treewide: remove extra semicolons
[linux-2.6-block.git] / drivers / target / target_core_transport.c
CommitLineData
c66ac9db
NB
1/*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29#include <linux/version.h>
30#include <linux/net.h>
31#include <linux/delay.h>
32#include <linux/string.h>
33#include <linux/timer.h>
34#include <linux/slab.h>
35#include <linux/blkdev.h>
36#include <linux/spinlock.h>
c66ac9db
NB
37#include <linux/kthread.h>
38#include <linux/in.h>
39#include <linux/cdrom.h>
40#include <asm/unaligned.h>
41#include <net/sock.h>
42#include <net/tcp.h>
43#include <scsi/scsi.h>
44#include <scsi/scsi_cmnd.h>
45#include <scsi/libsas.h> /* For TASK_ATTR_* */
46
47#include <target/target_core_base.h>
48#include <target/target_core_device.h>
49#include <target/target_core_tmr.h>
50#include <target/target_core_tpg.h>
51#include <target/target_core_transport.h>
52#include <target/target_core_fabric_ops.h>
53#include <target/target_core_configfs.h>
54
55#include "target_core_alua.h"
56#include "target_core_hba.h"
57#include "target_core_pr.h"
58#include "target_core_scdb.h"
59#include "target_core_ua.h"
60
61/* #define DEBUG_CDB_HANDLER */
62#ifdef DEBUG_CDB_HANDLER
63#define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64#else
65#define DEBUG_CDB_H(x...)
66#endif
67
68/* #define DEBUG_CMD_MAP */
69#ifdef DEBUG_CMD_MAP
70#define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71#else
72#define DEBUG_CMD_M(x...)
73#endif
74
75/* #define DEBUG_MEM_ALLOC */
76#ifdef DEBUG_MEM_ALLOC
77#define DEBUG_MEM(x...) printk(KERN_INFO x)
78#else
79#define DEBUG_MEM(x...)
80#endif
81
82/* #define DEBUG_MEM2_ALLOC */
83#ifdef DEBUG_MEM2_ALLOC
84#define DEBUG_MEM2(x...) printk(KERN_INFO x)
85#else
86#define DEBUG_MEM2(x...)
87#endif
88
89/* #define DEBUG_SG_CALC */
90#ifdef DEBUG_SG_CALC
91#define DEBUG_SC(x...) printk(KERN_INFO x)
92#else
93#define DEBUG_SC(x...)
94#endif
95
96/* #define DEBUG_SE_OBJ */
97#ifdef DEBUG_SE_OBJ
98#define DEBUG_SO(x...) printk(KERN_INFO x)
99#else
100#define DEBUG_SO(x...)
101#endif
102
103/* #define DEBUG_CMD_VOL */
104#ifdef DEBUG_CMD_VOL
105#define DEBUG_VOL(x...) printk(KERN_INFO x)
106#else
107#define DEBUG_VOL(x...)
108#endif
109
110/* #define DEBUG_CMD_STOP */
111#ifdef DEBUG_CMD_STOP
112#define DEBUG_CS(x...) printk(KERN_INFO x)
113#else
114#define DEBUG_CS(x...)
115#endif
116
117/* #define DEBUG_PASSTHROUGH */
118#ifdef DEBUG_PASSTHROUGH
119#define DEBUG_PT(x...) printk(KERN_INFO x)
120#else
121#define DEBUG_PT(x...)
122#endif
123
124/* #define DEBUG_TASK_STOP */
125#ifdef DEBUG_TASK_STOP
126#define DEBUG_TS(x...) printk(KERN_INFO x)
127#else
128#define DEBUG_TS(x...)
129#endif
130
131/* #define DEBUG_TRANSPORT_STOP */
132#ifdef DEBUG_TRANSPORT_STOP
133#define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134#else
135#define DEBUG_TRANSPORT_S(x...)
136#endif
137
138/* #define DEBUG_TASK_FAILURE */
139#ifdef DEBUG_TASK_FAILURE
140#define DEBUG_TF(x...) printk(KERN_INFO x)
141#else
142#define DEBUG_TF(x...)
143#endif
144
145/* #define DEBUG_DEV_OFFLINE */
146#ifdef DEBUG_DEV_OFFLINE
147#define DEBUG_DO(x...) printk(KERN_INFO x)
148#else
149#define DEBUG_DO(x...)
150#endif
151
152/* #define DEBUG_TASK_STATE */
153#ifdef DEBUG_TASK_STATE
154#define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155#else
156#define DEBUG_TSTATE(x...)
157#endif
158
159/* #define DEBUG_STATUS_THR */
160#ifdef DEBUG_STATUS_THR
161#define DEBUG_ST(x...) printk(KERN_INFO x)
162#else
163#define DEBUG_ST(x...)
164#endif
165
166/* #define DEBUG_TASK_TIMEOUT */
167#ifdef DEBUG_TASK_TIMEOUT
168#define DEBUG_TT(x...) printk(KERN_INFO x)
169#else
170#define DEBUG_TT(x...)
171#endif
172
173/* #define DEBUG_GENERIC_REQUEST_FAILURE */
174#ifdef DEBUG_GENERIC_REQUEST_FAILURE
175#define DEBUG_GRF(x...) printk(KERN_INFO x)
176#else
177#define DEBUG_GRF(x...)
178#endif
179
180/* #define DEBUG_SAM_TASK_ATTRS */
181#ifdef DEBUG_SAM_TASK_ATTRS
182#define DEBUG_STA(x...) printk(KERN_INFO x)
183#else
184#define DEBUG_STA(x...)
185#endif
186
187struct se_global *se_global;
188
189static struct kmem_cache *se_cmd_cache;
190static struct kmem_cache *se_sess_cache;
191struct kmem_cache *se_tmr_req_cache;
192struct kmem_cache *se_ua_cache;
193struct kmem_cache *se_mem_cache;
194struct kmem_cache *t10_pr_reg_cache;
195struct kmem_cache *t10_alua_lu_gp_cache;
196struct kmem_cache *t10_alua_lu_gp_mem_cache;
197struct kmem_cache *t10_alua_tg_pt_gp_cache;
198struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
199
200/* Used for transport_dev_get_map_*() */
201typedef int (*map_func_t)(struct se_task *, u32);
202
203static int transport_generic_write_pending(struct se_cmd *);
204static int transport_processing_thread(void *);
205static int __transport_execute_tasks(struct se_device *dev);
206static void transport_complete_task_attr(struct se_cmd *cmd);
207static void transport_direct_request_timeout(struct se_cmd *cmd);
208static void transport_free_dev_tasks(struct se_cmd *cmd);
209static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
210 unsigned long long starting_lba, u32 sectors,
211 enum dma_data_direction data_direction,
212 struct list_head *mem_list, int set_counts);
213static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
214 u32 dma_size);
215static int transport_generic_remove(struct se_cmd *cmd,
216 int release_to_pool, int session_reinstatement);
217static int transport_get_sectors(struct se_cmd *cmd);
218static struct list_head *transport_init_se_mem_list(void);
219static int transport_map_sg_to_mem(struct se_cmd *cmd,
220 struct list_head *se_mem_list, void *in_mem,
221 u32 *se_mem_cnt);
222static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
223 unsigned char *dst, struct list_head *se_mem_list);
224static void transport_release_fe_cmd(struct se_cmd *cmd);
225static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
226 struct se_queue_obj *qobj);
227static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
228static void transport_stop_all_task_timers(struct se_cmd *cmd);
229
230int transport_emulate_control_cdb(struct se_task *task);
231
232int init_se_global(void)
233{
234 struct se_global *global;
235
236 global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
237 if (!(global)) {
238 printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
239 return -1;
240 }
241
242 INIT_LIST_HEAD(&global->g_lu_gps_list);
243 INIT_LIST_HEAD(&global->g_se_tpg_list);
244 INIT_LIST_HEAD(&global->g_hba_list);
245 INIT_LIST_HEAD(&global->g_se_dev_list);
246 spin_lock_init(&global->g_device_lock);
247 spin_lock_init(&global->hba_lock);
248 spin_lock_init(&global->se_tpg_lock);
249 spin_lock_init(&global->lu_gps_lock);
250 spin_lock_init(&global->plugin_class_lock);
251
252 se_cmd_cache = kmem_cache_create("se_cmd_cache",
253 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
254 if (!(se_cmd_cache)) {
255 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
256 goto out;
257 }
258 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
259 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
260 0, NULL);
261 if (!(se_tmr_req_cache)) {
262 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
263 " failed\n");
264 goto out;
265 }
266 se_sess_cache = kmem_cache_create("se_sess_cache",
267 sizeof(struct se_session), __alignof__(struct se_session),
268 0, NULL);
269 if (!(se_sess_cache)) {
270 printk(KERN_ERR "kmem_cache_create() for struct se_session"
271 " failed\n");
272 goto out;
273 }
274 se_ua_cache = kmem_cache_create("se_ua_cache",
275 sizeof(struct se_ua), __alignof__(struct se_ua),
276 0, NULL);
277 if (!(se_ua_cache)) {
278 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
279 goto out;
280 }
281 se_mem_cache = kmem_cache_create("se_mem_cache",
282 sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
283 if (!(se_mem_cache)) {
284 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
285 goto out;
286 }
287 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
288 sizeof(struct t10_pr_registration),
289 __alignof__(struct t10_pr_registration), 0, NULL);
290 if (!(t10_pr_reg_cache)) {
291 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
292 " failed\n");
293 goto out;
294 }
295 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
296 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
297 0, NULL);
298 if (!(t10_alua_lu_gp_cache)) {
299 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
300 " failed\n");
301 goto out;
302 }
303 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
304 sizeof(struct t10_alua_lu_gp_member),
305 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
306 if (!(t10_alua_lu_gp_mem_cache)) {
307 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
308 "cache failed\n");
309 goto out;
310 }
311 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
312 sizeof(struct t10_alua_tg_pt_gp),
313 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
314 if (!(t10_alua_tg_pt_gp_cache)) {
315 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
316 "cache failed\n");
317 goto out;
318 }
319 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
320 "t10_alua_tg_pt_gp_mem_cache",
321 sizeof(struct t10_alua_tg_pt_gp_member),
322 __alignof__(struct t10_alua_tg_pt_gp_member),
323 0, NULL);
324 if (!(t10_alua_tg_pt_gp_mem_cache)) {
325 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
326 "mem_t failed\n");
327 goto out;
328 }
329
330 se_global = global;
331
332 return 0;
333out:
334 if (se_cmd_cache)
335 kmem_cache_destroy(se_cmd_cache);
336 if (se_tmr_req_cache)
337 kmem_cache_destroy(se_tmr_req_cache);
338 if (se_sess_cache)
339 kmem_cache_destroy(se_sess_cache);
340 if (se_ua_cache)
341 kmem_cache_destroy(se_ua_cache);
342 if (se_mem_cache)
343 kmem_cache_destroy(se_mem_cache);
344 if (t10_pr_reg_cache)
345 kmem_cache_destroy(t10_pr_reg_cache);
346 if (t10_alua_lu_gp_cache)
347 kmem_cache_destroy(t10_alua_lu_gp_cache);
348 if (t10_alua_lu_gp_mem_cache)
349 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
350 if (t10_alua_tg_pt_gp_cache)
351 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
352 if (t10_alua_tg_pt_gp_mem_cache)
353 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
354 kfree(global);
355 return -1;
356}
357
358void release_se_global(void)
359{
360 struct se_global *global;
361
362 global = se_global;
363 if (!(global))
364 return;
365
366 kmem_cache_destroy(se_cmd_cache);
367 kmem_cache_destroy(se_tmr_req_cache);
368 kmem_cache_destroy(se_sess_cache);
369 kmem_cache_destroy(se_ua_cache);
370 kmem_cache_destroy(se_mem_cache);
371 kmem_cache_destroy(t10_pr_reg_cache);
372 kmem_cache_destroy(t10_alua_lu_gp_cache);
373 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
374 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
375 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
376 kfree(global);
377
378 se_global = NULL;
379}
380
e89d15ee
NB
381/* SCSI statistics table index */
382static struct scsi_index_table scsi_index_table;
383
384/*
385 * Initialize the index table for allocating unique row indexes to various mib
386 * tables.
387 */
388void init_scsi_index_table(void)
389{
390 memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
391 spin_lock_init(&scsi_index_table.lock);
392}
393
394/*
395 * Allocate a new row index for the entry type specified
396 */
397u32 scsi_get_new_index(scsi_index_t type)
398{
399 u32 new_index;
400
401 if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
402 printk(KERN_ERR "Invalid index type %d\n", type);
403 return -EINVAL;
404 }
405
406 spin_lock(&scsi_index_table.lock);
407 new_index = ++scsi_index_table.scsi_mib_index[type];
408 if (new_index == 0)
409 new_index = ++scsi_index_table.scsi_mib_index[type];
410 spin_unlock(&scsi_index_table.lock);
411
412 return new_index;
413}
414
c66ac9db
NB
415void transport_init_queue_obj(struct se_queue_obj *qobj)
416{
417 atomic_set(&qobj->queue_cnt, 0);
418 INIT_LIST_HEAD(&qobj->qobj_list);
419 init_waitqueue_head(&qobj->thread_wq);
420 spin_lock_init(&qobj->cmd_queue_lock);
421}
422EXPORT_SYMBOL(transport_init_queue_obj);
423
424static int transport_subsystem_reqmods(void)
425{
426 int ret;
427
428 ret = request_module("target_core_iblock");
429 if (ret != 0)
430 printk(KERN_ERR "Unable to load target_core_iblock\n");
431
432 ret = request_module("target_core_file");
433 if (ret != 0)
434 printk(KERN_ERR "Unable to load target_core_file\n");
435
436 ret = request_module("target_core_pscsi");
437 if (ret != 0)
438 printk(KERN_ERR "Unable to load target_core_pscsi\n");
439
440 ret = request_module("target_core_stgt");
441 if (ret != 0)
442 printk(KERN_ERR "Unable to load target_core_stgt\n");
443
444 return 0;
445}
446
447int transport_subsystem_check_init(void)
448{
449 if (se_global->g_sub_api_initialized)
450 return 0;
451 /*
452 * Request the loading of known TCM subsystem plugins..
453 */
454 if (transport_subsystem_reqmods() < 0)
455 return -1;
456
457 se_global->g_sub_api_initialized = 1;
458 return 0;
459}
460
461struct se_session *transport_init_session(void)
462{
463 struct se_session *se_sess;
464
465 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
466 if (!(se_sess)) {
467 printk(KERN_ERR "Unable to allocate struct se_session from"
468 " se_sess_cache\n");
469 return ERR_PTR(-ENOMEM);
470 }
471 INIT_LIST_HEAD(&se_sess->sess_list);
472 INIT_LIST_HEAD(&se_sess->sess_acl_list);
c66ac9db
NB
473
474 return se_sess;
475}
476EXPORT_SYMBOL(transport_init_session);
477
478/*
479 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
480 */
481void __transport_register_session(
482 struct se_portal_group *se_tpg,
483 struct se_node_acl *se_nacl,
484 struct se_session *se_sess,
485 void *fabric_sess_ptr)
486{
487 unsigned char buf[PR_REG_ISID_LEN];
488
489 se_sess->se_tpg = se_tpg;
490 se_sess->fabric_sess_ptr = fabric_sess_ptr;
491 /*
492 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
493 *
494 * Only set for struct se_session's that will actually be moving I/O.
495 * eg: *NOT* discovery sessions.
496 */
497 if (se_nacl) {
498 /*
499 * If the fabric module supports an ISID based TransportID,
500 * save this value in binary from the fabric I_T Nexus now.
501 */
502 if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
503 memset(&buf[0], 0, PR_REG_ISID_LEN);
504 TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
505 &buf[0], PR_REG_ISID_LEN);
506 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
507 }
508 spin_lock_irq(&se_nacl->nacl_sess_lock);
509 /*
510 * The se_nacl->nacl_sess pointer will be set to the
511 * last active I_T Nexus for each struct se_node_acl.
512 */
513 se_nacl->nacl_sess = se_sess;
514
515 list_add_tail(&se_sess->sess_acl_list,
516 &se_nacl->acl_sess_list);
517 spin_unlock_irq(&se_nacl->nacl_sess_lock);
518 }
519 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
520
521 printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
522 TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
523}
524EXPORT_SYMBOL(__transport_register_session);
525
526void transport_register_session(
527 struct se_portal_group *se_tpg,
528 struct se_node_acl *se_nacl,
529 struct se_session *se_sess,
530 void *fabric_sess_ptr)
531{
532 spin_lock_bh(&se_tpg->session_lock);
533 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
534 spin_unlock_bh(&se_tpg->session_lock);
535}
536EXPORT_SYMBOL(transport_register_session);
537
538void transport_deregister_session_configfs(struct se_session *se_sess)
539{
540 struct se_node_acl *se_nacl;
541
542 /*
543 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
544 */
545 se_nacl = se_sess->se_node_acl;
546 if ((se_nacl)) {
547 spin_lock_irq(&se_nacl->nacl_sess_lock);
548 list_del(&se_sess->sess_acl_list);
549 /*
550 * If the session list is empty, then clear the pointer.
551 * Otherwise, set the struct se_session pointer from the tail
552 * element of the per struct se_node_acl active session list.
553 */
554 if (list_empty(&se_nacl->acl_sess_list))
555 se_nacl->nacl_sess = NULL;
556 else {
557 se_nacl->nacl_sess = container_of(
558 se_nacl->acl_sess_list.prev,
559 struct se_session, sess_acl_list);
560 }
561 spin_unlock_irq(&se_nacl->nacl_sess_lock);
562 }
563}
564EXPORT_SYMBOL(transport_deregister_session_configfs);
565
566void transport_free_session(struct se_session *se_sess)
567{
568 kmem_cache_free(se_sess_cache, se_sess);
569}
570EXPORT_SYMBOL(transport_free_session);
571
572void transport_deregister_session(struct se_session *se_sess)
573{
574 struct se_portal_group *se_tpg = se_sess->se_tpg;
575 struct se_node_acl *se_nacl;
576
577 if (!(se_tpg)) {
578 transport_free_session(se_sess);
579 return;
580 }
c66ac9db
NB
581
582 spin_lock_bh(&se_tpg->session_lock);
583 list_del(&se_sess->sess_list);
584 se_sess->se_tpg = NULL;
585 se_sess->fabric_sess_ptr = NULL;
586 spin_unlock_bh(&se_tpg->session_lock);
587
588 /*
589 * Determine if we need to do extra work for this initiator node's
590 * struct se_node_acl if it had been previously dynamically generated.
591 */
592 se_nacl = se_sess->se_node_acl;
593 if ((se_nacl)) {
594 spin_lock_bh(&se_tpg->acl_node_lock);
595 if (se_nacl->dynamic_node_acl) {
596 if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
597 se_tpg))) {
598 list_del(&se_nacl->acl_list);
599 se_tpg->num_node_acls--;
600 spin_unlock_bh(&se_tpg->acl_node_lock);
601
602 core_tpg_wait_for_nacl_pr_ref(se_nacl);
c66ac9db
NB
603 core_free_device_list_for_node(se_nacl, se_tpg);
604 TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
605 se_nacl);
606 spin_lock_bh(&se_tpg->acl_node_lock);
607 }
608 }
609 spin_unlock_bh(&se_tpg->acl_node_lock);
610 }
611
612 transport_free_session(se_sess);
613
614 printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
615 TPG_TFO(se_tpg)->get_fabric_name());
616}
617EXPORT_SYMBOL(transport_deregister_session);
618
619/*
620 * Called with T_TASK(cmd)->t_state_lock held.
621 */
622static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
623{
624 struct se_device *dev;
625 struct se_task *task;
626 unsigned long flags;
627
628 if (!T_TASK(cmd))
629 return;
630
631 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
632 dev = task->se_dev;
633 if (!(dev))
634 continue;
635
636 if (atomic_read(&task->task_active))
637 continue;
638
639 if (!(atomic_read(&task->task_state_active)))
640 continue;
641
642 spin_lock_irqsave(&dev->execute_task_lock, flags);
643 list_del(&task->t_state_list);
644 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
645 CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
646 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
647
648 atomic_set(&task->task_state_active, 0);
649 atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
650 }
651}
652
653/* transport_cmd_check_stop():
654 *
655 * 'transport_off = 1' determines if t_transport_active should be cleared.
656 * 'transport_off = 2' determines if task_dev_state should be removed.
657 *
658 * A non-zero u8 t_state sets cmd->t_state.
659 * Returns 1 when command is stopped, else 0.
660 */
661static int transport_cmd_check_stop(
662 struct se_cmd *cmd,
663 int transport_off,
664 u8 t_state)
665{
666 unsigned long flags;
667
668 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
669 /*
670 * Determine if IOCTL context caller in requesting the stopping of this
671 * command for LUN shutdown purposes.
672 */
673 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
674 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
675 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
676 CMD_TFO(cmd)->get_task_tag(cmd));
677
678 cmd->deferred_t_state = cmd->t_state;
679 cmd->t_state = TRANSPORT_DEFERRED_CMD;
680 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
681 if (transport_off == 2)
682 transport_all_task_dev_remove_state(cmd);
683 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
684
685 complete(&T_TASK(cmd)->transport_lun_stop_comp);
686 return 1;
687 }
688 /*
689 * Determine if frontend context caller is requesting the stopping of
690 * this command for frontend excpections.
691 */
692 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
693 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
694 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
695 CMD_TFO(cmd)->get_task_tag(cmd));
696
697 cmd->deferred_t_state = cmd->t_state;
698 cmd->t_state = TRANSPORT_DEFERRED_CMD;
699 if (transport_off == 2)
700 transport_all_task_dev_remove_state(cmd);
701
702 /*
703 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
704 * to FE.
705 */
706 if (transport_off == 2)
707 cmd->se_lun = NULL;
708 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
709
710 complete(&T_TASK(cmd)->t_transport_stop_comp);
711 return 1;
712 }
713 if (transport_off) {
714 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
715 if (transport_off == 2) {
716 transport_all_task_dev_remove_state(cmd);
717 /*
718 * Clear struct se_cmd->se_lun before the transport_off == 2
719 * handoff to fabric module.
720 */
721 cmd->se_lun = NULL;
722 /*
723 * Some fabric modules like tcm_loop can release
724 * their internally allocated I/O refrence now and
725 * struct se_cmd now.
726 */
727 if (CMD_TFO(cmd)->check_stop_free != NULL) {
728 spin_unlock_irqrestore(
729 &T_TASK(cmd)->t_state_lock, flags);
730
731 CMD_TFO(cmd)->check_stop_free(cmd);
732 return 1;
733 }
734 }
735 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
736
737 return 0;
738 } else if (t_state)
739 cmd->t_state = t_state;
740 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
741
742 return 0;
743}
744
745static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
746{
747 return transport_cmd_check_stop(cmd, 2, 0);
748}
749
750static void transport_lun_remove_cmd(struct se_cmd *cmd)
751{
752 struct se_lun *lun = SE_LUN(cmd);
753 unsigned long flags;
754
755 if (!lun)
756 return;
757
758 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
759 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
760 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
761 goto check_lun;
762 }
763 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
764 transport_all_task_dev_remove_state(cmd);
765 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
766
767 transport_free_dev_tasks(cmd);
768
769check_lun:
770 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
771 if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
772 list_del(&cmd->se_lun_list);
773 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
774#if 0
775 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
776 CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
777#endif
778 }
779 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
780}
781
782void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
783{
784 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
785 transport_lun_remove_cmd(cmd);
786
787 if (transport_cmd_check_stop_to_fabric(cmd))
788 return;
789 if (remove)
790 transport_generic_remove(cmd, 0, 0);
791}
792
793void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
794{
795 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
796
797 if (transport_cmd_check_stop_to_fabric(cmd))
798 return;
799
800 transport_generic_remove(cmd, 0, 0);
801}
802
803static int transport_add_cmd_to_queue(
804 struct se_cmd *cmd,
805 int t_state)
806{
807 struct se_device *dev = cmd->se_dev;
808 struct se_queue_obj *qobj = dev->dev_queue_obj;
809 struct se_queue_req *qr;
810 unsigned long flags;
811
812 qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
813 if (!(qr)) {
814 printk(KERN_ERR "Unable to allocate memory for"
815 " struct se_queue_req\n");
816 return -1;
817 }
818 INIT_LIST_HEAD(&qr->qr_list);
819
820 qr->cmd = (void *)cmd;
821 qr->state = t_state;
822
823 if (t_state) {
824 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
825 cmd->t_state = t_state;
826 atomic_set(&T_TASK(cmd)->t_transport_active, 1);
827 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
828 }
829
830 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
831 list_add_tail(&qr->qr_list, &qobj->qobj_list);
832 atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
833 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
834
835 atomic_inc(&qobj->queue_cnt);
836 wake_up_interruptible(&qobj->thread_wq);
837 return 0;
838}
839
840/*
841 * Called with struct se_queue_obj->cmd_queue_lock held.
842 */
843static struct se_queue_req *
844__transport_get_qr_from_queue(struct se_queue_obj *qobj)
845{
846 struct se_cmd *cmd;
847 struct se_queue_req *qr = NULL;
848
849 if (list_empty(&qobj->qobj_list))
850 return NULL;
851
852 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
853 break;
854
855 if (qr->cmd) {
856 cmd = (struct se_cmd *)qr->cmd;
857 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
858 }
859 list_del(&qr->qr_list);
860 atomic_dec(&qobj->queue_cnt);
861
862 return qr;
863}
864
865static struct se_queue_req *
866transport_get_qr_from_queue(struct se_queue_obj *qobj)
867{
868 struct se_cmd *cmd;
869 struct se_queue_req *qr;
870 unsigned long flags;
871
872 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
873 if (list_empty(&qobj->qobj_list)) {
874 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
875 return NULL;
876 }
877
878 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
879 break;
880
881 if (qr->cmd) {
882 cmd = (struct se_cmd *)qr->cmd;
883 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
884 }
885 list_del(&qr->qr_list);
886 atomic_dec(&qobj->queue_cnt);
887 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
888
889 return qr;
890}
891
892static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
893 struct se_queue_obj *qobj)
894{
895 struct se_cmd *q_cmd;
896 struct se_queue_req *qr = NULL, *qr_p = NULL;
897 unsigned long flags;
898
899 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
900 if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
901 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
902 return;
903 }
904
905 list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
906 q_cmd = (struct se_cmd *)qr->cmd;
907 if (q_cmd != cmd)
908 continue;
909
910 atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
911 atomic_dec(&qobj->queue_cnt);
912 list_del(&qr->qr_list);
913 kfree(qr);
914 }
915 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
916
917 if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
918 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
919 CMD_TFO(cmd)->get_task_tag(cmd),
920 atomic_read(&T_TASK(cmd)->t_transport_queue_active));
921 }
922}
923
924/*
925 * Completion function used by TCM subsystem plugins (such as FILEIO)
926 * for queueing up response from struct se_subsystem_api->do_task()
927 */
928void transport_complete_sync_cache(struct se_cmd *cmd, int good)
929{
930 struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
931 struct se_task, t_list);
932
933 if (good) {
934 cmd->scsi_status = SAM_STAT_GOOD;
935 task->task_scsi_status = GOOD;
936 } else {
937 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
938 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
939 TASK_CMD(task)->transport_error_status =
940 PYX_TRANSPORT_ILLEGAL_REQUEST;
941 }
942
943 transport_complete_task(task, good);
944}
945EXPORT_SYMBOL(transport_complete_sync_cache);
946
947/* transport_complete_task():
948 *
949 * Called from interrupt and non interrupt context depending
950 * on the transport plugin.
951 */
952void transport_complete_task(struct se_task *task, int success)
953{
954 struct se_cmd *cmd = TASK_CMD(task);
955 struct se_device *dev = task->se_dev;
956 int t_state;
957 unsigned long flags;
958#if 0
959 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
960 T_TASK(cmd)->t_task_cdb[0], dev);
961#endif
962 if (dev) {
963 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
964 atomic_inc(&dev->depth_left);
965 atomic_inc(&SE_HBA(dev)->left_queue_depth);
966 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
967 }
968
969 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
970 atomic_set(&task->task_active, 0);
971
972 /*
973 * See if any sense data exists, if so set the TASK_SENSE flag.
974 * Also check for any other post completion work that needs to be
975 * done by the plugins.
976 */
977 if (dev && dev->transport->transport_complete) {
978 if (dev->transport->transport_complete(task) != 0) {
979 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
980 task->task_sense = 1;
981 success = 1;
982 }
983 }
984
985 /*
986 * See if we are waiting for outstanding struct se_task
987 * to complete for an exception condition
988 */
989 if (atomic_read(&task->task_stop)) {
990 /*
991 * Decrement T_TASK(cmd)->t_se_count if this task had
992 * previously thrown its timeout exception handler.
993 */
994 if (atomic_read(&task->task_timeout)) {
995 atomic_dec(&T_TASK(cmd)->t_se_count);
996 atomic_set(&task->task_timeout, 0);
997 }
998 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
999
1000 complete(&task->task_stop_comp);
1001 return;
1002 }
1003 /*
1004 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1005 * left counter to determine when the struct se_cmd is ready to be queued to
1006 * the processing thread.
1007 */
1008 if (atomic_read(&task->task_timeout)) {
1009 if (!(atomic_dec_and_test(
1010 &T_TASK(cmd)->t_task_cdbs_timeout_left))) {
1011 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
1012 flags);
1013 return;
1014 }
1015 t_state = TRANSPORT_COMPLETE_TIMEOUT;
1016 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1017
1018 transport_add_cmd_to_queue(cmd, t_state);
1019 return;
1020 }
1021 atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
1022
1023 /*
1024 * Decrement the outstanding t_task_cdbs_left count. The last
1025 * struct se_task from struct se_cmd will complete itself into the
1026 * device queue depending upon int success.
1027 */
1028 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
1029 if (!success)
1030 T_TASK(cmd)->t_tasks_failed = 1;
1031
1032 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1033 return;
1034 }
1035
1036 if (!success || T_TASK(cmd)->t_tasks_failed) {
1037 t_state = TRANSPORT_COMPLETE_FAILURE;
1038 if (!task->task_error_status) {
1039 task->task_error_status =
1040 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1041 cmd->transport_error_status =
1042 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1043 }
1044 } else {
1045 atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
1046 t_state = TRANSPORT_COMPLETE_OK;
1047 }
1048 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1049
1050 transport_add_cmd_to_queue(cmd, t_state);
1051}
1052EXPORT_SYMBOL(transport_complete_task);
1053
1054/*
1055 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1056 * struct se_task list are ready to be added to the active execution list
1057 * struct se_device
1058
1059 * Called with se_dev_t->execute_task_lock called.
1060 */
1061static inline int transport_add_task_check_sam_attr(
1062 struct se_task *task,
1063 struct se_task *task_prev,
1064 struct se_device *dev)
1065{
1066 /*
1067 * No SAM Task attribute emulation enabled, add to tail of
1068 * execution queue
1069 */
1070 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
1071 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1072 return 0;
1073 }
1074 /*
1075 * HEAD_OF_QUEUE attribute for received CDB, which means
1076 * the first task that is associated with a struct se_cmd goes to
1077 * head of the struct se_device->execute_task_list, and task_prev
1078 * after that for each subsequent task
1079 */
1080 if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) {
1081 list_add(&task->t_execute_list,
1082 (task_prev != NULL) ?
1083 &task_prev->t_execute_list :
1084 &dev->execute_task_list);
1085
1086 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1087 " in execution queue\n",
1088 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
1089 return 1;
1090 }
1091 /*
1092 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1093 * transitioned from Dermant -> Active state, and are added to the end
1094 * of the struct se_device->execute_task_list
1095 */
1096 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1097 return 0;
1098}
1099
1100/* __transport_add_task_to_execute_queue():
1101 *
1102 * Called with se_dev_t->execute_task_lock called.
1103 */
1104static void __transport_add_task_to_execute_queue(
1105 struct se_task *task,
1106 struct se_task *task_prev,
1107 struct se_device *dev)
1108{
1109 int head_of_queue;
1110
1111 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1112 atomic_inc(&dev->execute_tasks);
1113
1114 if (atomic_read(&task->task_state_active))
1115 return;
1116 /*
1117 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1118 * state list as well. Running with SAM Task Attribute emulation
1119 * will always return head_of_queue == 0 here
1120 */
1121 if (head_of_queue)
1122 list_add(&task->t_state_list, (task_prev) ?
1123 &task_prev->t_state_list :
1124 &dev->state_task_list);
1125 else
1126 list_add_tail(&task->t_state_list, &dev->state_task_list);
1127
1128 atomic_set(&task->task_state_active, 1);
1129
1130 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1131 CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
1132 task, dev);
1133}
1134
1135static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1136{
1137 struct se_device *dev;
1138 struct se_task *task;
1139 unsigned long flags;
1140
1141 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1142 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1143 dev = task->se_dev;
1144
1145 if (atomic_read(&task->task_state_active))
1146 continue;
1147
1148 spin_lock(&dev->execute_task_lock);
1149 list_add_tail(&task->t_state_list, &dev->state_task_list);
1150 atomic_set(&task->task_state_active, 1);
1151
1152 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1153 CMD_TFO(task->task_se_cmd)->get_task_tag(
1154 task->task_se_cmd), task, dev);
1155
1156 spin_unlock(&dev->execute_task_lock);
1157 }
1158 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1159}
1160
1161static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1162{
1163 struct se_device *dev = SE_DEV(cmd);
1164 struct se_task *task, *task_prev = NULL;
1165 unsigned long flags;
1166
1167 spin_lock_irqsave(&dev->execute_task_lock, flags);
1168 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1169 if (atomic_read(&task->task_execute_queue))
1170 continue;
1171 /*
1172 * __transport_add_task_to_execute_queue() handles the
1173 * SAM Task Attribute emulation if enabled
1174 */
1175 __transport_add_task_to_execute_queue(task, task_prev, dev);
1176 atomic_set(&task->task_execute_queue, 1);
1177 task_prev = task;
1178 }
1179 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1180
1181 return;
1182}
1183
1184/* transport_get_task_from_execute_queue():
1185 *
1186 * Called with dev->execute_task_lock held.
1187 */
1188static struct se_task *
1189transport_get_task_from_execute_queue(struct se_device *dev)
1190{
1191 struct se_task *task;
1192
1193 if (list_empty(&dev->execute_task_list))
1194 return NULL;
1195
1196 list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
1197 break;
1198
1199 list_del(&task->t_execute_list);
1200 atomic_dec(&dev->execute_tasks);
1201
1202 return task;
1203}
1204
1205/* transport_remove_task_from_execute_queue():
1206 *
1207 *
1208 */
52208ae3 1209void transport_remove_task_from_execute_queue(
c66ac9db
NB
1210 struct se_task *task,
1211 struct se_device *dev)
1212{
1213 unsigned long flags;
1214
1215 spin_lock_irqsave(&dev->execute_task_lock, flags);
1216 list_del(&task->t_execute_list);
1217 atomic_dec(&dev->execute_tasks);
1218 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1219}
1220
1221unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1222{
1223 switch (cmd->data_direction) {
1224 case DMA_NONE:
1225 return "NONE";
1226 case DMA_FROM_DEVICE:
1227 return "READ";
1228 case DMA_TO_DEVICE:
1229 return "WRITE";
1230 case DMA_BIDIRECTIONAL:
1231 return "BIDI";
1232 default:
1233 break;
1234 }
1235
1236 return "UNKNOWN";
1237}
1238
1239void transport_dump_dev_state(
1240 struct se_device *dev,
1241 char *b,
1242 int *bl)
1243{
1244 *bl += sprintf(b + *bl, "Status: ");
1245 switch (dev->dev_status) {
1246 case TRANSPORT_DEVICE_ACTIVATED:
1247 *bl += sprintf(b + *bl, "ACTIVATED");
1248 break;
1249 case TRANSPORT_DEVICE_DEACTIVATED:
1250 *bl += sprintf(b + *bl, "DEACTIVATED");
1251 break;
1252 case TRANSPORT_DEVICE_SHUTDOWN:
1253 *bl += sprintf(b + *bl, "SHUTDOWN");
1254 break;
1255 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1256 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1257 *bl += sprintf(b + *bl, "OFFLINE");
1258 break;
1259 default:
1260 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1261 break;
1262 }
1263
1264 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1265 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1266 dev->queue_depth);
1267 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1268 DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
1269 *bl += sprintf(b + *bl, " ");
1270}
1271
1272/* transport_release_all_cmds():
1273 *
1274 *
1275 */
1276static void transport_release_all_cmds(struct se_device *dev)
1277{
1278 struct se_cmd *cmd = NULL;
1279 struct se_queue_req *qr = NULL, *qr_p = NULL;
1280 int bug_out = 0, t_state;
1281 unsigned long flags;
1282
1283 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1284 list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
1285 qr_list) {
1286
1287 cmd = (struct se_cmd *)qr->cmd;
1288 t_state = qr->state;
1289 list_del(&qr->qr_list);
1290 kfree(qr);
1291 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
1292 flags);
1293
1294 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1295 " t_state: %u directly\n",
1296 CMD_TFO(cmd)->get_task_tag(cmd),
1297 CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
1298
1299 transport_release_fe_cmd(cmd);
1300 bug_out = 1;
1301
1302 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1303 }
1304 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
1305#if 0
1306 if (bug_out)
1307 BUG();
1308#endif
1309}
1310
1311void transport_dump_vpd_proto_id(
1312 struct t10_vpd *vpd,
1313 unsigned char *p_buf,
1314 int p_buf_len)
1315{
1316 unsigned char buf[VPD_TMP_BUF_SIZE];
1317 int len;
1318
1319 memset(buf, 0, VPD_TMP_BUF_SIZE);
1320 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1321
1322 switch (vpd->protocol_identifier) {
1323 case 0x00:
1324 sprintf(buf+len, "Fibre Channel\n");
1325 break;
1326 case 0x10:
1327 sprintf(buf+len, "Parallel SCSI\n");
1328 break;
1329 case 0x20:
1330 sprintf(buf+len, "SSA\n");
1331 break;
1332 case 0x30:
1333 sprintf(buf+len, "IEEE 1394\n");
1334 break;
1335 case 0x40:
1336 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1337 " Protocol\n");
1338 break;
1339 case 0x50:
1340 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1341 break;
1342 case 0x60:
1343 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1344 break;
1345 case 0x70:
1346 sprintf(buf+len, "Automation/Drive Interface Transport"
1347 " Protocol\n");
1348 break;
1349 case 0x80:
1350 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1351 break;
1352 default:
1353 sprintf(buf+len, "Unknown 0x%02x\n",
1354 vpd->protocol_identifier);
1355 break;
1356 }
1357
1358 if (p_buf)
1359 strncpy(p_buf, buf, p_buf_len);
1360 else
1361 printk(KERN_INFO "%s", buf);
1362}
1363
1364void
1365transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1366{
1367 /*
1368 * Check if the Protocol Identifier Valid (PIV) bit is set..
1369 *
1370 * from spc3r23.pdf section 7.5.1
1371 */
1372 if (page_83[1] & 0x80) {
1373 vpd->protocol_identifier = (page_83[0] & 0xf0);
1374 vpd->protocol_identifier_set = 1;
1375 transport_dump_vpd_proto_id(vpd, NULL, 0);
1376 }
1377}
1378EXPORT_SYMBOL(transport_set_vpd_proto_id);
1379
1380int transport_dump_vpd_assoc(
1381 struct t10_vpd *vpd,
1382 unsigned char *p_buf,
1383 int p_buf_len)
1384{
1385 unsigned char buf[VPD_TMP_BUF_SIZE];
1386 int ret = 0, len;
1387
1388 memset(buf, 0, VPD_TMP_BUF_SIZE);
1389 len = sprintf(buf, "T10 VPD Identifier Association: ");
1390
1391 switch (vpd->association) {
1392 case 0x00:
1393 sprintf(buf+len, "addressed logical unit\n");
1394 break;
1395 case 0x10:
1396 sprintf(buf+len, "target port\n");
1397 break;
1398 case 0x20:
1399 sprintf(buf+len, "SCSI target device\n");
1400 break;
1401 default:
1402 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1403 ret = -1;
1404 break;
1405 }
1406
1407 if (p_buf)
1408 strncpy(p_buf, buf, p_buf_len);
1409 else
1410 printk("%s", buf);
1411
1412 return ret;
1413}
1414
1415int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1416{
1417 /*
1418 * The VPD identification association..
1419 *
1420 * from spc3r23.pdf Section 7.6.3.1 Table 297
1421 */
1422 vpd->association = (page_83[1] & 0x30);
1423 return transport_dump_vpd_assoc(vpd, NULL, 0);
1424}
1425EXPORT_SYMBOL(transport_set_vpd_assoc);
1426
1427int transport_dump_vpd_ident_type(
1428 struct t10_vpd *vpd,
1429 unsigned char *p_buf,
1430 int p_buf_len)
1431{
1432 unsigned char buf[VPD_TMP_BUF_SIZE];
1433 int ret = 0, len;
1434
1435 memset(buf, 0, VPD_TMP_BUF_SIZE);
1436 len = sprintf(buf, "T10 VPD Identifier Type: ");
1437
1438 switch (vpd->device_identifier_type) {
1439 case 0x00:
1440 sprintf(buf+len, "Vendor specific\n");
1441 break;
1442 case 0x01:
1443 sprintf(buf+len, "T10 Vendor ID based\n");
1444 break;
1445 case 0x02:
1446 sprintf(buf+len, "EUI-64 based\n");
1447 break;
1448 case 0x03:
1449 sprintf(buf+len, "NAA\n");
1450 break;
1451 case 0x04:
1452 sprintf(buf+len, "Relative target port identifier\n");
1453 break;
1454 case 0x08:
1455 sprintf(buf+len, "SCSI name string\n");
1456 break;
1457 default:
1458 sprintf(buf+len, "Unsupported: 0x%02x\n",
1459 vpd->device_identifier_type);
1460 ret = -1;
1461 break;
1462 }
1463
1464 if (p_buf)
1465 strncpy(p_buf, buf, p_buf_len);
1466 else
1467 printk("%s", buf);
1468
1469 return ret;
1470}
1471
1472int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1473{
1474 /*
1475 * The VPD identifier type..
1476 *
1477 * from spc3r23.pdf Section 7.6.3.1 Table 298
1478 */
1479 vpd->device_identifier_type = (page_83[1] & 0x0f);
1480 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1481}
1482EXPORT_SYMBOL(transport_set_vpd_ident_type);
1483
1484int transport_dump_vpd_ident(
1485 struct t10_vpd *vpd,
1486 unsigned char *p_buf,
1487 int p_buf_len)
1488{
1489 unsigned char buf[VPD_TMP_BUF_SIZE];
1490 int ret = 0;
1491
1492 memset(buf, 0, VPD_TMP_BUF_SIZE);
1493
1494 switch (vpd->device_identifier_code_set) {
1495 case 0x01: /* Binary */
1496 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1497 &vpd->device_identifier[0]);
1498 break;
1499 case 0x02: /* ASCII */
1500 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1501 &vpd->device_identifier[0]);
1502 break;
1503 case 0x03: /* UTF-8 */
1504 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1505 &vpd->device_identifier[0]);
1506 break;
1507 default:
1508 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1509 " 0x%02x", vpd->device_identifier_code_set);
1510 ret = -1;
1511 break;
1512 }
1513
1514 if (p_buf)
1515 strncpy(p_buf, buf, p_buf_len);
1516 else
1517 printk("%s", buf);
1518
1519 return ret;
1520}
1521
1522int
1523transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1524{
1525 static const char hex_str[] = "0123456789abcdef";
1526 int j = 0, i = 4; /* offset to start of the identifer */
1527
1528 /*
1529 * The VPD Code Set (encoding)
1530 *
1531 * from spc3r23.pdf Section 7.6.3.1 Table 296
1532 */
1533 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1534 switch (vpd->device_identifier_code_set) {
1535 case 0x01: /* Binary */
1536 vpd->device_identifier[j++] =
1537 hex_str[vpd->device_identifier_type];
1538 while (i < (4 + page_83[3])) {
1539 vpd->device_identifier[j++] =
1540 hex_str[(page_83[i] & 0xf0) >> 4];
1541 vpd->device_identifier[j++] =
1542 hex_str[page_83[i] & 0x0f];
1543 i++;
1544 }
1545 break;
1546 case 0x02: /* ASCII */
1547 case 0x03: /* UTF-8 */
1548 while (i < (4 + page_83[3]))
1549 vpd->device_identifier[j++] = page_83[i++];
1550 break;
1551 default:
1552 break;
1553 }
1554
1555 return transport_dump_vpd_ident(vpd, NULL, 0);
1556}
1557EXPORT_SYMBOL(transport_set_vpd_ident);
1558
1559static void core_setup_task_attr_emulation(struct se_device *dev)
1560{
1561 /*
1562 * If this device is from Target_Core_Mod/pSCSI, disable the
1563 * SAM Task Attribute emulation.
1564 *
1565 * This is currently not available in upsream Linux/SCSI Target
1566 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1567 */
1568 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1569 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1570 return;
1571 }
1572
1573 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1574 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1575 " device\n", TRANSPORT(dev)->name,
1576 TRANSPORT(dev)->get_device_rev(dev));
1577}
1578
1579static void scsi_dump_inquiry(struct se_device *dev)
1580{
1581 struct t10_wwn *wwn = DEV_T10_WWN(dev);
1582 int i, device_type;
1583 /*
1584 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1585 */
1586 printk(" Vendor: ");
1587 for (i = 0; i < 8; i++)
1588 if (wwn->vendor[i] >= 0x20)
1589 printk("%c", wwn->vendor[i]);
1590 else
1591 printk(" ");
1592
1593 printk(" Model: ");
1594 for (i = 0; i < 16; i++)
1595 if (wwn->model[i] >= 0x20)
1596 printk("%c", wwn->model[i]);
1597 else
1598 printk(" ");
1599
1600 printk(" Revision: ");
1601 for (i = 0; i < 4; i++)
1602 if (wwn->revision[i] >= 0x20)
1603 printk("%c", wwn->revision[i]);
1604 else
1605 printk(" ");
1606
1607 printk("\n");
1608
1609 device_type = TRANSPORT(dev)->get_device_type(dev);
1610 printk(" Type: %s ", scsi_device_type(device_type));
1611 printk(" ANSI SCSI revision: %02x\n",
1612 TRANSPORT(dev)->get_device_rev(dev));
1613}
1614
1615struct se_device *transport_add_device_to_core_hba(
1616 struct se_hba *hba,
1617 struct se_subsystem_api *transport,
1618 struct se_subsystem_dev *se_dev,
1619 u32 device_flags,
1620 void *transport_dev,
1621 struct se_dev_limits *dev_limits,
1622 const char *inquiry_prod,
1623 const char *inquiry_rev)
1624{
1625 int ret = 0, force_pt;
1626 struct se_device *dev;
1627
1628 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1629 if (!(dev)) {
1630 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1631 return NULL;
1632 }
1633 dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
1634 if (!(dev->dev_queue_obj)) {
1635 printk(KERN_ERR "Unable to allocate memory for"
1636 " dev->dev_queue_obj\n");
1637 kfree(dev);
1638 return NULL;
1639 }
1640 transport_init_queue_obj(dev->dev_queue_obj);
1641
1642 dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
1643 GFP_KERNEL);
1644 if (!(dev->dev_status_queue_obj)) {
1645 printk(KERN_ERR "Unable to allocate memory for"
1646 " dev->dev_status_queue_obj\n");
1647 kfree(dev->dev_queue_obj);
1648 kfree(dev);
1649 return NULL;
1650 }
1651 transport_init_queue_obj(dev->dev_status_queue_obj);
1652
1653 dev->dev_flags = device_flags;
1654 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1655 dev->dev_ptr = (void *) transport_dev;
1656 dev->se_hba = hba;
1657 dev->se_sub_dev = se_dev;
1658 dev->transport = transport;
1659 atomic_set(&dev->active_cmds, 0);
1660 INIT_LIST_HEAD(&dev->dev_list);
1661 INIT_LIST_HEAD(&dev->dev_sep_list);
1662 INIT_LIST_HEAD(&dev->dev_tmr_list);
1663 INIT_LIST_HEAD(&dev->execute_task_list);
1664 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1665 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1666 INIT_LIST_HEAD(&dev->state_task_list);
1667 spin_lock_init(&dev->execute_task_lock);
1668 spin_lock_init(&dev->delayed_cmd_lock);
1669 spin_lock_init(&dev->ordered_cmd_lock);
1670 spin_lock_init(&dev->state_task_lock);
1671 spin_lock_init(&dev->dev_alua_lock);
1672 spin_lock_init(&dev->dev_reservation_lock);
1673 spin_lock_init(&dev->dev_status_lock);
1674 spin_lock_init(&dev->dev_status_thr_lock);
1675 spin_lock_init(&dev->se_port_lock);
1676 spin_lock_init(&dev->se_tmr_lock);
1677
1678 dev->queue_depth = dev_limits->queue_depth;
1679 atomic_set(&dev->depth_left, dev->queue_depth);
1680 atomic_set(&dev->dev_ordered_id, 0);
1681
1682 se_dev_set_default_attribs(dev, dev_limits);
1683
1684 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1685 dev->creation_time = get_jiffies_64();
1686 spin_lock_init(&dev->stats_lock);
1687
1688 spin_lock(&hba->device_lock);
1689 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1690 hba->dev_count++;
1691 spin_unlock(&hba->device_lock);
1692 /*
1693 * Setup the SAM Task Attribute emulation for struct se_device
1694 */
1695 core_setup_task_attr_emulation(dev);
1696 /*
1697 * Force PR and ALUA passthrough emulation with internal object use.
1698 */
1699 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1700 /*
1701 * Setup the Reservations infrastructure for struct se_device
1702 */
1703 core_setup_reservations(dev, force_pt);
1704 /*
1705 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1706 */
1707 if (core_setup_alua(dev, force_pt) < 0)
1708 goto out;
1709
1710 /*
1711 * Startup the struct se_device processing thread
1712 */
1713 dev->process_thread = kthread_run(transport_processing_thread, dev,
1714 "LIO_%s", TRANSPORT(dev)->name);
1715 if (IS_ERR(dev->process_thread)) {
1716 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1717 TRANSPORT(dev)->name);
1718 goto out;
1719 }
1720
1721 /*
1722 * Preload the initial INQUIRY const values if we are doing
1723 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1724 * passthrough because this is being provided by the backend LLD.
1725 * This is required so that transport_get_inquiry() copies these
1726 * originals once back into DEV_T10_WWN(dev) for the virtual device
1727 * setup.
1728 */
1729 if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1730 if (!(inquiry_prod) || !(inquiry_prod)) {
1731 printk(KERN_ERR "All non TCM/pSCSI plugins require"
1732 " INQUIRY consts\n");
1733 goto out;
1734 }
1735
1736 strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
1737 strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
1738 strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
1739 }
1740 scsi_dump_inquiry(dev);
1741
1742out:
1743 if (!ret)
1744 return dev;
1745 kthread_stop(dev->process_thread);
1746
1747 spin_lock(&hba->device_lock);
1748 list_del(&dev->dev_list);
1749 hba->dev_count--;
1750 spin_unlock(&hba->device_lock);
1751
1752 se_release_vpd_for_dev(dev);
1753
1754 kfree(dev->dev_status_queue_obj);
1755 kfree(dev->dev_queue_obj);
1756 kfree(dev);
1757
1758 return NULL;
1759}
1760EXPORT_SYMBOL(transport_add_device_to_core_hba);
1761
1762/* transport_generic_prepare_cdb():
1763 *
1764 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1765 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1766 * The point of this is since we are mapping iSCSI LUNs to
1767 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1768 * devices and HBAs for a loop.
1769 */
1770static inline void transport_generic_prepare_cdb(
1771 unsigned char *cdb)
1772{
1773 switch (cdb[0]) {
1774 case READ_10: /* SBC - RDProtect */
1775 case READ_12: /* SBC - RDProtect */
1776 case READ_16: /* SBC - RDProtect */
1777 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1778 case VERIFY: /* SBC - VRProtect */
1779 case VERIFY_16: /* SBC - VRProtect */
1780 case WRITE_VERIFY: /* SBC - VRProtect */
1781 case WRITE_VERIFY_12: /* SBC - VRProtect */
1782 break;
1783 default:
1784 cdb[1] &= 0x1f; /* clear logical unit number */
1785 break;
1786 }
1787}
1788
1789static struct se_task *
1790transport_generic_get_task(struct se_cmd *cmd,
1791 enum dma_data_direction data_direction)
1792{
1793 struct se_task *task;
1794 struct se_device *dev = SE_DEV(cmd);
1795 unsigned long flags;
1796
1797 task = dev->transport->alloc_task(cmd);
1798 if (!task) {
1799 printk(KERN_ERR "Unable to allocate struct se_task\n");
1800 return NULL;
1801 }
1802
1803 INIT_LIST_HEAD(&task->t_list);
1804 INIT_LIST_HEAD(&task->t_execute_list);
1805 INIT_LIST_HEAD(&task->t_state_list);
1806 init_completion(&task->task_stop_comp);
1807 task->task_no = T_TASK(cmd)->t_tasks_no++;
1808 task->task_se_cmd = cmd;
1809 task->se_dev = dev;
1810 task->task_data_direction = data_direction;
1811
1812 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1813 list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
1814 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1815
1816 return task;
1817}
1818
1819static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1820
1821void transport_device_setup_cmd(struct se_cmd *cmd)
1822{
1823 cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
1824}
1825EXPORT_SYMBOL(transport_device_setup_cmd);
1826
1827/*
1828 * Used by fabric modules containing a local struct se_cmd within their
1829 * fabric dependent per I/O descriptor.
1830 */
1831void transport_init_se_cmd(
1832 struct se_cmd *cmd,
1833 struct target_core_fabric_ops *tfo,
1834 struct se_session *se_sess,
1835 u32 data_length,
1836 int data_direction,
1837 int task_attr,
1838 unsigned char *sense_buffer)
1839{
1840 INIT_LIST_HEAD(&cmd->se_lun_list);
1841 INIT_LIST_HEAD(&cmd->se_delayed_list);
1842 INIT_LIST_HEAD(&cmd->se_ordered_list);
1843 /*
1844 * Setup t_task pointer to t_task_backstore
1845 */
1846 cmd->t_task = &cmd->t_task_backstore;
1847
1848 INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
1849 init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
1850 init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
1851 init_completion(&T_TASK(cmd)->t_transport_stop_comp);
1852 spin_lock_init(&T_TASK(cmd)->t_state_lock);
1853 atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
1854
1855 cmd->se_tfo = tfo;
1856 cmd->se_sess = se_sess;
1857 cmd->data_length = data_length;
1858 cmd->data_direction = data_direction;
1859 cmd->sam_task_attr = task_attr;
1860 cmd->sense_buffer = sense_buffer;
1861}
1862EXPORT_SYMBOL(transport_init_se_cmd);
1863
1864static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1865{
1866 /*
1867 * Check if SAM Task Attribute emulation is enabled for this
1868 * struct se_device storage object
1869 */
1870 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1871 return 0;
1872
1873 if (cmd->sam_task_attr == TASK_ATTR_ACA) {
1874 DEBUG_STA("SAM Task Attribute ACA"
1875 " emulation is not supported\n");
1876 return -1;
1877 }
1878 /*
1879 * Used to determine when ORDERED commands should go from
1880 * Dormant to Active status.
1881 */
1882 cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
1883 smp_mb__after_atomic_inc();
1884 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1885 cmd->se_ordered_id, cmd->sam_task_attr,
1886 TRANSPORT(cmd->se_dev)->name);
1887 return 0;
1888}
1889
1890void transport_free_se_cmd(
1891 struct se_cmd *se_cmd)
1892{
1893 if (se_cmd->se_tmr_req)
1894 core_tmr_release_req(se_cmd->se_tmr_req);
1895 /*
1896 * Check and free any extended CDB buffer that was allocated
1897 */
1898 if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
1899 kfree(T_TASK(se_cmd)->t_task_cdb);
1900}
1901EXPORT_SYMBOL(transport_free_se_cmd);
1902
1903static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1904
1905/* transport_generic_allocate_tasks():
1906 *
1907 * Called from fabric RX Thread.
1908 */
1909int transport_generic_allocate_tasks(
1910 struct se_cmd *cmd,
1911 unsigned char *cdb)
1912{
1913 int ret;
1914
1915 transport_generic_prepare_cdb(cdb);
1916
1917 /*
1918 * This is needed for early exceptions.
1919 */
1920 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1921
1922 transport_device_setup_cmd(cmd);
1923 /*
1924 * Ensure that the received CDB is less than the max (252 + 8) bytes
1925 * for VARIABLE_LENGTH_CMD
1926 */
1927 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1928 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1929 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1930 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1931 return -1;
1932 }
1933 /*
1934 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1935 * allocate the additional extended CDB buffer now.. Otherwise
1936 * setup the pointer from __t_task_cdb to t_task_cdb.
1937 */
1938 if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
1939 T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
1940 GFP_KERNEL);
1941 if (!(T_TASK(cmd)->t_task_cdb)) {
1942 printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
1943 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1944 scsi_command_size(cdb),
1945 (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
1946 return -1;
1947 }
1948 } else
1949 T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
1950 /*
1951 * Copy the original CDB into T_TASK(cmd).
1952 */
1953 memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
1954 /*
1955 * Setup the received CDB based on SCSI defined opcodes and
1956 * perform unit attention, persistent reservations and ALUA
1957 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1958 * pointer is expected to be setup before we reach this point.
1959 */
1960 ret = transport_generic_cmd_sequencer(cmd, cdb);
1961 if (ret < 0)
1962 return ret;
1963 /*
1964 * Check for SAM Task Attribute Emulation
1965 */
1966 if (transport_check_alloc_task_attr(cmd) < 0) {
1967 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1968 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1969 return -2;
1970 }
1971 spin_lock(&cmd->se_lun->lun_sep_lock);
1972 if (cmd->se_lun->lun_sep)
1973 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1974 spin_unlock(&cmd->se_lun->lun_sep_lock);
1975 return 0;
1976}
1977EXPORT_SYMBOL(transport_generic_allocate_tasks);
1978
1979/*
1980 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1981 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1982 */
1983int transport_generic_handle_cdb(
1984 struct se_cmd *cmd)
1985{
1986 if (!SE_LUN(cmd)) {
1987 dump_stack();
1988 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
1989 return -1;
1990 }
1991
1992 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1993 return 0;
1994}
1995EXPORT_SYMBOL(transport_generic_handle_cdb);
1996
1997/*
1998 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1999 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
2000 * complete setup in TCM process context w/ TFO->new_cmd_map().
2001 */
2002int transport_generic_handle_cdb_map(
2003 struct se_cmd *cmd)
2004{
2005 if (!SE_LUN(cmd)) {
2006 dump_stack();
2007 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2008 return -1;
2009 }
2010
2011 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
2012 return 0;
2013}
2014EXPORT_SYMBOL(transport_generic_handle_cdb_map);
2015
2016/* transport_generic_handle_data():
2017 *
2018 *
2019 */
2020int transport_generic_handle_data(
2021 struct se_cmd *cmd)
2022{
2023 /*
2024 * For the software fabric case, then we assume the nexus is being
2025 * failed/shutdown when signals are pending from the kthread context
2026 * caller, so we return a failure. For the HW target mode case running
2027 * in interrupt code, the signal_pending() check is skipped.
2028 */
2029 if (!in_interrupt() && signal_pending(current))
2030 return -1;
2031 /*
2032 * If the received CDB has aleady been ABORTED by the generic
2033 * target engine, we now call transport_check_aborted_status()
2034 * to queue any delated TASK_ABORTED status for the received CDB to the
2035 * fabric module as we are expecting no futher incoming DATA OUT
2036 * sequences at this point.
2037 */
2038 if (transport_check_aborted_status(cmd, 1) != 0)
2039 return 0;
2040
2041 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
2042 return 0;
2043}
2044EXPORT_SYMBOL(transport_generic_handle_data);
2045
2046/* transport_generic_handle_tmr():
2047 *
2048 *
2049 */
2050int transport_generic_handle_tmr(
2051 struct se_cmd *cmd)
2052{
2053 /*
2054 * This is needed for early exceptions.
2055 */
2056 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
2057 transport_device_setup_cmd(cmd);
2058
2059 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
2060 return 0;
2061}
2062EXPORT_SYMBOL(transport_generic_handle_tmr);
2063
2064static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
2065{
2066 struct se_task *task, *task_tmp;
2067 unsigned long flags;
2068 int ret = 0;
2069
2070 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2071 CMD_TFO(cmd)->get_task_tag(cmd));
2072
2073 /*
2074 * No tasks remain in the execution queue
2075 */
2076 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2077 list_for_each_entry_safe(task, task_tmp,
2078 &T_TASK(cmd)->t_task_list, t_list) {
2079 DEBUG_TS("task_no[%d] - Processing task %p\n",
2080 task->task_no, task);
2081 /*
2082 * If the struct se_task has not been sent and is not active,
2083 * remove the struct se_task from the execution queue.
2084 */
2085 if (!atomic_read(&task->task_sent) &&
2086 !atomic_read(&task->task_active)) {
2087 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2088 flags);
2089 transport_remove_task_from_execute_queue(task,
2090 task->se_dev);
2091
2092 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2093 task->task_no);
2094 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2095 continue;
2096 }
2097
2098 /*
2099 * If the struct se_task is active, sleep until it is returned
2100 * from the plugin.
2101 */
2102 if (atomic_read(&task->task_active)) {
2103 atomic_set(&task->task_stop, 1);
2104 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2105 flags);
2106
2107 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2108 task->task_no);
2109 wait_for_completion(&task->task_stop_comp);
2110 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2111 task->task_no);
2112
2113 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2114 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
2115
2116 atomic_set(&task->task_active, 0);
2117 atomic_set(&task->task_stop, 0);
2118 } else {
2119 DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2120 ret++;
2121 }
2122
2123 __transport_stop_task_timer(task, &flags);
2124 }
2125 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2126
2127 return ret;
2128}
2129
2130static void transport_failure_reset_queue_depth(struct se_device *dev)
2131{
2132 unsigned long flags;
2133
6eab04a8 2134 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
c66ac9db
NB
2135 atomic_inc(&dev->depth_left);
2136 atomic_inc(&SE_HBA(dev)->left_queue_depth);
2137 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2138}
2139
2140/*
2141 * Handle SAM-esque emulation for generic transport request failures.
2142 */
2143static void transport_generic_request_failure(
2144 struct se_cmd *cmd,
2145 struct se_device *dev,
2146 int complete,
2147 int sc)
2148{
2149 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2150 " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
2151 T_TASK(cmd)->t_task_cdb[0]);
2152 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2153 " %d/%d transport_error_status: %d\n",
2154 CMD_TFO(cmd)->get_cmd_state(cmd),
2155 cmd->t_state, cmd->deferred_t_state,
2156 cmd->transport_error_status);
2157 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2158 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2159 " t_transport_active: %d t_transport_stop: %d"
2160 " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
2161 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
2162 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
2163 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
2164 atomic_read(&T_TASK(cmd)->t_transport_active),
2165 atomic_read(&T_TASK(cmd)->t_transport_stop),
2166 atomic_read(&T_TASK(cmd)->t_transport_sent));
2167
2168 transport_stop_all_task_timers(cmd);
2169
2170 if (dev)
2171 transport_failure_reset_queue_depth(dev);
2172 /*
2173 * For SAM Task Attribute emulation for failed struct se_cmd
2174 */
2175 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2176 transport_complete_task_attr(cmd);
2177
2178 if (complete) {
2179 transport_direct_request_timeout(cmd);
2180 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2181 }
2182
2183 switch (cmd->transport_error_status) {
2184 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2185 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2186 break;
2187 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2188 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2189 break;
2190 case PYX_TRANSPORT_INVALID_CDB_FIELD:
2191 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2192 break;
2193 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2194 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2195 break;
2196 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2197 if (!sc)
2198 transport_new_cmd_failure(cmd);
2199 /*
2200 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2201 * we force this session to fall back to session
2202 * recovery.
2203 */
2204 CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
2205 CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
2206
2207 goto check_stop;
2208 case PYX_TRANSPORT_LU_COMM_FAILURE:
2209 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2210 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2211 break;
2212 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2213 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2214 break;
2215 case PYX_TRANSPORT_WRITE_PROTECTED:
2216 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2217 break;
2218 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2219 /*
2220 * No SENSE Data payload for this case, set SCSI Status
2221 * and queue the response to $FABRIC_MOD.
2222 *
2223 * Uses linux/include/scsi/scsi.h SAM status codes defs
2224 */
2225 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2226 /*
2227 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2228 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2229 * CONFLICT STATUS.
2230 *
2231 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2232 */
2233 if (SE_SESS(cmd) &&
2234 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
2235 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
2236 cmd->orig_fe_lun, 0x2C,
2237 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2238
2239 CMD_TFO(cmd)->queue_status(cmd);
2240 goto check_stop;
2241 case PYX_TRANSPORT_USE_SENSE_REASON:
2242 /*
2243 * struct se_cmd->scsi_sense_reason already set
2244 */
2245 break;
2246 default:
2247 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2248 T_TASK(cmd)->t_task_cdb[0],
2249 cmd->transport_error_status);
2250 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2251 break;
2252 }
2253
2254 if (!sc)
2255 transport_new_cmd_failure(cmd);
2256 else
2257 transport_send_check_condition_and_sense(cmd,
2258 cmd->scsi_sense_reason, 0);
2259check_stop:
2260 transport_lun_remove_cmd(cmd);
2261 if (!(transport_cmd_check_stop_to_fabric(cmd)))
2262 ;
2263}
2264
2265static void transport_direct_request_timeout(struct se_cmd *cmd)
2266{
2267 unsigned long flags;
2268
2269 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2270 if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
2271 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2272 return;
2273 }
2274 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
2275 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2276 return;
2277 }
2278
2279 atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
2280 &T_TASK(cmd)->t_se_count);
2281 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2282}
2283
2284static void transport_generic_request_timeout(struct se_cmd *cmd)
2285{
2286 unsigned long flags;
2287
2288 /*
2289 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2290 * to allow last call to free memory resources.
2291 */
2292 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2293 if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
2294 int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
2295
2296 atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
2297 }
2298 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2299
2300 transport_generic_remove(cmd, 0, 0);
2301}
2302
2303static int
2304transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2305{
2306 unsigned char *buf;
2307
2308 buf = kzalloc(data_length, GFP_KERNEL);
2309 if (!(buf)) {
2310 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2311 return -1;
2312 }
2313
2314 T_TASK(cmd)->t_tasks_se_num = 0;
2315 T_TASK(cmd)->t_task_buf = buf;
2316
2317 return 0;
2318}
2319
2320static inline u32 transport_lba_21(unsigned char *cdb)
2321{
2322 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2323}
2324
2325static inline u32 transport_lba_32(unsigned char *cdb)
2326{
2327 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2328}
2329
2330static inline unsigned long long transport_lba_64(unsigned char *cdb)
2331{
2332 unsigned int __v1, __v2;
2333
2334 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2335 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2336
2337 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2338}
2339
2340/*
2341 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2342 */
2343static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2344{
2345 unsigned int __v1, __v2;
2346
2347 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2348 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2349
2350 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2351}
2352
2353static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2354{
2355 unsigned long flags;
2356
2357 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2358 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2359 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2360}
2361
2362/*
2363 * Called from interrupt context.
2364 */
2365static void transport_task_timeout_handler(unsigned long data)
2366{
2367 struct se_task *task = (struct se_task *)data;
2368 struct se_cmd *cmd = TASK_CMD(task);
2369 unsigned long flags;
2370
2371 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2372
2373 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2374 if (task->task_flags & TF_STOP) {
2375 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2376 return;
2377 }
2378 task->task_flags &= ~TF_RUNNING;
2379
2380 /*
2381 * Determine if transport_complete_task() has already been called.
2382 */
2383 if (!(atomic_read(&task->task_active))) {
2384 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2385 " == 0\n", task, cmd);
2386 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2387 return;
2388 }
2389
2390 atomic_inc(&T_TASK(cmd)->t_se_count);
2391 atomic_inc(&T_TASK(cmd)->t_transport_timeout);
2392 T_TASK(cmd)->t_tasks_failed = 1;
2393
2394 atomic_set(&task->task_timeout, 1);
2395 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2396 task->task_scsi_status = 1;
2397
2398 if (atomic_read(&task->task_stop)) {
2399 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2400 " == 1\n", task, cmd);
2401 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2402 complete(&task->task_stop_comp);
2403 return;
2404 }
2405
2406 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
2407 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2408 " t_task_cdbs_left\n", task, cmd);
2409 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2410 return;
2411 }
2412 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2413 task, cmd);
2414
2415 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2416 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2417
2418 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2419}
2420
2421/*
2422 * Called with T_TASK(cmd)->t_state_lock held.
2423 */
2424static void transport_start_task_timer(struct se_task *task)
2425{
2426 struct se_device *dev = task->se_dev;
2427 int timeout;
2428
2429 if (task->task_flags & TF_RUNNING)
2430 return;
2431 /*
2432 * If the task_timeout is disabled, exit now.
2433 */
2434 timeout = DEV_ATTRIB(dev)->task_timeout;
2435 if (!(timeout))
2436 return;
2437
2438 init_timer(&task->task_timer);
2439 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2440 task->task_timer.data = (unsigned long) task;
2441 task->task_timer.function = transport_task_timeout_handler;
2442
2443 task->task_flags |= TF_RUNNING;
2444 add_timer(&task->task_timer);
2445#if 0
2446 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2447 " %d\n", task->task_se_cmd, task, timeout);
2448#endif
2449}
2450
2451/*
2452 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2453 */
2454void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2455{
2456 struct se_cmd *cmd = TASK_CMD(task);
2457
2458 if (!(task->task_flags & TF_RUNNING))
2459 return;
2460
2461 task->task_flags |= TF_STOP;
2462 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
2463
2464 del_timer_sync(&task->task_timer);
2465
2466 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
2467 task->task_flags &= ~TF_RUNNING;
2468 task->task_flags &= ~TF_STOP;
2469}
2470
2471static void transport_stop_all_task_timers(struct se_cmd *cmd)
2472{
2473 struct se_task *task = NULL, *task_tmp;
2474 unsigned long flags;
2475
2476 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2477 list_for_each_entry_safe(task, task_tmp,
2478 &T_TASK(cmd)->t_task_list, t_list)
2479 __transport_stop_task_timer(task, &flags);
2480 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2481}
2482
2483static inline int transport_tcq_window_closed(struct se_device *dev)
2484{
2485 if (dev->dev_tcq_window_closed++ <
2486 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2487 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2488 } else
2489 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2490
2491 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
2492 return 0;
2493}
2494
2495/*
2496 * Called from Fabric Module context from transport_execute_tasks()
2497 *
2498 * The return of this function determins if the tasks from struct se_cmd
2499 * get added to the execution queue in transport_execute_tasks(),
2500 * or are added to the delayed or ordered lists here.
2501 */
2502static inline int transport_execute_task_attr(struct se_cmd *cmd)
2503{
2504 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2505 return 1;
2506 /*
2507 * Check for the existance of HEAD_OF_QUEUE, and if true return 1
2508 * to allow the passed struct se_cmd list of tasks to the front of the list.
2509 */
2510 if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
2511 atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
2512 smp_mb__after_atomic_inc();
2513 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2514 " 0x%02x, se_ordered_id: %u\n",
2515 T_TASK(cmd)->t_task_cdb[0],
2516 cmd->se_ordered_id);
2517 return 1;
2518 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
2519 spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
2520 list_add_tail(&cmd->se_ordered_list,
2521 &SE_DEV(cmd)->ordered_cmd_list);
2522 spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
2523
2524 atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
2525 smp_mb__after_atomic_inc();
2526
2527 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2528 " list, se_ordered_id: %u\n",
2529 T_TASK(cmd)->t_task_cdb[0],
2530 cmd->se_ordered_id);
2531 /*
2532 * Add ORDERED command to tail of execution queue if
2533 * no other older commands exist that need to be
2534 * completed first.
2535 */
2536 if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
2537 return 1;
2538 } else {
2539 /*
2540 * For SIMPLE and UNTAGGED Task Attribute commands
2541 */
2542 atomic_inc(&SE_DEV(cmd)->simple_cmds);
2543 smp_mb__after_atomic_inc();
2544 }
2545 /*
2546 * Otherwise if one or more outstanding ORDERED task attribute exist,
2547 * add the dormant task(s) built for the passed struct se_cmd to the
2548 * execution queue and become in Active state for this struct se_device.
2549 */
2550 if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
2551 /*
2552 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2553 * will be drained upon competion of HEAD_OF_QUEUE task.
2554 */
2555 spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
2556 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2557 list_add_tail(&cmd->se_delayed_list,
2558 &SE_DEV(cmd)->delayed_cmd_list);
2559 spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
2560
2561 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2562 " delayed CMD list, se_ordered_id: %u\n",
2563 T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
2564 cmd->se_ordered_id);
2565 /*
2566 * Return zero to let transport_execute_tasks() know
2567 * not to add the delayed tasks to the execution list.
2568 */
2569 return 0;
2570 }
2571 /*
2572 * Otherwise, no ORDERED task attributes exist..
2573 */
2574 return 1;
2575}
2576
2577/*
2578 * Called from fabric module context in transport_generic_new_cmd() and
2579 * transport_generic_process_write()
2580 */
2581static int transport_execute_tasks(struct se_cmd *cmd)
2582{
2583 int add_tasks;
2584
2585 if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2586 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2587 cmd->transport_error_status =
2588 PYX_TRANSPORT_LU_COMM_FAILURE;
2589 transport_generic_request_failure(cmd, NULL, 0, 1);
2590 return 0;
2591 }
2592 }
2593 /*
2594 * Call transport_cmd_check_stop() to see if a fabric exception
2595 * has occured that prevents execution.
2596 */
2597 if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2598 /*
2599 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2600 * attribute for the tasks of the received struct se_cmd CDB
2601 */
2602 add_tasks = transport_execute_task_attr(cmd);
2603 if (add_tasks == 0)
2604 goto execute_tasks;
2605 /*
2606 * This calls transport_add_tasks_from_cmd() to handle
2607 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2608 * (if enabled) in __transport_add_task_to_execute_queue() and
2609 * transport_add_task_check_sam_attr().
2610 */
2611 transport_add_tasks_from_cmd(cmd);
2612 }
2613 /*
2614 * Kick the execution queue for the cmd associated struct se_device
2615 * storage object.
2616 */
2617execute_tasks:
2618 __transport_execute_tasks(SE_DEV(cmd));
2619 return 0;
2620}
2621
2622/*
2623 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2624 * from struct se_device->execute_task_list and
2625 *
2626 * Called from transport_processing_thread()
2627 */
2628static int __transport_execute_tasks(struct se_device *dev)
2629{
2630 int error;
2631 struct se_cmd *cmd = NULL;
2632 struct se_task *task;
2633 unsigned long flags;
2634
2635 /*
2636 * Check if there is enough room in the device and HBA queue to send
2637 * struct se_transport_task's to the selected transport.
2638 */
2639check_depth:
2640 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2641 if (!(atomic_read(&dev->depth_left)) ||
2642 !(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
2643 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2644 return transport_tcq_window_closed(dev);
2645 }
2646 dev->dev_tcq_window_closed = 0;
2647
2648 spin_lock(&dev->execute_task_lock);
2649 task = transport_get_task_from_execute_queue(dev);
2650 spin_unlock(&dev->execute_task_lock);
2651
2652 if (!task) {
2653 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2654 return 0;
2655 }
2656
2657 atomic_dec(&dev->depth_left);
2658 atomic_dec(&SE_HBA(dev)->left_queue_depth);
2659 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2660
2661 cmd = TASK_CMD(task);
2662
2663 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2664 atomic_set(&task->task_active, 1);
2665 atomic_set(&task->task_sent, 1);
2666 atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
2667
2668 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
2669 T_TASK(cmd)->t_task_cdbs)
2670 atomic_set(&cmd->transport_sent, 1);
2671
2672 transport_start_task_timer(task);
2673 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2674 /*
2675 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2676 * to grab REPORT_LUNS CDBs before they hit the
2677 * struct se_subsystem_api->do_task() caller below.
2678 */
2679 if (cmd->transport_emulate_cdb) {
2680 error = cmd->transport_emulate_cdb(cmd);
2681 if (error != 0) {
2682 cmd->transport_error_status = error;
2683 atomic_set(&task->task_active, 0);
2684 atomic_set(&cmd->transport_sent, 0);
2685 transport_stop_tasks_for_cmd(cmd);
2686 transport_generic_request_failure(cmd, dev, 0, 1);
2687 goto check_depth;
2688 }
2689 /*
2690 * Handle the successful completion for transport_emulate_cdb()
2691 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2692 * Otherwise the caller is expected to complete the task with
2693 * proper status.
2694 */
2695 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2696 cmd->scsi_status = SAM_STAT_GOOD;
2697 task->task_scsi_status = GOOD;
2698 transport_complete_task(task, 1);
2699 }
2700 } else {
2701 /*
2702 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2703 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2704 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2705 * LUN emulation code.
2706 *
2707 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2708 * call ->do_task() directly and let the underlying TCM subsystem plugin
2709 * code handle the CDB emulation.
2710 */
2711 if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2712 (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2713 error = transport_emulate_control_cdb(task);
2714 else
2715 error = TRANSPORT(dev)->do_task(task);
2716
2717 if (error != 0) {
2718 cmd->transport_error_status = error;
2719 atomic_set(&task->task_active, 0);
2720 atomic_set(&cmd->transport_sent, 0);
2721 transport_stop_tasks_for_cmd(cmd);
2722 transport_generic_request_failure(cmd, dev, 0, 1);
2723 }
2724 }
2725
2726 goto check_depth;
2727
2728 return 0;
2729}
2730
2731void transport_new_cmd_failure(struct se_cmd *se_cmd)
2732{
2733 unsigned long flags;
2734 /*
2735 * Any unsolicited data will get dumped for failed command inside of
2736 * the fabric plugin
2737 */
2738 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2739 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2740 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2741 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2742
2743 CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
2744}
2745
2746static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2747
2748static inline u32 transport_get_sectors_6(
2749 unsigned char *cdb,
2750 struct se_cmd *cmd,
2751 int *ret)
2752{
2753 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2754
2755 /*
2756 * Assume TYPE_DISK for non struct se_device objects.
2757 * Use 8-bit sector value.
2758 */
2759 if (!dev)
2760 goto type_disk;
2761
2762 /*
2763 * Use 24-bit allocation length for TYPE_TAPE.
2764 */
2765 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2766 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2767
2768 /*
2769 * Everything else assume TYPE_DISK Sector CDB location.
2770 * Use 8-bit sector value.
2771 */
2772type_disk:
2773 return (u32)cdb[4];
2774}
2775
2776static inline u32 transport_get_sectors_10(
2777 unsigned char *cdb,
2778 struct se_cmd *cmd,
2779 int *ret)
2780{
2781 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2782
2783 /*
2784 * Assume TYPE_DISK for non struct se_device objects.
2785 * Use 16-bit sector value.
2786 */
2787 if (!dev)
2788 goto type_disk;
2789
2790 /*
2791 * XXX_10 is not defined in SSC, throw an exception
2792 */
2793 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2794 *ret = -1;
2795 return 0;
2796 }
2797
2798 /*
2799 * Everything else assume TYPE_DISK Sector CDB location.
2800 * Use 16-bit sector value.
2801 */
2802type_disk:
2803 return (u32)(cdb[7] << 8) + cdb[8];
2804}
2805
2806static inline u32 transport_get_sectors_12(
2807 unsigned char *cdb,
2808 struct se_cmd *cmd,
2809 int *ret)
2810{
2811 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2812
2813 /*
2814 * Assume TYPE_DISK for non struct se_device objects.
2815 * Use 32-bit sector value.
2816 */
2817 if (!dev)
2818 goto type_disk;
2819
2820 /*
2821 * XXX_12 is not defined in SSC, throw an exception
2822 */
2823 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2824 *ret = -1;
2825 return 0;
2826 }
2827
2828 /*
2829 * Everything else assume TYPE_DISK Sector CDB location.
2830 * Use 32-bit sector value.
2831 */
2832type_disk:
2833 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2834}
2835
2836static inline u32 transport_get_sectors_16(
2837 unsigned char *cdb,
2838 struct se_cmd *cmd,
2839 int *ret)
2840{
2841 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2842
2843 /*
2844 * Assume TYPE_DISK for non struct se_device objects.
2845 * Use 32-bit sector value.
2846 */
2847 if (!dev)
2848 goto type_disk;
2849
2850 /*
2851 * Use 24-bit allocation length for TYPE_TAPE.
2852 */
2853 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2854 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2855
2856type_disk:
2857 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2858 (cdb[12] << 8) + cdb[13];
2859}
2860
2861/*
2862 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2863 */
2864static inline u32 transport_get_sectors_32(
2865 unsigned char *cdb,
2866 struct se_cmd *cmd,
2867 int *ret)
2868{
2869 /*
2870 * Assume TYPE_DISK for non struct se_device objects.
2871 * Use 32-bit sector value.
2872 */
2873 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2874 (cdb[30] << 8) + cdb[31];
2875
2876}
2877
2878static inline u32 transport_get_size(
2879 u32 sectors,
2880 unsigned char *cdb,
2881 struct se_cmd *cmd)
2882{
2883 struct se_device *dev = SE_DEV(cmd);
2884
2885 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2886 if (cdb[1] & 1) { /* sectors */
2887 return DEV_ATTRIB(dev)->block_size * sectors;
2888 } else /* bytes */
2889 return sectors;
2890 }
2891#if 0
2892 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2893 " %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
2894 DEV_ATTRIB(dev)->block_size * sectors,
2895 TRANSPORT(dev)->name);
2896#endif
2897 return DEV_ATTRIB(dev)->block_size * sectors;
2898}
2899
2900unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2901{
2902 unsigned char result = 0;
2903 /*
2904 * MSB
2905 */
2906 if ((val[0] >= 'a') && (val[0] <= 'f'))
2907 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2908 else
2909 if ((val[0] >= 'A') && (val[0] <= 'F'))
2910 result = ((val[0] - 'A' + 10) & 0xf) << 4;
2911 else /* digit */
2912 result = ((val[0] - '0') & 0xf) << 4;
2913 /*
2914 * LSB
2915 */
2916 if ((val[1] >= 'a') && (val[1] <= 'f'))
2917 result |= ((val[1] - 'a' + 10) & 0xf);
2918 else
2919 if ((val[1] >= 'A') && (val[1] <= 'F'))
2920 result |= ((val[1] - 'A' + 10) & 0xf);
2921 else /* digit */
2922 result |= ((val[1] - '0') & 0xf);
2923
2924 return result;
2925}
2926EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2927
2928static void transport_xor_callback(struct se_cmd *cmd)
2929{
2930 unsigned char *buf, *addr;
2931 struct se_mem *se_mem;
2932 unsigned int offset;
2933 int i;
2934 /*
2935 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2936 *
2937 * 1) read the specified logical block(s);
2938 * 2) transfer logical blocks from the data-out buffer;
2939 * 3) XOR the logical blocks transferred from the data-out buffer with
2940 * the logical blocks read, storing the resulting XOR data in a buffer;
2941 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2942 * blocks transferred from the data-out buffer; and
2943 * 5) transfer the resulting XOR data to the data-in buffer.
2944 */
2945 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2946 if (!(buf)) {
2947 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2948 return;
2949 }
2950 /*
2951 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2952 * into the locally allocated *buf
2953 */
2954 transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
2955 /*
2956 * Now perform the XOR against the BIDI read memory located at
2957 * T_TASK(cmd)->t_mem_bidi_list
2958 */
2959
2960 offset = 0;
2961 list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
2962 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2963 if (!(addr))
2964 goto out;
2965
2966 for (i = 0; i < se_mem->se_len; i++)
2967 *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2968
2969 offset += se_mem->se_len;
2970 kunmap_atomic(addr, KM_USER0);
2971 }
2972out:
2973 kfree(buf);
2974}
2975
2976/*
2977 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2978 */
2979static int transport_get_sense_data(struct se_cmd *cmd)
2980{
2981 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2982 struct se_device *dev;
2983 struct se_task *task = NULL, *task_tmp;
2984 unsigned long flags;
2985 u32 offset = 0;
2986
2987 if (!SE_LUN(cmd)) {
2988 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2989 return -1;
2990 }
2991 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2992 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2993 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2994 return 0;
2995 }
2996
2997 list_for_each_entry_safe(task, task_tmp,
2998 &T_TASK(cmd)->t_task_list, t_list) {
2999
3000 if (!task->task_sense)
3001 continue;
3002
3003 dev = task->se_dev;
3004 if (!(dev))
3005 continue;
3006
3007 if (!TRANSPORT(dev)->get_sense_buffer) {
3008 printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
3009 " is NULL\n");
3010 continue;
3011 }
3012
3013 sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
3014 if (!(sense_buffer)) {
3015 printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
3016 " sense buffer for task with sense\n",
3017 CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
3018 continue;
3019 }
3020 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3021
3022 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
3023 TRANSPORT_SENSE_BUFFER);
3024
3025 memcpy((void *)&buffer[offset], (void *)sense_buffer,
3026 TRANSPORT_SENSE_BUFFER);
3027 cmd->scsi_status = task->task_scsi_status;
3028 /* Automatically padded */
3029 cmd->scsi_sense_length =
3030 (TRANSPORT_SENSE_BUFFER + offset);
3031
3032 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3033 " and sense\n",
3034 dev->se_hba->hba_id, TRANSPORT(dev)->name,
3035 cmd->scsi_status);
3036 return 0;
3037 }
3038 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3039
3040 return -1;
3041}
3042
3043static int transport_allocate_resources(struct se_cmd *cmd)
3044{
3045 u32 length = cmd->data_length;
3046
3047 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3048 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
3049 return transport_generic_get_mem(cmd, length, PAGE_SIZE);
3050 else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
3051 return transport_generic_allocate_buf(cmd, length);
3052 else
3053 return 0;
3054}
3055
3056static int
3057transport_handle_reservation_conflict(struct se_cmd *cmd)
3058{
3059 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3060 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3061 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
3062 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
3063 /*
3064 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3065 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3066 * CONFLICT STATUS.
3067 *
3068 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3069 */
3070 if (SE_SESS(cmd) &&
3071 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
3072 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
3073 cmd->orig_fe_lun, 0x2C,
3074 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
3075 return -2;
3076}
3077
3078/* transport_generic_cmd_sequencer():
3079 *
3080 * Generic Command Sequencer that should work for most DAS transport
3081 * drivers.
3082 *
3083 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3084 * RX Thread.
3085 *
3086 * FIXME: Need to support other SCSI OPCODES where as well.
3087 */
3088static int transport_generic_cmd_sequencer(
3089 struct se_cmd *cmd,
3090 unsigned char *cdb)
3091{
3092 struct se_device *dev = SE_DEV(cmd);
3093 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
3094 int ret = 0, sector_ret = 0, passthrough;
3095 u32 sectors = 0, size = 0, pr_reg_type = 0;
3096 u16 service_action;
3097 u8 alua_ascq = 0;
3098 /*
3099 * Check for an existing UNIT ATTENTION condition
3100 */
3101 if (core_scsi3_ua_check(cmd, cdb) < 0) {
3102 cmd->transport_wait_for_tasks =
3103 &transport_nop_wait_for_tasks;
3104 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3105 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3106 return -2;
3107 }
3108 /*
3109 * Check status of Asymmetric Logical Unit Assignment port
3110 */
3111 ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
3112 if (ret != 0) {
3113 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3114 /*
3115 * Set SCSI additional sense code (ASC) to 'LUN Not Accessable';
3116 * The ALUA additional sense code qualifier (ASCQ) is determined
3117 * by the ALUA primary or secondary access state..
3118 */
3119 if (ret > 0) {
3120#if 0
3121 printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3122 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3123 CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
3124#endif
3125 transport_set_sense_codes(cmd, 0x04, alua_ascq);
3126 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3127 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3128 return -2;
3129 }
3130 goto out_invalid_cdb_field;
3131 }
3132 /*
3133 * Check status for SPC-3 Persistent Reservations
3134 */
3135 if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
3136 if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
3137 cmd, cdb, pr_reg_type) != 0)
3138 return transport_handle_reservation_conflict(cmd);
3139 /*
3140 * This means the CDB is allowed for the SCSI Initiator port
3141 * when said port is *NOT* holding the legacy SPC-2 or
3142 * SPC-3 Persistent Reservation.
3143 */
3144 }
3145
3146 switch (cdb[0]) {
3147 case READ_6:
3148 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3149 if (sector_ret)
3150 goto out_unsupported_cdb;
3151 size = transport_get_size(sectors, cdb, cmd);
3152 cmd->transport_split_cdb = &split_cdb_XX_6;
3153 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3154 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3155 break;
3156 case READ_10:
3157 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3158 if (sector_ret)
3159 goto out_unsupported_cdb;
3160 size = transport_get_size(sectors, cdb, cmd);
3161 cmd->transport_split_cdb = &split_cdb_XX_10;
3162 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3163 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3164 break;
3165 case READ_12:
3166 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3167 if (sector_ret)
3168 goto out_unsupported_cdb;
3169 size = transport_get_size(sectors, cdb, cmd);
3170 cmd->transport_split_cdb = &split_cdb_XX_12;
3171 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3172 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3173 break;
3174 case READ_16:
3175 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3176 if (sector_ret)
3177 goto out_unsupported_cdb;
3178 size = transport_get_size(sectors, cdb, cmd);
3179 cmd->transport_split_cdb = &split_cdb_XX_16;
3180 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3181 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3182 break;
3183 case WRITE_6:
3184 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3185 if (sector_ret)
3186 goto out_unsupported_cdb;
3187 size = transport_get_size(sectors, cdb, cmd);
3188 cmd->transport_split_cdb = &split_cdb_XX_6;
3189 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3190 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3191 break;
3192 case WRITE_10:
3193 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3194 if (sector_ret)
3195 goto out_unsupported_cdb;
3196 size = transport_get_size(sectors, cdb, cmd);
3197 cmd->transport_split_cdb = &split_cdb_XX_10;
3198 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3199 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3200 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3201 break;
3202 case WRITE_12:
3203 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3204 if (sector_ret)
3205 goto out_unsupported_cdb;
3206 size = transport_get_size(sectors, cdb, cmd);
3207 cmd->transport_split_cdb = &split_cdb_XX_12;
3208 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3209 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3210 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3211 break;
3212 case WRITE_16:
3213 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3214 if (sector_ret)
3215 goto out_unsupported_cdb;
3216 size = transport_get_size(sectors, cdb, cmd);
3217 cmd->transport_split_cdb = &split_cdb_XX_16;
3218 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3219 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3220 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3221 break;
3222 case XDWRITEREAD_10:
3223 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3224 !(T_TASK(cmd)->t_tasks_bidi))
3225 goto out_invalid_cdb_field;
3226 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3227 if (sector_ret)
3228 goto out_unsupported_cdb;
3229 size = transport_get_size(sectors, cdb, cmd);
3230 cmd->transport_split_cdb = &split_cdb_XX_10;
3231 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3232 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3233 passthrough = (TRANSPORT(dev)->transport_type ==
3234 TRANSPORT_PLUGIN_PHBA_PDEV);
3235 /*
3236 * Skip the remaining assignments for TCM/PSCSI passthrough
3237 */
3238 if (passthrough)
3239 break;
3240 /*
3241 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3242 */
3243 cmd->transport_complete_callback = &transport_xor_callback;
3244 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3245 break;
3246 case VARIABLE_LENGTH_CMD:
3247 service_action = get_unaligned_be16(&cdb[8]);
3248 /*
3249 * Determine if this is TCM/PSCSI device and we should disable
3250 * internal emulation for this CDB.
3251 */
3252 passthrough = (TRANSPORT(dev)->transport_type ==
3253 TRANSPORT_PLUGIN_PHBA_PDEV);
3254
3255 switch (service_action) {
3256 case XDWRITEREAD_32:
3257 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3258 if (sector_ret)
3259 goto out_unsupported_cdb;
3260 size = transport_get_size(sectors, cdb, cmd);
3261 /*
3262 * Use WRITE_32 and READ_32 opcodes for the emulated
3263 * XDWRITE_READ_32 logic.
3264 */
3265 cmd->transport_split_cdb = &split_cdb_XX_32;
3266 T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
3267 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3268
3269 /*
3270 * Skip the remaining assignments for TCM/PSCSI passthrough
3271 */
3272 if (passthrough)
3273 break;
3274
3275 /*
3276 * Setup BIDI XOR callback to be run during
3277 * transport_generic_complete_ok()
3278 */
3279 cmd->transport_complete_callback = &transport_xor_callback;
3280 T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
3281 break;
3282 case WRITE_SAME_32:
3283 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3284 if (sector_ret)
3285 goto out_unsupported_cdb;
3286 size = transport_get_size(sectors, cdb, cmd);
3287 T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
3288 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3289
3290 /*
3291 * Skip the remaining assignments for TCM/PSCSI passthrough
3292 */
3293 if (passthrough)
3294 break;
3295
3296 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3297 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3298 " bits not supported for Block Discard"
3299 " Emulation\n");
3300 goto out_invalid_cdb_field;
3301 }
3302 /*
3303 * Currently for the emulated case we only accept
3304 * tpws with the UNMAP=1 bit set.
3305 */
3306 if (!(cdb[10] & 0x08)) {
3307 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3308 " supported for Block Discard Emulation\n");
3309 goto out_invalid_cdb_field;
3310 }
3311 break;
3312 default:
3313 printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3314 " 0x%04x not supported\n", service_action);
3315 goto out_unsupported_cdb;
3316 }
3317 break;
3318 case 0xa3:
3319 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3320 /* MAINTENANCE_IN from SCC-2 */
3321 /*
3322 * Check for emulated MI_REPORT_TARGET_PGS.
3323 */
3324 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3325 cmd->transport_emulate_cdb =
3326 (T10_ALUA(su_dev)->alua_type ==
3327 SPC3_ALUA_EMULATED) ?
3328 &core_emulate_report_target_port_groups :
3329 NULL;
3330 }
3331 size = (cdb[6] << 24) | (cdb[7] << 16) |
3332 (cdb[8] << 8) | cdb[9];
3333 } else {
3334 /* GPCMD_SEND_KEY from multi media commands */
3335 size = (cdb[8] << 8) + cdb[9];
3336 }
3337 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3338 break;
3339 case MODE_SELECT:
3340 size = cdb[4];
3341 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3342 break;
3343 case MODE_SELECT_10:
3344 size = (cdb[7] << 8) + cdb[8];
3345 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3346 break;
3347 case MODE_SENSE:
3348 size = cdb[4];
3349 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3350 break;
3351 case MODE_SENSE_10:
3352 case GPCMD_READ_BUFFER_CAPACITY:
3353 case GPCMD_SEND_OPC:
3354 case LOG_SELECT:
3355 case LOG_SENSE:
3356 size = (cdb[7] << 8) + cdb[8];
3357 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3358 break;
3359 case READ_BLOCK_LIMITS:
3360 size = READ_BLOCK_LEN;
3361 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3362 break;
3363 case GPCMD_GET_CONFIGURATION:
3364 case GPCMD_READ_FORMAT_CAPACITIES:
3365 case GPCMD_READ_DISC_INFO:
3366 case GPCMD_READ_TRACK_RZONE_INFO:
3367 size = (cdb[7] << 8) + cdb[8];
3368 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3369 break;
3370 case PERSISTENT_RESERVE_IN:
3371 case PERSISTENT_RESERVE_OUT:
3372 cmd->transport_emulate_cdb =
3373 (T10_RES(su_dev)->res_type ==
3374 SPC3_PERSISTENT_RESERVATIONS) ?
3375 &core_scsi3_emulate_pr : NULL;
3376 size = (cdb[7] << 8) + cdb[8];
3377 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3378 break;
3379 case GPCMD_MECHANISM_STATUS:
3380 case GPCMD_READ_DVD_STRUCTURE:
3381 size = (cdb[8] << 8) + cdb[9];
3382 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3383 break;
3384 case READ_POSITION:
3385 size = READ_POSITION_LEN;
3386 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3387 break;
3388 case 0xa4:
3389 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3390 /* MAINTENANCE_OUT from SCC-2
3391 *
3392 * Check for emulated MO_SET_TARGET_PGS.
3393 */
3394 if (cdb[1] == MO_SET_TARGET_PGS) {
3395 cmd->transport_emulate_cdb =
3396 (T10_ALUA(su_dev)->alua_type ==
3397 SPC3_ALUA_EMULATED) ?
3398 &core_emulate_set_target_port_groups :
3399 NULL;
3400 }
3401
3402 size = (cdb[6] << 24) | (cdb[7] << 16) |
3403 (cdb[8] << 8) | cdb[9];
3404 } else {
3405 /* GPCMD_REPORT_KEY from multi media commands */
3406 size = (cdb[8] << 8) + cdb[9];
3407 }
3408 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3409 break;
3410 case INQUIRY:
3411 size = (cdb[3] << 8) + cdb[4];
3412 /*
3413 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3414 * See spc4r17 section 5.3
3415 */
3416 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3417 cmd->sam_task_attr = TASK_ATTR_HOQ;
3418 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3419 break;
3420 case READ_BUFFER:
3421 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3422 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3423 break;
3424 case READ_CAPACITY:
3425 size = READ_CAP_LEN;
3426 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3427 break;
3428 case READ_MEDIA_SERIAL_NUMBER:
3429 case SECURITY_PROTOCOL_IN:
3430 case SECURITY_PROTOCOL_OUT:
3431 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3432 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3433 break;
3434 case SERVICE_ACTION_IN:
3435 case ACCESS_CONTROL_IN:
3436 case ACCESS_CONTROL_OUT:
3437 case EXTENDED_COPY:
3438 case READ_ATTRIBUTE:
3439 case RECEIVE_COPY_RESULTS:
3440 case WRITE_ATTRIBUTE:
3441 size = (cdb[10] << 24) | (cdb[11] << 16) |
3442 (cdb[12] << 8) | cdb[13];
3443 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3444 break;
3445 case RECEIVE_DIAGNOSTIC:
3446 case SEND_DIAGNOSTIC:
3447 size = (cdb[3] << 8) | cdb[4];
3448 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3449 break;
3450/* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3451#if 0
3452 case GPCMD_READ_CD:
3453 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3454 size = (2336 * sectors);
3455 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3456 break;
3457#endif
3458 case READ_TOC:
3459 size = cdb[8];
3460 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3461 break;
3462 case REQUEST_SENSE:
3463 size = cdb[4];
3464 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3465 break;
3466 case READ_ELEMENT_STATUS:
3467 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3468 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3469 break;
3470 case WRITE_BUFFER:
3471 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3472 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3473 break;
3474 case RESERVE:
3475 case RESERVE_10:
3476 /*
3477 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3478 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3479 */
3480 if (cdb[0] == RESERVE_10)
3481 size = (cdb[7] << 8) | cdb[8];
3482 else
3483 size = cmd->data_length;
3484
3485 /*
3486 * Setup the legacy emulated handler for SPC-2 and
3487 * >= SPC-3 compatible reservation handling (CRH=1)
3488 * Otherwise, we assume the underlying SCSI logic is
3489 * is running in SPC_PASSTHROUGH, and wants reservations
3490 * emulation disabled.
3491 */
3492 cmd->transport_emulate_cdb =
3493 (T10_RES(su_dev)->res_type !=
3494 SPC_PASSTHROUGH) ?
3495 &core_scsi2_emulate_crh : NULL;
3496 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3497 break;
3498 case RELEASE:
3499 case RELEASE_10:
3500 /*
3501 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3502 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3503 */
3504 if (cdb[0] == RELEASE_10)
3505 size = (cdb[7] << 8) | cdb[8];
3506 else
3507 size = cmd->data_length;
3508
3509 cmd->transport_emulate_cdb =
3510 (T10_RES(su_dev)->res_type !=
3511 SPC_PASSTHROUGH) ?
3512 &core_scsi2_emulate_crh : NULL;
3513 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3514 break;
3515 case SYNCHRONIZE_CACHE:
3516 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3517 /*
3518 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3519 */
3520 if (cdb[0] == SYNCHRONIZE_CACHE) {
3521 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3522 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3523 } else {
3524 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3525 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3526 }
3527 if (sector_ret)
3528 goto out_unsupported_cdb;
3529
3530 size = transport_get_size(sectors, cdb, cmd);
3531 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3532
3533 /*
3534 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3535 */
3536 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3537 break;
3538 /*
3539 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3540 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3541 */
3542 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3543 /*
3544 * Check to ensure that LBA + Range does not exceed past end of
3545 * device.
3546 */
3547 if (transport_get_sectors(cmd) < 0)
3548 goto out_invalid_cdb_field;
3549 break;
3550 case UNMAP:
3551 size = get_unaligned_be16(&cdb[7]);
3552 passthrough = (TRANSPORT(dev)->transport_type ==
3553 TRANSPORT_PLUGIN_PHBA_PDEV);
3554 /*
3555 * Determine if the received UNMAP used to for direct passthrough
3556 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3557 * signaling the use of internal transport_generic_unmap() emulation
3558 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3559 * subsystem plugin backstores.
3560 */
3561 if (!(passthrough))
3562 cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3563
3564 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3565 break;
3566 case WRITE_SAME_16:
3567 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3568 if (sector_ret)
3569 goto out_unsupported_cdb;
3570 size = transport_get_size(sectors, cdb, cmd);
3571 T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
3572 passthrough = (TRANSPORT(dev)->transport_type ==
3573 TRANSPORT_PLUGIN_PHBA_PDEV);
3574 /*
3575 * Determine if the received WRITE_SAME_16 is used to for direct
3576 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3577 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3578 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3579 * TCM/FILEIO subsystem plugin backstores.
3580 */
3581 if (!(passthrough)) {
3582 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3583 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3584 " bits not supported for Block Discard"
3585 " Emulation\n");
3586 goto out_invalid_cdb_field;
3587 }
3588 /*
3589 * Currently for the emulated case we only accept
3590 * tpws with the UNMAP=1 bit set.
3591 */
3592 if (!(cdb[1] & 0x08)) {
3593 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3594 " supported for Block Discard Emulation\n");
3595 goto out_invalid_cdb_field;
3596 }
3597 }
3598 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3599 break;
3600 case ALLOW_MEDIUM_REMOVAL:
3601 case GPCMD_CLOSE_TRACK:
3602 case ERASE:
3603 case INITIALIZE_ELEMENT_STATUS:
3604 case GPCMD_LOAD_UNLOAD:
3605 case REZERO_UNIT:
3606 case SEEK_10:
3607 case GPCMD_SET_SPEED:
3608 case SPACE:
3609 case START_STOP:
3610 case TEST_UNIT_READY:
3611 case VERIFY:
3612 case WRITE_FILEMARKS:
3613 case MOVE_MEDIUM:
3614 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3615 break;
3616 case REPORT_LUNS:
3617 cmd->transport_emulate_cdb =
3618 &transport_core_report_lun_response;
3619 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3620 /*
3621 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3622 * See spc4r17 section 5.3
3623 */
3624 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3625 cmd->sam_task_attr = TASK_ATTR_HOQ;
3626 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3627 break;
3628 default:
3629 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3630 " 0x%02x, sending CHECK_CONDITION.\n",
3631 CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
3632 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3633 goto out_unsupported_cdb;
3634 }
3635
3636 if (size != cmd->data_length) {
3637 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3638 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3639 " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
3640 cmd->data_length, size, cdb[0]);
3641
3642 cmd->cmd_spdtl = size;
3643
3644 if (cmd->data_direction == DMA_TO_DEVICE) {
3645 printk(KERN_ERR "Rejecting underflow/overflow"
3646 " WRITE data\n");
3647 goto out_invalid_cdb_field;
3648 }
3649 /*
3650 * Reject READ_* or WRITE_* with overflow/underflow for
3651 * type SCF_SCSI_DATA_SG_IO_CDB.
3652 */
3653 if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) {
3654 printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3655 " CDB on non 512-byte sector setup subsystem"
3656 " plugin: %s\n", TRANSPORT(dev)->name);
3657 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3658 goto out_invalid_cdb_field;
3659 }
3660
3661 if (size > cmd->data_length) {
3662 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3663 cmd->residual_count = (size - cmd->data_length);
3664 } else {
3665 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3666 cmd->residual_count = (cmd->data_length - size);
3667 }
3668 cmd->data_length = size;
3669 }
3670
3671 transport_set_supported_SAM_opcode(cmd);
3672 return ret;
3673
3674out_unsupported_cdb:
3675 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3676 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3677 return -2;
3678out_invalid_cdb_field:
3679 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3680 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3681 return -2;
3682}
3683
3684static inline void transport_release_tasks(struct se_cmd *);
3685
3686/*
3687 * This function will copy a contiguous *src buffer into a destination
3688 * struct scatterlist array.
3689 */
3690static void transport_memcpy_write_contig(
3691 struct se_cmd *cmd,
3692 struct scatterlist *sg_d,
3693 unsigned char *src)
3694{
3695 u32 i = 0, length = 0, total_length = cmd->data_length;
3696 void *dst;
3697
3698 while (total_length) {
3699 length = sg_d[i].length;
3700
3701 if (length > total_length)
3702 length = total_length;
3703
3704 dst = sg_virt(&sg_d[i]);
3705
3706 memcpy(dst, src, length);
3707
3708 if (!(total_length -= length))
3709 return;
3710
3711 src += length;
3712 i++;
3713 }
3714}
3715
3716/*
3717 * This function will copy a struct scatterlist array *sg_s into a destination
3718 * contiguous *dst buffer.
3719 */
3720static void transport_memcpy_read_contig(
3721 struct se_cmd *cmd,
3722 unsigned char *dst,
3723 struct scatterlist *sg_s)
3724{
3725 u32 i = 0, length = 0, total_length = cmd->data_length;
3726 void *src;
3727
3728 while (total_length) {
3729 length = sg_s[i].length;
3730
3731 if (length > total_length)
3732 length = total_length;
3733
3734 src = sg_virt(&sg_s[i]);
3735
3736 memcpy(dst, src, length);
3737
3738 if (!(total_length -= length))
3739 return;
3740
3741 dst += length;
3742 i++;
3743 }
3744}
3745
3746static void transport_memcpy_se_mem_read_contig(
3747 struct se_cmd *cmd,
3748 unsigned char *dst,
3749 struct list_head *se_mem_list)
3750{
3751 struct se_mem *se_mem;
3752 void *src;
3753 u32 length = 0, total_length = cmd->data_length;
3754
3755 list_for_each_entry(se_mem, se_mem_list, se_list) {
3756 length = se_mem->se_len;
3757
3758 if (length > total_length)
3759 length = total_length;
3760
3761 src = page_address(se_mem->se_page) + se_mem->se_off;
3762
3763 memcpy(dst, src, length);
3764
3765 if (!(total_length -= length))
3766 return;
3767
3768 dst += length;
3769 }
3770}
3771
3772/*
3773 * Called from transport_generic_complete_ok() and
3774 * transport_generic_request_failure() to determine which dormant/delayed
3775 * and ordered cmds need to have their tasks added to the execution queue.
3776 */
3777static void transport_complete_task_attr(struct se_cmd *cmd)
3778{
3779 struct se_device *dev = SE_DEV(cmd);
3780 struct se_cmd *cmd_p, *cmd_tmp;
3781 int new_active_tasks = 0;
3782
3783 if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) {
3784 atomic_dec(&dev->simple_cmds);
3785 smp_mb__after_atomic_dec();
3786 dev->dev_cur_ordered_id++;
3787 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3788 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3789 cmd->se_ordered_id);
3790 } else if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
3791 atomic_dec(&dev->dev_hoq_count);
3792 smp_mb__after_atomic_dec();
3793 dev->dev_cur_ordered_id++;
3794 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3795 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3796 cmd->se_ordered_id);
3797 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
3798 spin_lock(&dev->ordered_cmd_lock);
3799 list_del(&cmd->se_ordered_list);
3800 atomic_dec(&dev->dev_ordered_sync);
3801 smp_mb__after_atomic_dec();
3802 spin_unlock(&dev->ordered_cmd_lock);
3803
3804 dev->dev_cur_ordered_id++;
3805 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3806 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3807 }
3808 /*
3809 * Process all commands up to the last received
3810 * ORDERED task attribute which requires another blocking
3811 * boundary
3812 */
3813 spin_lock(&dev->delayed_cmd_lock);
3814 list_for_each_entry_safe(cmd_p, cmd_tmp,
3815 &dev->delayed_cmd_list, se_delayed_list) {
3816
3817 list_del(&cmd_p->se_delayed_list);
3818 spin_unlock(&dev->delayed_cmd_lock);
3819
3820 DEBUG_STA("Calling add_tasks() for"
3821 " cmd_p: 0x%02x Task Attr: 0x%02x"
3822 " Dormant -> Active, se_ordered_id: %u\n",
3823 T_TASK(cmd_p)->t_task_cdb[0],
3824 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3825
3826 transport_add_tasks_from_cmd(cmd_p);
3827 new_active_tasks++;
3828
3829 spin_lock(&dev->delayed_cmd_lock);
3830 if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED)
3831 break;
3832 }
3833 spin_unlock(&dev->delayed_cmd_lock);
3834 /*
3835 * If new tasks have become active, wake up the transport thread
3836 * to do the processing of the Active tasks.
3837 */
3838 if (new_active_tasks != 0)
3839 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
3840}
3841
3842static void transport_generic_complete_ok(struct se_cmd *cmd)
3843{
3844 int reason = 0;
3845 /*
3846 * Check if we need to move delayed/dormant tasks from cmds on the
3847 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3848 * Attribute.
3849 */
3850 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3851 transport_complete_task_attr(cmd);
3852 /*
3853 * Check if we need to retrieve a sense buffer from
3854 * the struct se_cmd in question.
3855 */
3856 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3857 if (transport_get_sense_data(cmd) < 0)
3858 reason = TCM_NON_EXISTENT_LUN;
3859
3860 /*
3861 * Only set when an struct se_task->task_scsi_status returned
3862 * a non GOOD status.
3863 */
3864 if (cmd->scsi_status) {
3865 transport_send_check_condition_and_sense(
3866 cmd, reason, 1);
3867 transport_lun_remove_cmd(cmd);
3868 transport_cmd_check_stop_to_fabric(cmd);
3869 return;
3870 }
3871 }
3872 /*
3873 * Check for a callback, used by amoungst other things
3874 * XDWRITE_READ_10 emulation.
3875 */
3876 if (cmd->transport_complete_callback)
3877 cmd->transport_complete_callback(cmd);
3878
3879 switch (cmd->data_direction) {
3880 case DMA_FROM_DEVICE:
3881 spin_lock(&cmd->se_lun->lun_sep_lock);
3882 if (SE_LUN(cmd)->lun_sep) {
3883 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3884 cmd->data_length;
3885 }
3886 spin_unlock(&cmd->se_lun->lun_sep_lock);
3887 /*
3888 * If enabled by TCM fabirc module pre-registered SGL
3889 * memory, perform the memcpy() from the TCM internal
3890 * contigious buffer back to the original SGL.
3891 */
3892 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3893 transport_memcpy_write_contig(cmd,
3894 T_TASK(cmd)->t_task_pt_sgl,
3895 T_TASK(cmd)->t_task_buf);
3896
3897 CMD_TFO(cmd)->queue_data_in(cmd);
3898 break;
3899 case DMA_TO_DEVICE:
3900 spin_lock(&cmd->se_lun->lun_sep_lock);
3901 if (SE_LUN(cmd)->lun_sep) {
3902 SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
3903 cmd->data_length;
3904 }
3905 spin_unlock(&cmd->se_lun->lun_sep_lock);
3906 /*
3907 * Check if we need to send READ payload for BIDI-COMMAND
3908 */
3909 if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
3910 spin_lock(&cmd->se_lun->lun_sep_lock);
3911 if (SE_LUN(cmd)->lun_sep) {
3912 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3913 cmd->data_length;
3914 }
3915 spin_unlock(&cmd->se_lun->lun_sep_lock);
3916 CMD_TFO(cmd)->queue_data_in(cmd);
3917 break;
3918 }
3919 /* Fall through for DMA_TO_DEVICE */
3920 case DMA_NONE:
3921 CMD_TFO(cmd)->queue_status(cmd);
3922 break;
3923 default:
3924 break;
3925 }
3926
3927 transport_lun_remove_cmd(cmd);
3928 transport_cmd_check_stop_to_fabric(cmd);
3929}
3930
3931static void transport_free_dev_tasks(struct se_cmd *cmd)
3932{
3933 struct se_task *task, *task_tmp;
3934 unsigned long flags;
3935
3936 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3937 list_for_each_entry_safe(task, task_tmp,
3938 &T_TASK(cmd)->t_task_list, t_list) {
3939 if (atomic_read(&task->task_active))
3940 continue;
3941
3942 kfree(task->task_sg_bidi);
3943 kfree(task->task_sg);
3944
3945 list_del(&task->t_list);
3946
3947 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3948 if (task->se_dev)
3949 TRANSPORT(task->se_dev)->free_task(task);
3950 else
3951 printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3952 task->task_no);
3953 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3954 }
3955 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3956}
3957
3958static inline void transport_free_pages(struct se_cmd *cmd)
3959{
3960 struct se_mem *se_mem, *se_mem_tmp;
3961 int free_page = 1;
3962
3963 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3964 free_page = 0;
3965 if (cmd->se_dev->transport->do_se_mem_map)
3966 free_page = 0;
3967
3968 if (T_TASK(cmd)->t_task_buf) {
3969 kfree(T_TASK(cmd)->t_task_buf);
3970 T_TASK(cmd)->t_task_buf = NULL;
3971 return;
3972 }
3973
3974 /*
3975 * Caller will handle releasing of struct se_mem.
3976 */
3977 if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3978 return;
3979
3980 if (!(T_TASK(cmd)->t_tasks_se_num))
3981 return;
3982
3983 list_for_each_entry_safe(se_mem, se_mem_tmp,
3984 T_TASK(cmd)->t_mem_list, se_list) {
3985 /*
3986 * We only release call __free_page(struct se_mem->se_page) when
3987 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3988 */
3989 if (free_page)
3990 __free_page(se_mem->se_page);
3991
3992 list_del(&se_mem->se_list);
3993 kmem_cache_free(se_mem_cache, se_mem);
3994 }
3995
3996 if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
3997 list_for_each_entry_safe(se_mem, se_mem_tmp,
3998 T_TASK(cmd)->t_mem_bidi_list, se_list) {
3999 /*
4000 * We only release call __free_page(struct se_mem->se_page) when
4001 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4002 */
4003 if (free_page)
4004 __free_page(se_mem->se_page);
4005
4006 list_del(&se_mem->se_list);
4007 kmem_cache_free(se_mem_cache, se_mem);
4008 }
4009 }
4010
4011 kfree(T_TASK(cmd)->t_mem_bidi_list);
4012 T_TASK(cmd)->t_mem_bidi_list = NULL;
4013 kfree(T_TASK(cmd)->t_mem_list);
4014 T_TASK(cmd)->t_mem_list = NULL;
4015 T_TASK(cmd)->t_tasks_se_num = 0;
4016}
4017
4018static inline void transport_release_tasks(struct se_cmd *cmd)
4019{
4020 transport_free_dev_tasks(cmd);
4021}
4022
4023static inline int transport_dec_and_check(struct se_cmd *cmd)
4024{
4025 unsigned long flags;
4026
4027 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4028 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
4029 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
4030 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4031 flags);
4032 return 1;
4033 }
4034 }
4035
4036 if (atomic_read(&T_TASK(cmd)->t_se_count)) {
4037 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
4038 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4039 flags);
4040 return 1;
4041 }
4042 }
4043 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4044
4045 return 0;
4046}
4047
4048static void transport_release_fe_cmd(struct se_cmd *cmd)
4049{
4050 unsigned long flags;
4051
4052 if (transport_dec_and_check(cmd))
4053 return;
4054
4055 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4056 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4057 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4058 goto free_pages;
4059 }
4060 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4061 transport_all_task_dev_remove_state(cmd);
4062 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4063
4064 transport_release_tasks(cmd);
4065free_pages:
4066 transport_free_pages(cmd);
4067 transport_free_se_cmd(cmd);
4068 CMD_TFO(cmd)->release_cmd_direct(cmd);
4069}
4070
4071static int transport_generic_remove(
4072 struct se_cmd *cmd,
4073 int release_to_pool,
4074 int session_reinstatement)
4075{
4076 unsigned long flags;
4077
4078 if (!(T_TASK(cmd)))
4079 goto release_cmd;
4080
4081 if (transport_dec_and_check(cmd)) {
4082 if (session_reinstatement) {
4083 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4084 transport_all_task_dev_remove_state(cmd);
4085 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4086 flags);
4087 }
4088 return 1;
4089 }
4090
4091 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4092 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4093 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4094 goto free_pages;
4095 }
4096 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4097 transport_all_task_dev_remove_state(cmd);
4098 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4099
4100 transport_release_tasks(cmd);
4101free_pages:
4102 transport_free_pages(cmd);
4103
4104release_cmd:
4105 if (release_to_pool) {
4106 transport_release_cmd_to_pool(cmd);
4107 } else {
4108 transport_free_se_cmd(cmd);
4109 CMD_TFO(cmd)->release_cmd_direct(cmd);
4110 }
4111
4112 return 0;
4113}
4114
4115/*
4116 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4117 * @cmd: Associated se_cmd descriptor
4118 * @mem: SGL style memory for TCM WRITE / READ
4119 * @sg_mem_num: Number of SGL elements
4120 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4121 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4122 *
4123 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4124 * of parameters.
4125 */
4126int transport_generic_map_mem_to_cmd(
4127 struct se_cmd *cmd,
4128 struct scatterlist *mem,
4129 u32 sg_mem_num,
4130 struct scatterlist *mem_bidi_in,
4131 u32 sg_mem_bidi_num)
4132{
4133 u32 se_mem_cnt_out = 0;
4134 int ret;
4135
4136 if (!(mem) || !(sg_mem_num))
4137 return 0;
4138 /*
4139 * Passed *mem will contain a list_head containing preformatted
4140 * struct se_mem elements...
4141 */
4142 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
4143 if ((mem_bidi_in) || (sg_mem_bidi_num)) {
4144 printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4145 " with BIDI-COMMAND\n");
4146 return -ENOSYS;
4147 }
4148
4149 T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
4150 T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
4151 cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
4152 return 0;
4153 }
4154 /*
4155 * Otherwise, assume the caller is passing a struct scatterlist
4156 * array from include/linux/scatterlist.h
4157 */
4158 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4159 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4160 /*
4161 * For CDB using TCM struct se_mem linked list scatterlist memory
4162 * processed into a TCM struct se_subsystem_dev, we do the mapping
4163 * from the passed physical memory to struct se_mem->se_page here.
4164 */
4165 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4166 if (!(T_TASK(cmd)->t_mem_list))
4167 return -ENOMEM;
4168
4169 ret = transport_map_sg_to_mem(cmd,
4170 T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
4171 if (ret < 0)
4172 return -ENOMEM;
4173
4174 T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
4175 /*
4176 * Setup BIDI READ list of struct se_mem elements
4177 */
4178 if ((mem_bidi_in) && (sg_mem_bidi_num)) {
4179 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4180 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4181 kfree(T_TASK(cmd)->t_mem_list);
4182 return -ENOMEM;
4183 }
4184 se_mem_cnt_out = 0;
4185
4186 ret = transport_map_sg_to_mem(cmd,
4187 T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
4188 &se_mem_cnt_out);
4189 if (ret < 0) {
4190 kfree(T_TASK(cmd)->t_mem_list);
4191 return -ENOMEM;
4192 }
4193
4194 T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
4195 }
4196 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4197
4198 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4199 if (mem_bidi_in || sg_mem_bidi_num) {
4200 printk(KERN_ERR "BIDI-Commands not supported using "
4201 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4202 return -ENOSYS;
4203 }
4204 /*
4205 * For incoming CDBs using a contiguous buffer internall with TCM,
4206 * save the passed struct scatterlist memory. After TCM storage object
4207 * processing has completed for this struct se_cmd, TCM core will call
4208 * transport_memcpy_[write,read]_contig() as necessary from
4209 * transport_generic_complete_ok() and transport_write_pending() in order
4210 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4211 * struct scatterlist format.
4212 */
4213 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4214 T_TASK(cmd)->t_task_pt_sgl = mem;
4215 }
4216
4217 return 0;
4218}
4219EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4220
4221
4222static inline long long transport_dev_end_lba(struct se_device *dev)
4223{
4224 return dev->transport->get_blocks(dev) + 1;
4225}
4226
4227static int transport_get_sectors(struct se_cmd *cmd)
4228{
4229 struct se_device *dev = SE_DEV(cmd);
4230
4231 T_TASK(cmd)->t_tasks_sectors =
4232 (cmd->data_length / DEV_ATTRIB(dev)->block_size);
4233 if (!(T_TASK(cmd)->t_tasks_sectors))
4234 T_TASK(cmd)->t_tasks_sectors = 1;
4235
4236 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
4237 return 0;
4238
4239 if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
4240 transport_dev_end_lba(dev)) {
4241 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4242 " transport_dev_end_lba(): %llu\n",
4243 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4244 transport_dev_end_lba(dev));
4245 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4246 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4247 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4248 }
4249
4250 return 0;
4251}
4252
4253static int transport_new_cmd_obj(struct se_cmd *cmd)
4254{
4255 struct se_device *dev = SE_DEV(cmd);
4256 u32 task_cdbs = 0, rc;
4257
4258 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4259 task_cdbs++;
4260 T_TASK(cmd)->t_task_cdbs++;
4261 } else {
4262 int set_counts = 1;
4263
4264 /*
4265 * Setup any BIDI READ tasks and memory from
4266 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4267 * are queued first for the non pSCSI passthrough case.
4268 */
4269 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4270 (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4271 rc = transport_generic_get_cdb_count(cmd,
4272 T_TASK(cmd)->t_task_lba,
4273 T_TASK(cmd)->t_tasks_sectors,
4274 DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
4275 set_counts);
4276 if (!(rc)) {
4277 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4278 cmd->scsi_sense_reason =
4279 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4280 return PYX_TRANSPORT_LU_COMM_FAILURE;
4281 }
4282 set_counts = 0;
4283 }
4284 /*
4285 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4286 * Note for BIDI transfers this will contain the WRITE payload
4287 */
4288 task_cdbs = transport_generic_get_cdb_count(cmd,
4289 T_TASK(cmd)->t_task_lba,
4290 T_TASK(cmd)->t_tasks_sectors,
4291 cmd->data_direction, T_TASK(cmd)->t_mem_list,
4292 set_counts);
4293 if (!(task_cdbs)) {
4294 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4295 cmd->scsi_sense_reason =
4296 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4297 return PYX_TRANSPORT_LU_COMM_FAILURE;
4298 }
4299 T_TASK(cmd)->t_task_cdbs += task_cdbs;
4300
4301#if 0
4302 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4303 " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4304 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4305 T_TASK(cmd)->t_task_cdbs);
4306#endif
4307 }
4308
4309 atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
4310 atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
4311 atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
4312 return 0;
4313}
4314
4315static struct list_head *transport_init_se_mem_list(void)
4316{
4317 struct list_head *se_mem_list;
4318
4319 se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
4320 if (!(se_mem_list)) {
4321 printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
4322 return NULL;
4323 }
4324 INIT_LIST_HEAD(se_mem_list);
4325
4326 return se_mem_list;
4327}
4328
4329static int
4330transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4331{
4332 unsigned char *buf;
4333 struct se_mem *se_mem;
4334
4335 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4336 if (!(T_TASK(cmd)->t_mem_list))
4337 return -ENOMEM;
4338
4339 /*
4340 * If the device uses memory mapping this is enough.
4341 */
4342 if (cmd->se_dev->transport->do_se_mem_map)
4343 return 0;
4344
4345 /*
4346 * Setup BIDI-COMMAND READ list of struct se_mem elements
4347 */
4348 if (T_TASK(cmd)->t_tasks_bidi) {
4349 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4350 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4351 kfree(T_TASK(cmd)->t_mem_list);
4352 return -ENOMEM;
4353 }
4354 }
4355
4356 while (length) {
4357 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4358 if (!(se_mem)) {
4359 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4360 goto out;
4361 }
4362 INIT_LIST_HEAD(&se_mem->se_list);
4363 se_mem->se_len = (length > dma_size) ? dma_size : length;
4364
4365/* #warning FIXME Allocate contigous pages for struct se_mem elements */
4366 se_mem->se_page = (struct page *) alloc_pages(GFP_KERNEL, 0);
4367 if (!(se_mem->se_page)) {
4368 printk(KERN_ERR "alloc_pages() failed\n");
4369 goto out;
4370 }
4371
4372 buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4373 if (!(buf)) {
4374 printk(KERN_ERR "kmap_atomic() failed\n");
4375 goto out;
4376 }
4377 memset(buf, 0, se_mem->se_len);
4378 kunmap_atomic(buf, KM_IRQ0);
4379
4380 list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
4381 T_TASK(cmd)->t_tasks_se_num++;
4382
4383 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4384 " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4385 se_mem->se_off);
4386
4387 length -= se_mem->se_len;
4388 }
4389
4390 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4391 T_TASK(cmd)->t_tasks_se_num);
4392
4393 return 0;
4394out:
4395 return -1;
4396}
4397
4398extern u32 transport_calc_sg_num(
4399 struct se_task *task,
4400 struct se_mem *in_se_mem,
4401 u32 task_offset)
4402{
4403 struct se_cmd *se_cmd = task->task_se_cmd;
4404 struct se_device *se_dev = SE_DEV(se_cmd);
4405 struct se_mem *se_mem = in_se_mem;
4406 struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
4407 u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4408
4409 while (task_size != 0) {
4410 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4411 " se_mem->se_off(%u) task_offset(%u)\n",
4412 se_mem->se_page, se_mem->se_len,
4413 se_mem->se_off, task_offset);
4414
4415 if (task_offset == 0) {
4416 if (task_size >= se_mem->se_len) {
4417 sg_length = se_mem->se_len;
4418
4419 if (!(list_is_last(&se_mem->se_list,
4420 T_TASK(se_cmd)->t_mem_list)))
4421 se_mem = list_entry(se_mem->se_list.next,
4422 struct se_mem, se_list);
4423 } else {
4424 sg_length = task_size;
4425 task_size -= sg_length;
4426 goto next;
4427 }
4428
4429 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4430 sg_length, task_size);
4431 } else {
4432 if ((se_mem->se_len - task_offset) > task_size) {
4433 sg_length = task_size;
4434 task_size -= sg_length;
4435 goto next;
4436 } else {
4437 sg_length = (se_mem->se_len - task_offset);
4438
4439 if (!(list_is_last(&se_mem->se_list,
4440 T_TASK(se_cmd)->t_mem_list)))
4441 se_mem = list_entry(se_mem->se_list.next,
4442 struct se_mem, se_list);
4443 }
4444
4445 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4446 sg_length, task_size);
4447
4448 task_offset = 0;
4449 }
4450 task_size -= sg_length;
4451next:
4452 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4453 task->task_no, task_size);
4454
4455 task->task_sg_num++;
4456 }
4457 /*
4458 * Check if the fabric module driver is requesting that all
4459 * struct se_task->task_sg[] be chained together.. If so,
4460 * then allocate an extra padding SG entry for linking and
4461 * marking the end of the chained SGL.
4462 */
4463 if (tfo->task_sg_chaining) {
4464 task_sg_num_padded = (task->task_sg_num + 1);
4465 task->task_padded_sg = 1;
4466 } else
4467 task_sg_num_padded = task->task_sg_num;
4468
4469 task->task_sg = kzalloc(task_sg_num_padded *
4470 sizeof(struct scatterlist), GFP_KERNEL);
4471 if (!(task->task_sg)) {
4472 printk(KERN_ERR "Unable to allocate memory for"
4473 " task->task_sg\n");
4474 return 0;
4475 }
4476 sg_init_table(&task->task_sg[0], task_sg_num_padded);
4477 /*
4478 * Setup task->task_sg_bidi for SCSI READ payload for
4479 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4480 */
4481 if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
4482 (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4483 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4484 sizeof(struct scatterlist), GFP_KERNEL);
4485 if (!(task->task_sg_bidi)) {
4486 printk(KERN_ERR "Unable to allocate memory for"
4487 " task->task_sg_bidi\n");
4488 return 0;
4489 }
4490 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4491 }
4492 /*
4493 * For the chaining case, setup the proper end of SGL for the
4494 * initial submission struct task into struct se_subsystem_api.
4495 * This will be cleared later by transport_do_task_sg_chain()
4496 */
4497 if (task->task_padded_sg) {
4498 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4499 /*
4500 * Added the 'if' check before marking end of bi-directional
4501 * scatterlist (which gets created only in case of request
4502 * (RD + WR).
4503 */
4504 if (task->task_sg_bidi)
4505 sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4506 }
4507
4508 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4509 " task_sg_num_padded(%u)\n", task->task_sg_num,
4510 task_sg_num_padded);
4511
4512 return task->task_sg_num;
4513}
4514
4515static inline int transport_set_tasks_sectors_disk(
4516 struct se_task *task,
4517 struct se_device *dev,
4518 unsigned long long lba,
4519 u32 sectors,
4520 int *max_sectors_set)
4521{
4522 if ((lba + sectors) > transport_dev_end_lba(dev)) {
4523 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4524
4525 if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
4526 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4527 *max_sectors_set = 1;
4528 }
4529 } else {
4530 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4531 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4532 *max_sectors_set = 1;
4533 } else
4534 task->task_sectors = sectors;
4535 }
4536
4537 return 0;
4538}
4539
4540static inline int transport_set_tasks_sectors_non_disk(
4541 struct se_task *task,
4542 struct se_device *dev,
4543 unsigned long long lba,
4544 u32 sectors,
4545 int *max_sectors_set)
4546{
4547 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4548 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4549 *max_sectors_set = 1;
4550 } else
4551 task->task_sectors = sectors;
4552
4553 return 0;
4554}
4555
4556static inline int transport_set_tasks_sectors(
4557 struct se_task *task,
4558 struct se_device *dev,
4559 unsigned long long lba,
4560 u32 sectors,
4561 int *max_sectors_set)
4562{
4563 return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
4564 transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4565 max_sectors_set) :
4566 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4567 max_sectors_set);
4568}
4569
4570static int transport_map_sg_to_mem(
4571 struct se_cmd *cmd,
4572 struct list_head *se_mem_list,
4573 void *in_mem,
4574 u32 *se_mem_cnt)
4575{
4576 struct se_mem *se_mem;
4577 struct scatterlist *sg;
4578 u32 sg_count = 1, cmd_size = cmd->data_length;
4579
4580 if (!in_mem) {
4581 printk(KERN_ERR "No source scatterlist\n");
4582 return -1;
4583 }
4584 sg = (struct scatterlist *)in_mem;
4585
4586 while (cmd_size) {
4587 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4588 if (!(se_mem)) {
4589 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4590 return -1;
4591 }
4592 INIT_LIST_HEAD(&se_mem->se_list);
4593 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4594 " sg_page: %p offset: %d length: %d\n", cmd_size,
4595 sg_page(sg), sg->offset, sg->length);
4596
4597 se_mem->se_page = sg_page(sg);
4598 se_mem->se_off = sg->offset;
4599
4600 if (cmd_size > sg->length) {
4601 se_mem->se_len = sg->length;
4602 sg = sg_next(sg);
4603 sg_count++;
4604 } else
4605 se_mem->se_len = cmd_size;
4606
4607 cmd_size -= se_mem->se_len;
4608
4609 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4610 *se_mem_cnt, cmd_size);
4611 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4612 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4613
4614 list_add_tail(&se_mem->se_list, se_mem_list);
4615 (*se_mem_cnt)++;
4616 }
4617
4618 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4619 " struct se_mem\n", sg_count, *se_mem_cnt);
4620
4621 if (sg_count != *se_mem_cnt)
4622 BUG();
4623
4624 return 0;
4625}
4626
4627/* transport_map_mem_to_sg():
4628 *
4629 *
4630 */
4631int transport_map_mem_to_sg(
4632 struct se_task *task,
4633 struct list_head *se_mem_list,
4634 void *in_mem,
4635 struct se_mem *in_se_mem,
4636 struct se_mem **out_se_mem,
4637 u32 *se_mem_cnt,
4638 u32 *task_offset)
4639{
4640 struct se_cmd *se_cmd = task->task_se_cmd;
4641 struct se_mem *se_mem = in_se_mem;
4642 struct scatterlist *sg = (struct scatterlist *)in_mem;
4643 u32 task_size = task->task_size, sg_no = 0;
4644
4645 if (!sg) {
4646 printk(KERN_ERR "Unable to locate valid struct"
4647 " scatterlist pointer\n");
4648 return -1;
4649 }
4650
4651 while (task_size != 0) {
4652 /*
4653 * Setup the contigious array of scatterlists for
4654 * this struct se_task.
4655 */
4656 sg_assign_page(sg, se_mem->se_page);
4657
4658 if (*task_offset == 0) {
4659 sg->offset = se_mem->se_off;
4660
4661 if (task_size >= se_mem->se_len) {
4662 sg->length = se_mem->se_len;
4663
4664 if (!(list_is_last(&se_mem->se_list,
4665 T_TASK(se_cmd)->t_mem_list))) {
4666 se_mem = list_entry(se_mem->se_list.next,
4667 struct se_mem, se_list);
4668 (*se_mem_cnt)++;
4669 }
4670 } else {
4671 sg->length = task_size;
4672 /*
4673 * Determine if we need to calculate an offset
4674 * into the struct se_mem on the next go around..
4675 */
4676 task_size -= sg->length;
4677 if (!(task_size))
4678 *task_offset = sg->length;
4679
4680 goto next;
4681 }
4682
4683 } else {
4684 sg->offset = (*task_offset + se_mem->se_off);
4685
4686 if ((se_mem->se_len - *task_offset) > task_size) {
4687 sg->length = task_size;
4688 /*
4689 * Determine if we need to calculate an offset
4690 * into the struct se_mem on the next go around..
4691 */
4692 task_size -= sg->length;
4693 if (!(task_size))
4694 *task_offset += sg->length;
4695
4696 goto next;
4697 } else {
4698 sg->length = (se_mem->se_len - *task_offset);
4699
4700 if (!(list_is_last(&se_mem->se_list,
4701 T_TASK(se_cmd)->t_mem_list))) {
4702 se_mem = list_entry(se_mem->se_list.next,
4703 struct se_mem, se_list);
4704 (*se_mem_cnt)++;
4705 }
4706 }
4707
4708 *task_offset = 0;
4709 }
4710 task_size -= sg->length;
4711next:
4712 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4713 " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4714 sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4715
4716 sg_no++;
4717 if (!(task_size))
4718 break;
4719
4720 sg = sg_next(sg);
4721
4722 if (task_size > se_cmd->data_length)
4723 BUG();
4724 }
4725 *out_se_mem = se_mem;
4726
4727 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4728 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4729
4730 return 0;
4731}
4732
4733/*
4734 * This function can be used by HW target mode drivers to create a linked
4735 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4736 * This is intended to be called during the completion path by TCM Core
4737 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4738 */
4739void transport_do_task_sg_chain(struct se_cmd *cmd)
4740{
4741 struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4742 struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4743 struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4744 struct se_task *task;
4745 struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
4746 u32 task_sg_num = 0, sg_count = 0;
4747 int i;
4748
4749 if (tfo->task_sg_chaining == 0) {
4750 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4751 " %s\n", tfo->get_fabric_name());
4752 dump_stack();
4753 return;
4754 }
4755 /*
4756 * Walk the struct se_task list and setup scatterlist chains
4757 * for each contiguosly allocated struct se_task->task_sg[].
4758 */
4759 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
4760 if (!(task->task_sg) || !(task->task_padded_sg))
4761 continue;
4762
4763 if (sg_head && sg_link) {
4764 sg_head_cur = &task->task_sg[0];
4765 sg_link_cur = &task->task_sg[task->task_sg_num];
4766 /*
4767 * Either add chain or mark end of scatterlist
4768 */
4769 if (!(list_is_last(&task->t_list,
4770 &T_TASK(cmd)->t_task_list))) {
4771 /*
4772 * Clear existing SGL termination bit set in
4773 * transport_calc_sg_num(), see sg_mark_end()
4774 */
4775 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4776 sg_end_cur->page_link &= ~0x02;
4777
4778 sg_chain(sg_head, task_sg_num, sg_head_cur);
4779 sg_count += (task->task_sg_num + 1);
4780 } else
4781 sg_count += task->task_sg_num;
4782
4783 sg_head = sg_head_cur;
4784 sg_link = sg_link_cur;
4785 task_sg_num = task->task_sg_num;
4786 continue;
4787 }
4788 sg_head = sg_first = &task->task_sg[0];
4789 sg_link = &task->task_sg[task->task_sg_num];
4790 task_sg_num = task->task_sg_num;
4791 /*
4792 * Check for single task..
4793 */
4794 if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
4795 /*
4796 * Clear existing SGL termination bit set in
4797 * transport_calc_sg_num(), see sg_mark_end()
4798 */
4799 sg_end = &task->task_sg[task->task_sg_num - 1];
4800 sg_end->page_link &= ~0x02;
4801 sg_count += (task->task_sg_num + 1);
4802 } else
4803 sg_count += task->task_sg_num;
4804 }
4805 /*
4806 * Setup the starting pointer and total t_tasks_sg_linked_no including
4807 * padding SGs for linking and to mark the end.
4808 */
4809 T_TASK(cmd)->t_tasks_sg_chained = sg_first;
4810 T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
4811
4812 DEBUG_CMD_M("Setup T_TASK(cmd)->t_tasks_sg_chained: %p and"
4813 " t_tasks_sg_chained_no: %u\n", T_TASK(cmd)->t_tasks_sg_chained,
4814 T_TASK(cmd)->t_tasks_sg_chained_no);
4815
4816 for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
4817 T_TASK(cmd)->t_tasks_sg_chained_no, i) {
4818
4819 DEBUG_CMD_M("SG: %p page: %p length: %d offset: %d\n",
4820 sg, sg_page(sg), sg->length, sg->offset);
4821 if (sg_is_chain(sg))
4822 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4823 if (sg_is_last(sg))
4824 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4825 }
4826
4827}
4828EXPORT_SYMBOL(transport_do_task_sg_chain);
4829
4830static int transport_do_se_mem_map(
4831 struct se_device *dev,
4832 struct se_task *task,
4833 struct list_head *se_mem_list,
4834 void *in_mem,
4835 struct se_mem *in_se_mem,
4836 struct se_mem **out_se_mem,
4837 u32 *se_mem_cnt,
4838 u32 *task_offset_in)
4839{
4840 u32 task_offset = *task_offset_in;
4841 int ret = 0;
4842 /*
4843 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4844 * has been done by the transport plugin.
4845 */
4846 if (TRANSPORT(dev)->do_se_mem_map) {
4847 ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
4848 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4849 task_offset_in);
4850 if (ret == 0)
4851 T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
4852
4853 return ret;
4854 }
e63af958
NB
4855
4856 BUG_ON(list_empty(se_mem_list));
c66ac9db
NB
4857 /*
4858 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4859 * WRITE payloads.. If we need to do BIDI READ passthrough for
4860 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4861 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4862 * allocation for task->task_sg_bidi, and the subsequent call to
4863 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4864 */
4865 if (!(task->task_sg_bidi)) {
4866 /*
4867 * Assume default that transport plugin speaks preallocated
4868 * scatterlists.
4869 */
4870 if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
4871 return -1;
4872 /*
4873 * struct se_task->task_sg now contains the struct scatterlist array.
4874 */
4875 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4876 in_se_mem, out_se_mem, se_mem_cnt,
4877 task_offset_in);
4878 }
4879 /*
4880 * Handle the se_mem_list -> struct task->task_sg_bidi
4881 * memory map for the extra BIDI READ payload
4882 */
4883 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4884 in_se_mem, out_se_mem, se_mem_cnt,
4885 task_offset_in);
4886}
4887
4888static u32 transport_generic_get_cdb_count(
4889 struct se_cmd *cmd,
4890 unsigned long long lba,
4891 u32 sectors,
4892 enum dma_data_direction data_direction,
4893 struct list_head *mem_list,
4894 int set_counts)
4895{
4896 unsigned char *cdb = NULL;
4897 struct se_task *task;
4898 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4899 struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4900 struct se_device *dev = SE_DEV(cmd);
4901 int max_sectors_set = 0, ret;
4902 u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4903
4904 if (!mem_list) {
4905 printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4906 "_cdb_count()\n");
4907 return 0;
4908 }
4909 /*
4910 * While using RAMDISK_DR backstores is the only case where
4911 * mem_list will ever be empty at this point.
4912 */
4913 if (!(list_empty(mem_list)))
4914 se_mem = list_entry(mem_list->next, struct se_mem, se_list);
4915 /*
4916 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4917 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4918 */
4919 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4920 !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
4921 (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4922 se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
4923 struct se_mem, se_list);
4924
4925 while (sectors) {
4926 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4927 CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
4928 transport_dev_end_lba(dev));
4929
4930 task = transport_generic_get_task(cmd, data_direction);
4931 if (!(task))
4932 goto out;
4933
4934 transport_set_tasks_sectors(task, dev, lba, sectors,
4935 &max_sectors_set);
4936
4937 task->task_lba = lba;
4938 lba += task->task_sectors;
4939 sectors -= task->task_sectors;
4940 task->task_size = (task->task_sectors *
4941 DEV_ATTRIB(dev)->block_size);
4942
4943 cdb = TRANSPORT(dev)->get_cdb(task);
4944 if ((cdb)) {
4945 memcpy(cdb, T_TASK(cmd)->t_task_cdb,
4946 scsi_command_size(T_TASK(cmd)->t_task_cdb));
4947 cmd->transport_split_cdb(task->task_lba,
4948 &task->task_sectors, cdb);
4949 }
4950
4951 /*
4952 * Perform the SE OBJ plugin and/or Transport plugin specific
4953 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4954 * task->task_sg and if necessary task->task_sg_bidi
4955 */
4956 ret = transport_do_se_mem_map(dev, task, mem_list,
4957 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4958 &task_offset_in);
4959 if (ret < 0)
4960 goto out;
4961
4962 se_mem = se_mem_lout;
4963 /*
4964 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4965 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4966 *
4967 * Note that the first call to transport_do_se_mem_map() above will
4968 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4969 * -> transport_calc_sg_num(), and the second here will do the
4970 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4971 */
4972 if (task->task_sg_bidi != NULL) {
4973 ret = transport_do_se_mem_map(dev, task,
4974 T_TASK(cmd)->t_mem_bidi_list, NULL,
4975 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4976 &task_offset_in);
4977 if (ret < 0)
4978 goto out;
4979
4980 se_mem_bidi = se_mem_bidi_lout;
4981 }
4982 task_cdbs++;
4983
4984 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4985 task_cdbs, task->task_sg_num);
4986
4987 if (max_sectors_set) {
4988 max_sectors_set = 0;
4989 continue;
4990 }
4991
4992 if (!sectors)
4993 break;
4994 }
4995
4996 if (set_counts) {
4997 atomic_inc(&T_TASK(cmd)->t_fe_count);
4998 atomic_inc(&T_TASK(cmd)->t_se_count);
4999 }
5000
5001 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5002 CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
5003 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
5004
5005 return task_cdbs;
5006out:
5007 return 0;
5008}
5009
5010static int
5011transport_map_control_cmd_to_task(struct se_cmd *cmd)
5012{
5013 struct se_device *dev = SE_DEV(cmd);
5014 unsigned char *cdb;
5015 struct se_task *task;
5016 int ret;
5017
5018 task = transport_generic_get_task(cmd, cmd->data_direction);
5019 if (!task)
5020 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5021
5022 cdb = TRANSPORT(dev)->get_cdb(task);
5023 if (cdb)
5024 memcpy(cdb, cmd->t_task->t_task_cdb,
5025 scsi_command_size(cmd->t_task->t_task_cdb));
5026
5027 task->task_size = cmd->data_length;
5028 task->task_sg_num =
5029 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
5030
5031 atomic_inc(&cmd->t_task->t_fe_count);
5032 atomic_inc(&cmd->t_task->t_se_count);
5033
5034 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
5035 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
5036 u32 se_mem_cnt = 0, task_offset = 0;
5037
e63af958
NB
5038 if (!list_empty(T_TASK(cmd)->t_mem_list))
5039 se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
5040 struct se_mem, se_list);
c66ac9db
NB
5041
5042 ret = transport_do_se_mem_map(dev, task,
5043 cmd->t_task->t_mem_list, NULL, se_mem,
5044 &se_mem_lout, &se_mem_cnt, &task_offset);
5045 if (ret < 0)
5046 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5047
5048 if (dev->transport->map_task_SG)
5049 return dev->transport->map_task_SG(task);
5050 return 0;
5051 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
5052 if (dev->transport->map_task_non_SG)
5053 return dev->transport->map_task_non_SG(task);
5054 return 0;
5055 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
5056 if (dev->transport->cdb_none)
5057 return dev->transport->cdb_none(task);
5058 return 0;
5059 } else {
5060 BUG();
5061 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5062 }
5063}
5064
5065/* transport_generic_new_cmd(): Called from transport_processing_thread()
5066 *
5067 * Allocate storage transport resources from a set of values predefined
5068 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5069 * Any non zero return here is treated as an "out of resource' op here.
5070 */
5071 /*
5072 * Generate struct se_task(s) and/or their payloads for this CDB.
5073 */
5074static int transport_generic_new_cmd(struct se_cmd *cmd)
5075{
5076 struct se_portal_group *se_tpg;
5077 struct se_task *task;
5078 struct se_device *dev = SE_DEV(cmd);
5079 int ret = 0;
5080
5081 /*
5082 * Determine is the TCM fabric module has already allocated physical
5083 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5084 * to setup beforehand the linked list of physical memory at
5085 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5086 */
5087 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
5088 ret = transport_allocate_resources(cmd);
5089 if (ret < 0)
5090 return ret;
5091 }
5092
5093 ret = transport_get_sectors(cmd);
5094 if (ret < 0)
5095 return ret;
5096
5097 ret = transport_new_cmd_obj(cmd);
5098 if (ret < 0)
5099 return ret;
5100
5101 /*
5102 * Determine if the calling TCM fabric module is talking to
5103 * Linux/NET via kernel sockets and needs to allocate a
5104 * struct iovec array to complete the struct se_cmd
5105 */
5106 se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
5107 if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
5108 ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
5109 if (ret < 0)
5110 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5111 }
5112
5113 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
5114 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
5115 if (atomic_read(&task->task_sent))
5116 continue;
5117 if (!dev->transport->map_task_SG)
5118 continue;
5119
5120 ret = dev->transport->map_task_SG(task);
5121 if (ret < 0)
5122 return ret;
5123 }
5124 } else {
5125 ret = transport_map_control_cmd_to_task(cmd);
5126 if (ret < 0)
5127 return ret;
5128 }
5129
5130 /*
5131 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5132 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5133 * will be added to the struct se_device execution queue after its WRITE
5134 * data has arrived. (ie: It gets handled by the transport processing
5135 * thread a second time)
5136 */
5137 if (cmd->data_direction == DMA_TO_DEVICE) {
5138 transport_add_tasks_to_state_queue(cmd);
5139 return transport_generic_write_pending(cmd);
5140 }
5141 /*
5142 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5143 * to the execution queue.
5144 */
5145 transport_execute_tasks(cmd);
5146 return 0;
5147}
5148
5149/* transport_generic_process_write():
5150 *
5151 *
5152 */
5153void transport_generic_process_write(struct se_cmd *cmd)
5154{
5155#if 0
5156 /*
5157 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5158 * original EDTL
5159 */
5160 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
5161 if (!T_TASK(cmd)->t_tasks_se_num) {
5162 unsigned char *dst, *buf =
5163 (unsigned char *)T_TASK(cmd)->t_task_buf;
5164
5165 dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
5166 if (!(dst)) {
5167 printk(KERN_ERR "Unable to allocate memory for"
5168 " WRITE underflow\n");
5169 transport_generic_request_failure(cmd, NULL,
5170 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5171 return;
5172 }
5173 memcpy(dst, buf, cmd->cmd_spdtl);
5174
5175 kfree(T_TASK(cmd)->t_task_buf);
5176 T_TASK(cmd)->t_task_buf = dst;
5177 } else {
5178 struct scatterlist *sg =
5179 (struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
5180 struct scatterlist *orig_sg;
5181
5182 orig_sg = kzalloc(sizeof(struct scatterlist) *
5183 T_TASK(cmd)->t_tasks_se_num,
5184 GFP_KERNEL))) {
5185 if (!(orig_sg)) {
5186 printk(KERN_ERR "Unable to allocate memory"
5187 " for WRITE underflow\n");
5188 transport_generic_request_failure(cmd, NULL,
5189 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5190 return;
5191 }
5192
5193 memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
5194 sizeof(struct scatterlist) *
5195 T_TASK(cmd)->t_tasks_se_num);
5196
5197 cmd->data_length = cmd->cmd_spdtl;
5198 /*
5199 * FIXME, clear out original struct se_task and state
5200 * information.
5201 */
5202 if (transport_generic_new_cmd(cmd) < 0) {
5203 transport_generic_request_failure(cmd, NULL,
5204 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5205 kfree(orig_sg);
5206 return;
5207 }
5208
5209 transport_memcpy_write_sg(cmd, orig_sg);
5210 }
5211 }
5212#endif
5213 transport_execute_tasks(cmd);
5214}
5215EXPORT_SYMBOL(transport_generic_process_write);
5216
5217/* transport_generic_write_pending():
5218 *
5219 *
5220 */
5221static int transport_generic_write_pending(struct se_cmd *cmd)
5222{
5223 unsigned long flags;
5224 int ret;
5225
5226 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5227 cmd->t_state = TRANSPORT_WRITE_PENDING;
5228 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5229 /*
5230 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5231 * from the passed Linux/SCSI struct scatterlist located at
5232 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5233 * T_TASK(se_cmd)->t_task_buf.
5234 */
5235 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5236 transport_memcpy_read_contig(cmd,
5237 T_TASK(cmd)->t_task_buf,
5238 T_TASK(cmd)->t_task_pt_sgl);
5239 /*
5240 * Clear the se_cmd for WRITE_PENDING status in order to set
5241 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5242 * can be called from HW target mode interrupt code. This is safe
5243 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5244 * because the se_cmd->se_lun pointer is not being cleared.
5245 */
5246 transport_cmd_check_stop(cmd, 1, 0);
5247
5248 /*
5249 * Call the fabric write_pending function here to let the
5250 * frontend know that WRITE buffers are ready.
5251 */
5252 ret = CMD_TFO(cmd)->write_pending(cmd);
5253 if (ret < 0)
5254 return ret;
5255
5256 return PYX_TRANSPORT_WRITE_PENDING;
5257}
5258
5259/* transport_release_cmd_to_pool():
5260 *
5261 *
5262 */
5263void transport_release_cmd_to_pool(struct se_cmd *cmd)
5264{
5265 BUG_ON(!T_TASK(cmd));
5266 BUG_ON(!CMD_TFO(cmd));
5267
5268 transport_free_se_cmd(cmd);
5269 CMD_TFO(cmd)->release_cmd_to_pool(cmd);
5270}
5271EXPORT_SYMBOL(transport_release_cmd_to_pool);
5272
5273/* transport_generic_free_cmd():
5274 *
5275 * Called from processing frontend to release storage engine resources
5276 */
5277void transport_generic_free_cmd(
5278 struct se_cmd *cmd,
5279 int wait_for_tasks,
5280 int release_to_pool,
5281 int session_reinstatement)
5282{
5283 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
5284 transport_release_cmd_to_pool(cmd);
5285 else {
5286 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5287
5288 if (SE_LUN(cmd)) {
5289#if 0
5290 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5291 " SE_LUN(cmd)\n", cmd,
5292 CMD_TFO(cmd)->get_task_tag(cmd));
5293#endif
5294 transport_lun_remove_cmd(cmd);
5295 }
5296
5297 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5298 cmd->transport_wait_for_tasks(cmd, 0, 0);
5299
5300 transport_generic_remove(cmd, release_to_pool,
5301 session_reinstatement);
5302 }
5303}
5304EXPORT_SYMBOL(transport_generic_free_cmd);
5305
5306static void transport_nop_wait_for_tasks(
5307 struct se_cmd *cmd,
5308 int remove_cmd,
5309 int session_reinstatement)
5310{
5311 return;
5312}
5313
5314/* transport_lun_wait_for_tasks():
5315 *
5316 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5317 * an struct se_lun to be successfully shutdown.
5318 */
5319static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5320{
5321 unsigned long flags;
5322 int ret;
5323 /*
5324 * If the frontend has already requested this struct se_cmd to
5325 * be stopped, we can safely ignore this struct se_cmd.
5326 */
5327 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5328 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
5329 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5330 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5331 " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
5332 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5333 transport_cmd_check_stop(cmd, 1, 0);
5334 return -1;
5335 }
5336 atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
5337 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5338
5339 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5340
5341 ret = transport_stop_tasks_for_cmd(cmd);
5342
5343 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5344 " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
5345 if (!ret) {
5346 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5347 CMD_TFO(cmd)->get_task_tag(cmd));
5348 wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
5349 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5350 CMD_TFO(cmd)->get_task_tag(cmd));
5351 }
5352 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
5353
5354 return 0;
5355}
5356
5357/* #define DEBUG_CLEAR_LUN */
5358#ifdef DEBUG_CLEAR_LUN
5359#define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5360#else
5361#define DEBUG_CLEAR_L(x...)
5362#endif
5363
5364static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5365{
5366 struct se_cmd *cmd = NULL;
5367 unsigned long lun_flags, cmd_flags;
5368 /*
5369 * Do exception processing and return CHECK_CONDITION status to the
5370 * Initiator Port.
5371 */
5372 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5373 while (!list_empty_careful(&lun->lun_cmd_list)) {
5374 cmd = list_entry(lun->lun_cmd_list.next,
5375 struct se_cmd, se_lun_list);
5376 list_del(&cmd->se_lun_list);
5377
5378 if (!(T_TASK(cmd))) {
5379 printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
5380 "[i,t]_state: %u/%u\n",
5381 CMD_TFO(cmd)->get_task_tag(cmd),
5382 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5383 BUG();
5384 }
5385 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
5386 /*
5387 * This will notify iscsi_target_transport.c:
5388 * transport_cmd_check_stop() that a LUN shutdown is in
5389 * progress for the iscsi_cmd_t.
5390 */
5391 spin_lock(&T_TASK(cmd)->t_state_lock);
5392 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5393 "_lun_stop for ITT: 0x%08x\n",
5394 SE_LUN(cmd)->unpacked_lun,
5395 CMD_TFO(cmd)->get_task_tag(cmd));
5396 atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
5397 spin_unlock(&T_TASK(cmd)->t_state_lock);
5398
5399 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5400
5401 if (!(SE_LUN(cmd))) {
5402 printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5403 CMD_TFO(cmd)->get_task_tag(cmd),
5404 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5405 BUG();
5406 }
5407 /*
5408 * If the Storage engine still owns the iscsi_cmd_t, determine
5409 * and/or stop its context.
5410 */
5411 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5412 "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
5413 CMD_TFO(cmd)->get_task_tag(cmd));
5414
5415 if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
5416 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5417 continue;
5418 }
5419
5420 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5421 "_wait_for_tasks(): SUCCESS\n",
5422 SE_LUN(cmd)->unpacked_lun,
5423 CMD_TFO(cmd)->get_task_tag(cmd));
5424
5425 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5426 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
5427 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5428 goto check_cond;
5429 }
5430 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
5431 transport_all_task_dev_remove_state(cmd);
5432 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5433
5434 transport_free_dev_tasks(cmd);
5435 /*
5436 * The Storage engine stopped this struct se_cmd before it was
5437 * send to the fabric frontend for delivery back to the
5438 * Initiator Node. Return this SCSI CDB back with an
5439 * CHECK_CONDITION status.
5440 */
5441check_cond:
5442 transport_send_check_condition_and_sense(cmd,
5443 TCM_NON_EXISTENT_LUN, 0);
5444 /*
5445 * If the fabric frontend is waiting for this iscsi_cmd_t to
5446 * be released, notify the waiting thread now that LU has
5447 * finished accessing it.
5448 */
5449 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5450 if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
5451 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5452 " struct se_cmd: %p ITT: 0x%08x\n",
5453 lun->unpacked_lun,
5454 cmd, CMD_TFO(cmd)->get_task_tag(cmd));
5455
5456 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
5457 cmd_flags);
5458 transport_cmd_check_stop(cmd, 1, 0);
5459 complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5460 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5461 continue;
5462 }
5463 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5464 lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
5465
5466 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5467 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5468 }
5469 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5470}
5471
5472static int transport_clear_lun_thread(void *p)
5473{
5474 struct se_lun *lun = (struct se_lun *)p;
5475
5476 __transport_clear_lun_from_sessions(lun);
5477 complete(&lun->lun_shutdown_comp);
5478
5479 return 0;
5480}
5481
5482int transport_clear_lun_from_sessions(struct se_lun *lun)
5483{
5484 struct task_struct *kt;
5485
5486 kt = kthread_run(transport_clear_lun_thread, (void *)lun,
5487 "tcm_cl_%u", lun->unpacked_lun);
5488 if (IS_ERR(kt)) {
5489 printk(KERN_ERR "Unable to start clear_lun thread\n");
5490 return -1;
5491 }
5492 wait_for_completion(&lun->lun_shutdown_comp);
5493
5494 return 0;
5495}
5496
5497/* transport_generic_wait_for_tasks():
5498 *
5499 * Called from frontend or passthrough context to wait for storage engine
5500 * to pause and/or release frontend generated struct se_cmd.
5501 */
5502static void transport_generic_wait_for_tasks(
5503 struct se_cmd *cmd,
5504 int remove_cmd,
5505 int session_reinstatement)
5506{
5507 unsigned long flags;
5508
5509 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5510 return;
5511
5512 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5513 /*
5514 * If we are already stopped due to an external event (ie: LUN shutdown)
5515 * sleep until the connection can have the passed struct se_cmd back.
5516 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5517 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5518 * has completed its operation on the struct se_cmd.
5519 */
5520 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
5521
5522 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5523 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5524 "_stop_comp); for ITT: 0x%08x\n",
5525 CMD_TFO(cmd)->get_task_tag(cmd));
5526 /*
5527 * There is a special case for WRITES where a FE exception +
5528 * LUN shutdown means ConfigFS context is still sleeping on
5529 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5530 * We go ahead and up transport_lun_stop_comp just to be sure
5531 * here.
5532 */
5533 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5534 complete(&T_TASK(cmd)->transport_lun_stop_comp);
5535 wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5536 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5537
5538 transport_all_task_dev_remove_state(cmd);
5539 /*
5540 * At this point, the frontend who was the originator of this
5541 * struct se_cmd, now owns the structure and can be released through
5542 * normal means below.
5543 */
5544 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5545 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5546 "stop_comp); for ITT: 0x%08x\n",
5547 CMD_TFO(cmd)->get_task_tag(cmd));
5548
5549 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5550 }
52208ae3
NB
5551 if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
5552 atomic_read(&T_TASK(cmd)->t_transport_aborted))
c66ac9db
NB
5553 goto remove;
5554
5555 atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
5556
5557 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5558 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5559 " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
5560 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
5561 cmd->deferred_t_state);
5562
5563 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5564
5565 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5566
5567 wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
5568
5569 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5570 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
5571 atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
5572
5573 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5574 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5575 CMD_TFO(cmd)->get_task_tag(cmd));
5576remove:
5577 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5578 if (!remove_cmd)
5579 return;
5580
5581 transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5582}
5583
5584static int transport_get_sense_codes(
5585 struct se_cmd *cmd,
5586 u8 *asc,
5587 u8 *ascq)
5588{
5589 *asc = cmd->scsi_asc;
5590 *ascq = cmd->scsi_ascq;
5591
5592 return 0;
5593}
5594
5595static int transport_set_sense_codes(
5596 struct se_cmd *cmd,
5597 u8 asc,
5598 u8 ascq)
5599{
5600 cmd->scsi_asc = asc;
5601 cmd->scsi_ascq = ascq;
5602
5603 return 0;
5604}
5605
5606int transport_send_check_condition_and_sense(
5607 struct se_cmd *cmd,
5608 u8 reason,
5609 int from_transport)
5610{
5611 unsigned char *buffer = cmd->sense_buffer;
5612 unsigned long flags;
5613 int offset;
5614 u8 asc = 0, ascq = 0;
5615
5616 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5617 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5618 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5619 return 0;
5620 }
5621 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5622 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5623
5624 if (!reason && from_transport)
5625 goto after_reason;
5626
5627 if (!from_transport)
5628 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5629 /*
5630 * Data Segment and SenseLength of the fabric response PDU.
5631 *
5632 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5633 * from include/scsi/scsi_cmnd.h
5634 */
5635 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
5636 TRANSPORT_SENSE_BUFFER);
5637 /*
5638 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5639 * SENSE KEY values from include/scsi/scsi.h
5640 */
5641 switch (reason) {
5642 case TCM_NON_EXISTENT_LUN:
5643 case TCM_UNSUPPORTED_SCSI_OPCODE:
5644 case TCM_SECTOR_COUNT_TOO_MANY:
5645 /* CURRENT ERROR */
5646 buffer[offset] = 0x70;
5647 /* ILLEGAL REQUEST */
5648 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5649 /* INVALID COMMAND OPERATION CODE */
5650 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5651 break;
5652 case TCM_UNKNOWN_MODE_PAGE:
5653 /* CURRENT ERROR */
5654 buffer[offset] = 0x70;
5655 /* ILLEGAL REQUEST */
5656 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5657 /* INVALID FIELD IN CDB */
5658 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5659 break;
5660 case TCM_CHECK_CONDITION_ABORT_CMD:
5661 /* CURRENT ERROR */
5662 buffer[offset] = 0x70;
5663 /* ABORTED COMMAND */
5664 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5665 /* BUS DEVICE RESET FUNCTION OCCURRED */
5666 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5667 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5668 break;
5669 case TCM_INCORRECT_AMOUNT_OF_DATA:
5670 /* CURRENT ERROR */
5671 buffer[offset] = 0x70;
5672 /* ABORTED COMMAND */
5673 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5674 /* WRITE ERROR */
5675 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5676 /* NOT ENOUGH UNSOLICITED DATA */
5677 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5678 break;
5679 case TCM_INVALID_CDB_FIELD:
5680 /* CURRENT ERROR */
5681 buffer[offset] = 0x70;
5682 /* ABORTED COMMAND */
5683 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5684 /* INVALID FIELD IN CDB */
5685 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5686 break;
5687 case TCM_INVALID_PARAMETER_LIST:
5688 /* CURRENT ERROR */
5689 buffer[offset] = 0x70;
5690 /* ABORTED COMMAND */
5691 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5692 /* INVALID FIELD IN PARAMETER LIST */
5693 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5694 break;
5695 case TCM_UNEXPECTED_UNSOLICITED_DATA:
5696 /* CURRENT ERROR */
5697 buffer[offset] = 0x70;
5698 /* ABORTED COMMAND */
5699 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5700 /* WRITE ERROR */
5701 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5702 /* UNEXPECTED_UNSOLICITED_DATA */
5703 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5704 break;
5705 case TCM_SERVICE_CRC_ERROR:
5706 /* CURRENT ERROR */
5707 buffer[offset] = 0x70;
5708 /* ABORTED COMMAND */
5709 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5710 /* PROTOCOL SERVICE CRC ERROR */
5711 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5712 /* N/A */
5713 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5714 break;
5715 case TCM_SNACK_REJECTED:
5716 /* CURRENT ERROR */
5717 buffer[offset] = 0x70;
5718 /* ABORTED COMMAND */
5719 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5720 /* READ ERROR */
5721 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5722 /* FAILED RETRANSMISSION REQUEST */
5723 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5724 break;
5725 case TCM_WRITE_PROTECTED:
5726 /* CURRENT ERROR */
5727 buffer[offset] = 0x70;
5728 /* DATA PROTECT */
5729 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5730 /* WRITE PROTECTED */
5731 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5732 break;
5733 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5734 /* CURRENT ERROR */
5735 buffer[offset] = 0x70;
5736 /* UNIT ATTENTION */
5737 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5738 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5739 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5740 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5741 break;
5742 case TCM_CHECK_CONDITION_NOT_READY:
5743 /* CURRENT ERROR */
5744 buffer[offset] = 0x70;
5745 /* Not Ready */
5746 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5747 transport_get_sense_codes(cmd, &asc, &ascq);
5748 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5749 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5750 break;
5751 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5752 default:
5753 /* CURRENT ERROR */
5754 buffer[offset] = 0x70;
5755 /* ILLEGAL REQUEST */
5756 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5757 /* LOGICAL UNIT COMMUNICATION FAILURE */
5758 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5759 break;
5760 }
5761 /*
5762 * This code uses linux/include/scsi/scsi.h SAM status codes!
5763 */
5764 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5765 /*
5766 * Automatically padded, this value is encoded in the fabric's
5767 * data_length response PDU containing the SCSI defined sense data.
5768 */
5769 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
5770
5771after_reason:
5772 CMD_TFO(cmd)->queue_status(cmd);
5773 return 0;
5774}
5775EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5776
5777int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5778{
5779 int ret = 0;
5780
5781 if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
5782 if (!(send_status) ||
5783 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5784 return 1;
5785#if 0
5786 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5787 " status for CDB: 0x%02x ITT: 0x%08x\n",
5788 T_TASK(cmd)->t_task_cdb[0],
5789 CMD_TFO(cmd)->get_task_tag(cmd));
5790#endif
5791 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5792 CMD_TFO(cmd)->queue_status(cmd);
5793 ret = 1;
5794 }
5795 return ret;
5796}
5797EXPORT_SYMBOL(transport_check_aborted_status);
5798
5799void transport_send_task_abort(struct se_cmd *cmd)
5800{
5801 /*
5802 * If there are still expected incoming fabric WRITEs, we wait
5803 * until until they have completed before sending a TASK_ABORTED
5804 * response. This response with TASK_ABORTED status will be
5805 * queued back to fabric module by transport_check_aborted_status().
5806 */
5807 if (cmd->data_direction == DMA_TO_DEVICE) {
5808 if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
5809 atomic_inc(&T_TASK(cmd)->t_transport_aborted);
5810 smp_mb__after_atomic_inc();
5811 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5812 transport_new_cmd_failure(cmd);
5813 return;
5814 }
5815 }
5816 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5817#if 0
5818 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5819 " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
5820 CMD_TFO(cmd)->get_task_tag(cmd));
5821#endif
5822 CMD_TFO(cmd)->queue_status(cmd);
5823}
5824
5825/* transport_generic_do_tmr():
5826 *
5827 *
5828 */
5829int transport_generic_do_tmr(struct se_cmd *cmd)
5830{
5831 struct se_cmd *ref_cmd;
5832 struct se_device *dev = SE_DEV(cmd);
5833 struct se_tmr_req *tmr = cmd->se_tmr_req;
5834 int ret;
5835
5836 switch (tmr->function) {
5837 case ABORT_TASK:
5838 ref_cmd = tmr->ref_cmd;
5839 tmr->response = TMR_FUNCTION_REJECTED;
5840 break;
5841 case ABORT_TASK_SET:
5842 case CLEAR_ACA:
5843 case CLEAR_TASK_SET:
5844 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5845 break;
5846 case LUN_RESET:
5847 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5848 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5849 TMR_FUNCTION_REJECTED;
5850 break;
5851#if 0
5852 case TARGET_WARM_RESET:
5853 transport_generic_host_reset(dev->se_hba);
5854 tmr->response = TMR_FUNCTION_REJECTED;
5855 break;
5856 case TARGET_COLD_RESET:
5857 transport_generic_host_reset(dev->se_hba);
5858 transport_generic_cold_reset(dev->se_hba);
5859 tmr->response = TMR_FUNCTION_REJECTED;
5860 break;
5861#endif
5862 default:
5863 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5864 tmr->function);
5865 tmr->response = TMR_FUNCTION_REJECTED;
5866 break;
5867 }
5868
5869 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5870 CMD_TFO(cmd)->queue_tm_rsp(cmd);
5871
5872 transport_cmd_check_stop(cmd, 2, 0);
5873 return 0;
5874}
5875
5876/*
5877 * Called with spin_lock_irq(&dev->execute_task_lock); held
5878 *
5879 */
5880static struct se_task *
5881transport_get_task_from_state_list(struct se_device *dev)
5882{
5883 struct se_task *task;
5884
5885 if (list_empty(&dev->state_task_list))
5886 return NULL;
5887
5888 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5889 break;
5890
5891 list_del(&task->t_state_list);
5892 atomic_set(&task->task_state_active, 0);
5893
5894 return task;
5895}
5896
5897static void transport_processing_shutdown(struct se_device *dev)
5898{
5899 struct se_cmd *cmd;
5900 struct se_queue_req *qr;
5901 struct se_task *task;
5902 u8 state;
5903 unsigned long flags;
5904 /*
5905 * Empty the struct se_device's struct se_task state list.
5906 */
5907 spin_lock_irqsave(&dev->execute_task_lock, flags);
5908 while ((task = transport_get_task_from_state_list(dev))) {
5909 if (!(TASK_CMD(task))) {
5910 printk(KERN_ERR "TASK_CMD(task) is NULL!\n");
5911 continue;
5912 }
5913 cmd = TASK_CMD(task);
5914
5915 if (!T_TASK(cmd)) {
5916 printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:"
5917 " %p ITT: 0x%08x\n", task, cmd,
5918 CMD_TFO(cmd)->get_task_tag(cmd));
5919 continue;
5920 }
5921 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5922
5923 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5924
5925 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5926 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5927 " %d/%d cdb: 0x%02x\n", cmd, task,
5928 CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn,
5929 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state,
5930 cmd->t_state, cmd->deferred_t_state,
5931 T_TASK(cmd)->t_task_cdb[0]);
5932 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5933 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5934 " t_transport_stop: %d t_transport_sent: %d\n",
5935 CMD_TFO(cmd)->get_task_tag(cmd),
5936 T_TASK(cmd)->t_task_cdbs,
5937 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
5938 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
5939 atomic_read(&T_TASK(cmd)->t_transport_active),
5940 atomic_read(&T_TASK(cmd)->t_transport_stop),
5941 atomic_read(&T_TASK(cmd)->t_transport_sent));
5942
5943 if (atomic_read(&task->task_active)) {
5944 atomic_set(&task->task_stop, 1);
5945 spin_unlock_irqrestore(
5946 &T_TASK(cmd)->t_state_lock, flags);
5947
5948 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5949 " %p\n", task, dev);
5950 wait_for_completion(&task->task_stop_comp);
5951 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5952 task, dev);
5953
5954 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5955 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
5956
5957 atomic_set(&task->task_active, 0);
5958 atomic_set(&task->task_stop, 0);
52208ae3
NB
5959 } else {
5960 if (atomic_read(&task->task_execute_queue) != 0)
5961 transport_remove_task_from_execute_queue(task, dev);
c66ac9db
NB
5962 }
5963 __transport_stop_task_timer(task, &flags);
5964
5965 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) {
5966 spin_unlock_irqrestore(
5967 &T_TASK(cmd)->t_state_lock, flags);
5968
5969 DEBUG_DO("Skipping task: %p, dev: %p for"
5970 " t_task_cdbs_ex_left: %d\n", task, dev,
5971 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left));
5972
5973 spin_lock_irqsave(&dev->execute_task_lock, flags);
5974 continue;
5975 }
5976
5977 if (atomic_read(&T_TASK(cmd)->t_transport_active)) {
5978 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5979 " %p\n", task, dev);
5980
5981 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
5982 spin_unlock_irqrestore(
5983 &T_TASK(cmd)->t_state_lock, flags);
5984 transport_send_check_condition_and_sense(
5985 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5986 0);
5987 transport_remove_cmd_from_queue(cmd,
5988 SE_DEV(cmd)->dev_queue_obj);
5989
5990 transport_lun_remove_cmd(cmd);
5991 transport_cmd_check_stop(cmd, 1, 0);
5992 } else {
5993 spin_unlock_irqrestore(
5994 &T_TASK(cmd)->t_state_lock, flags);
5995
5996 transport_remove_cmd_from_queue(cmd,
5997 SE_DEV(cmd)->dev_queue_obj);
5998
5999 transport_lun_remove_cmd(cmd);
6000
6001 if (transport_cmd_check_stop(cmd, 1, 0))
6002 transport_generic_remove(cmd, 0, 0);
6003 }
6004
6005 spin_lock_irqsave(&dev->execute_task_lock, flags);
6006 continue;
6007 }
6008 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6009 task, dev);
6010
6011 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6012 spin_unlock_irqrestore(
6013 &T_TASK(cmd)->t_state_lock, flags);
6014 transport_send_check_condition_and_sense(cmd,
6015 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6016 transport_remove_cmd_from_queue(cmd,
6017 SE_DEV(cmd)->dev_queue_obj);
6018
6019 transport_lun_remove_cmd(cmd);
6020 transport_cmd_check_stop(cmd, 1, 0);
6021 } else {
6022 spin_unlock_irqrestore(
6023 &T_TASK(cmd)->t_state_lock, flags);
6024
6025 transport_remove_cmd_from_queue(cmd,
6026 SE_DEV(cmd)->dev_queue_obj);
6027 transport_lun_remove_cmd(cmd);
6028
6029 if (transport_cmd_check_stop(cmd, 1, 0))
6030 transport_generic_remove(cmd, 0, 0);
6031 }
6032
6033 spin_lock_irqsave(&dev->execute_task_lock, flags);
6034 }
6035 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
6036 /*
6037 * Empty the struct se_device's struct se_cmd list.
6038 */
6039 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6040 while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) {
6041 spin_unlock_irqrestore(
6042 &dev->dev_queue_obj->cmd_queue_lock, flags);
6043 cmd = (struct se_cmd *)qr->cmd;
6044 state = qr->state;
6045 kfree(qr);
6046
6047 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6048 cmd, state);
6049
6050 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6051 transport_send_check_condition_and_sense(cmd,
6052 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6053
6054 transport_lun_remove_cmd(cmd);
6055 transport_cmd_check_stop(cmd, 1, 0);
6056 } else {
6057 transport_lun_remove_cmd(cmd);
6058 if (transport_cmd_check_stop(cmd, 1, 0))
6059 transport_generic_remove(cmd, 0, 0);
6060 }
6061 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6062 }
6063 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
6064}
6065
6066/* transport_processing_thread():
6067 *
6068 *
6069 */
6070static int transport_processing_thread(void *param)
6071{
6072 int ret, t_state;
6073 struct se_cmd *cmd;
6074 struct se_device *dev = (struct se_device *) param;
6075 struct se_queue_req *qr;
6076
6077 set_user_nice(current, -20);
6078
6079 while (!kthread_should_stop()) {
6080 ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq,
6081 atomic_read(&dev->dev_queue_obj->queue_cnt) ||
6082 kthread_should_stop());
6083 if (ret < 0)
6084 goto out;
6085
6086 spin_lock_irq(&dev->dev_status_lock);
6087 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
6088 spin_unlock_irq(&dev->dev_status_lock);
6089 transport_processing_shutdown(dev);
6090 continue;
6091 }
6092 spin_unlock_irq(&dev->dev_status_lock);
6093
6094get_cmd:
6095 __transport_execute_tasks(dev);
6096
6097 qr = transport_get_qr_from_queue(dev->dev_queue_obj);
6098 if (!(qr))
6099 continue;
6100
6101 cmd = (struct se_cmd *)qr->cmd;
6102 t_state = qr->state;
6103 kfree(qr);
6104
6105 switch (t_state) {
6106 case TRANSPORT_NEW_CMD_MAP:
6107 if (!(CMD_TFO(cmd)->new_cmd_map)) {
6108 printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is"
6109 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6110 BUG();
6111 }
6112 ret = CMD_TFO(cmd)->new_cmd_map(cmd);
6113 if (ret < 0) {
6114 cmd->transport_error_status = ret;
6115 transport_generic_request_failure(cmd, NULL,
6116 0, (cmd->data_direction !=
6117 DMA_TO_DEVICE));
6118 break;
6119 }
6120 /* Fall through */
6121 case TRANSPORT_NEW_CMD:
6122 ret = transport_generic_new_cmd(cmd);
6123 if (ret < 0) {
6124 cmd->transport_error_status = ret;
6125 transport_generic_request_failure(cmd, NULL,
6126 0, (cmd->data_direction !=
6127 DMA_TO_DEVICE));
6128 }
6129 break;
6130 case TRANSPORT_PROCESS_WRITE:
6131 transport_generic_process_write(cmd);
6132 break;
6133 case TRANSPORT_COMPLETE_OK:
6134 transport_stop_all_task_timers(cmd);
6135 transport_generic_complete_ok(cmd);
6136 break;
6137 case TRANSPORT_REMOVE:
6138 transport_generic_remove(cmd, 1, 0);
6139 break;
6140 case TRANSPORT_PROCESS_TMR:
6141 transport_generic_do_tmr(cmd);
6142 break;
6143 case TRANSPORT_COMPLETE_FAILURE:
6144 transport_generic_request_failure(cmd, NULL, 1, 1);
6145 break;
6146 case TRANSPORT_COMPLETE_TIMEOUT:
6147 transport_stop_all_task_timers(cmd);
6148 transport_generic_request_timeout(cmd);
6149 break;
6150 default:
6151 printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
6152 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6153 " %u\n", t_state, cmd->deferred_t_state,
6154 CMD_TFO(cmd)->get_task_tag(cmd),
6155 CMD_TFO(cmd)->get_cmd_state(cmd),
6156 SE_LUN(cmd)->unpacked_lun);
6157 BUG();
6158 }
6159
6160 goto get_cmd;
6161 }
6162
6163out:
6164 transport_release_all_cmds(dev);
6165 dev->process_thread = NULL;
6166 return 0;
6167}