Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[linux-2.6-block.git] / drivers / thermal / cpu_cooling.c
CommitLineData
02361418
ADK
1/*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
73904cbc
VK
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
02361418
ADK
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
02361418
ADK
25#include <linux/module.h>
26#include <linux/thermal.h>
02361418
ADK
27#include <linux/cpufreq.h>
28#include <linux/err.h>
c36cf071 29#include <linux/pm_opp.h>
02361418
ADK
30#include <linux/slab.h>
31#include <linux/cpu.h>
32#include <linux/cpu_cooling.h>
33
6828a471
JM
34#include <trace/events/thermal.h>
35
07d888d8
VK
36/*
37 * Cooling state <-> CPUFreq frequency
38 *
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
41 *
42 * Highest cooling state corresponds to lowest possible frequency.
43 *
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
48 */
49
c36cf071
JM
50/**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
54 *
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
57 */
58struct power_table {
59 u32 frequency;
60 u32 power;
61};
62
02361418 63/**
3b3c0748 64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
3b3c0748
EV
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
02361418
ADK
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
59f0d218 71 * @clipped_freq: integer value representing the absolute value of the clipped
02361418 72 * frequency.
dcc6c7fd
VK
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
02361418 75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
fc4de356 76 * @node: list_head to link all cpufreq_cooling_device together.
c36cf071
JM
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
02361418 86 *
beca6053
VK
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
02361418
ADK
89 */
90struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
59f0d218 94 unsigned int clipped_freq;
dcc6c7fd 95 unsigned int max_level;
f6859014 96 unsigned int *freq_table; /* In descending order */
02361418 97 struct cpumask allowed_cpus;
2dcd851f 98 struct list_head node;
c36cf071
JM
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
02361418 106};
02361418 107static DEFINE_IDR(cpufreq_idr);
160b7d80 108static DEFINE_MUTEX(cooling_cpufreq_lock);
02361418 109
02373d7c
RK
110static unsigned int cpufreq_dev_count;
111
112static DEFINE_MUTEX(cooling_list_lock);
2dcd851f 113static LIST_HEAD(cpufreq_dev_list);
02361418
ADK
114
115/**
116 * get_idr - function to get a unique id.
117 * @idr: struct idr * handle used to create a id.
118 * @id: int * value generated by this function.
79491e53
EV
119 *
120 * This function will populate @id with an unique
121 * id, using the idr API.
122 *
123 * Return: 0 on success, an error code on failure.
02361418
ADK
124 */
125static int get_idr(struct idr *idr, int *id)
126{
6deb69fa 127 int ret;
02361418
ADK
128
129 mutex_lock(&cooling_cpufreq_lock);
6deb69fa 130 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
02361418 131 mutex_unlock(&cooling_cpufreq_lock);
6deb69fa
TH
132 if (unlikely(ret < 0))
133 return ret;
134 *id = ret;
79491e53 135
02361418
ADK
136 return 0;
137}
138
139/**
140 * release_idr - function to free the unique id.
141 * @idr: struct idr * handle used for creating the id.
142 * @id: int value representing the unique id.
143 */
144static void release_idr(struct idr *idr, int id)
145{
146 mutex_lock(&cooling_cpufreq_lock);
147 idr_remove(idr, id);
148 mutex_unlock(&cooling_cpufreq_lock);
149}
150
151/* Below code defines functions to be used for cpufreq as cooling device */
152
153/**
4843c4a1 154 * get_level: Find the level for a particular frequency
b9f8b416 155 * @cpufreq_dev: cpufreq_dev for which the property is required
4843c4a1 156 * @freq: Frequency
82b9ee40 157 *
4843c4a1 158 * Return: level on success, THERMAL_CSTATE_INVALID on error.
02361418 159 */
4843c4a1
VK
160static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
161 unsigned int freq)
02361418 162{
4843c4a1 163 unsigned long level;
a116776f 164
4843c4a1
VK
165 for (level = 0; level <= cpufreq_dev->max_level; level++) {
166 if (freq == cpufreq_dev->freq_table[level])
167 return level;
02361418 168
4843c4a1
VK
169 if (freq > cpufreq_dev->freq_table[level])
170 break;
fc35b35c 171 }
02361418 172
4843c4a1 173 return THERMAL_CSTATE_INVALID;
fc35b35c
ZR
174}
175
44952d33 176/**
728c03c9 177 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
44952d33
EV
178 * @cpu: cpu for which the level is required
179 * @freq: the frequency of interest
180 *
181 * This function will match the cooling level corresponding to the
182 * requested @freq and return it.
183 *
184 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
185 * otherwise.
186 */
57df8106
ZR
187unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
188{
b9f8b416 189 struct cpufreq_cooling_device *cpufreq_dev;
02361418 190
02373d7c 191 mutex_lock(&cooling_list_lock);
b9f8b416
VK
192 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
02373d7c 194 mutex_unlock(&cooling_list_lock);
4843c4a1 195 return get_level(cpufreq_dev, freq);
b9f8b416 196 }
02361418 197 }
02373d7c 198 mutex_unlock(&cooling_list_lock);
02361418 199
b9f8b416
VK
200 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
201 return THERMAL_CSTATE_INVALID;
02361418 202}
243dbd9c 203EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
02361418
ADK
204
205/**
206 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
207 * @nb: struct notifier_block * with callback info.
208 * @event: value showing cpufreq event for which this function invoked.
209 * @data: callback-specific data
bab30554 210 *
9746b6e7 211 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
212 * Every time there is a change in policy, we will intercept and
213 * update the cpufreq policy with thermal constraints.
214 *
215 * Return: 0 (success)
02361418
ADK
216 */
217static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 218 unsigned long event, void *data)
02361418
ADK
219{
220 struct cpufreq_policy *policy = data;
abcbcc25 221 unsigned long clipped_freq;
2dcd851f 222 struct cpufreq_cooling_device *cpufreq_dev;
02361418 223
a24af233
VK
224 if (event != CPUFREQ_ADJUST)
225 return NOTIFY_DONE;
02361418 226
a24af233
VK
227 mutex_lock(&cooling_list_lock);
228 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
229 if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
230 continue;
c36cf071 231
1afb9c53
VK
232 /*
233 * policy->max is the maximum allowed frequency defined by user
234 * and clipped_freq is the maximum that thermal constraints
235 * allow.
236 *
237 * If clipped_freq is lower than policy->max, then we need to
238 * readjust policy->max.
239 *
240 * But, if clipped_freq is greater than policy->max, we don't
241 * need to do anything.
242 */
abcbcc25 243 clipped_freq = cpufreq_dev->clipped_freq;
c36cf071 244
1afb9c53 245 if (policy->max > clipped_freq)
abcbcc25 246 cpufreq_verify_within_limits(policy, 0, clipped_freq);
c36cf071 247 break;
c36cf071 248 }
a24af233 249 mutex_unlock(&cooling_list_lock);
c36cf071
JM
250
251 return NOTIFY_OK;
252}
253
254/**
255 * build_dyn_power_table() - create a dynamic power to frequency table
256 * @cpufreq_device: the cpufreq cooling device in which to store the table
257 * @capacitance: dynamic power coefficient for these cpus
258 *
259 * Build a dynamic power to frequency table for this cpu and store it
260 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
261 * cpu_freq_to_power() to convert between power and frequency
262 * efficiently. Power is stored in mW, frequency in KHz. The
263 * resulting table is in ascending order.
264 *
459ac375
JM
265 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
266 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
267 * added/enabled while the function was executing.
c36cf071
JM
268 */
269static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
270 u32 capacitance)
271{
272 struct power_table *power_table;
273 struct dev_pm_opp *opp;
274 struct device *dev = NULL;
eba4f88d 275 int num_opps = 0, cpu, i, ret = 0;
c36cf071
JM
276 unsigned long freq;
277
c36cf071
JM
278 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
279 dev = get_cpu_device(cpu);
280 if (!dev) {
281 dev_warn(&cpufreq_device->cool_dev->device,
282 "No cpu device for cpu %d\n", cpu);
2dcd851f 283 continue;
c36cf071 284 }
2dcd851f 285
c36cf071 286 num_opps = dev_pm_opp_get_opp_count(dev);
459ac375 287 if (num_opps > 0)
c36cf071 288 break;
459ac375
JM
289 else if (num_opps < 0)
290 return num_opps;
c36cf071 291 }
02361418 292
459ac375
JM
293 if (num_opps == 0)
294 return -EINVAL;
02361418 295
c36cf071 296 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
459ac375
JM
297 if (!power_table)
298 return -ENOMEM;
299
300 rcu_read_lock();
c36cf071
JM
301
302 for (freq = 0, i = 0;
303 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
304 freq++, i++) {
305 u32 freq_mhz, voltage_mv;
306 u64 power;
307
459ac375
JM
308 if (i >= num_opps) {
309 rcu_read_unlock();
eba4f88d
JM
310 ret = -EAGAIN;
311 goto free_power_table;
459ac375
JM
312 }
313
c36cf071
JM
314 freq_mhz = freq / 1000000;
315 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
316
317 /*
318 * Do the multiplication with MHz and millivolt so as
319 * to not overflow.
320 */
321 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
322 do_div(power, 1000000000);
323
324 /* frequency is stored in power_table in KHz */
325 power_table[i].frequency = freq / 1000;
326
327 /* power is stored in mW */
328 power_table[i].power = power;
329 }
330
459ac375
JM
331 rcu_read_unlock();
332
eba4f88d
JM
333 if (i != num_opps) {
334 ret = PTR_ERR(opp);
335 goto free_power_table;
336 }
c36cf071
JM
337
338 cpufreq_device->cpu_dev = dev;
339 cpufreq_device->dyn_power_table = power_table;
340 cpufreq_device->dyn_power_table_entries = i;
341
459ac375 342 return 0;
eba4f88d
JM
343
344free_power_table:
345 kfree(power_table);
346
347 return ret;
c36cf071
JM
348}
349
350static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
351 u32 freq)
352{
353 int i;
354 struct power_table *pt = cpufreq_device->dyn_power_table;
355
356 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
357 if (freq < pt[i].frequency)
358 break;
359
360 return pt[i - 1].power;
361}
362
363static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
364 u32 power)
365{
366 int i;
367 struct power_table *pt = cpufreq_device->dyn_power_table;
368
369 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
370 if (power < pt[i].power)
371 break;
372
373 return pt[i - 1].frequency;
374}
375
376/**
377 * get_load() - get load for a cpu since last updated
378 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
379 * @cpu: cpu number
380 *
381 * Return: The average load of cpu @cpu in percentage since this
382 * function was last called.
383 */
384static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
385{
386 u32 load;
387 u64 now, now_idle, delta_time, delta_idle;
388
389 now_idle = get_cpu_idle_time(cpu, &now, 0);
390 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
391 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
392
393 if (delta_time <= delta_idle)
394 load = 0;
395 else
396 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
397
398 cpufreq_device->time_in_idle[cpu] = now_idle;
399 cpufreq_device->time_in_idle_timestamp[cpu] = now;
400
401 return load;
402}
403
404/**
405 * get_static_power() - calculate the static power consumed by the cpus
406 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
407 * @tz: thermal zone device in which we're operating
408 * @freq: frequency in KHz
409 * @power: pointer in which to store the calculated static power
410 *
411 * Calculate the static power consumed by the cpus described by
412 * @cpu_actor running at frequency @freq. This function relies on a
413 * platform specific function that should have been provided when the
414 * actor was registered. If it wasn't, the static power is assumed to
415 * be negligible. The calculated static power is stored in @power.
416 *
417 * Return: 0 on success, -E* on failure.
418 */
419static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
420 struct thermal_zone_device *tz, unsigned long freq,
421 u32 *power)
422{
423 struct dev_pm_opp *opp;
424 unsigned long voltage;
425 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
426 unsigned long freq_hz = freq * 1000;
427
428 if (!cpufreq_device->plat_get_static_power ||
429 !cpufreq_device->cpu_dev) {
430 *power = 0;
431 return 0;
432 }
433
434 rcu_read_lock();
435
436 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
437 true);
438 voltage = dev_pm_opp_get_voltage(opp);
439
440 rcu_read_unlock();
441
442 if (voltage == 0) {
443 dev_warn_ratelimited(cpufreq_device->cpu_dev,
444 "Failed to get voltage for frequency %lu: %ld\n",
445 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
446 return -EINVAL;
447 }
448
449 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
450 voltage, power);
451}
452
453/**
454 * get_dynamic_power() - calculate the dynamic power
455 * @cpufreq_device: &cpufreq_cooling_device for this cdev
456 * @freq: current frequency
457 *
458 * Return: the dynamic power consumed by the cpus described by
459 * @cpufreq_device.
460 */
461static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
462 unsigned long freq)
463{
464 u32 raw_cpu_power;
465
466 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
467 return (raw_cpu_power * cpufreq_device->last_load) / 100;
02361418
ADK
468}
469
1b9e3526 470/* cpufreq cooling device callback functions are defined below */
02361418
ADK
471
472/**
473 * cpufreq_get_max_state - callback function to get the max cooling state.
474 * @cdev: thermal cooling device pointer.
475 * @state: fill this variable with the max cooling state.
62c00421
EV
476 *
477 * Callback for the thermal cooling device to return the cpufreq
478 * max cooling state.
479 *
480 * Return: 0 on success, an error code otherwise.
02361418
ADK
481 */
482static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
483 unsigned long *state)
484{
160b7d80 485 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
9c51b05a 486
dcc6c7fd
VK
487 *state = cpufreq_device->max_level;
488 return 0;
02361418
ADK
489}
490
491/**
492 * cpufreq_get_cur_state - callback function to get the current cooling state.
493 * @cdev: thermal cooling device pointer.
494 * @state: fill this variable with the current cooling state.
3672552d
EV
495 *
496 * Callback for the thermal cooling device to return the cpufreq
497 * current cooling state.
498 *
499 * Return: 0 on success, an error code otherwise.
02361418
ADK
500 */
501static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
502 unsigned long *state)
503{
160b7d80 504 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
02361418 505
160b7d80 506 *state = cpufreq_device->cpufreq_state;
79491e53 507
160b7d80 508 return 0;
02361418
ADK
509}
510
511/**
512 * cpufreq_set_cur_state - callback function to set the current cooling state.
513 * @cdev: thermal cooling device pointer.
514 * @state: set this variable to the current cooling state.
56e05fdb
EV
515 *
516 * Callback for the thermal cooling device to change the cpufreq
517 * current cooling state.
518 *
519 * Return: 0 on success, an error code otherwise.
02361418
ADK
520 */
521static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
522 unsigned long state)
523{
160b7d80 524 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
5194fe46
VK
525 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
526 unsigned int clip_freq;
4843c4a1
VK
527
528 /* Request state should be less than max_level */
529 if (WARN_ON(state > cpufreq_device->max_level))
530 return -EINVAL;
5194fe46
VK
531
532 /* Check if the old cooling action is same as new cooling action */
533 if (cpufreq_device->cpufreq_state == state)
534 return 0;
02361418 535
4843c4a1 536 clip_freq = cpufreq_device->freq_table[state];
5194fe46 537 cpufreq_device->cpufreq_state = state;
59f0d218 538 cpufreq_device->clipped_freq = clip_freq;
5194fe46
VK
539
540 cpufreq_update_policy(cpu);
541
542 return 0;
02361418
ADK
543}
544
c36cf071
JM
545/**
546 * cpufreq_get_requested_power() - get the current power
547 * @cdev: &thermal_cooling_device pointer
548 * @tz: a valid thermal zone device pointer
549 * @power: pointer in which to store the resulting power
550 *
551 * Calculate the current power consumption of the cpus in milliwatts
552 * and store it in @power. This function should actually calculate
553 * the requested power, but it's hard to get the frequency that
554 * cpufreq would have assigned if there were no thermal limits.
555 * Instead, we calculate the current power on the assumption that the
556 * immediate future will look like the immediate past.
557 *
558 * We use the current frequency and the average load since this
559 * function was last called. In reality, there could have been
560 * multiple opps since this function was last called and that affects
561 * the load calculation. While it's not perfectly accurate, this
562 * simplification is good enough and works. REVISIT this, as more
563 * complex code may be needed if experiments show that it's not
564 * accurate enough.
565 *
566 * Return: 0 on success, -E* if getting the static power failed.
567 */
568static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
569 struct thermal_zone_device *tz,
570 u32 *power)
571{
572 unsigned long freq;
6828a471 573 int i = 0, cpu, ret;
c36cf071
JM
574 u32 static_power, dynamic_power, total_load = 0;
575 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
6828a471 576 u32 *load_cpu = NULL;
c36cf071 577
dd658e02
KS
578 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
579
580 /*
581 * All the CPUs are offline, thus the requested power by
582 * the cdev is 0
583 */
584 if (cpu >= nr_cpu_ids) {
585 *power = 0;
586 return 0;
587 }
588
589 freq = cpufreq_quick_get(cpu);
c36cf071 590
6828a471
JM
591 if (trace_thermal_power_cpu_get_power_enabled()) {
592 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
593
a71544cd 594 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
595 }
596
c36cf071
JM
597 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
598 u32 load;
599
600 if (cpu_online(cpu))
601 load = get_load(cpufreq_device, cpu);
602 else
603 load = 0;
604
605 total_load += load;
6828a471
JM
606 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
607 load_cpu[i] = load;
608
609 i++;
c36cf071
JM
610 }
611
612 cpufreq_device->last_load = total_load;
613
614 dynamic_power = get_dynamic_power(cpufreq_device, freq);
615 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
6828a471 616 if (ret) {
a71544cd 617 kfree(load_cpu);
c36cf071 618 return ret;
6828a471
JM
619 }
620
621 if (load_cpu) {
622 trace_thermal_power_cpu_get_power(
623 &cpufreq_device->allowed_cpus,
624 freq, load_cpu, i, dynamic_power, static_power);
625
a71544cd 626 kfree(load_cpu);
6828a471 627 }
c36cf071
JM
628
629 *power = static_power + dynamic_power;
630 return 0;
631}
632
633/**
634 * cpufreq_state2power() - convert a cpu cdev state to power consumed
635 * @cdev: &thermal_cooling_device pointer
636 * @tz: a valid thermal zone device pointer
637 * @state: cooling device state to be converted
638 * @power: pointer in which to store the resulting power
639 *
640 * Convert cooling device state @state into power consumption in
641 * milliwatts assuming 100% load. Store the calculated power in
642 * @power.
643 *
644 * Return: 0 on success, -EINVAL if the cooling device state could not
645 * be converted into a frequency or other -E* if there was an error
646 * when calculating the static power.
647 */
648static int cpufreq_state2power(struct thermal_cooling_device *cdev,
649 struct thermal_zone_device *tz,
650 unsigned long state, u32 *power)
651{
652 unsigned int freq, num_cpus;
653 cpumask_t cpumask;
654 u32 static_power, dynamic_power;
655 int ret;
656 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
657
658 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
659 num_cpus = cpumask_weight(&cpumask);
660
661 /* None of our cpus are online, so no power */
662 if (num_cpus == 0) {
663 *power = 0;
664 return 0;
665 }
666
667 freq = cpufreq_device->freq_table[state];
668 if (!freq)
669 return -EINVAL;
670
671 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
672 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
673 if (ret)
674 return ret;
675
676 *power = static_power + dynamic_power;
677 return 0;
678}
679
680/**
681 * cpufreq_power2state() - convert power to a cooling device state
682 * @cdev: &thermal_cooling_device pointer
683 * @tz: a valid thermal zone device pointer
684 * @power: power in milliwatts to be converted
685 * @state: pointer in which to store the resulting state
686 *
687 * Calculate a cooling device state for the cpus described by @cdev
688 * that would allow them to consume at most @power mW and store it in
689 * @state. Note that this calculation depends on external factors
690 * such as the cpu load or the current static power. Calling this
691 * function with the same power as input can yield different cooling
692 * device states depending on those external factors.
693 *
694 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
695 * the calculated frequency could not be converted to a valid state.
696 * The latter should not happen unless the frequencies available to
697 * cpufreq have changed since the initialization of the cpu cooling
698 * device.
699 */
700static int cpufreq_power2state(struct thermal_cooling_device *cdev,
701 struct thermal_zone_device *tz, u32 power,
702 unsigned long *state)
703{
704 unsigned int cpu, cur_freq, target_freq;
705 int ret;
706 s32 dyn_power;
707 u32 last_load, normalised_power, static_power;
708 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
709
710 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
711
712 /* None of our cpus are online */
713 if (cpu >= nr_cpu_ids)
714 return -ENODEV;
715
716 cur_freq = cpufreq_quick_get(cpu);
717 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
718 if (ret)
719 return ret;
720
721 dyn_power = power - static_power;
722 dyn_power = dyn_power > 0 ? dyn_power : 0;
723 last_load = cpufreq_device->last_load ?: 1;
724 normalised_power = (dyn_power * 100) / last_load;
725 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
726
727 *state = cpufreq_cooling_get_level(cpu, target_freq);
728 if (*state == THERMAL_CSTATE_INVALID) {
729 dev_warn_ratelimited(&cdev->device,
730 "Failed to convert %dKHz for cpu %d into a cdev state\n",
731 target_freq, cpu);
732 return -EINVAL;
733 }
734
6828a471
JM
735 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
736 target_freq, *state, power);
c36cf071
JM
737 return 0;
738}
739
02361418 740/* Bind cpufreq callbacks to thermal cooling device ops */
c36cf071 741static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
742 .get_max_state = cpufreq_get_max_state,
743 .get_cur_state = cpufreq_get_cur_state,
744 .set_cur_state = cpufreq_set_cur_state,
745};
746
747/* Notifier for cpufreq policy change */
748static struct notifier_block thermal_cpufreq_notifier_block = {
749 .notifier_call = cpufreq_thermal_notifier,
750};
751
f6859014
VK
752static unsigned int find_next_max(struct cpufreq_frequency_table *table,
753 unsigned int prev_max)
754{
755 struct cpufreq_frequency_table *pos;
756 unsigned int max = 0;
757
758 cpufreq_for_each_valid_entry(pos, table) {
759 if (pos->frequency > max && pos->frequency < prev_max)
760 max = pos->frequency;
761 }
762
763 return max;
764}
765
02361418 766/**
39d99cff
EV
767 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
768 * @np: a valid struct device_node to the cooling device device tree node
02361418 769 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
405fb825 770 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071
JM
771 * @capacitance: dynamic power coefficient for these cpus
772 * @plat_static_func: function to calculate the static power consumed by these
773 * cpus (optional)
12cb08ba
EV
774 *
775 * This interface function registers the cpufreq cooling device with the name
776 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
777 * cooling devices. It also gives the opportunity to link the cooling device
778 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
779 *
780 * Return: a valid struct thermal_cooling_device pointer on success,
781 * on failure, it returns a corresponding ERR_PTR().
02361418 782 */
39d99cff
EV
783static struct thermal_cooling_device *
784__cpufreq_cooling_register(struct device_node *np,
c36cf071
JM
785 const struct cpumask *clip_cpus, u32 capacitance,
786 get_static_t plat_static_func)
02361418
ADK
787{
788 struct thermal_cooling_device *cool_dev;
5d3bdb89 789 struct cpufreq_cooling_device *cpufreq_dev;
02361418 790 char dev_name[THERMAL_NAME_LENGTH];
dcc6c7fd 791 struct cpufreq_frequency_table *pos, *table;
c36cf071 792 unsigned int freq, i, num_cpus;
405fb825 793 int ret;
02361418 794
dcc6c7fd
VK
795 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
796 if (!table) {
0f1be51c
EV
797 pr_debug("%s: CPUFreq table not found\n", __func__);
798 return ERR_PTR(-EPROBE_DEFER);
02361418 799 }
0f1be51c 800
98d522f0 801 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
02361418
ADK
802 if (!cpufreq_dev)
803 return ERR_PTR(-ENOMEM);
804
c36cf071
JM
805 num_cpus = cpumask_weight(clip_cpus);
806 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
807 sizeof(*cpufreq_dev->time_in_idle),
808 GFP_KERNEL);
809 if (!cpufreq_dev->time_in_idle) {
810 cool_dev = ERR_PTR(-ENOMEM);
811 goto free_cdev;
812 }
813
814 cpufreq_dev->time_in_idle_timestamp =
815 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
816 GFP_KERNEL);
817 if (!cpufreq_dev->time_in_idle_timestamp) {
818 cool_dev = ERR_PTR(-ENOMEM);
819 goto free_time_in_idle;
820 }
821
dcc6c7fd
VK
822 /* Find max levels */
823 cpufreq_for_each_valid_entry(pos, table)
824 cpufreq_dev->max_level++;
825
f6859014
VK
826 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
827 cpufreq_dev->max_level, GFP_KERNEL);
828 if (!cpufreq_dev->freq_table) {
f6859014 829 cool_dev = ERR_PTR(-ENOMEM);
c36cf071 830 goto free_time_in_idle_timestamp;
f6859014
VK
831 }
832
dcc6c7fd
VK
833 /* max_level is an index, not a counter */
834 cpufreq_dev->max_level--;
835
02361418
ADK
836 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
837
c36cf071
JM
838 if (capacitance) {
839 cpufreq_cooling_ops.get_requested_power =
840 cpufreq_get_requested_power;
841 cpufreq_cooling_ops.state2power = cpufreq_state2power;
842 cpufreq_cooling_ops.power2state = cpufreq_power2state;
843 cpufreq_dev->plat_get_static_power = plat_static_func;
844
845 ret = build_dyn_power_table(cpufreq_dev, capacitance);
846 if (ret) {
847 cool_dev = ERR_PTR(ret);
848 goto free_table;
849 }
850 }
851
02361418
ADK
852 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
853 if (ret) {
730abe06 854 cool_dev = ERR_PTR(ret);
eba4f88d 855 goto free_power_table;
02361418
ADK
856 }
857
99871a71
EV
858 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
859 cpufreq_dev->id);
02361418 860
39d99cff
EV
861 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
862 &cpufreq_cooling_ops);
730abe06
VK
863 if (IS_ERR(cool_dev))
864 goto remove_idr;
865
f6859014
VK
866 /* Fill freq-table in descending order of frequencies */
867 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
868 freq = find_next_max(table, freq);
869 cpufreq_dev->freq_table[i] = freq;
870
871 /* Warn for duplicate entries */
872 if (!freq)
873 pr_warn("%s: table has duplicate entries\n", __func__);
874 else
875 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 876 }
f6859014 877
59f0d218 878 cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
02361418 879 cpufreq_dev->cool_dev = cool_dev;
92e615ec 880
02361418 881 mutex_lock(&cooling_cpufreq_lock);
02361418 882
02373d7c
RK
883 mutex_lock(&cooling_list_lock);
884 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
885 mutex_unlock(&cooling_list_lock);
886
02361418 887 /* Register the notifier for first cpufreq cooling device */
02373d7c 888 if (!cpufreq_dev_count++)
02361418 889 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 890 CPUFREQ_POLICY_NOTIFIER);
02361418 891 mutex_unlock(&cooling_cpufreq_lock);
79491e53 892
730abe06
VK
893 return cool_dev;
894
895remove_idr:
896 release_idr(&cpufreq_idr, cpufreq_dev->id);
eba4f88d
JM
897free_power_table:
898 kfree(cpufreq_dev->dyn_power_table);
f6859014
VK
899free_table:
900 kfree(cpufreq_dev->freq_table);
c36cf071
JM
901free_time_in_idle_timestamp:
902 kfree(cpufreq_dev->time_in_idle_timestamp);
903free_time_in_idle:
904 kfree(cpufreq_dev->time_in_idle);
730abe06
VK
905free_cdev:
906 kfree(cpufreq_dev);
907
02361418
ADK
908 return cool_dev;
909}
39d99cff
EV
910
911/**
912 * cpufreq_cooling_register - function to create cpufreq cooling device.
913 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
914 *
915 * This interface function registers the cpufreq cooling device with the name
916 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
917 * cooling devices.
918 *
919 * Return: a valid struct thermal_cooling_device pointer on success,
920 * on failure, it returns a corresponding ERR_PTR().
921 */
922struct thermal_cooling_device *
923cpufreq_cooling_register(const struct cpumask *clip_cpus)
924{
c36cf071 925 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
39d99cff 926}
243dbd9c 927EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 928
39d99cff
EV
929/**
930 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
931 * @np: a valid struct device_node to the cooling device device tree node
932 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
933 *
934 * This interface function registers the cpufreq cooling device with the name
935 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
936 * cooling devices. Using this API, the cpufreq cooling device will be
937 * linked to the device tree node provided.
938 *
939 * Return: a valid struct thermal_cooling_device pointer on success,
940 * on failure, it returns a corresponding ERR_PTR().
941 */
942struct thermal_cooling_device *
943of_cpufreq_cooling_register(struct device_node *np,
944 const struct cpumask *clip_cpus)
945{
946 if (!np)
947 return ERR_PTR(-EINVAL);
948
c36cf071 949 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
39d99cff
EV
950}
951EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
952
c36cf071
JM
953/**
954 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
955 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
956 * @capacitance: dynamic power coefficient for these cpus
957 * @plat_static_func: function to calculate the static power consumed by these
958 * cpus (optional)
959 *
960 * This interface function registers the cpufreq cooling device with
961 * the name "thermal-cpufreq-%x". This api can support multiple
962 * instances of cpufreq cooling devices. Using this function, the
963 * cooling device will implement the power extensions by using a
964 * simple cpu power model. The cpus must have registered their OPPs
965 * using the OPP library.
966 *
967 * An optional @plat_static_func may be provided to calculate the
968 * static power consumed by these cpus. If the platform's static
969 * power consumption is unknown or negligible, make it NULL.
970 *
971 * Return: a valid struct thermal_cooling_device pointer on success,
972 * on failure, it returns a corresponding ERR_PTR().
973 */
974struct thermal_cooling_device *
975cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
976 get_static_t plat_static_func)
977{
978 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
979 plat_static_func);
980}
981EXPORT_SYMBOL(cpufreq_power_cooling_register);
982
983/**
984 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
985 * @np: a valid struct device_node to the cooling device device tree node
986 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
987 * @capacitance: dynamic power coefficient for these cpus
988 * @plat_static_func: function to calculate the static power consumed by these
989 * cpus (optional)
990 *
991 * This interface function registers the cpufreq cooling device with
992 * the name "thermal-cpufreq-%x". This api can support multiple
993 * instances of cpufreq cooling devices. Using this API, the cpufreq
994 * cooling device will be linked to the device tree node provided.
995 * Using this function, the cooling device will implement the power
996 * extensions by using a simple cpu power model. The cpus must have
997 * registered their OPPs using the OPP library.
998 *
999 * An optional @plat_static_func may be provided to calculate the
1000 * static power consumed by these cpus. If the platform's static
1001 * power consumption is unknown or negligible, make it NULL.
1002 *
1003 * Return: a valid struct thermal_cooling_device pointer on success,
1004 * on failure, it returns a corresponding ERR_PTR().
1005 */
1006struct thermal_cooling_device *
1007of_cpufreq_power_cooling_register(struct device_node *np,
1008 const struct cpumask *clip_cpus,
1009 u32 capacitance,
1010 get_static_t plat_static_func)
1011{
1012 if (!np)
1013 return ERR_PTR(-EINVAL);
1014
1015 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1016 plat_static_func);
1017}
1018EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1019
02361418
ADK
1020/**
1021 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1022 * @cdev: thermal cooling device pointer.
135266b4
EV
1023 *
1024 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
1025 */
1026void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1027{
50e66c7e 1028 struct cpufreq_cooling_device *cpufreq_dev;
02361418 1029
50e66c7e
EV
1030 if (!cdev)
1031 return;
1032
1033 cpufreq_dev = cdev->devdata;
02361418
ADK
1034
1035 /* Unregister the notifier for the last cpufreq cooling device */
02373d7c
RK
1036 mutex_lock(&cooling_cpufreq_lock);
1037 if (!--cpufreq_dev_count)
02361418 1038 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 1039 CPUFREQ_POLICY_NOTIFIER);
02373d7c
RK
1040
1041 mutex_lock(&cooling_list_lock);
1042 list_del(&cpufreq_dev->node);
1043 mutex_unlock(&cooling_list_lock);
1044
02361418 1045 mutex_unlock(&cooling_cpufreq_lock);
160b7d80 1046
02361418
ADK
1047 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1048 release_idr(&cpufreq_idr, cpufreq_dev->id);
eba4f88d 1049 kfree(cpufreq_dev->dyn_power_table);
c36cf071
JM
1050 kfree(cpufreq_dev->time_in_idle_timestamp);
1051 kfree(cpufreq_dev->time_in_idle);
f6859014 1052 kfree(cpufreq_dev->freq_table);
02361418
ADK
1053 kfree(cpufreq_dev);
1054}
243dbd9c 1055EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);