thermal: power allocator: change the 'k_i' coefficient estimation
[linux-block.git] / drivers / thermal / gov_power_allocator.c
CommitLineData
0de967f2 1// SPDX-License-Identifier: GPL-2.0
6b775e87
JM
2/*
3 * A power allocator to manage temperature
4 *
5 * Copyright (C) 2014 ARM Ltd.
6 *
6b775e87
JM
7 */
8
9#define pr_fmt(fmt) "Power allocator: " fmt
10
11#include <linux/rculist.h>
12#include <linux/slab.h>
13#include <linux/thermal.h>
14
6828a471
JM
15#define CREATE_TRACE_POINTS
16#include <trace/events/thermal_power_allocator.h>
17
6b775e87
JM
18#include "thermal_core.h"
19
8b7b390f
JM
20#define INVALID_TRIP -1
21
6b775e87
JM
22#define FRAC_BITS 10
23#define int_to_frac(x) ((x) << FRAC_BITS)
24#define frac_to_int(x) ((x) >> FRAC_BITS)
25
26/**
27 * mul_frac() - multiply two fixed-point numbers
28 * @x: first multiplicand
29 * @y: second multiplicand
30 *
31 * Return: the result of multiplying two fixed-point numbers. The
32 * result is also a fixed-point number.
33 */
34static inline s64 mul_frac(s64 x, s64 y)
35{
36 return (x * y) >> FRAC_BITS;
37}
38
39/**
40 * div_frac() - divide two fixed-point numbers
41 * @x: the dividend
42 * @y: the divisor
43 *
44 * Return: the result of dividing two fixed-point numbers. The
45 * result is also a fixed-point number.
46 */
47static inline s64 div_frac(s64 x, s64 y)
48{
49 return div_s64(x << FRAC_BITS, y);
50}
51
52/**
53 * struct power_allocator_params - parameters for the power allocator governor
f5cbb182
JM
54 * @allocated_tzp: whether we have allocated tzp for this thermal zone and
55 * it needs to be freed on unbind
6b775e87
JM
56 * @err_integral: accumulated error in the PID controller.
57 * @prev_err: error in the previous iteration of the PID controller.
58 * Used to calculate the derivative term.
59 * @trip_switch_on: first passive trip point of the thermal zone. The
60 * governor switches on when this trip point is crossed.
8b7b390f
JM
61 * If the thermal zone only has one passive trip point,
62 * @trip_switch_on should be INVALID_TRIP.
6b775e87
JM
63 * @trip_max_desired_temperature: last passive trip point of the thermal
64 * zone. The temperature we are
65 * controlling for.
66 */
67struct power_allocator_params {
f5cbb182 68 bool allocated_tzp;
6b775e87
JM
69 s64 err_integral;
70 s32 prev_err;
71 int trip_switch_on;
72 int trip_max_desired_temperature;
73};
74
e055bb0f
JM
75/**
76 * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
77 * @tz: thermal zone we are operating in
78 *
79 * For thermal zones that don't provide a sustainable_power in their
80 * thermal_zone_params, estimate one. Calculate it using the minimum
81 * power of all the cooling devices as that gives a valid value that
82 * can give some degree of functionality. For optimal performance of
83 * this governor, provide a sustainable_power in the thermal zone's
84 * thermal_zone_params.
85 */
86static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
87{
88 u32 sustainable_power = 0;
89 struct thermal_instance *instance;
90 struct power_allocator_params *params = tz->governor_data;
91
92 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
93 struct thermal_cooling_device *cdev = instance->cdev;
94 u32 min_power;
95
96 if (instance->trip != params->trip_max_desired_temperature)
97 continue;
98
8132df3a
LL
99 if (!cdev_is_power_actor(cdev))
100 continue;
101
102 if (cdev->ops->state2power(cdev, instance->upper, &min_power))
e055bb0f
JM
103 continue;
104
105 sustainable_power += min_power;
106 }
107
108 return sustainable_power;
109}
110
111/**
112 * estimate_pid_constants() - Estimate the constants for the PID controller
113 * @tz: thermal zone for which to estimate the constants
114 * @sustainable_power: sustainable power for the thermal zone
115 * @trip_switch_on: trip point number for the switch on temperature
116 * @control_temp: target temperature for the power allocator governor
117 * @force: whether to force the update of the constants
118 *
119 * This function is used to update the estimation of the PID
120 * controller constants in struct thermal_zone_parameters.
121 * Sustainable power is provided in case it was estimated. The
122 * estimated sustainable_power should not be stored in the
123 * thermal_zone_parameters so it has to be passed explicitly to this
124 * function.
125 *
126 * If @force is not set, the values in the thermal zone's parameters
127 * are preserved if they are not zero. If @force is set, the values
128 * in thermal zone's parameters are overwritten.
129 */
130static void estimate_pid_constants(struct thermal_zone_device *tz,
131 u32 sustainable_power, int trip_switch_on,
132 int control_temp, bool force)
133{
134 int ret;
135 int switch_on_temp;
136 u32 temperature_threshold;
e34a7233 137 s32 k_i;
e055bb0f
JM
138
139 ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp);
140 if (ret)
141 switch_on_temp = 0;
142
143 temperature_threshold = control_temp - switch_on_temp;
44241628
AA
144 /*
145 * estimate_pid_constants() tries to find appropriate default
146 * values for thermal zones that don't provide them. If a
147 * system integrator has configured a thermal zone with two
148 * passive trip points at the same temperature, that person
149 * hasn't put any effort to set up the thermal zone properly
150 * so just give up.
151 */
152 if (!temperature_threshold)
153 return;
e055bb0f
JM
154
155 if (!tz->tzp->k_po || force)
156 tz->tzp->k_po = int_to_frac(sustainable_power) /
157 temperature_threshold;
158
159 if (!tz->tzp->k_pu || force)
160 tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
161 temperature_threshold;
162
e34a7233
LL
163 if (!tz->tzp->k_i || force) {
164 k_i = tz->tzp->k_pu / 10;
165 tz->tzp->k_i = k_i > 0 ? k_i : 1;
166 }
167
e055bb0f
JM
168 /*
169 * The default for k_d and integral_cutoff is 0, so we can
170 * leave them as they are.
171 */
172}
173
6b775e87
JM
174/**
175 * pid_controller() - PID controller
176 * @tz: thermal zone we are operating in
6b775e87
JM
177 * @control_temp: the target temperature in millicelsius
178 * @max_allocatable_power: maximum allocatable power for this thermal zone
179 *
180 * This PID controller increases the available power budget so that the
181 * temperature of the thermal zone gets as close as possible to
182 * @control_temp and limits the power if it exceeds it. k_po is the
183 * proportional term when we are overshooting, k_pu is the
184 * proportional term when we are undershooting. integral_cutoff is a
185 * threshold below which we stop accumulating the error. The
186 * accumulated error is only valid if the requested power will make
187 * the system warmer. If the system is mostly idle, there's no point
188 * in accumulating positive error.
189 *
190 * Return: The power budget for the next period.
191 */
192static u32 pid_controller(struct thermal_zone_device *tz,
17e8351a 193 int control_temp,
6b775e87
JM
194 u32 max_allocatable_power)
195{
196 s64 p, i, d, power_range;
197 s32 err, max_power_frac;
e055bb0f 198 u32 sustainable_power;
6b775e87
JM
199 struct power_allocator_params *params = tz->governor_data;
200
201 max_power_frac = int_to_frac(max_allocatable_power);
202
e055bb0f
JM
203 if (tz->tzp->sustainable_power) {
204 sustainable_power = tz->tzp->sustainable_power;
205 } else {
206 sustainable_power = estimate_sustainable_power(tz);
207 estimate_pid_constants(tz, sustainable_power,
208 params->trip_switch_on, control_temp,
209 true);
210 }
211
bb404db4 212 err = control_temp - tz->temperature;
6b775e87
JM
213 err = int_to_frac(err);
214
215 /* Calculate the proportional term */
216 p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
217
218 /*
219 * Calculate the integral term
220 *
221 * if the error is less than cut off allow integration (but
222 * the integral is limited to max power)
223 */
224 i = mul_frac(tz->tzp->k_i, params->err_integral);
225
226 if (err < int_to_frac(tz->tzp->integral_cutoff)) {
227 s64 i_next = i + mul_frac(tz->tzp->k_i, err);
228
79211c8e 229 if (abs(i_next) < max_power_frac) {
6b775e87
JM
230 i = i_next;
231 params->err_integral += err;
232 }
233 }
234
235 /*
236 * Calculate the derivative term
237 *
238 * We do err - prev_err, so with a positive k_d, a decreasing
239 * error (i.e. driving closer to the line) results in less
240 * power being applied, slowing down the controller)
241 */
242 d = mul_frac(tz->tzp->k_d, err - params->prev_err);
243 d = div_frac(d, tz->passive_delay);
244 params->prev_err = err;
245
246 power_range = p + i + d;
247
248 /* feed-forward the known sustainable dissipatable power */
e055bb0f 249 power_range = sustainable_power + frac_to_int(power_range);
6b775e87 250
6828a471
JM
251 power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
252
253 trace_thermal_power_allocator_pid(tz, frac_to_int(err),
254 frac_to_int(params->err_integral),
255 frac_to_int(p), frac_to_int(i),
256 frac_to_int(d), power_range);
257
258 return power_range;
6b775e87
JM
259}
260
345a8af7
LL
261/**
262 * power_actor_set_power() - limit the maximum power a cooling device consumes
263 * @cdev: pointer to &thermal_cooling_device
264 * @instance: thermal instance to update
265 * @power: the power in milliwatts
266 *
267 * Set the cooling device to consume at most @power milliwatts. The limit is
268 * expected to be a cap at the maximum power consumption.
269 *
270 * Return: 0 on success, -EINVAL if the cooling device does not
271 * implement the power actor API or -E* for other failures.
272 */
273static int
274power_actor_set_power(struct thermal_cooling_device *cdev,
275 struct thermal_instance *instance, u32 power)
276{
277 unsigned long state;
278 int ret;
279
280 ret = cdev->ops->power2state(cdev, power, &state);
281 if (ret)
282 return ret;
283
284 instance->target = clamp_val(state, instance->lower, instance->upper);
285 mutex_lock(&cdev->lock);
286 cdev->updated = false;
287 mutex_unlock(&cdev->lock);
288 thermal_cdev_update(cdev);
289
290 return 0;
291}
292
6b775e87
JM
293/**
294 * divvy_up_power() - divvy the allocated power between the actors
295 * @req_power: each actor's requested power
296 * @max_power: each actor's maximum available power
297 * @num_actors: size of the @req_power, @max_power and @granted_power's array
298 * @total_req_power: sum of @req_power
299 * @power_range: total allocated power
300 * @granted_power: output array: each actor's granted power
301 * @extra_actor_power: an appropriately sized array to be used in the
302 * function as temporary storage of the extra power given
303 * to the actors
304 *
305 * This function divides the total allocated power (@power_range)
306 * fairly between the actors. It first tries to give each actor a
307 * share of the @power_range according to how much power it requested
308 * compared to the rest of the actors. For example, if only one actor
309 * requests power, then it receives all the @power_range. If
310 * three actors each requests 1mW, each receives a third of the
311 * @power_range.
312 *
313 * If any actor received more than their maximum power, then that
314 * surplus is re-divvied among the actors based on how far they are
315 * from their respective maximums.
316 *
317 * Granted power for each actor is written to @granted_power, which
318 * should've been allocated by the calling function.
319 */
320static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
321 u32 total_req_power, u32 power_range,
322 u32 *granted_power, u32 *extra_actor_power)
323{
324 u32 extra_power, capped_extra_power;
325 int i;
326
327 /*
328 * Prevent division by 0 if none of the actors request power.
329 */
330 if (!total_req_power)
331 total_req_power = 1;
332
333 capped_extra_power = 0;
334 extra_power = 0;
335 for (i = 0; i < num_actors; i++) {
f9d03814 336 u64 req_range = (u64)req_power[i] * power_range;
6b775e87 337
ea54cac9
JM
338 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
339 total_req_power);
6b775e87
JM
340
341 if (granted_power[i] > max_power[i]) {
342 extra_power += granted_power[i] - max_power[i];
343 granted_power[i] = max_power[i];
344 }
345
346 extra_actor_power[i] = max_power[i] - granted_power[i];
347 capped_extra_power += extra_actor_power[i];
348 }
349
350 if (!extra_power)
351 return;
352
353 /*
354 * Re-divvy the reclaimed extra among actors based on
355 * how far they are from the max
356 */
357 extra_power = min(extra_power, capped_extra_power);
358 if (capped_extra_power > 0)
359 for (i = 0; i < num_actors; i++)
360 granted_power[i] += (extra_actor_power[i] *
361 extra_power) / capped_extra_power;
362}
363
364static int allocate_power(struct thermal_zone_device *tz,
17e8351a 365 int control_temp)
6b775e87
JM
366{
367 struct thermal_instance *instance;
368 struct power_allocator_params *params = tz->governor_data;
369 u32 *req_power, *max_power, *granted_power, *extra_actor_power;
d5f83109
JM
370 u32 *weighted_req_power;
371 u32 total_req_power, max_allocatable_power, total_weighted_req_power;
6828a471 372 u32 total_granted_power, power_range;
6b775e87
JM
373 int i, num_actors, total_weight, ret = 0;
374 int trip_max_desired_temperature = params->trip_max_desired_temperature;
375
376 mutex_lock(&tz->lock);
377
378 num_actors = 0;
379 total_weight = 0;
380 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
381 if ((instance->trip == trip_max_desired_temperature) &&
382 cdev_is_power_actor(instance->cdev)) {
383 num_actors++;
384 total_weight += instance->weight;
385 }
386 }
387
97584d18
JM
388 if (!num_actors) {
389 ret = -ENODEV;
390 goto unlock;
391 }
392
6b775e87 393 /*
d5f83109
JM
394 * We need to allocate five arrays of the same size:
395 * req_power, max_power, granted_power, extra_actor_power and
396 * weighted_req_power. They are going to be needed until this
397 * function returns. Allocate them all in one go to simplify
398 * the allocation and deallocation logic.
6b775e87
JM
399 */
400 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
401 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
402 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
d5f83109 403 BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
9751a9e4 404 req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
6b775e87
JM
405 if (!req_power) {
406 ret = -ENOMEM;
407 goto unlock;
408 }
409
410 max_power = &req_power[num_actors];
411 granted_power = &req_power[2 * num_actors];
412 extra_actor_power = &req_power[3 * num_actors];
d5f83109 413 weighted_req_power = &req_power[4 * num_actors];
6b775e87
JM
414
415 i = 0;
d5f83109 416 total_weighted_req_power = 0;
6b775e87
JM
417 total_req_power = 0;
418 max_allocatable_power = 0;
419
420 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
421 int weight;
422 struct thermal_cooling_device *cdev = instance->cdev;
423
424 if (instance->trip != trip_max_desired_temperature)
425 continue;
426
427 if (!cdev_is_power_actor(cdev))
428 continue;
429
ecd1d2a3 430 if (cdev->ops->get_requested_power(cdev, &req_power[i]))
6b775e87
JM
431 continue;
432
433 if (!total_weight)
434 weight = 1 << FRAC_BITS;
435 else
436 weight = instance->weight;
437
d5f83109 438 weighted_req_power[i] = frac_to_int(weight * req_power[i]);
6b775e87 439
8132df3a
LL
440 if (cdev->ops->state2power(cdev, instance->lower,
441 &max_power[i]))
6b775e87
JM
442 continue;
443
444 total_req_power += req_power[i];
445 max_allocatable_power += max_power[i];
d5f83109 446 total_weighted_req_power += weighted_req_power[i];
6b775e87
JM
447
448 i++;
449 }
450
bb404db4 451 power_range = pid_controller(tz, control_temp, max_allocatable_power);
6b775e87 452
d5f83109
JM
453 divvy_up_power(weighted_req_power, max_power, num_actors,
454 total_weighted_req_power, power_range, granted_power,
455 extra_actor_power);
6b775e87 456
6828a471 457 total_granted_power = 0;
6b775e87
JM
458 i = 0;
459 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
460 if (instance->trip != trip_max_desired_temperature)
461 continue;
462
463 if (!cdev_is_power_actor(instance->cdev))
464 continue;
465
466 power_actor_set_power(instance->cdev, instance,
467 granted_power[i]);
6828a471 468 total_granted_power += granted_power[i];
6b775e87
JM
469
470 i++;
471 }
472
6828a471
JM
473 trace_thermal_power_allocator(tz, req_power, total_req_power,
474 granted_power, total_granted_power,
475 num_actors, power_range,
bb404db4
KS
476 max_allocatable_power, tz->temperature,
477 control_temp - tz->temperature);
6828a471 478
cf736ea6 479 kfree(req_power);
6b775e87
JM
480unlock:
481 mutex_unlock(&tz->lock);
482
483 return ret;
484}
485
8b7b390f
JM
486/**
487 * get_governor_trips() - get the number of the two trip points that are key for this governor
488 * @tz: thermal zone to operate on
489 * @params: pointer to private data for this governor
490 *
491 * The power allocator governor works optimally with two trips points:
492 * a "switch on" trip point and a "maximum desired temperature". These
493 * are defined as the first and last passive trip points.
494 *
495 * If there is only one trip point, then that's considered to be the
496 * "maximum desired temperature" trip point and the governor is always
497 * on. If there are no passive or active trip points, then the
498 * governor won't do anything. In fact, its throttle function
499 * won't be called at all.
500 */
501static void get_governor_trips(struct thermal_zone_device *tz,
502 struct power_allocator_params *params)
6b775e87 503{
8b7b390f 504 int i, last_active, last_passive;
6b775e87
JM
505 bool found_first_passive;
506
507 found_first_passive = false;
8b7b390f
JM
508 last_active = INVALID_TRIP;
509 last_passive = INVALID_TRIP;
6b775e87
JM
510
511 for (i = 0; i < tz->trips; i++) {
512 enum thermal_trip_type type;
8b7b390f 513 int ret;
6b775e87
JM
514
515 ret = tz->ops->get_trip_type(tz, i, &type);
8b7b390f
JM
516 if (ret) {
517 dev_warn(&tz->device,
518 "Failed to get trip point %d type: %d\n", i,
519 ret);
520 continue;
521 }
6b775e87 522
8b7b390f
JM
523 if (type == THERMAL_TRIP_PASSIVE) {
524 if (!found_first_passive) {
6b775e87
JM
525 params->trip_switch_on = i;
526 found_first_passive = true;
8b7b390f
JM
527 } else {
528 last_passive = i;
6b775e87 529 }
8b7b390f
JM
530 } else if (type == THERMAL_TRIP_ACTIVE) {
531 last_active = i;
6b775e87
JM
532 } else {
533 break;
534 }
535 }
536
8b7b390f 537 if (last_passive != INVALID_TRIP) {
6b775e87 538 params->trip_max_desired_temperature = last_passive;
8b7b390f
JM
539 } else if (found_first_passive) {
540 params->trip_max_desired_temperature = params->trip_switch_on;
541 params->trip_switch_on = INVALID_TRIP;
6b775e87 542 } else {
8b7b390f
JM
543 params->trip_switch_on = INVALID_TRIP;
544 params->trip_max_desired_temperature = last_active;
6b775e87 545 }
6b775e87
JM
546}
547
548static void reset_pid_controller(struct power_allocator_params *params)
549{
550 params->err_integral = 0;
551 params->prev_err = 0;
552}
553
554static void allow_maximum_power(struct thermal_zone_device *tz)
555{
556 struct thermal_instance *instance;
557 struct power_allocator_params *params = tz->governor_data;
558
a5de11d6 559 mutex_lock(&tz->lock);
6b775e87
JM
560 list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
561 if ((instance->trip != params->trip_max_desired_temperature) ||
562 (!cdev_is_power_actor(instance->cdev)))
563 continue;
564
565 instance->target = 0;
d0b7306d 566 mutex_lock(&instance->cdev->lock);
6b775e87 567 instance->cdev->updated = false;
d0b7306d 568 mutex_unlock(&instance->cdev->lock);
6b775e87
JM
569 thermal_cdev_update(instance->cdev);
570 }
a5de11d6 571 mutex_unlock(&tz->lock);
6b775e87
JM
572}
573
574/**
575 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
576 * @tz: thermal zone to bind it to
577 *
8b7b390f
JM
578 * Initialize the PID controller parameters and bind it to the thermal
579 * zone.
6b775e87 580 *
f5cbb182 581 * Return: 0 on success, or -ENOMEM if we ran out of memory.
6b775e87
JM
582 */
583static int power_allocator_bind(struct thermal_zone_device *tz)
584{
585 int ret;
586 struct power_allocator_params *params;
e055bb0f 587 int control_temp;
6b775e87 588
cf736ea6 589 params = kzalloc(sizeof(*params), GFP_KERNEL);
6b775e87
JM
590 if (!params)
591 return -ENOMEM;
592
f5cbb182
JM
593 if (!tz->tzp) {
594 tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
595 if (!tz->tzp) {
596 ret = -ENOMEM;
597 goto free_params;
598 }
599
600 params->allocated_tzp = true;
601 }
602
e055bb0f
JM
603 if (!tz->tzp->sustainable_power)
604 dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
605
8b7b390f 606 get_governor_trips(tz, params);
6b775e87 607
8b7b390f
JM
608 if (tz->trips > 0) {
609 ret = tz->ops->get_trip_temp(tz,
610 params->trip_max_desired_temperature,
611 &control_temp);
612 if (!ret)
613 estimate_pid_constants(tz, tz->tzp->sustainable_power,
614 params->trip_switch_on,
615 control_temp, false);
616 }
6b775e87 617
6b775e87
JM
618 reset_pid_controller(params);
619
620 tz->governor_data = params;
621
622 return 0;
f5cbb182
JM
623
624free_params:
625 kfree(params);
626
627 return ret;
6b775e87
JM
628}
629
630static void power_allocator_unbind(struct thermal_zone_device *tz)
631{
f5cbb182
JM
632 struct power_allocator_params *params = tz->governor_data;
633
6b775e87 634 dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
f5cbb182
JM
635
636 if (params->allocated_tzp) {
637 kfree(tz->tzp);
638 tz->tzp = NULL;
639 }
640
cf736ea6 641 kfree(tz->governor_data);
6b775e87
JM
642 tz->governor_data = NULL;
643}
644
645static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
646{
647 int ret;
bb404db4 648 int switch_on_temp, control_temp;
6b775e87
JM
649 struct power_allocator_params *params = tz->governor_data;
650
651 /*
652 * We get called for every trip point but we only need to do
653 * our calculations once
654 */
655 if (trip != params->trip_max_desired_temperature)
656 return 0;
657
6b775e87
JM
658 ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
659 &switch_on_temp);
bb404db4 660 if (!ret && (tz->temperature < switch_on_temp)) {
6b775e87
JM
661 tz->passive = 0;
662 reset_pid_controller(params);
663 allow_maximum_power(tz);
664 return 0;
665 }
666
667 tz->passive = 1;
668
669 ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
670 &control_temp);
671 if (ret) {
672 dev_warn(&tz->device,
673 "Failed to get the maximum desired temperature: %d\n",
674 ret);
675 return ret;
676 }
677
bb404db4 678 return allocate_power(tz, control_temp);
6b775e87
JM
679}
680
681static struct thermal_governor thermal_gov_power_allocator = {
682 .name = "power_allocator",
683 .bind_to_tz = power_allocator_bind,
684 .unbind_from_tz = power_allocator_unbind,
685 .throttle = power_allocator_throttle,
686};
57c5b2ec 687THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);