thermal/cpu_cooling: No need to initialize max_freq to 0
[linux-2.6-block.git] / drivers / thermal / cpu_cooling.c
CommitLineData
02361418
ADK
1/*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
73904cbc
VK
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
02361418
ADK
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
02361418
ADK
25#include <linux/module.h>
26#include <linux/thermal.h>
02361418
ADK
27#include <linux/cpufreq.h>
28#include <linux/err.h>
c36cf071 29#include <linux/pm_opp.h>
02361418
ADK
30#include <linux/slab.h>
31#include <linux/cpu.h>
32#include <linux/cpu_cooling.h>
33
6828a471
JM
34#include <trace/events/thermal.h>
35
07d888d8
VK
36/*
37 * Cooling state <-> CPUFreq frequency
38 *
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
41 *
42 * Highest cooling state corresponds to lowest possible frequency.
43 *
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
48 */
49
c36cf071
JM
50/**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
54 *
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
57 */
58struct power_table {
59 u32 frequency;
60 u32 power;
61};
62
02361418 63/**
3b3c0748 64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
3b3c0748
EV
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
02361418
ADK
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
71 * @cpufreq_val: integer value representing the absolute value of the clipped
72 * frequency.
dcc6c7fd
VK
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
02361418 75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
fc4de356 76 * @node: list_head to link all cpufreq_cooling_device together.
c36cf071
JM
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
02361418 86 *
beca6053
VK
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
02361418
ADK
89 */
90struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
94 unsigned int cpufreq_val;
dcc6c7fd 95 unsigned int max_level;
f6859014 96 unsigned int *freq_table; /* In descending order */
02361418 97 struct cpumask allowed_cpus;
2dcd851f 98 struct list_head node;
c36cf071
JM
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
02361418 106};
02361418 107static DEFINE_IDR(cpufreq_idr);
160b7d80 108static DEFINE_MUTEX(cooling_cpufreq_lock);
02361418 109
02373d7c
RK
110static unsigned int cpufreq_dev_count;
111
112static DEFINE_MUTEX(cooling_list_lock);
2dcd851f 113static LIST_HEAD(cpufreq_dev_list);
02361418
ADK
114
115/**
116 * get_idr - function to get a unique id.
117 * @idr: struct idr * handle used to create a id.
118 * @id: int * value generated by this function.
79491e53
EV
119 *
120 * This function will populate @id with an unique
121 * id, using the idr API.
122 *
123 * Return: 0 on success, an error code on failure.
02361418
ADK
124 */
125static int get_idr(struct idr *idr, int *id)
126{
6deb69fa 127 int ret;
02361418
ADK
128
129 mutex_lock(&cooling_cpufreq_lock);
6deb69fa 130 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
02361418 131 mutex_unlock(&cooling_cpufreq_lock);
6deb69fa
TH
132 if (unlikely(ret < 0))
133 return ret;
134 *id = ret;
79491e53 135
02361418
ADK
136 return 0;
137}
138
139/**
140 * release_idr - function to free the unique id.
141 * @idr: struct idr * handle used for creating the id.
142 * @id: int value representing the unique id.
143 */
144static void release_idr(struct idr *idr, int id)
145{
146 mutex_lock(&cooling_cpufreq_lock);
147 idr_remove(idr, id);
148 mutex_unlock(&cooling_cpufreq_lock);
149}
150
151/* Below code defines functions to be used for cpufreq as cooling device */
152
153/**
4843c4a1 154 * get_level: Find the level for a particular frequency
b9f8b416 155 * @cpufreq_dev: cpufreq_dev for which the property is required
4843c4a1 156 * @freq: Frequency
82b9ee40 157 *
4843c4a1 158 * Return: level on success, THERMAL_CSTATE_INVALID on error.
02361418 159 */
4843c4a1
VK
160static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
161 unsigned int freq)
02361418 162{
4843c4a1 163 unsigned long level;
a116776f 164
4843c4a1
VK
165 for (level = 0; level <= cpufreq_dev->max_level; level++) {
166 if (freq == cpufreq_dev->freq_table[level])
167 return level;
02361418 168
4843c4a1
VK
169 if (freq > cpufreq_dev->freq_table[level])
170 break;
fc35b35c 171 }
02361418 172
4843c4a1 173 return THERMAL_CSTATE_INVALID;
fc35b35c
ZR
174}
175
44952d33 176/**
728c03c9 177 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
44952d33
EV
178 * @cpu: cpu for which the level is required
179 * @freq: the frequency of interest
180 *
181 * This function will match the cooling level corresponding to the
182 * requested @freq and return it.
183 *
184 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
185 * otherwise.
186 */
57df8106
ZR
187unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
188{
b9f8b416 189 struct cpufreq_cooling_device *cpufreq_dev;
02361418 190
02373d7c 191 mutex_lock(&cooling_list_lock);
b9f8b416
VK
192 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
02373d7c 194 mutex_unlock(&cooling_list_lock);
4843c4a1 195 return get_level(cpufreq_dev, freq);
b9f8b416 196 }
02361418 197 }
02373d7c 198 mutex_unlock(&cooling_list_lock);
02361418 199
b9f8b416
VK
200 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
201 return THERMAL_CSTATE_INVALID;
02361418 202}
243dbd9c 203EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
02361418
ADK
204
205/**
206 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
207 * @nb: struct notifier_block * with callback info.
208 * @event: value showing cpufreq event for which this function invoked.
209 * @data: callback-specific data
bab30554 210 *
9746b6e7 211 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
212 * Every time there is a change in policy, we will intercept and
213 * update the cpufreq policy with thermal constraints.
214 *
215 * Return: 0 (success)
02361418
ADK
216 */
217static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 218 unsigned long event, void *data)
02361418
ADK
219{
220 struct cpufreq_policy *policy = data;
76fd38ce 221 unsigned long max_freq;
2dcd851f 222 struct cpufreq_cooling_device *cpufreq_dev;
02361418 223
c36cf071 224 switch (event) {
02361418 225
c36cf071 226 case CPUFREQ_ADJUST:
02373d7c 227 mutex_lock(&cooling_list_lock);
c36cf071
JM
228 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
229 if (!cpumask_test_cpu(policy->cpu,
230 &cpufreq_dev->allowed_cpus))
231 continue;
232
233 max_freq = cpufreq_dev->cpufreq_val;
234
235 if (policy->max != max_freq)
236 cpufreq_verify_within_limits(policy, 0,
237 max_freq);
238 }
02373d7c 239 mutex_unlock(&cooling_list_lock);
c36cf071 240 break;
c36cf071
JM
241 default:
242 return NOTIFY_DONE;
243 }
244
245 return NOTIFY_OK;
246}
247
248/**
249 * build_dyn_power_table() - create a dynamic power to frequency table
250 * @cpufreq_device: the cpufreq cooling device in which to store the table
251 * @capacitance: dynamic power coefficient for these cpus
252 *
253 * Build a dynamic power to frequency table for this cpu and store it
254 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
255 * cpu_freq_to_power() to convert between power and frequency
256 * efficiently. Power is stored in mW, frequency in KHz. The
257 * resulting table is in ascending order.
258 *
259 * Return: 0 on success, -E* on error.
260 */
261static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
262 u32 capacitance)
263{
264 struct power_table *power_table;
265 struct dev_pm_opp *opp;
266 struct device *dev = NULL;
267 int num_opps = 0, cpu, i, ret = 0;
268 unsigned long freq;
269
270 rcu_read_lock();
271
272 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
273 dev = get_cpu_device(cpu);
274 if (!dev) {
275 dev_warn(&cpufreq_device->cool_dev->device,
276 "No cpu device for cpu %d\n", cpu);
2dcd851f 277 continue;
c36cf071 278 }
2dcd851f 279
c36cf071
JM
280 num_opps = dev_pm_opp_get_opp_count(dev);
281 if (num_opps > 0) {
282 break;
283 } else if (num_opps < 0) {
284 ret = num_opps;
285 goto unlock;
286 }
287 }
02361418 288
c36cf071
JM
289 if (num_opps == 0) {
290 ret = -EINVAL;
291 goto unlock;
2dcd851f 292 }
02361418 293
c36cf071 294 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
0cdf97e1
JM
295 if (!power_table) {
296 ret = -ENOMEM;
297 goto unlock;
298 }
c36cf071
JM
299
300 for (freq = 0, i = 0;
301 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
302 freq++, i++) {
303 u32 freq_mhz, voltage_mv;
304 u64 power;
305
306 freq_mhz = freq / 1000000;
307 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
308
309 /*
310 * Do the multiplication with MHz and millivolt so as
311 * to not overflow.
312 */
313 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
314 do_div(power, 1000000000);
315
316 /* frequency is stored in power_table in KHz */
317 power_table[i].frequency = freq / 1000;
318
319 /* power is stored in mW */
320 power_table[i].power = power;
321 }
322
323 if (i == 0) {
324 ret = PTR_ERR(opp);
325 goto unlock;
326 }
327
328 cpufreq_device->cpu_dev = dev;
329 cpufreq_device->dyn_power_table = power_table;
330 cpufreq_device->dyn_power_table_entries = i;
331
332unlock:
333 rcu_read_unlock();
334 return ret;
335}
336
337static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
338 u32 freq)
339{
340 int i;
341 struct power_table *pt = cpufreq_device->dyn_power_table;
342
343 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
344 if (freq < pt[i].frequency)
345 break;
346
347 return pt[i - 1].power;
348}
349
350static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
351 u32 power)
352{
353 int i;
354 struct power_table *pt = cpufreq_device->dyn_power_table;
355
356 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
357 if (power < pt[i].power)
358 break;
359
360 return pt[i - 1].frequency;
361}
362
363/**
364 * get_load() - get load for a cpu since last updated
365 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
366 * @cpu: cpu number
367 *
368 * Return: The average load of cpu @cpu in percentage since this
369 * function was last called.
370 */
371static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
372{
373 u32 load;
374 u64 now, now_idle, delta_time, delta_idle;
375
376 now_idle = get_cpu_idle_time(cpu, &now, 0);
377 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
378 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
379
380 if (delta_time <= delta_idle)
381 load = 0;
382 else
383 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
384
385 cpufreq_device->time_in_idle[cpu] = now_idle;
386 cpufreq_device->time_in_idle_timestamp[cpu] = now;
387
388 return load;
389}
390
391/**
392 * get_static_power() - calculate the static power consumed by the cpus
393 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
394 * @tz: thermal zone device in which we're operating
395 * @freq: frequency in KHz
396 * @power: pointer in which to store the calculated static power
397 *
398 * Calculate the static power consumed by the cpus described by
399 * @cpu_actor running at frequency @freq. This function relies on a
400 * platform specific function that should have been provided when the
401 * actor was registered. If it wasn't, the static power is assumed to
402 * be negligible. The calculated static power is stored in @power.
403 *
404 * Return: 0 on success, -E* on failure.
405 */
406static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
407 struct thermal_zone_device *tz, unsigned long freq,
408 u32 *power)
409{
410 struct dev_pm_opp *opp;
411 unsigned long voltage;
412 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
413 unsigned long freq_hz = freq * 1000;
414
415 if (!cpufreq_device->plat_get_static_power ||
416 !cpufreq_device->cpu_dev) {
417 *power = 0;
418 return 0;
419 }
420
421 rcu_read_lock();
422
423 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
424 true);
425 voltage = dev_pm_opp_get_voltage(opp);
426
427 rcu_read_unlock();
428
429 if (voltage == 0) {
430 dev_warn_ratelimited(cpufreq_device->cpu_dev,
431 "Failed to get voltage for frequency %lu: %ld\n",
432 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
433 return -EINVAL;
434 }
435
436 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
437 voltage, power);
438}
439
440/**
441 * get_dynamic_power() - calculate the dynamic power
442 * @cpufreq_device: &cpufreq_cooling_device for this cdev
443 * @freq: current frequency
444 *
445 * Return: the dynamic power consumed by the cpus described by
446 * @cpufreq_device.
447 */
448static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
449 unsigned long freq)
450{
451 u32 raw_cpu_power;
452
453 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
454 return (raw_cpu_power * cpufreq_device->last_load) / 100;
02361418
ADK
455}
456
1b9e3526 457/* cpufreq cooling device callback functions are defined below */
02361418
ADK
458
459/**
460 * cpufreq_get_max_state - callback function to get the max cooling state.
461 * @cdev: thermal cooling device pointer.
462 * @state: fill this variable with the max cooling state.
62c00421
EV
463 *
464 * Callback for the thermal cooling device to return the cpufreq
465 * max cooling state.
466 *
467 * Return: 0 on success, an error code otherwise.
02361418
ADK
468 */
469static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
470 unsigned long *state)
471{
160b7d80 472 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
9c51b05a 473
dcc6c7fd
VK
474 *state = cpufreq_device->max_level;
475 return 0;
02361418
ADK
476}
477
478/**
479 * cpufreq_get_cur_state - callback function to get the current cooling state.
480 * @cdev: thermal cooling device pointer.
481 * @state: fill this variable with the current cooling state.
3672552d
EV
482 *
483 * Callback for the thermal cooling device to return the cpufreq
484 * current cooling state.
485 *
486 * Return: 0 on success, an error code otherwise.
02361418
ADK
487 */
488static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
489 unsigned long *state)
490{
160b7d80 491 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
02361418 492
160b7d80 493 *state = cpufreq_device->cpufreq_state;
79491e53 494
160b7d80 495 return 0;
02361418
ADK
496}
497
498/**
499 * cpufreq_set_cur_state - callback function to set the current cooling state.
500 * @cdev: thermal cooling device pointer.
501 * @state: set this variable to the current cooling state.
56e05fdb
EV
502 *
503 * Callback for the thermal cooling device to change the cpufreq
504 * current cooling state.
505 *
506 * Return: 0 on success, an error code otherwise.
02361418
ADK
507 */
508static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
509 unsigned long state)
510{
160b7d80 511 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
5194fe46
VK
512 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
513 unsigned int clip_freq;
4843c4a1
VK
514
515 /* Request state should be less than max_level */
516 if (WARN_ON(state > cpufreq_device->max_level))
517 return -EINVAL;
5194fe46
VK
518
519 /* Check if the old cooling action is same as new cooling action */
520 if (cpufreq_device->cpufreq_state == state)
521 return 0;
02361418 522
4843c4a1 523 clip_freq = cpufreq_device->freq_table[state];
5194fe46
VK
524 cpufreq_device->cpufreq_state = state;
525 cpufreq_device->cpufreq_val = clip_freq;
526
527 cpufreq_update_policy(cpu);
528
529 return 0;
02361418
ADK
530}
531
c36cf071
JM
532/**
533 * cpufreq_get_requested_power() - get the current power
534 * @cdev: &thermal_cooling_device pointer
535 * @tz: a valid thermal zone device pointer
536 * @power: pointer in which to store the resulting power
537 *
538 * Calculate the current power consumption of the cpus in milliwatts
539 * and store it in @power. This function should actually calculate
540 * the requested power, but it's hard to get the frequency that
541 * cpufreq would have assigned if there were no thermal limits.
542 * Instead, we calculate the current power on the assumption that the
543 * immediate future will look like the immediate past.
544 *
545 * We use the current frequency and the average load since this
546 * function was last called. In reality, there could have been
547 * multiple opps since this function was last called and that affects
548 * the load calculation. While it's not perfectly accurate, this
549 * simplification is good enough and works. REVISIT this, as more
550 * complex code may be needed if experiments show that it's not
551 * accurate enough.
552 *
553 * Return: 0 on success, -E* if getting the static power failed.
554 */
555static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
556 struct thermal_zone_device *tz,
557 u32 *power)
558{
559 unsigned long freq;
6828a471 560 int i = 0, cpu, ret;
c36cf071
JM
561 u32 static_power, dynamic_power, total_load = 0;
562 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
6828a471 563 u32 *load_cpu = NULL;
c36cf071 564
dd658e02
KS
565 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
566
567 /*
568 * All the CPUs are offline, thus the requested power by
569 * the cdev is 0
570 */
571 if (cpu >= nr_cpu_ids) {
572 *power = 0;
573 return 0;
574 }
575
576 freq = cpufreq_quick_get(cpu);
c36cf071 577
6828a471
JM
578 if (trace_thermal_power_cpu_get_power_enabled()) {
579 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
580
581 load_cpu = devm_kcalloc(&cdev->device, ncpus, sizeof(*load_cpu),
582 GFP_KERNEL);
583 }
584
c36cf071
JM
585 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
586 u32 load;
587
588 if (cpu_online(cpu))
589 load = get_load(cpufreq_device, cpu);
590 else
591 load = 0;
592
593 total_load += load;
6828a471
JM
594 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
595 load_cpu[i] = load;
596
597 i++;
c36cf071
JM
598 }
599
600 cpufreq_device->last_load = total_load;
601
602 dynamic_power = get_dynamic_power(cpufreq_device, freq);
603 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
6828a471
JM
604 if (ret) {
605 if (load_cpu)
606 devm_kfree(&cdev->device, load_cpu);
c36cf071 607 return ret;
6828a471
JM
608 }
609
610 if (load_cpu) {
611 trace_thermal_power_cpu_get_power(
612 &cpufreq_device->allowed_cpus,
613 freq, load_cpu, i, dynamic_power, static_power);
614
615 devm_kfree(&cdev->device, load_cpu);
616 }
c36cf071
JM
617
618 *power = static_power + dynamic_power;
619 return 0;
620}
621
622/**
623 * cpufreq_state2power() - convert a cpu cdev state to power consumed
624 * @cdev: &thermal_cooling_device pointer
625 * @tz: a valid thermal zone device pointer
626 * @state: cooling device state to be converted
627 * @power: pointer in which to store the resulting power
628 *
629 * Convert cooling device state @state into power consumption in
630 * milliwatts assuming 100% load. Store the calculated power in
631 * @power.
632 *
633 * Return: 0 on success, -EINVAL if the cooling device state could not
634 * be converted into a frequency or other -E* if there was an error
635 * when calculating the static power.
636 */
637static int cpufreq_state2power(struct thermal_cooling_device *cdev,
638 struct thermal_zone_device *tz,
639 unsigned long state, u32 *power)
640{
641 unsigned int freq, num_cpus;
642 cpumask_t cpumask;
643 u32 static_power, dynamic_power;
644 int ret;
645 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
646
647 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
648 num_cpus = cpumask_weight(&cpumask);
649
650 /* None of our cpus are online, so no power */
651 if (num_cpus == 0) {
652 *power = 0;
653 return 0;
654 }
655
656 freq = cpufreq_device->freq_table[state];
657 if (!freq)
658 return -EINVAL;
659
660 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
661 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
662 if (ret)
663 return ret;
664
665 *power = static_power + dynamic_power;
666 return 0;
667}
668
669/**
670 * cpufreq_power2state() - convert power to a cooling device state
671 * @cdev: &thermal_cooling_device pointer
672 * @tz: a valid thermal zone device pointer
673 * @power: power in milliwatts to be converted
674 * @state: pointer in which to store the resulting state
675 *
676 * Calculate a cooling device state for the cpus described by @cdev
677 * that would allow them to consume at most @power mW and store it in
678 * @state. Note that this calculation depends on external factors
679 * such as the cpu load or the current static power. Calling this
680 * function with the same power as input can yield different cooling
681 * device states depending on those external factors.
682 *
683 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
684 * the calculated frequency could not be converted to a valid state.
685 * The latter should not happen unless the frequencies available to
686 * cpufreq have changed since the initialization of the cpu cooling
687 * device.
688 */
689static int cpufreq_power2state(struct thermal_cooling_device *cdev,
690 struct thermal_zone_device *tz, u32 power,
691 unsigned long *state)
692{
693 unsigned int cpu, cur_freq, target_freq;
694 int ret;
695 s32 dyn_power;
696 u32 last_load, normalised_power, static_power;
697 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
698
699 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
700
701 /* None of our cpus are online */
702 if (cpu >= nr_cpu_ids)
703 return -ENODEV;
704
705 cur_freq = cpufreq_quick_get(cpu);
706 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
707 if (ret)
708 return ret;
709
710 dyn_power = power - static_power;
711 dyn_power = dyn_power > 0 ? dyn_power : 0;
712 last_load = cpufreq_device->last_load ?: 1;
713 normalised_power = (dyn_power * 100) / last_load;
714 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
715
716 *state = cpufreq_cooling_get_level(cpu, target_freq);
717 if (*state == THERMAL_CSTATE_INVALID) {
718 dev_warn_ratelimited(&cdev->device,
719 "Failed to convert %dKHz for cpu %d into a cdev state\n",
720 target_freq, cpu);
721 return -EINVAL;
722 }
723
6828a471
JM
724 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
725 target_freq, *state, power);
c36cf071
JM
726 return 0;
727}
728
02361418 729/* Bind cpufreq callbacks to thermal cooling device ops */
c36cf071 730static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
731 .get_max_state = cpufreq_get_max_state,
732 .get_cur_state = cpufreq_get_cur_state,
733 .set_cur_state = cpufreq_set_cur_state,
734};
735
736/* Notifier for cpufreq policy change */
737static struct notifier_block thermal_cpufreq_notifier_block = {
738 .notifier_call = cpufreq_thermal_notifier,
739};
740
f6859014
VK
741static unsigned int find_next_max(struct cpufreq_frequency_table *table,
742 unsigned int prev_max)
743{
744 struct cpufreq_frequency_table *pos;
745 unsigned int max = 0;
746
747 cpufreq_for_each_valid_entry(pos, table) {
748 if (pos->frequency > max && pos->frequency < prev_max)
749 max = pos->frequency;
750 }
751
752 return max;
753}
754
02361418 755/**
39d99cff
EV
756 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
757 * @np: a valid struct device_node to the cooling device device tree node
02361418 758 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
405fb825 759 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071
JM
760 * @capacitance: dynamic power coefficient for these cpus
761 * @plat_static_func: function to calculate the static power consumed by these
762 * cpus (optional)
12cb08ba
EV
763 *
764 * This interface function registers the cpufreq cooling device with the name
765 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
766 * cooling devices. It also gives the opportunity to link the cooling device
767 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
768 *
769 * Return: a valid struct thermal_cooling_device pointer on success,
770 * on failure, it returns a corresponding ERR_PTR().
02361418 771 */
39d99cff
EV
772static struct thermal_cooling_device *
773__cpufreq_cooling_register(struct device_node *np,
c36cf071
JM
774 const struct cpumask *clip_cpus, u32 capacitance,
775 get_static_t plat_static_func)
02361418
ADK
776{
777 struct thermal_cooling_device *cool_dev;
5d3bdb89 778 struct cpufreq_cooling_device *cpufreq_dev;
02361418 779 char dev_name[THERMAL_NAME_LENGTH];
dcc6c7fd 780 struct cpufreq_frequency_table *pos, *table;
c36cf071 781 unsigned int freq, i, num_cpus;
405fb825 782 int ret;
02361418 783
dcc6c7fd
VK
784 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
785 if (!table) {
0f1be51c
EV
786 pr_debug("%s: CPUFreq table not found\n", __func__);
787 return ERR_PTR(-EPROBE_DEFER);
02361418 788 }
0f1be51c 789
98d522f0 790 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
02361418
ADK
791 if (!cpufreq_dev)
792 return ERR_PTR(-ENOMEM);
793
c36cf071
JM
794 num_cpus = cpumask_weight(clip_cpus);
795 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
796 sizeof(*cpufreq_dev->time_in_idle),
797 GFP_KERNEL);
798 if (!cpufreq_dev->time_in_idle) {
799 cool_dev = ERR_PTR(-ENOMEM);
800 goto free_cdev;
801 }
802
803 cpufreq_dev->time_in_idle_timestamp =
804 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
805 GFP_KERNEL);
806 if (!cpufreq_dev->time_in_idle_timestamp) {
807 cool_dev = ERR_PTR(-ENOMEM);
808 goto free_time_in_idle;
809 }
810
dcc6c7fd
VK
811 /* Find max levels */
812 cpufreq_for_each_valid_entry(pos, table)
813 cpufreq_dev->max_level++;
814
f6859014
VK
815 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
816 cpufreq_dev->max_level, GFP_KERNEL);
817 if (!cpufreq_dev->freq_table) {
f6859014 818 cool_dev = ERR_PTR(-ENOMEM);
c36cf071 819 goto free_time_in_idle_timestamp;
f6859014
VK
820 }
821
dcc6c7fd
VK
822 /* max_level is an index, not a counter */
823 cpufreq_dev->max_level--;
824
02361418
ADK
825 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
826
c36cf071
JM
827 if (capacitance) {
828 cpufreq_cooling_ops.get_requested_power =
829 cpufreq_get_requested_power;
830 cpufreq_cooling_ops.state2power = cpufreq_state2power;
831 cpufreq_cooling_ops.power2state = cpufreq_power2state;
832 cpufreq_dev->plat_get_static_power = plat_static_func;
833
834 ret = build_dyn_power_table(cpufreq_dev, capacitance);
835 if (ret) {
836 cool_dev = ERR_PTR(ret);
837 goto free_table;
838 }
839 }
840
02361418
ADK
841 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
842 if (ret) {
730abe06 843 cool_dev = ERR_PTR(ret);
f6859014 844 goto free_table;
02361418
ADK
845 }
846
99871a71
EV
847 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
848 cpufreq_dev->id);
02361418 849
39d99cff
EV
850 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
851 &cpufreq_cooling_ops);
730abe06
VK
852 if (IS_ERR(cool_dev))
853 goto remove_idr;
854
f6859014
VK
855 /* Fill freq-table in descending order of frequencies */
856 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
857 freq = find_next_max(table, freq);
858 cpufreq_dev->freq_table[i] = freq;
859
860 /* Warn for duplicate entries */
861 if (!freq)
862 pr_warn("%s: table has duplicate entries\n", __func__);
863 else
864 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 865 }
f6859014 866
4843c4a1 867 cpufreq_dev->cpufreq_val = cpufreq_dev->freq_table[0];
02361418 868 cpufreq_dev->cool_dev = cool_dev;
92e615ec 869
02361418 870 mutex_lock(&cooling_cpufreq_lock);
02361418 871
02373d7c
RK
872 mutex_lock(&cooling_list_lock);
873 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
874 mutex_unlock(&cooling_list_lock);
875
02361418 876 /* Register the notifier for first cpufreq cooling device */
02373d7c 877 if (!cpufreq_dev_count++)
02361418 878 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 879 CPUFREQ_POLICY_NOTIFIER);
02361418 880 mutex_unlock(&cooling_cpufreq_lock);
79491e53 881
730abe06
VK
882 return cool_dev;
883
884remove_idr:
885 release_idr(&cpufreq_idr, cpufreq_dev->id);
f6859014
VK
886free_table:
887 kfree(cpufreq_dev->freq_table);
c36cf071
JM
888free_time_in_idle_timestamp:
889 kfree(cpufreq_dev->time_in_idle_timestamp);
890free_time_in_idle:
891 kfree(cpufreq_dev->time_in_idle);
730abe06
VK
892free_cdev:
893 kfree(cpufreq_dev);
894
02361418
ADK
895 return cool_dev;
896}
39d99cff
EV
897
898/**
899 * cpufreq_cooling_register - function to create cpufreq cooling device.
900 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
901 *
902 * This interface function registers the cpufreq cooling device with the name
903 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
904 * cooling devices.
905 *
906 * Return: a valid struct thermal_cooling_device pointer on success,
907 * on failure, it returns a corresponding ERR_PTR().
908 */
909struct thermal_cooling_device *
910cpufreq_cooling_register(const struct cpumask *clip_cpus)
911{
c36cf071 912 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
39d99cff 913}
243dbd9c 914EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 915
39d99cff
EV
916/**
917 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
918 * @np: a valid struct device_node to the cooling device device tree node
919 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
920 *
921 * This interface function registers the cpufreq cooling device with the name
922 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
923 * cooling devices. Using this API, the cpufreq cooling device will be
924 * linked to the device tree node provided.
925 *
926 * Return: a valid struct thermal_cooling_device pointer on success,
927 * on failure, it returns a corresponding ERR_PTR().
928 */
929struct thermal_cooling_device *
930of_cpufreq_cooling_register(struct device_node *np,
931 const struct cpumask *clip_cpus)
932{
933 if (!np)
934 return ERR_PTR(-EINVAL);
935
c36cf071 936 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
39d99cff
EV
937}
938EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
939
c36cf071
JM
940/**
941 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
942 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
943 * @capacitance: dynamic power coefficient for these cpus
944 * @plat_static_func: function to calculate the static power consumed by these
945 * cpus (optional)
946 *
947 * This interface function registers the cpufreq cooling device with
948 * the name "thermal-cpufreq-%x". This api can support multiple
949 * instances of cpufreq cooling devices. Using this function, the
950 * cooling device will implement the power extensions by using a
951 * simple cpu power model. The cpus must have registered their OPPs
952 * using the OPP library.
953 *
954 * An optional @plat_static_func may be provided to calculate the
955 * static power consumed by these cpus. If the platform's static
956 * power consumption is unknown or negligible, make it NULL.
957 *
958 * Return: a valid struct thermal_cooling_device pointer on success,
959 * on failure, it returns a corresponding ERR_PTR().
960 */
961struct thermal_cooling_device *
962cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
963 get_static_t plat_static_func)
964{
965 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
966 plat_static_func);
967}
968EXPORT_SYMBOL(cpufreq_power_cooling_register);
969
970/**
971 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
972 * @np: a valid struct device_node to the cooling device device tree node
973 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
974 * @capacitance: dynamic power coefficient for these cpus
975 * @plat_static_func: function to calculate the static power consumed by these
976 * cpus (optional)
977 *
978 * This interface function registers the cpufreq cooling device with
979 * the name "thermal-cpufreq-%x". This api can support multiple
980 * instances of cpufreq cooling devices. Using this API, the cpufreq
981 * cooling device will be linked to the device tree node provided.
982 * Using this function, the cooling device will implement the power
983 * extensions by using a simple cpu power model. The cpus must have
984 * registered their OPPs using the OPP library.
985 *
986 * An optional @plat_static_func may be provided to calculate the
987 * static power consumed by these cpus. If the platform's static
988 * power consumption is unknown or negligible, make it NULL.
989 *
990 * Return: a valid struct thermal_cooling_device pointer on success,
991 * on failure, it returns a corresponding ERR_PTR().
992 */
993struct thermal_cooling_device *
994of_cpufreq_power_cooling_register(struct device_node *np,
995 const struct cpumask *clip_cpus,
996 u32 capacitance,
997 get_static_t plat_static_func)
998{
999 if (!np)
1000 return ERR_PTR(-EINVAL);
1001
1002 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1003 plat_static_func);
1004}
1005EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1006
02361418
ADK
1007/**
1008 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1009 * @cdev: thermal cooling device pointer.
135266b4
EV
1010 *
1011 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
1012 */
1013void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1014{
50e66c7e 1015 struct cpufreq_cooling_device *cpufreq_dev;
02361418 1016
50e66c7e
EV
1017 if (!cdev)
1018 return;
1019
1020 cpufreq_dev = cdev->devdata;
02361418
ADK
1021
1022 /* Unregister the notifier for the last cpufreq cooling device */
02373d7c
RK
1023 mutex_lock(&cooling_cpufreq_lock);
1024 if (!--cpufreq_dev_count)
02361418 1025 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 1026 CPUFREQ_POLICY_NOTIFIER);
02373d7c
RK
1027
1028 mutex_lock(&cooling_list_lock);
1029 list_del(&cpufreq_dev->node);
1030 mutex_unlock(&cooling_list_lock);
1031
02361418 1032 mutex_unlock(&cooling_cpufreq_lock);
160b7d80 1033
02361418
ADK
1034 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1035 release_idr(&cpufreq_idr, cpufreq_dev->id);
c36cf071
JM
1036 kfree(cpufreq_dev->time_in_idle_timestamp);
1037 kfree(cpufreq_dev->time_in_idle);
f6859014 1038 kfree(cpufreq_dev->freq_table);
02361418
ADK
1039 kfree(cpufreq_dev);
1040}
243dbd9c 1041EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);