb_is_upstream_port(port) && tb_port_is_null(port))
2783 tb_port_start_lane_initialization(port);
23dd5bb4 2784 continue;
fdb0887c
MW
2785 } else if (port->xdomain) {
2786 /*
2787 * Start lane initialization for XDomain so the
2788 * link gets re-established.
2789 */
2790 tb_port_start_lane_initialization(port);
2791 }
dfe40ca4 2792
7ea4cd6b 2793 if (tb_wait_for_port(port, true) <= 0) {
23dd5bb4
AN
2794 tb_port_warn(port,
2795 "lost during suspend, disconnecting\n");
7ea4cd6b
MW
2796 if (tb_port_has_remote(port))
2797 tb_sw_set_unplugged(port->remote->sw);
2798 else if (port->xdomain)
2799 port->xdomain->is_unplugged = true;
b0407983
MW
2800 } else if (tb_port_has_remote(port) || port->xdomain) {
2801 /*
2802 * Always unlock the port so the downstream
2803 * switch/domain is accessible.
2804 */
2805 if (tb_port_unlock(port))
2806 tb_port_warn(port, "failed to unlock port\n");
2807 if (port->remote && tb_switch_resume(port->remote->sw)) {
7ea4cd6b
MW
2808 tb_port_warn(port,
2809 "lost during suspend, disconnecting\n");
2810 tb_sw_set_unplugged(port->remote->sw);
2811 }
23dd5bb4
AN
2812 }
2813 }
2814 return 0;
2815}
2816
6ac6faee
MW
2817/**
2818 * tb_switch_suspend() - Put a switch to sleep
2819 * @sw: Switch to suspend
2820 * @runtime: Is this runtime suspend or system sleep
2821 *
2822 * Suspends router and all its children. Enables wakes according to
2823 * value of @runtime and then sets sleep bit for the router. If @sw is
2824 * host router the domain is ready to go to sleep once this function
2825 * returns.
2826 */
2827void tb_switch_suspend(struct tb_switch *sw, bool runtime)
23dd5bb4 2828{
b2911a59 2829 unsigned int flags = 0;
b433d010
MW
2830 struct tb_port *port;
2831 int err;
2832
6ac6faee
MW
2833 tb_sw_dbg(sw, "suspending switch\n");
2834
23dd5bb4
AN
2835 err = tb_plug_events_active(sw, false);
2836 if (err)
2837 return;
2838
b433d010
MW
2839 tb_switch_for_each_port(sw, port) {
2840 if (tb_port_has_remote(port))
6ac6faee 2841 tb_switch_suspend(port->remote->sw, runtime);
23dd5bb4 2842 }
5480dfc2 2843
6ac6faee
MW
2844 if (runtime) {
2845 /* Trigger wake when something is plugged in/out */
2846 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
6026b703
MW
2847 flags |= TB_WAKE_ON_USB4;
2848 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
6ac6faee
MW
2849 } else if (device_may_wakeup(&sw->dev)) {
2850 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
2851 }
b2911a59
MW
2852
2853 tb_switch_set_wake(sw, flags);
2854
b0407983
MW
2855 if (tb_switch_is_usb4(sw))
2856 usb4_switch_set_sleep(sw);
2857 else
2858 tb_lc_set_sleep(sw);
23dd5bb4 2859}
f67cf491 2860
8afe909b
MW
2861/**
2862 * tb_switch_query_dp_resource() - Query availability of DP resource
2863 * @sw: Switch whose DP resource is queried
2864 * @in: DP IN port
2865 *
2866 * Queries availability of DP resource for DP tunneling using switch
2867 * specific means. Returns %true if resource is available.
2868 */
2869bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
2870{
b0407983
MW
2871 if (tb_switch_is_usb4(sw))
2872 return usb4_switch_query_dp_resource(sw, in);
8afe909b
MW
2873 return tb_lc_dp_sink_query(sw, in);
2874}
2875
2876/**
2877 * tb_switch_alloc_dp_resource() - Allocate available DP resource
2878 * @sw: Switch whose DP resource is allocated
2879 * @in: DP IN port
2880 *
2881 * Allocates DP resource for DP tunneling. The resource must be
2882 * available for this to succeed (see tb_switch_query_dp_resource()).
2883 * Returns %0 in success and negative errno otherwise.
2884 */
2885int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2886{
b0407983
MW
2887 if (tb_switch_is_usb4(sw))
2888 return usb4_switch_alloc_dp_resource(sw, in);
8afe909b
MW
2889 return tb_lc_dp_sink_alloc(sw, in);
2890}
2891
2892/**
2893 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
2894 * @sw: Switch whose DP resource is de-allocated
2895 * @in: DP IN port
2896 *
2897 * De-allocates DP resource that was previously allocated for DP
2898 * tunneling.
2899 */
2900void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
2901{
b0407983
MW
2902 int ret;
2903
2904 if (tb_switch_is_usb4(sw))
2905 ret = usb4_switch_dealloc_dp_resource(sw, in);
2906 else
2907 ret = tb_lc_dp_sink_dealloc(sw, in);
2908
2909 if (ret)
8afe909b
MW
2910 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
2911 in->port);
8afe909b
MW
2912}
2913
f67cf491
MW
2914struct tb_sw_lookup {
2915 struct tb *tb;
2916 u8 link;
2917 u8 depth;
7c39ffe7 2918 const uuid_t *uuid;
8e9267bb 2919 u64 route;
f67cf491
MW
2920};
2921
418e3ea1 2922static int tb_switch_match(struct device *dev, const void *data)
f67cf491
MW
2923{
2924 struct tb_switch *sw = tb_to_switch(dev);
418e3ea1 2925 const struct tb_sw_lookup *lookup = data;
f67cf491
MW
2926
2927 if (!sw)
2928 return 0;
2929 if (sw->tb != lookup->tb)
2930 return 0;
2931
2932 if (lookup->uuid)
2933 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2934
8e9267bb
RM
2935 if (lookup->route) {
2936 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2937 sw->config.route_hi == upper_32_bits(lookup->route);
2938 }
2939
f67cf491
MW
2940 /* Root switch is matched only by depth */
2941 if (!lookup->depth)
2942 return !sw->depth;
2943
2944 return sw->link == lookup->link && sw->depth == lookup->depth;
2945}
2946
2947/**
2948 * tb_switch_find_by_link_depth() - Find switch by link and depth
2949 * @tb: Domain the switch belongs
2950 * @link: Link number the switch is connected
2951 * @depth: Depth of the switch in link
2952 *
2953 * Returned switch has reference count increased so the caller needs to
2954 * call tb_switch_put() when done with the switch.
2955 */
2956struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2957{
2958 struct tb_sw_lookup lookup;
2959 struct device *dev;
2960
2961 memset(&lookup, 0, sizeof(lookup));
2962 lookup.tb = tb;
2963 lookup.link = link;
2964 lookup.depth = depth;
2965
2966 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2967 if (dev)
2968 return tb_to_switch(dev);
2969
2970 return NULL;
2971}
2972
2973/**
432019d6 2974 * tb_switch_find_by_uuid() - Find switch by UUID
f67cf491
MW
2975 * @tb: Domain the switch belongs
2976 * @uuid: UUID to look for
2977 *
2978 * Returned switch has reference count increased so the caller needs to
2979 * call tb_switch_put() when done with the switch.
2980 */
7c39ffe7 2981struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
f67cf491
MW
2982{
2983 struct tb_sw_lookup lookup;
2984 struct device *dev;
2985
2986 memset(&lookup, 0, sizeof(lookup));
2987 lookup.tb = tb;
2988 lookup.uuid = uuid;
2989
2990 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2991 if (dev)
2992 return tb_to_switch(dev);
2993
2994 return NULL;
2995}
e6b245cc 2996
8e9267bb
RM
2997/**
2998 * tb_switch_find_by_route() - Find switch by route string
2999 * @tb: Domain the switch belongs
3000 * @route: Route string to look for
3001 *
3002 * Returned switch has reference count increased so the caller needs to
3003 * call tb_switch_put() when done with the switch.
3004 */
3005struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3006{
3007 struct tb_sw_lookup lookup;
3008 struct device *dev;
3009
3010 if (!route)
3011 return tb_switch_get(tb->root_switch);
3012
3013 memset(&lookup, 0, sizeof(lookup));
3014 lookup.tb = tb;
3015 lookup.route = route;
3016
3017 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3018 if (dev)
3019 return tb_to_switch(dev);
3020
3021 return NULL;
3022}
3023
386e5e29
MW
3024/**
3025 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3026 * @sw: Switch to find the port from
3027 * @type: Port type to look for
3028 */
3029struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3030 enum tb_port_type type)
3031{
3032 struct tb_port *port;
3033
3034 tb_switch_for_each_port(sw, port) {
3035 if (port->config.type == type)
3036 return port;
3037 }
3038
3039 return NULL;
3040}