Merge patch series "RISC-V: Probe for misaligned access speed"
[linux-2.6-block.git] / drivers / thermal / cpufreq_cooling.c
CommitLineData
0fac9e2f 1// SPDX-License-Identifier: GPL-2.0
02361418 2/*
23affa2e 3 * linux/drivers/thermal/cpufreq_cooling.c
02361418
ADK
4 *
5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
02361418 6 *
42cd9b04
DL
7 * Copyright (C) 2012-2018 Linaro Limited.
8 *
9 * Authors: Amit Daniel <amit.kachhap@linaro.org>
10 * Viresh Kumar <viresh.kumar@linaro.org>
73904cbc 11 *
02361418 12 */
5ccb451e 13#include <linux/cpu.h>
02361418 14#include <linux/cpufreq.h>
5ccb451e 15#include <linux/cpu_cooling.h>
ef37d1f9 16#include <linux/device.h>
5ccb451e 17#include <linux/energy_model.h>
02361418 18#include <linux/err.h>
c65f83c0 19#include <linux/export.h>
c36cf071 20#include <linux/pm_opp.h>
5130802d 21#include <linux/pm_qos.h>
02361418 22#include <linux/slab.h>
5ccb451e 23#include <linux/thermal.h>
ae6ccaa6 24#include <linux/units.h>
02361418 25
32a7a021 26#include "thermal_trace.h"
6828a471 27
07d888d8
VK
28/*
29 * Cooling state <-> CPUFreq frequency
30 *
31 * Cooling states are translated to frequencies throughout this driver and this
32 * is the relation between them.
33 *
34 * Highest cooling state corresponds to lowest possible frequency.
35 *
36 * i.e.
37 * level 0 --> 1st Max Freq
38 * level 1 --> 2nd Max Freq
39 * ...
40 */
41
81ee14da
VK
42/**
43 * struct time_in_idle - Idle time stats
44 * @time: previous reading of the absolute time that this cpu was idle
45 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
46 */
47struct time_in_idle {
48 u64 time;
49 u64 timestamp;
50};
51
02361418 52/**
3b3c0748 53 * struct cpufreq_cooling_device - data for cooling device with cpufreq
d72b4015 54 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
02361418
ADK
55 * @cpufreq_state: integer value representing the current state of cpufreq
56 * cooling devices.
dcc6c7fd
VK
57 * @max_level: maximum cooling level. One less than total number of valid
58 * cpufreq frequencies.
a4e893e8 59 * @em: Reference on the Energy Model of the device
d72b4015
VK
60 * @cdev: thermal_cooling_device pointer to keep track of the
61 * registered cooling device.
62 * @policy: cpufreq policy.
3cbf6a8a 63 * @cooling_ops: cpufreq callbacks to thermal cooling device ops
81ee14da 64 * @idle_time: idle time stats
7b4e7f07 65 * @qos_req: PM QoS contraint to apply
02361418 66 *
beca6053
VK
67 * This structure is required for keeping information of each registered
68 * cpufreq_cooling_device.
02361418
ADK
69 */
70struct cpufreq_cooling_device {
d72b4015 71 u32 last_load;
02361418 72 unsigned int cpufreq_state;
dcc6c7fd 73 unsigned int max_level;
a4e893e8 74 struct em_perf_domain *em;
d72b4015 75 struct cpufreq_policy *policy;
3cbf6a8a 76 struct thermal_cooling_device_ops cooling_ops;
d1515851 77#ifndef CONFIG_SMP
81ee14da 78 struct time_in_idle *idle_time;
d1515851 79#endif
3000ce3c 80 struct freq_qos_request qos_req;
02361418 81};
02361418 82
5a4e5b78 83#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
02361418 84/**
4843c4a1 85 * get_level: Find the level for a particular frequency
1dea432a 86 * @cpufreq_cdev: cpufreq_cdev for which the property is required
4843c4a1 87 * @freq: Frequency
82b9ee40 88 *
da27f69d 89 * Return: level corresponding to the frequency.
02361418 90 */
1dea432a 91static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
4843c4a1 92 unsigned int freq)
02361418 93{
a4e893e8 94 int i;
a116776f 95
a4e893e8
QP
96 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
97 if (freq > cpufreq_cdev->em->table[i].frequency)
4843c4a1 98 break;
c36cf071 99 }
02361418 100
a4e893e8 101 return cpufreq_cdev->max_level - i - 1;
c36cf071
JM
102}
103
1dea432a 104static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
105 u32 freq)
106{
ae6ccaa6 107 unsigned long power_mw;
c36cf071 108 int i;
c36cf071 109
a4e893e8
QP
110 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
111 if (freq > cpufreq_cdev->em->table[i].frequency)
c36cf071 112 break;
a4e893e8 113 }
c36cf071 114
ae6ccaa6
LL
115 power_mw = cpufreq_cdev->em->table[i + 1].power;
116 power_mw /= MICROWATT_PER_MILLIWATT;
117
118 return power_mw;
c36cf071
JM
119}
120
1dea432a 121static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
122 u32 power)
123{
ae6ccaa6 124 unsigned long em_power_mw;
c36cf071 125 int i;
c36cf071 126
34ab17cc 127 for (i = cpufreq_cdev->max_level; i > 0; i--) {
ae6ccaa6
LL
128 /* Convert EM power to milli-Watts to make safe comparison */
129 em_power_mw = cpufreq_cdev->em->table[i].power;
130 em_power_mw /= MICROWATT_PER_MILLIWATT;
131 if (power >= em_power_mw)
c36cf071 132 break;
a4e893e8 133 }
c36cf071 134
371a3bc7 135 return cpufreq_cdev->em->table[i].frequency;
c36cf071
JM
136}
137
138/**
d1515851
VK
139 * get_load() - get load for a cpu
140 * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
141 * @cpu: cpu number
142 * @cpu_idx: index of the cpu in time_in_idle array
c36cf071
JM
143 *
144 * Return: The average load of cpu @cpu in percentage since this
145 * function was last called.
146 */
d1515851
VK
147#ifdef CONFIG_SMP
148static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
149 int cpu_idx)
150{
bb447999 151 unsigned long util = sched_cpu_util(cpu);
d1515851 152
bb447999 153 return (util * 100) / arch_scale_cpu_capacity(cpu);
d1515851
VK
154}
155#else /* !CONFIG_SMP */
1dea432a 156static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
a53b8394 157 int cpu_idx)
c36cf071
JM
158{
159 u32 load;
160 u64 now, now_idle, delta_time, delta_idle;
81ee14da 161 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
c36cf071
JM
162
163 now_idle = get_cpu_idle_time(cpu, &now, 0);
81ee14da
VK
164 delta_idle = now_idle - idle_time->time;
165 delta_time = now - idle_time->timestamp;
c36cf071
JM
166
167 if (delta_time <= delta_idle)
168 load = 0;
169 else
170 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
171
81ee14da
VK
172 idle_time->time = now_idle;
173 idle_time->timestamp = now;
c36cf071
JM
174
175 return load;
176}
d1515851 177#endif /* CONFIG_SMP */
c36cf071 178
c36cf071
JM
179/**
180 * get_dynamic_power() - calculate the dynamic power
1dea432a 181 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
c36cf071
JM
182 * @freq: current frequency
183 *
184 * Return: the dynamic power consumed by the cpus described by
1dea432a 185 * @cpufreq_cdev.
c36cf071 186 */
1dea432a 187static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
188 unsigned long freq)
189{
190 u32 raw_cpu_power;
191
1dea432a
VK
192 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
193 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
02361418
ADK
194}
195
c36cf071
JM
196/**
197 * cpufreq_get_requested_power() - get the current power
198 * @cdev: &thermal_cooling_device pointer
c36cf071
JM
199 * @power: pointer in which to store the resulting power
200 *
201 * Calculate the current power consumption of the cpus in milliwatts
202 * and store it in @power. This function should actually calculate
203 * the requested power, but it's hard to get the frequency that
204 * cpufreq would have assigned if there were no thermal limits.
205 * Instead, we calculate the current power on the assumption that the
206 * immediate future will look like the immediate past.
207 *
208 * We use the current frequency and the average load since this
209 * function was last called. In reality, there could have been
210 * multiple opps since this function was last called and that affects
211 * the load calculation. While it's not perfectly accurate, this
212 * simplification is good enough and works. REVISIT this, as more
213 * complex code may be needed if experiments show that it's not
214 * accurate enough.
215 *
9784d2fb 216 * Return: 0 on success, this function doesn't fail.
c36cf071
JM
217 */
218static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
c36cf071
JM
219 u32 *power)
220{
221 unsigned long freq;
84fe2cab
VK
222 int i = 0, cpu;
223 u32 total_load = 0;
1dea432a 224 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 225 struct cpufreq_policy *policy = cpufreq_cdev->policy;
c36cf071 226
ba76dd9d 227 freq = cpufreq_quick_get(policy->cpu);
c36cf071 228
ba76dd9d 229 for_each_cpu(cpu, policy->related_cpus) {
c36cf071
JM
230 u32 load;
231
232 if (cpu_online(cpu))
1dea432a 233 load = get_load(cpufreq_cdev, cpu, i);
c36cf071
JM
234 else
235 load = 0;
236
237 total_load += load;
238 }
239
1dea432a 240 cpufreq_cdev->last_load = total_load;
c36cf071 241
84fe2cab 242 *power = get_dynamic_power(cpufreq_cdev, freq);
6828a471 243
3f7ced7a 244 trace_thermal_power_cpu_get_power_simple(policy->cpu, *power);
c36cf071 245
c36cf071
JM
246 return 0;
247}
248
249/**
250 * cpufreq_state2power() - convert a cpu cdev state to power consumed
251 * @cdev: &thermal_cooling_device pointer
c36cf071
JM
252 * @state: cooling device state to be converted
253 * @power: pointer in which to store the resulting power
254 *
255 * Convert cooling device state @state into power consumption in
256 * milliwatts assuming 100% load. Store the calculated power in
257 * @power.
258 *
9784d2fb
LL
259 * Return: 0 on success, -EINVAL if the cooling device state is bigger
260 * than maximum allowed.
c36cf071
JM
261 */
262static int cpufreq_state2power(struct thermal_cooling_device *cdev,
c36cf071
JM
263 unsigned long state, u32 *power)
264{
a4e893e8 265 unsigned int freq, num_cpus, idx;
1dea432a 266 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 267
cb1b6318 268 /* Request state should be less than max_level */
40ea5685 269 if (state > cpufreq_cdev->max_level)
cb1b6318
VK
270 return -EINVAL;
271
ba76dd9d 272 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
c36cf071 273
a4e893e8
QP
274 idx = cpufreq_cdev->max_level - state;
275 freq = cpufreq_cdev->em->table[idx].frequency;
84fe2cab 276 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
c36cf071 277
84fe2cab 278 return 0;
c36cf071
JM
279}
280
281/**
282 * cpufreq_power2state() - convert power to a cooling device state
283 * @cdev: &thermal_cooling_device pointer
c36cf071
JM
284 * @power: power in milliwatts to be converted
285 * @state: pointer in which to store the resulting state
286 *
287 * Calculate a cooling device state for the cpus described by @cdev
288 * that would allow them to consume at most @power mW and store it in
289 * @state. Note that this calculation depends on external factors
9784d2fb
LL
290 * such as the CPUs load. Calling this function with the same power
291 * as input can yield different cooling device states depending on those
292 * external factors.
293 *
294 * Return: 0 on success, this function doesn't fail.
c36cf071
JM
295 */
296static int cpufreq_power2state(struct thermal_cooling_device *cdev,
ecd1d2a3 297 u32 power, unsigned long *state)
c36cf071 298{
e0fda737 299 unsigned int target_freq;
84fe2cab 300 u32 last_load, normalised_power;
1dea432a 301 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 302 struct cpufreq_policy *policy = cpufreq_cdev->policy;
c36cf071 303
1dea432a 304 last_load = cpufreq_cdev->last_load ?: 1;
84fe2cab 305 normalised_power = (power * 100) / last_load;
1dea432a 306 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
c36cf071 307
3e08b2df 308 *state = get_level(cpufreq_cdev, target_freq);
ba76dd9d
VK
309 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
310 power);
c36cf071
JM
311 return 0;
312}
a4e893e8
QP
313
314static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
315 struct em_perf_domain *em) {
316 struct cpufreq_policy *policy;
317 unsigned int nr_levels;
318
9926bbec 319 if (!em || em_is_artificial(em))
a4e893e8
QP
320 return false;
321
322 policy = cpufreq_cdev->policy;
521b512b 323 if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
a4e893e8 324 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
521b512b 325 cpumask_pr_args(em_span_cpus(em)),
a4e893e8
QP
326 cpumask_pr_args(policy->related_cpus));
327 return false;
328 }
329
330 nr_levels = cpufreq_cdev->max_level + 1;
521b512b
LL
331 if (em_pd_nr_perf_states(em) != nr_levels) {
332 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
333 cpumask_pr_args(em_span_cpus(em)),
334 em_pd_nr_perf_states(em), nr_levels);
a4e893e8
QP
335 return false;
336 }
337
338 return true;
339}
5a4e5b78
QP
340#endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
341
d1515851
VK
342#ifdef CONFIG_SMP
343static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
344{
345 return 0;
346}
347
348static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
349{
350}
351#else
352static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
353{
354 unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
355
356 cpufreq_cdev->idle_time = kcalloc(num_cpus,
357 sizeof(*cpufreq_cdev->idle_time),
358 GFP_KERNEL);
359 if (!cpufreq_cdev->idle_time)
360 return -ENOMEM;
361
362 return 0;
363}
364
365static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
366{
367 kfree(cpufreq_cdev->idle_time);
368 cpufreq_cdev->idle_time = NULL;
369}
370#endif /* CONFIG_SMP */
371
a4e893e8
QP
372static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
373 unsigned long state)
374{
375 struct cpufreq_policy *policy;
376 unsigned long idx;
377
378#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
379 /* Use the Energy Model table if available */
380 if (cpufreq_cdev->em) {
381 idx = cpufreq_cdev->max_level - state;
382 return cpufreq_cdev->em->table[idx].frequency;
383 }
384#endif
385
386 /* Otherwise, fallback on the CPUFreq table */
387 policy = cpufreq_cdev->policy;
388 if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
389 idx = cpufreq_cdev->max_level - state;
390 else
391 idx = state;
392
393 return policy->freq_table[idx].frequency;
394}
395
5a4e5b78
QP
396/* cpufreq cooling device callback functions are defined below */
397
398/**
399 * cpufreq_get_max_state - callback function to get the max cooling state.
400 * @cdev: thermal cooling device pointer.
401 * @state: fill this variable with the max cooling state.
402 *
403 * Callback for the thermal cooling device to return the cpufreq
404 * max cooling state.
405 *
9784d2fb 406 * Return: 0 on success, this function doesn't fail.
5a4e5b78
QP
407 */
408static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
409 unsigned long *state)
410{
411 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
412
413 *state = cpufreq_cdev->max_level;
414 return 0;
415}
416
417/**
418 * cpufreq_get_cur_state - callback function to get the current cooling state.
419 * @cdev: thermal cooling device pointer.
420 * @state: fill this variable with the current cooling state.
421 *
422 * Callback for the thermal cooling device to return the cpufreq
423 * current cooling state.
424 *
9784d2fb 425 * Return: 0 on success, this function doesn't fail.
5a4e5b78
QP
426 */
427static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
428 unsigned long *state)
429{
430 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
431
432 *state = cpufreq_cdev->cpufreq_state;
433
434 return 0;
435}
436
437/**
438 * cpufreq_set_cur_state - callback function to set the current cooling state.
439 * @cdev: thermal cooling device pointer.
440 * @state: set this variable to the current cooling state.
441 *
442 * Callback for the thermal cooling device to change the cpufreq
443 * current cooling state.
444 *
445 * Return: 0 on success, an error code otherwise.
446 */
447static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
448 unsigned long state)
449{
450 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
f12e4f66
TG
451 struct cpumask *cpus;
452 unsigned int frequency;
f12e4f66 453 int ret;
5a4e5b78
QP
454
455 /* Request state should be less than max_level */
40ea5685 456 if (state > cpufreq_cdev->max_level)
5a4e5b78
QP
457 return -EINVAL;
458
459 /* Check if the old cooling action is same as new cooling action */
460 if (cpufreq_cdev->cpufreq_state == state)
461 return 0;
462
f12e4f66
TG
463 frequency = get_state_freq(cpufreq_cdev, state);
464
465 ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
a51afb13 466 if (ret >= 0) {
236761f1 467 cpufreq_cdev->cpufreq_state = state;
2ad8ccc1 468 cpus = cpufreq_cdev->policy->related_cpus;
5168b1be 469 arch_update_thermal_pressure(cpus, frequency);
34183ddd 470 ret = 0;
f12e4f66
TG
471 }
472
473 return ret;
5a4e5b78 474}
c36cf071 475
02361418 476/**
39d99cff 477 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
96f1c529 478 * @np: a valid struct device_node to the cooling device tree node
4d753aa7 479 * @policy: cpufreq policy
405fb825 480 * Normally this should be same as cpufreq policy->related_cpus.
a4e893e8 481 * @em: Energy Model of the cpufreq policy
12cb08ba
EV
482 *
483 * This interface function registers the cpufreq cooling device with the name
9784d2fb 484 * "cpufreq-%s". This API can support multiple instances of cpufreq
39d99cff
EV
485 * cooling devices. It also gives the opportunity to link the cooling device
486 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
487 *
488 * Return: a valid struct thermal_cooling_device pointer on success,
489 * on failure, it returns a corresponding ERR_PTR().
02361418 490 */
39d99cff
EV
491static struct thermal_cooling_device *
492__cpufreq_cooling_register(struct device_node *np,
a4e893e8
QP
493 struct cpufreq_policy *policy,
494 struct em_perf_domain *em)
02361418 495{
04bdbdf9 496 struct thermal_cooling_device *cdev;
1dea432a 497 struct cpufreq_cooling_device *cpufreq_cdev;
d1515851 498 unsigned int i;
5130802d 499 struct device *dev;
405fb825 500 int ret;
a305a438 501 struct thermal_cooling_device_ops *cooling_ops;
ef37d1f9 502 char *name;
5130802d 503
cff89527
XY
504 if (IS_ERR_OR_NULL(policy)) {
505 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
506 return ERR_PTR(-EINVAL);
507 }
508
5130802d
VK
509 dev = get_cpu_device(policy->cpu);
510 if (unlikely(!dev)) {
511 pr_warn("No cpu device for cpu %d\n", policy->cpu);
512 return ERR_PTR(-ENODEV);
513 }
514
55d85293
VK
515 i = cpufreq_table_count_valid_entries(policy);
516 if (!i) {
517 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
518 __func__);
4d753aa7 519 return ERR_PTR(-ENODEV);
02361418 520 }
0f1be51c 521
1dea432a 522 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
4d753aa7
VK
523 if (!cpufreq_cdev)
524 return ERR_PTR(-ENOMEM);
02361418 525
b12b6519 526 cpufreq_cdev->policy = policy;
d1515851
VK
527
528 ret = allocate_idle_time(cpufreq_cdev);
529 if (ret) {
530 cdev = ERR_PTR(ret);
c36cf071
JM
531 goto free_cdev;
532 }
533
55d85293
VK
534 /* max_level is an index, not a counter */
535 cpufreq_cdev->max_level = i - 1;
dcc6c7fd 536
3cbf6a8a
LL
537 cooling_ops = &cpufreq_cdev->cooling_ops;
538 cooling_ops->get_max_state = cpufreq_get_max_state;
539 cooling_ops->get_cur_state = cpufreq_get_cur_state;
540 cooling_ops->set_cur_state = cpufreq_set_cur_state;
5a4e5b78
QP
541
542#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
a4e893e8
QP
543 if (em_is_sane(cpufreq_cdev, em)) {
544 cpufreq_cdev->em = em;
5a4e5b78
QP
545 cooling_ops->get_requested_power = cpufreq_get_requested_power;
546 cooling_ops->state2power = cpufreq_state2power;
547 cooling_ops->power2state = cpufreq_power2state;
a4e893e8 548 } else
5a4e5b78 549#endif
a4e893e8
QP
550 if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
551 pr_err("%s: unsorted frequency tables are not supported\n",
552 __func__);
553 cdev = ERR_PTR(-EINVAL);
ef37d1f9 554 goto free_idle_time;
a4e893e8 555 }
f840ab18 556
3000ce3c
RW
557 ret = freq_qos_add_request(&policy->constraints,
558 &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
a4e893e8 559 get_state_freq(cpufreq_cdev, 0));
5130802d
VK
560 if (ret < 0) {
561 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
562 ret);
563 cdev = ERR_PTR(ret);
ef37d1f9 564 goto free_idle_time;
5130802d
VK
565 }
566
ef37d1f9
DL
567 cdev = ERR_PTR(-ENOMEM);
568 name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
569 if (!name)
570 goto remove_qos_req;
571
572 cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
04bdbdf9 573 cooling_ops);
ef37d1f9
DL
574 kfree(name);
575
04bdbdf9 576 if (IS_ERR(cdev))
5130802d 577 goto remove_qos_req;
92e615ec 578
4d753aa7 579 return cdev;
730abe06 580
5130802d 581remove_qos_req:
3000ce3c 582 freq_qos_remove_request(&cpufreq_cdev->qos_req);
81ee14da 583free_idle_time:
d1515851 584 free_idle_time(cpufreq_cdev);
730abe06 585free_cdev:
1dea432a 586 kfree(cpufreq_cdev);
04bdbdf9 587 return cdev;
02361418 588}
39d99cff
EV
589
590/**
591 * cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 592 * @policy: cpufreq policy
39d99cff
EV
593 *
594 * This interface function registers the cpufreq cooling device with the name
9784d2fb
LL
595 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
596 * devices.
39d99cff
EV
597 *
598 * Return: a valid struct thermal_cooling_device pointer on success,
599 * on failure, it returns a corresponding ERR_PTR().
600 */
601struct thermal_cooling_device *
4d753aa7 602cpufreq_cooling_register(struct cpufreq_policy *policy)
39d99cff 603{
a4e893e8 604 return __cpufreq_cooling_register(NULL, policy, NULL);
39d99cff 605}
243dbd9c 606EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 607
39d99cff
EV
608/**
609 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 610 * @policy: cpufreq policy
39d99cff
EV
611 *
612 * This interface function registers the cpufreq cooling device with the name
9784d2fb
LL
613 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
614 * devices. Using this API, the cpufreq cooling device will be linked to the
615 * device tree node provided.
39d99cff 616 *
c36cf071 617 * Using this function, the cooling device will implement the power
9784d2fb 618 * extensions by using the Energy Model (if present). The cpus must have
c36cf071
JM
619 * registered their OPPs using the OPP library.
620 *
c36cf071 621 * Return: a valid struct thermal_cooling_device pointer on success,
f5f263fe 622 * and NULL on failure.
c36cf071
JM
623 */
624struct thermal_cooling_device *
3ebb62ff 625of_cpufreq_cooling_register(struct cpufreq_policy *policy)
c36cf071 626{
f5f263fe
VK
627 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
628 struct thermal_cooling_device *cdev = NULL;
f5f263fe
VK
629
630 if (!np) {
23affa2e 631 pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
f5f263fe
VK
632 policy->cpu);
633 return NULL;
634 }
c36cf071 635
86df7d19 636 if (of_property_present(np, "#cooling-cells")) {
a4e893e8 637 struct em_perf_domain *em = em_cpu_get(policy->cpu);
f5f263fe 638
a4e893e8 639 cdev = __cpufreq_cooling_register(np, policy, em);
f5f263fe 640 if (IS_ERR(cdev)) {
23affa2e 641 pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
f5f263fe
VK
642 policy->cpu, PTR_ERR(cdev));
643 cdev = NULL;
644 }
645 }
646
647 of_node_put(np);
648 return cdev;
c36cf071 649}
3ebb62ff 650EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
c36cf071 651
02361418
ADK
652/**
653 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
654 * @cdev: thermal cooling device pointer.
135266b4 655 *
9784d2fb 656 * This interface function unregisters the "cpufreq-%x" cooling device.
02361418
ADK
657 */
658void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
659{
1dea432a 660 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 661
50e66c7e
EV
662 if (!cdev)
663 return;
664
1dea432a 665 cpufreq_cdev = cdev->devdata;
02361418 666
72554a75 667 thermal_cooling_device_unregister(cdev);
3000ce3c 668 freq_qos_remove_request(&cpufreq_cdev->qos_req);
d1515851 669 free_idle_time(cpufreq_cdev);
1dea432a 670 kfree(cpufreq_cdev);
02361418 671}
243dbd9c 672EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);