gpio: ep93xx: fix BUG_ON port F usage
[linux-block.git] / drivers / thermal / cpufreq_cooling.c
CommitLineData
0fac9e2f 1// SPDX-License-Identifier: GPL-2.0
02361418 2/*
23affa2e 3 * linux/drivers/thermal/cpufreq_cooling.c
02361418
ADK
4 *
5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
02361418 6 *
42cd9b04
DL
7 * Copyright (C) 2012-2018 Linaro Limited.
8 *
9 * Authors: Amit Daniel <amit.kachhap@linaro.org>
10 * Viresh Kumar <viresh.kumar@linaro.org>
73904cbc 11 *
02361418 12 */
5ccb451e 13#include <linux/cpu.h>
02361418 14#include <linux/cpufreq.h>
5ccb451e
AK
15#include <linux/cpu_cooling.h>
16#include <linux/energy_model.h>
02361418 17#include <linux/err.h>
c65f83c0 18#include <linux/export.h>
ae606089 19#include <linux/idr.h>
c36cf071 20#include <linux/pm_opp.h>
5130802d 21#include <linux/pm_qos.h>
02361418 22#include <linux/slab.h>
5ccb451e 23#include <linux/thermal.h>
02361418 24
6828a471
JM
25#include <trace/events/thermal.h>
26
07d888d8
VK
27/*
28 * Cooling state <-> CPUFreq frequency
29 *
30 * Cooling states are translated to frequencies throughout this driver and this
31 * is the relation between them.
32 *
33 * Highest cooling state corresponds to lowest possible frequency.
34 *
35 * i.e.
36 * level 0 --> 1st Max Freq
37 * level 1 --> 2nd Max Freq
38 * ...
39 */
40
81ee14da
VK
41/**
42 * struct time_in_idle - Idle time stats
43 * @time: previous reading of the absolute time that this cpu was idle
44 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
45 */
46struct time_in_idle {
47 u64 time;
48 u64 timestamp;
49};
50
02361418 51/**
3b3c0748 52 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
53 * @id: unique integer value corresponding to each cpufreq_cooling_device
54 * registered.
d72b4015 55 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
02361418
ADK
56 * @cpufreq_state: integer value representing the current state of cpufreq
57 * cooling devices.
dcc6c7fd
VK
58 * @max_level: maximum cooling level. One less than total number of valid
59 * cpufreq frequencies.
a4e893e8 60 * @em: Reference on the Energy Model of the device
d72b4015
VK
61 * @cdev: thermal_cooling_device pointer to keep track of the
62 * registered cooling device.
63 * @policy: cpufreq policy.
fc4de356 64 * @node: list_head to link all cpufreq_cooling_device together.
81ee14da 65 * @idle_time: idle time stats
7b4e7f07 66 * @qos_req: PM QoS contraint to apply
02361418 67 *
beca6053
VK
68 * This structure is required for keeping information of each registered
69 * cpufreq_cooling_device.
02361418
ADK
70 */
71struct cpufreq_cooling_device {
72 int id;
d72b4015 73 u32 last_load;
02361418 74 unsigned int cpufreq_state;
dcc6c7fd 75 unsigned int max_level;
a4e893e8 76 struct em_perf_domain *em;
d72b4015 77 struct cpufreq_policy *policy;
2dcd851f 78 struct list_head node;
81ee14da 79 struct time_in_idle *idle_time;
3000ce3c 80 struct freq_qos_request qos_req;
02361418 81};
02361418 82
fb8ea308 83static DEFINE_IDA(cpufreq_ida);
02373d7c 84static DEFINE_MUTEX(cooling_list_lock);
1dea432a 85static LIST_HEAD(cpufreq_cdev_list);
02361418 86
5a4e5b78 87#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
02361418 88/**
4843c4a1 89 * get_level: Find the level for a particular frequency
1dea432a 90 * @cpufreq_cdev: cpufreq_cdev for which the property is required
4843c4a1 91 * @freq: Frequency
82b9ee40 92 *
da27f69d 93 * Return: level corresponding to the frequency.
02361418 94 */
1dea432a 95static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
4843c4a1 96 unsigned int freq)
02361418 97{
a4e893e8 98 int i;
a116776f 99
a4e893e8
QP
100 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
101 if (freq > cpufreq_cdev->em->table[i].frequency)
4843c4a1 102 break;
c36cf071 103 }
02361418 104
a4e893e8 105 return cpufreq_cdev->max_level - i - 1;
c36cf071
JM
106}
107
1dea432a 108static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
109 u32 freq)
110{
111 int i;
c36cf071 112
a4e893e8
QP
113 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
114 if (freq > cpufreq_cdev->em->table[i].frequency)
c36cf071 115 break;
a4e893e8 116 }
c36cf071 117
a4e893e8 118 return cpufreq_cdev->em->table[i + 1].power;
c36cf071
JM
119}
120
1dea432a 121static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
122 u32 power)
123{
124 int i;
c36cf071 125
371a3bc7
FX
126 for (i = cpufreq_cdev->max_level; i >= 0; i--) {
127 if (power >= cpufreq_cdev->em->table[i].power)
c36cf071 128 break;
a4e893e8 129 }
c36cf071 130
371a3bc7 131 return cpufreq_cdev->em->table[i].frequency;
c36cf071
JM
132}
133
134/**
135 * get_load() - get load for a cpu since last updated
1dea432a 136 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu
c36cf071 137 * @cpu: cpu number
ba76dd9d 138 * @cpu_idx: index of the cpu in time_in_idle*
c36cf071
JM
139 *
140 * Return: The average load of cpu @cpu in percentage since this
141 * function was last called.
142 */
1dea432a 143static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
a53b8394 144 int cpu_idx)
c36cf071
JM
145{
146 u32 load;
147 u64 now, now_idle, delta_time, delta_idle;
81ee14da 148 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
c36cf071
JM
149
150 now_idle = get_cpu_idle_time(cpu, &now, 0);
81ee14da
VK
151 delta_idle = now_idle - idle_time->time;
152 delta_time = now - idle_time->timestamp;
c36cf071
JM
153
154 if (delta_time <= delta_idle)
155 load = 0;
156 else
157 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
158
81ee14da
VK
159 idle_time->time = now_idle;
160 idle_time->timestamp = now;
c36cf071
JM
161
162 return load;
163}
164
c36cf071
JM
165/**
166 * get_dynamic_power() - calculate the dynamic power
1dea432a 167 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
c36cf071
JM
168 * @freq: current frequency
169 *
170 * Return: the dynamic power consumed by the cpus described by
1dea432a 171 * @cpufreq_cdev.
c36cf071 172 */
1dea432a 173static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
174 unsigned long freq)
175{
176 u32 raw_cpu_power;
177
1dea432a
VK
178 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
179 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
02361418
ADK
180}
181
c36cf071
JM
182/**
183 * cpufreq_get_requested_power() - get the current power
184 * @cdev: &thermal_cooling_device pointer
c36cf071
JM
185 * @power: pointer in which to store the resulting power
186 *
187 * Calculate the current power consumption of the cpus in milliwatts
188 * and store it in @power. This function should actually calculate
189 * the requested power, but it's hard to get the frequency that
190 * cpufreq would have assigned if there were no thermal limits.
191 * Instead, we calculate the current power on the assumption that the
192 * immediate future will look like the immediate past.
193 *
194 * We use the current frequency and the average load since this
195 * function was last called. In reality, there could have been
196 * multiple opps since this function was last called and that affects
197 * the load calculation. While it's not perfectly accurate, this
198 * simplification is good enough and works. REVISIT this, as more
199 * complex code may be needed if experiments show that it's not
200 * accurate enough.
201 *
202 * Return: 0 on success, -E* if getting the static power failed.
203 */
204static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
c36cf071
JM
205 u32 *power)
206{
207 unsigned long freq;
84fe2cab
VK
208 int i = 0, cpu;
209 u32 total_load = 0;
1dea432a 210 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 211 struct cpufreq_policy *policy = cpufreq_cdev->policy;
6828a471 212 u32 *load_cpu = NULL;
c36cf071 213
ba76dd9d 214 freq = cpufreq_quick_get(policy->cpu);
c36cf071 215
6828a471 216 if (trace_thermal_power_cpu_get_power_enabled()) {
ba76dd9d 217 u32 ncpus = cpumask_weight(policy->related_cpus);
6828a471 218
a71544cd 219 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
220 }
221
ba76dd9d 222 for_each_cpu(cpu, policy->related_cpus) {
c36cf071
JM
223 u32 load;
224
225 if (cpu_online(cpu))
1dea432a 226 load = get_load(cpufreq_cdev, cpu, i);
c36cf071
JM
227 else
228 load = 0;
229
230 total_load += load;
bf45ac18 231 if (load_cpu)
6828a471
JM
232 load_cpu[i] = load;
233
234 i++;
c36cf071
JM
235 }
236
1dea432a 237 cpufreq_cdev->last_load = total_load;
c36cf071 238
84fe2cab 239 *power = get_dynamic_power(cpufreq_cdev, freq);
6828a471
JM
240
241 if (load_cpu) {
ba76dd9d 242 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
84fe2cab 243 load_cpu, i, *power);
6828a471 244
a71544cd 245 kfree(load_cpu);
6828a471 246 }
c36cf071 247
c36cf071
JM
248 return 0;
249}
250
251/**
252 * cpufreq_state2power() - convert a cpu cdev state to power consumed
253 * @cdev: &thermal_cooling_device pointer
c36cf071
JM
254 * @state: cooling device state to be converted
255 * @power: pointer in which to store the resulting power
256 *
257 * Convert cooling device state @state into power consumption in
258 * milliwatts assuming 100% load. Store the calculated power in
259 * @power.
260 *
261 * Return: 0 on success, -EINVAL if the cooling device state could not
262 * be converted into a frequency or other -E* if there was an error
263 * when calculating the static power.
264 */
265static int cpufreq_state2power(struct thermal_cooling_device *cdev,
c36cf071
JM
266 unsigned long state, u32 *power)
267{
a4e893e8 268 unsigned int freq, num_cpus, idx;
1dea432a 269 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 270
cb1b6318 271 /* Request state should be less than max_level */
40ea5685 272 if (state > cpufreq_cdev->max_level)
cb1b6318
VK
273 return -EINVAL;
274
ba76dd9d 275 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
c36cf071 276
a4e893e8
QP
277 idx = cpufreq_cdev->max_level - state;
278 freq = cpufreq_cdev->em->table[idx].frequency;
84fe2cab 279 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
c36cf071 280
84fe2cab 281 return 0;
c36cf071
JM
282}
283
284/**
285 * cpufreq_power2state() - convert power to a cooling device state
286 * @cdev: &thermal_cooling_device pointer
c36cf071
JM
287 * @power: power in milliwatts to be converted
288 * @state: pointer in which to store the resulting state
289 *
290 * Calculate a cooling device state for the cpus described by @cdev
291 * that would allow them to consume at most @power mW and store it in
292 * @state. Note that this calculation depends on external factors
293 * such as the cpu load or the current static power. Calling this
294 * function with the same power as input can yield different cooling
295 * device states depending on those external factors.
296 *
297 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
298 * the calculated frequency could not be converted to a valid state.
299 * The latter should not happen unless the frequencies available to
300 * cpufreq have changed since the initialization of the cpu cooling
301 * device.
302 */
303static int cpufreq_power2state(struct thermal_cooling_device *cdev,
ecd1d2a3 304 u32 power, unsigned long *state)
c36cf071 305{
e0fda737 306 unsigned int target_freq;
84fe2cab 307 u32 last_load, normalised_power;
1dea432a 308 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 309 struct cpufreq_policy *policy = cpufreq_cdev->policy;
c36cf071 310
1dea432a 311 last_load = cpufreq_cdev->last_load ?: 1;
84fe2cab 312 normalised_power = (power * 100) / last_load;
1dea432a 313 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
c36cf071 314
3e08b2df 315 *state = get_level(cpufreq_cdev, target_freq);
ba76dd9d
VK
316 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
317 power);
c36cf071
JM
318 return 0;
319}
a4e893e8
QP
320
321static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
322 struct em_perf_domain *em) {
323 struct cpufreq_policy *policy;
324 unsigned int nr_levels;
325
326 if (!em)
327 return false;
328
329 policy = cpufreq_cdev->policy;
521b512b 330 if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
a4e893e8 331 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
521b512b 332 cpumask_pr_args(em_span_cpus(em)),
a4e893e8
QP
333 cpumask_pr_args(policy->related_cpus));
334 return false;
335 }
336
337 nr_levels = cpufreq_cdev->max_level + 1;
521b512b
LL
338 if (em_pd_nr_perf_states(em) != nr_levels) {
339 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
340 cpumask_pr_args(em_span_cpus(em)),
341 em_pd_nr_perf_states(em), nr_levels);
a4e893e8
QP
342 return false;
343 }
344
345 return true;
346}
5a4e5b78
QP
347#endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
348
a4e893e8
QP
349static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
350 unsigned long state)
351{
352 struct cpufreq_policy *policy;
353 unsigned long idx;
354
355#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
356 /* Use the Energy Model table if available */
357 if (cpufreq_cdev->em) {
358 idx = cpufreq_cdev->max_level - state;
359 return cpufreq_cdev->em->table[idx].frequency;
360 }
361#endif
362
363 /* Otherwise, fallback on the CPUFreq table */
364 policy = cpufreq_cdev->policy;
365 if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
366 idx = cpufreq_cdev->max_level - state;
367 else
368 idx = state;
369
370 return policy->freq_table[idx].frequency;
371}
372
5a4e5b78
QP
373/* cpufreq cooling device callback functions are defined below */
374
375/**
376 * cpufreq_get_max_state - callback function to get the max cooling state.
377 * @cdev: thermal cooling device pointer.
378 * @state: fill this variable with the max cooling state.
379 *
380 * Callback for the thermal cooling device to return the cpufreq
381 * max cooling state.
382 *
383 * Return: 0 on success, an error code otherwise.
384 */
385static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
386 unsigned long *state)
387{
388 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
389
390 *state = cpufreq_cdev->max_level;
391 return 0;
392}
393
394/**
395 * cpufreq_get_cur_state - callback function to get the current cooling state.
396 * @cdev: thermal cooling device pointer.
397 * @state: fill this variable with the current cooling state.
398 *
399 * Callback for the thermal cooling device to return the cpufreq
400 * current cooling state.
401 *
402 * Return: 0 on success, an error code otherwise.
403 */
404static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
405 unsigned long *state)
406{
407 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
408
409 *state = cpufreq_cdev->cpufreq_state;
410
411 return 0;
412}
413
414/**
415 * cpufreq_set_cur_state - callback function to set the current cooling state.
416 * @cdev: thermal cooling device pointer.
417 * @state: set this variable to the current cooling state.
418 *
419 * Callback for the thermal cooling device to change the cpufreq
420 * current cooling state.
421 *
422 * Return: 0 on success, an error code otherwise.
423 */
424static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
425 unsigned long state)
426{
427 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
f12e4f66
TG
428 struct cpumask *cpus;
429 unsigned int frequency;
430 unsigned long max_capacity, capacity;
431 int ret;
5a4e5b78
QP
432
433 /* Request state should be less than max_level */
40ea5685 434 if (state > cpufreq_cdev->max_level)
5a4e5b78
QP
435 return -EINVAL;
436
437 /* Check if the old cooling action is same as new cooling action */
438 if (cpufreq_cdev->cpufreq_state == state)
439 return 0;
440
f12e4f66
TG
441 frequency = get_state_freq(cpufreq_cdev, state);
442
443 ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
f12e4f66 444 if (ret > 0) {
236761f1 445 cpufreq_cdev->cpufreq_state = state;
f12e4f66
TG
446 cpus = cpufreq_cdev->policy->cpus;
447 max_capacity = arch_scale_cpu_capacity(cpumask_first(cpus));
448 capacity = frequency * max_capacity;
449 capacity /= cpufreq_cdev->policy->cpuinfo.max_freq;
450 arch_set_thermal_pressure(cpus, max_capacity - capacity);
34183ddd 451 ret = 0;
f12e4f66
TG
452 }
453
454 return ret;
5a4e5b78 455}
c36cf071 456
02361418 457/* Bind cpufreq callbacks to thermal cooling device ops */
a305a438 458
c36cf071 459static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
a305a438
BJ
460 .get_max_state = cpufreq_get_max_state,
461 .get_cur_state = cpufreq_get_cur_state,
462 .set_cur_state = cpufreq_set_cur_state,
a305a438
BJ
463};
464
02361418 465/**
39d99cff
EV
466 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
467 * @np: a valid struct device_node to the cooling device device tree node
4d753aa7 468 * @policy: cpufreq policy
405fb825 469 * Normally this should be same as cpufreq policy->related_cpus.
a4e893e8 470 * @em: Energy Model of the cpufreq policy
12cb08ba
EV
471 *
472 * This interface function registers the cpufreq cooling device with the name
473 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
474 * cooling devices. It also gives the opportunity to link the cooling device
475 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
476 *
477 * Return: a valid struct thermal_cooling_device pointer on success,
478 * on failure, it returns a corresponding ERR_PTR().
02361418 479 */
39d99cff
EV
480static struct thermal_cooling_device *
481__cpufreq_cooling_register(struct device_node *np,
a4e893e8
QP
482 struct cpufreq_policy *policy,
483 struct em_perf_domain *em)
02361418 484{
04bdbdf9 485 struct thermal_cooling_device *cdev;
1dea432a 486 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 487 char dev_name[THERMAL_NAME_LENGTH];
a4e893e8 488 unsigned int i, num_cpus;
5130802d 489 struct device *dev;
405fb825 490 int ret;
a305a438 491 struct thermal_cooling_device_ops *cooling_ops;
5130802d
VK
492
493 dev = get_cpu_device(policy->cpu);
494 if (unlikely(!dev)) {
495 pr_warn("No cpu device for cpu %d\n", policy->cpu);
496 return ERR_PTR(-ENODEV);
497 }
498
02361418 499
4d753aa7 500 if (IS_ERR_OR_NULL(policy)) {
b2fd708f 501 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
4d753aa7 502 return ERR_PTR(-EINVAL);
f8bfc116
VK
503 }
504
55d85293
VK
505 i = cpufreq_table_count_valid_entries(policy);
506 if (!i) {
507 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
508 __func__);
4d753aa7 509 return ERR_PTR(-ENODEV);
02361418 510 }
0f1be51c 511
1dea432a 512 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
4d753aa7
VK
513 if (!cpufreq_cdev)
514 return ERR_PTR(-ENOMEM);
02361418 515
b12b6519 516 cpufreq_cdev->policy = policy;
4d753aa7 517 num_cpus = cpumask_weight(policy->related_cpus);
81ee14da
VK
518 cpufreq_cdev->idle_time = kcalloc(num_cpus,
519 sizeof(*cpufreq_cdev->idle_time),
520 GFP_KERNEL);
521 if (!cpufreq_cdev->idle_time) {
04bdbdf9 522 cdev = ERR_PTR(-ENOMEM);
c36cf071
JM
523 goto free_cdev;
524 }
525
55d85293
VK
526 /* max_level is an index, not a counter */
527 cpufreq_cdev->max_level = i - 1;
dcc6c7fd 528
ae606089
MW
529 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
530 if (ret < 0) {
04bdbdf9 531 cdev = ERR_PTR(ret);
a4e893e8 532 goto free_idle_time;
02361418 533 }
1dea432a 534 cpufreq_cdev->id = ret;
02361418 535
349d39dc
VK
536 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
537 cpufreq_cdev->id);
538
5a4e5b78
QP
539 cooling_ops = &cpufreq_cooling_ops;
540
541#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
a4e893e8
QP
542 if (em_is_sane(cpufreq_cdev, em)) {
543 cpufreq_cdev->em = em;
5a4e5b78
QP
544 cooling_ops->get_requested_power = cpufreq_get_requested_power;
545 cooling_ops->state2power = cpufreq_state2power;
546 cooling_ops->power2state = cpufreq_power2state;
a4e893e8 547 } else
5a4e5b78 548#endif
a4e893e8
QP
549 if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
550 pr_err("%s: unsorted frequency tables are not supported\n",
551 __func__);
552 cdev = ERR_PTR(-EINVAL);
553 goto remove_ida;
554 }
f840ab18 555
3000ce3c
RW
556 ret = freq_qos_add_request(&policy->constraints,
557 &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
a4e893e8 558 get_state_freq(cpufreq_cdev, 0));
5130802d
VK
559 if (ret < 0) {
560 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
561 ret);
562 cdev = ERR_PTR(ret);
563 goto remove_ida;
564 }
565
04bdbdf9
VK
566 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
567 cooling_ops);
568 if (IS_ERR(cdev))
5130802d 569 goto remove_qos_req;
92e615ec 570
02373d7c 571 mutex_lock(&cooling_list_lock);
1dea432a 572 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
088db931 573 mutex_unlock(&cooling_list_lock);
02373d7c 574
4d753aa7 575 return cdev;
730abe06 576
5130802d 577remove_qos_req:
3000ce3c 578 freq_qos_remove_request(&cpufreq_cdev->qos_req);
ae606089 579remove_ida:
1dea432a 580 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
81ee14da
VK
581free_idle_time:
582 kfree(cpufreq_cdev->idle_time);
730abe06 583free_cdev:
1dea432a 584 kfree(cpufreq_cdev);
04bdbdf9 585 return cdev;
02361418 586}
39d99cff
EV
587
588/**
589 * cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 590 * @policy: cpufreq policy
39d99cff
EV
591 *
592 * This interface function registers the cpufreq cooling device with the name
593 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
594 * cooling devices.
595 *
596 * Return: a valid struct thermal_cooling_device pointer on success,
597 * on failure, it returns a corresponding ERR_PTR().
598 */
599struct thermal_cooling_device *
4d753aa7 600cpufreq_cooling_register(struct cpufreq_policy *policy)
39d99cff 601{
a4e893e8 602 return __cpufreq_cooling_register(NULL, policy, NULL);
39d99cff 603}
243dbd9c 604EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 605
39d99cff
EV
606/**
607 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 608 * @policy: cpufreq policy
39d99cff
EV
609 *
610 * This interface function registers the cpufreq cooling device with the name
611 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
612 * cooling devices. Using this API, the cpufreq cooling device will be
613 * linked to the device tree node provided.
614 *
c36cf071
JM
615 * Using this function, the cooling device will implement the power
616 * extensions by using a simple cpu power model. The cpus must have
617 * registered their OPPs using the OPP library.
618 *
f5f263fe
VK
619 * It also takes into account, if property present in policy CPU node, the
620 * static power consumed by the cpu.
c36cf071
JM
621 *
622 * Return: a valid struct thermal_cooling_device pointer on success,
f5f263fe 623 * and NULL on failure.
c36cf071
JM
624 */
625struct thermal_cooling_device *
3ebb62ff 626of_cpufreq_cooling_register(struct cpufreq_policy *policy)
c36cf071 627{
f5f263fe
VK
628 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
629 struct thermal_cooling_device *cdev = NULL;
f5f263fe
VK
630
631 if (!np) {
23affa2e 632 pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
f5f263fe
VK
633 policy->cpu);
634 return NULL;
635 }
c36cf071 636
f5f263fe 637 if (of_find_property(np, "#cooling-cells", NULL)) {
a4e893e8 638 struct em_perf_domain *em = em_cpu_get(policy->cpu);
f5f263fe 639
a4e893e8 640 cdev = __cpufreq_cooling_register(np, policy, em);
f5f263fe 641 if (IS_ERR(cdev)) {
23affa2e 642 pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
f5f263fe
VK
643 policy->cpu, PTR_ERR(cdev));
644 cdev = NULL;
645 }
646 }
647
648 of_node_put(np);
649 return cdev;
c36cf071 650}
3ebb62ff 651EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
c36cf071 652
02361418
ADK
653/**
654 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
655 * @cdev: thermal cooling device pointer.
135266b4
EV
656 *
657 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
658 */
659void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
660{
1dea432a 661 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 662
50e66c7e
EV
663 if (!cdev)
664 return;
665
1dea432a 666 cpufreq_cdev = cdev->devdata;
02361418 667
ae606089 668 mutex_lock(&cooling_list_lock);
1dea432a 669 list_del(&cpufreq_cdev->node);
088db931
MW
670 mutex_unlock(&cooling_list_lock);
671
72554a75 672 thermal_cooling_device_unregister(cdev);
3000ce3c 673 freq_qos_remove_request(&cpufreq_cdev->qos_req);
1dea432a 674 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
81ee14da 675 kfree(cpufreq_cdev->idle_time);
1dea432a 676 kfree(cpufreq_cdev);
02361418 677}
243dbd9c 678EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);