crypto: qce - fix ctr-aes-qce block, chunk sizes
[linux-block.git] / drivers / thermal / cpu_cooling.c
CommitLineData
0fac9e2f 1// SPDX-License-Identifier: GPL-2.0
02361418
ADK
2/*
3 * linux/drivers/thermal/cpu_cooling.c
4 *
5 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
02361418 6 *
42cd9b04
DL
7 * Copyright (C) 2012-2018 Linaro Limited.
8 *
9 * Authors: Amit Daniel <amit.kachhap@linaro.org>
10 * Viresh Kumar <viresh.kumar@linaro.org>
73904cbc 11 *
02361418 12 */
02361418
ADK
13#include <linux/module.h>
14#include <linux/thermal.h>
02361418
ADK
15#include <linux/cpufreq.h>
16#include <linux/err.h>
ae606089 17#include <linux/idr.h>
c36cf071 18#include <linux/pm_opp.h>
5130802d 19#include <linux/pm_qos.h>
02361418
ADK
20#include <linux/slab.h>
21#include <linux/cpu.h>
22#include <linux/cpu_cooling.h>
a4e893e8 23#include <linux/energy_model.h>
02361418 24
6828a471
JM
25#include <trace/events/thermal.h>
26
07d888d8
VK
27/*
28 * Cooling state <-> CPUFreq frequency
29 *
30 * Cooling states are translated to frequencies throughout this driver and this
31 * is the relation between them.
32 *
33 * Highest cooling state corresponds to lowest possible frequency.
34 *
35 * i.e.
36 * level 0 --> 1st Max Freq
37 * level 1 --> 2nd Max Freq
38 * ...
39 */
40
81ee14da
VK
41/**
42 * struct time_in_idle - Idle time stats
43 * @time: previous reading of the absolute time that this cpu was idle
44 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
45 */
46struct time_in_idle {
47 u64 time;
48 u64 timestamp;
49};
50
02361418 51/**
3b3c0748 52 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
53 * @id: unique integer value corresponding to each cpufreq_cooling_device
54 * registered.
d72b4015 55 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
02361418
ADK
56 * @cpufreq_state: integer value representing the current state of cpufreq
57 * cooling devices.
dcc6c7fd
VK
58 * @max_level: maximum cooling level. One less than total number of valid
59 * cpufreq frequencies.
a4e893e8 60 * @em: Reference on the Energy Model of the device
d72b4015
VK
61 * @cdev: thermal_cooling_device pointer to keep track of the
62 * registered cooling device.
63 * @policy: cpufreq policy.
fc4de356 64 * @node: list_head to link all cpufreq_cooling_device together.
81ee14da 65 * @idle_time: idle time stats
02361418 66 *
beca6053
VK
67 * This structure is required for keeping information of each registered
68 * cpufreq_cooling_device.
02361418
ADK
69 */
70struct cpufreq_cooling_device {
71 int id;
d72b4015 72 u32 last_load;
02361418 73 unsigned int cpufreq_state;
dcc6c7fd 74 unsigned int max_level;
a4e893e8 75 struct em_perf_domain *em;
d72b4015 76 struct cpufreq_policy *policy;
2dcd851f 77 struct list_head node;
81ee14da 78 struct time_in_idle *idle_time;
3000ce3c 79 struct freq_qos_request qos_req;
02361418 80};
02361418 81
fb8ea308 82static DEFINE_IDA(cpufreq_ida);
02373d7c 83static DEFINE_MUTEX(cooling_list_lock);
1dea432a 84static LIST_HEAD(cpufreq_cdev_list);
02361418 85
5a4e5b78 86#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
02361418 87/**
4843c4a1 88 * get_level: Find the level for a particular frequency
1dea432a 89 * @cpufreq_cdev: cpufreq_cdev for which the property is required
4843c4a1 90 * @freq: Frequency
82b9ee40 91 *
da27f69d 92 * Return: level corresponding to the frequency.
02361418 93 */
1dea432a 94static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
4843c4a1 95 unsigned int freq)
02361418 96{
a4e893e8 97 int i;
a116776f 98
a4e893e8
QP
99 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
100 if (freq > cpufreq_cdev->em->table[i].frequency)
4843c4a1 101 break;
c36cf071 102 }
02361418 103
a4e893e8 104 return cpufreq_cdev->max_level - i - 1;
c36cf071
JM
105}
106
1dea432a 107static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
108 u32 freq)
109{
110 int i;
c36cf071 111
a4e893e8
QP
112 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
113 if (freq > cpufreq_cdev->em->table[i].frequency)
c36cf071 114 break;
a4e893e8 115 }
c36cf071 116
a4e893e8 117 return cpufreq_cdev->em->table[i + 1].power;
c36cf071
JM
118}
119
1dea432a 120static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
121 u32 power)
122{
123 int i;
c36cf071 124
a4e893e8
QP
125 for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
126 if (power > cpufreq_cdev->em->table[i].power)
c36cf071 127 break;
a4e893e8 128 }
c36cf071 129
a4e893e8 130 return cpufreq_cdev->em->table[i + 1].frequency;
c36cf071
JM
131}
132
133/**
134 * get_load() - get load for a cpu since last updated
1dea432a 135 * @cpufreq_cdev: &struct cpufreq_cooling_device for this cpu
c36cf071 136 * @cpu: cpu number
ba76dd9d 137 * @cpu_idx: index of the cpu in time_in_idle*
c36cf071
JM
138 *
139 * Return: The average load of cpu @cpu in percentage since this
140 * function was last called.
141 */
1dea432a 142static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
a53b8394 143 int cpu_idx)
c36cf071
JM
144{
145 u32 load;
146 u64 now, now_idle, delta_time, delta_idle;
81ee14da 147 struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
c36cf071
JM
148
149 now_idle = get_cpu_idle_time(cpu, &now, 0);
81ee14da
VK
150 delta_idle = now_idle - idle_time->time;
151 delta_time = now - idle_time->timestamp;
c36cf071
JM
152
153 if (delta_time <= delta_idle)
154 load = 0;
155 else
156 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
157
81ee14da
VK
158 idle_time->time = now_idle;
159 idle_time->timestamp = now;
c36cf071
JM
160
161 return load;
162}
163
c36cf071
JM
164/**
165 * get_dynamic_power() - calculate the dynamic power
1dea432a 166 * @cpufreq_cdev: &cpufreq_cooling_device for this cdev
c36cf071
JM
167 * @freq: current frequency
168 *
169 * Return: the dynamic power consumed by the cpus described by
1dea432a 170 * @cpufreq_cdev.
c36cf071 171 */
1dea432a 172static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
c36cf071
JM
173 unsigned long freq)
174{
175 u32 raw_cpu_power;
176
1dea432a
VK
177 raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
178 return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
02361418
ADK
179}
180
c36cf071
JM
181/**
182 * cpufreq_get_requested_power() - get the current power
183 * @cdev: &thermal_cooling_device pointer
184 * @tz: a valid thermal zone device pointer
185 * @power: pointer in which to store the resulting power
186 *
187 * Calculate the current power consumption of the cpus in milliwatts
188 * and store it in @power. This function should actually calculate
189 * the requested power, but it's hard to get the frequency that
190 * cpufreq would have assigned if there were no thermal limits.
191 * Instead, we calculate the current power on the assumption that the
192 * immediate future will look like the immediate past.
193 *
194 * We use the current frequency and the average load since this
195 * function was last called. In reality, there could have been
196 * multiple opps since this function was last called and that affects
197 * the load calculation. While it's not perfectly accurate, this
198 * simplification is good enough and works. REVISIT this, as more
199 * complex code may be needed if experiments show that it's not
200 * accurate enough.
201 *
202 * Return: 0 on success, -E* if getting the static power failed.
203 */
204static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
205 struct thermal_zone_device *tz,
206 u32 *power)
207{
208 unsigned long freq;
84fe2cab
VK
209 int i = 0, cpu;
210 u32 total_load = 0;
1dea432a 211 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 212 struct cpufreq_policy *policy = cpufreq_cdev->policy;
6828a471 213 u32 *load_cpu = NULL;
c36cf071 214
ba76dd9d 215 freq = cpufreq_quick_get(policy->cpu);
c36cf071 216
6828a471 217 if (trace_thermal_power_cpu_get_power_enabled()) {
ba76dd9d 218 u32 ncpus = cpumask_weight(policy->related_cpus);
6828a471 219
a71544cd 220 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
221 }
222
ba76dd9d 223 for_each_cpu(cpu, policy->related_cpus) {
c36cf071
JM
224 u32 load;
225
226 if (cpu_online(cpu))
1dea432a 227 load = get_load(cpufreq_cdev, cpu, i);
c36cf071
JM
228 else
229 load = 0;
230
231 total_load += load;
bf45ac18 232 if (load_cpu)
6828a471
JM
233 load_cpu[i] = load;
234
235 i++;
c36cf071
JM
236 }
237
1dea432a 238 cpufreq_cdev->last_load = total_load;
c36cf071 239
84fe2cab 240 *power = get_dynamic_power(cpufreq_cdev, freq);
6828a471
JM
241
242 if (load_cpu) {
ba76dd9d 243 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
84fe2cab 244 load_cpu, i, *power);
6828a471 245
a71544cd 246 kfree(load_cpu);
6828a471 247 }
c36cf071 248
c36cf071
JM
249 return 0;
250}
251
252/**
253 * cpufreq_state2power() - convert a cpu cdev state to power consumed
254 * @cdev: &thermal_cooling_device pointer
255 * @tz: a valid thermal zone device pointer
256 * @state: cooling device state to be converted
257 * @power: pointer in which to store the resulting power
258 *
259 * Convert cooling device state @state into power consumption in
260 * milliwatts assuming 100% load. Store the calculated power in
261 * @power.
262 *
263 * Return: 0 on success, -EINVAL if the cooling device state could not
264 * be converted into a frequency or other -E* if there was an error
265 * when calculating the static power.
266 */
267static int cpufreq_state2power(struct thermal_cooling_device *cdev,
268 struct thermal_zone_device *tz,
269 unsigned long state, u32 *power)
270{
a4e893e8 271 unsigned int freq, num_cpus, idx;
1dea432a 272 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
c36cf071 273
cb1b6318
VK
274 /* Request state should be less than max_level */
275 if (WARN_ON(state > cpufreq_cdev->max_level))
276 return -EINVAL;
277
ba76dd9d 278 num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
c36cf071 279
a4e893e8
QP
280 idx = cpufreq_cdev->max_level - state;
281 freq = cpufreq_cdev->em->table[idx].frequency;
84fe2cab 282 *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
c36cf071 283
84fe2cab 284 return 0;
c36cf071
JM
285}
286
287/**
288 * cpufreq_power2state() - convert power to a cooling device state
289 * @cdev: &thermal_cooling_device pointer
290 * @tz: a valid thermal zone device pointer
291 * @power: power in milliwatts to be converted
292 * @state: pointer in which to store the resulting state
293 *
294 * Calculate a cooling device state for the cpus described by @cdev
295 * that would allow them to consume at most @power mW and store it in
296 * @state. Note that this calculation depends on external factors
297 * such as the cpu load or the current static power. Calling this
298 * function with the same power as input can yield different cooling
299 * device states depending on those external factors.
300 *
301 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
302 * the calculated frequency could not be converted to a valid state.
303 * The latter should not happen unless the frequencies available to
304 * cpufreq have changed since the initialization of the cpu cooling
305 * device.
306 */
307static int cpufreq_power2state(struct thermal_cooling_device *cdev,
308 struct thermal_zone_device *tz, u32 power,
309 unsigned long *state)
310{
e0fda737 311 unsigned int target_freq;
84fe2cab 312 u32 last_load, normalised_power;
1dea432a 313 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
ba76dd9d 314 struct cpufreq_policy *policy = cpufreq_cdev->policy;
c36cf071 315
1dea432a 316 last_load = cpufreq_cdev->last_load ?: 1;
84fe2cab 317 normalised_power = (power * 100) / last_load;
1dea432a 318 target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
c36cf071 319
3e08b2df 320 *state = get_level(cpufreq_cdev, target_freq);
ba76dd9d
VK
321 trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
322 power);
c36cf071
JM
323 return 0;
324}
a4e893e8
QP
325
326static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
327 struct em_perf_domain *em) {
328 struct cpufreq_policy *policy;
329 unsigned int nr_levels;
330
331 if (!em)
332 return false;
333
334 policy = cpufreq_cdev->policy;
335 if (!cpumask_equal(policy->related_cpus, to_cpumask(em->cpus))) {
336 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
337 cpumask_pr_args(to_cpumask(em->cpus)),
338 cpumask_pr_args(policy->related_cpus));
339 return false;
340 }
341
342 nr_levels = cpufreq_cdev->max_level + 1;
343 if (em->nr_cap_states != nr_levels) {
344 pr_err("The number of cap states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
345 cpumask_pr_args(to_cpumask(em->cpus)),
346 em->nr_cap_states, nr_levels);
347 return false;
348 }
349
350 return true;
351}
5a4e5b78
QP
352#endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
353
a4e893e8
QP
354static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
355 unsigned long state)
356{
357 struct cpufreq_policy *policy;
358 unsigned long idx;
359
360#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
361 /* Use the Energy Model table if available */
362 if (cpufreq_cdev->em) {
363 idx = cpufreq_cdev->max_level - state;
364 return cpufreq_cdev->em->table[idx].frequency;
365 }
366#endif
367
368 /* Otherwise, fallback on the CPUFreq table */
369 policy = cpufreq_cdev->policy;
370 if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
371 idx = cpufreq_cdev->max_level - state;
372 else
373 idx = state;
374
375 return policy->freq_table[idx].frequency;
376}
377
5a4e5b78
QP
378/* cpufreq cooling device callback functions are defined below */
379
380/**
381 * cpufreq_get_max_state - callback function to get the max cooling state.
382 * @cdev: thermal cooling device pointer.
383 * @state: fill this variable with the max cooling state.
384 *
385 * Callback for the thermal cooling device to return the cpufreq
386 * max cooling state.
387 *
388 * Return: 0 on success, an error code otherwise.
389 */
390static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
391 unsigned long *state)
392{
393 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
394
395 *state = cpufreq_cdev->max_level;
396 return 0;
397}
398
399/**
400 * cpufreq_get_cur_state - callback function to get the current cooling state.
401 * @cdev: thermal cooling device pointer.
402 * @state: fill this variable with the current cooling state.
403 *
404 * Callback for the thermal cooling device to return the cpufreq
405 * current cooling state.
406 *
407 * Return: 0 on success, an error code otherwise.
408 */
409static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
410 unsigned long *state)
411{
412 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
413
414 *state = cpufreq_cdev->cpufreq_state;
415
416 return 0;
417}
418
419/**
420 * cpufreq_set_cur_state - callback function to set the current cooling state.
421 * @cdev: thermal cooling device pointer.
422 * @state: set this variable to the current cooling state.
423 *
424 * Callback for the thermal cooling device to change the cpufreq
425 * current cooling state.
426 *
427 * Return: 0 on success, an error code otherwise.
428 */
429static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
430 unsigned long state)
431{
432 struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
433
434 /* Request state should be less than max_level */
435 if (WARN_ON(state > cpufreq_cdev->max_level))
436 return -EINVAL;
437
438 /* Check if the old cooling action is same as new cooling action */
439 if (cpufreq_cdev->cpufreq_state == state)
440 return 0;
441
442 cpufreq_cdev->cpufreq_state = state;
443
444 return freq_qos_update_request(&cpufreq_cdev->qos_req,
a4e893e8 445 get_state_freq(cpufreq_cdev, state));
5a4e5b78 446}
c36cf071 447
02361418 448/* Bind cpufreq callbacks to thermal cooling device ops */
a305a438 449
c36cf071 450static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
a305a438
BJ
451 .get_max_state = cpufreq_get_max_state,
452 .get_cur_state = cpufreq_get_cur_state,
453 .set_cur_state = cpufreq_set_cur_state,
a305a438
BJ
454};
455
02361418 456/**
39d99cff
EV
457 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
458 * @np: a valid struct device_node to the cooling device device tree node
4d753aa7 459 * @policy: cpufreq policy
405fb825 460 * Normally this should be same as cpufreq policy->related_cpus.
a4e893e8 461 * @em: Energy Model of the cpufreq policy
12cb08ba
EV
462 *
463 * This interface function registers the cpufreq cooling device with the name
464 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
465 * cooling devices. It also gives the opportunity to link the cooling device
466 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
467 *
468 * Return: a valid struct thermal_cooling_device pointer on success,
469 * on failure, it returns a corresponding ERR_PTR().
02361418 470 */
39d99cff
EV
471static struct thermal_cooling_device *
472__cpufreq_cooling_register(struct device_node *np,
a4e893e8
QP
473 struct cpufreq_policy *policy,
474 struct em_perf_domain *em)
02361418 475{
04bdbdf9 476 struct thermal_cooling_device *cdev;
1dea432a 477 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 478 char dev_name[THERMAL_NAME_LENGTH];
a4e893e8 479 unsigned int i, num_cpus;
5130802d 480 struct device *dev;
405fb825 481 int ret;
a305a438 482 struct thermal_cooling_device_ops *cooling_ops;
5130802d
VK
483
484 dev = get_cpu_device(policy->cpu);
485 if (unlikely(!dev)) {
486 pr_warn("No cpu device for cpu %d\n", policy->cpu);
487 return ERR_PTR(-ENODEV);
488 }
489
02361418 490
4d753aa7 491 if (IS_ERR_OR_NULL(policy)) {
b2fd708f 492 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
4d753aa7 493 return ERR_PTR(-EINVAL);
f8bfc116
VK
494 }
495
55d85293
VK
496 i = cpufreq_table_count_valid_entries(policy);
497 if (!i) {
498 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
499 __func__);
4d753aa7 500 return ERR_PTR(-ENODEV);
02361418 501 }
0f1be51c 502
1dea432a 503 cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
4d753aa7
VK
504 if (!cpufreq_cdev)
505 return ERR_PTR(-ENOMEM);
02361418 506
b12b6519 507 cpufreq_cdev->policy = policy;
4d753aa7 508 num_cpus = cpumask_weight(policy->related_cpus);
81ee14da
VK
509 cpufreq_cdev->idle_time = kcalloc(num_cpus,
510 sizeof(*cpufreq_cdev->idle_time),
511 GFP_KERNEL);
512 if (!cpufreq_cdev->idle_time) {
04bdbdf9 513 cdev = ERR_PTR(-ENOMEM);
c36cf071
JM
514 goto free_cdev;
515 }
516
55d85293
VK
517 /* max_level is an index, not a counter */
518 cpufreq_cdev->max_level = i - 1;
dcc6c7fd 519
ae606089
MW
520 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
521 if (ret < 0) {
04bdbdf9 522 cdev = ERR_PTR(ret);
a4e893e8 523 goto free_idle_time;
02361418 524 }
1dea432a 525 cpufreq_cdev->id = ret;
02361418 526
349d39dc
VK
527 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
528 cpufreq_cdev->id);
529
5a4e5b78
QP
530 cooling_ops = &cpufreq_cooling_ops;
531
532#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
a4e893e8
QP
533 if (em_is_sane(cpufreq_cdev, em)) {
534 cpufreq_cdev->em = em;
5a4e5b78
QP
535 cooling_ops->get_requested_power = cpufreq_get_requested_power;
536 cooling_ops->state2power = cpufreq_state2power;
537 cooling_ops->power2state = cpufreq_power2state;
a4e893e8 538 } else
5a4e5b78 539#endif
a4e893e8
QP
540 if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
541 pr_err("%s: unsorted frequency tables are not supported\n",
542 __func__);
543 cdev = ERR_PTR(-EINVAL);
544 goto remove_ida;
545 }
f840ab18 546
3000ce3c
RW
547 ret = freq_qos_add_request(&policy->constraints,
548 &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
a4e893e8 549 get_state_freq(cpufreq_cdev, 0));
5130802d
VK
550 if (ret < 0) {
551 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
552 ret);
553 cdev = ERR_PTR(ret);
554 goto remove_ida;
555 }
556
04bdbdf9
VK
557 cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
558 cooling_ops);
559 if (IS_ERR(cdev))
5130802d 560 goto remove_qos_req;
92e615ec 561
02373d7c 562 mutex_lock(&cooling_list_lock);
1dea432a 563 list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
088db931 564 mutex_unlock(&cooling_list_lock);
02373d7c 565
4d753aa7 566 return cdev;
730abe06 567
5130802d 568remove_qos_req:
3000ce3c 569 freq_qos_remove_request(&cpufreq_cdev->qos_req);
ae606089 570remove_ida:
1dea432a 571 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
81ee14da
VK
572free_idle_time:
573 kfree(cpufreq_cdev->idle_time);
730abe06 574free_cdev:
1dea432a 575 kfree(cpufreq_cdev);
04bdbdf9 576 return cdev;
02361418 577}
39d99cff
EV
578
579/**
580 * cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 581 * @policy: cpufreq policy
39d99cff
EV
582 *
583 * This interface function registers the cpufreq cooling device with the name
584 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
585 * cooling devices.
586 *
587 * Return: a valid struct thermal_cooling_device pointer on success,
588 * on failure, it returns a corresponding ERR_PTR().
589 */
590struct thermal_cooling_device *
4d753aa7 591cpufreq_cooling_register(struct cpufreq_policy *policy)
39d99cff 592{
a4e893e8 593 return __cpufreq_cooling_register(NULL, policy, NULL);
39d99cff 594}
243dbd9c 595EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 596
39d99cff
EV
597/**
598 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
4d753aa7 599 * @policy: cpufreq policy
39d99cff
EV
600 *
601 * This interface function registers the cpufreq cooling device with the name
602 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
603 * cooling devices. Using this API, the cpufreq cooling device will be
604 * linked to the device tree node provided.
605 *
c36cf071
JM
606 * Using this function, the cooling device will implement the power
607 * extensions by using a simple cpu power model. The cpus must have
608 * registered their OPPs using the OPP library.
609 *
f5f263fe
VK
610 * It also takes into account, if property present in policy CPU node, the
611 * static power consumed by the cpu.
c36cf071
JM
612 *
613 * Return: a valid struct thermal_cooling_device pointer on success,
f5f263fe 614 * and NULL on failure.
c36cf071
JM
615 */
616struct thermal_cooling_device *
3ebb62ff 617of_cpufreq_cooling_register(struct cpufreq_policy *policy)
c36cf071 618{
f5f263fe
VK
619 struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
620 struct thermal_cooling_device *cdev = NULL;
f5f263fe
VK
621
622 if (!np) {
623 pr_err("cpu_cooling: OF node not available for cpu%d\n",
624 policy->cpu);
625 return NULL;
626 }
c36cf071 627
f5f263fe 628 if (of_find_property(np, "#cooling-cells", NULL)) {
a4e893e8 629 struct em_perf_domain *em = em_cpu_get(policy->cpu);
f5f263fe 630
a4e893e8 631 cdev = __cpufreq_cooling_register(np, policy, em);
f5f263fe 632 if (IS_ERR(cdev)) {
bf78f133 633 pr_err("cpu_cooling: cpu%d failed to register as cooling device: %ld\n",
f5f263fe
VK
634 policy->cpu, PTR_ERR(cdev));
635 cdev = NULL;
636 }
637 }
638
639 of_node_put(np);
640 return cdev;
c36cf071 641}
3ebb62ff 642EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
c36cf071 643
02361418
ADK
644/**
645 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
646 * @cdev: thermal cooling device pointer.
135266b4
EV
647 *
648 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
649 */
650void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
651{
1dea432a 652 struct cpufreq_cooling_device *cpufreq_cdev;
02361418 653
50e66c7e
EV
654 if (!cdev)
655 return;
656
1dea432a 657 cpufreq_cdev = cdev->devdata;
02361418 658
ae606089 659 mutex_lock(&cooling_list_lock);
1dea432a 660 list_del(&cpufreq_cdev->node);
088db931
MW
661 mutex_unlock(&cooling_list_lock);
662
72554a75 663 thermal_cooling_device_unregister(cdev);
3000ce3c 664 freq_qos_remove_request(&cpufreq_cdev->qos_req);
1dea432a 665 ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
81ee14da 666 kfree(cpufreq_cdev->idle_time);
1dea432a 667 kfree(cpufreq_cdev);
02361418 668}
243dbd9c 669EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);