staging: xillybus: Blank lines add/remove
[linux-2.6-block.git] / drivers / staging / xillybus / xillybus_core.c
CommitLineData
48bae050
EB
1/*
2 * linux/drivers/misc/xillybus_core.c
3 *
4 * Copyright 2011 Xillybus Ltd, http://xillybus.com
5 *
6 * Driver for the Xillybus FPGA/host framework.
7 *
8 * This driver interfaces with a special IP core in an FPGA, setting up
9 * a pipe between a hardware FIFO in the programmable logic and a device
10 * file in the host. The number of such pipes and their attributes are
11 * set up on the logic. This driver detects these automatically and
12 * creates the device files accordingly.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the smems of the GNU General Public License as published by
16 * the Free Software Foundation; version 2 of the License.
17 */
18
19#include <linux/list.h>
20#include <linux/device.h>
21#include <linux/module.h>
22#include <linux/io.h>
23#include <linux/dma-mapping.h>
24#include <linux/interrupt.h>
25#include <linux/sched.h>
26#include <linux/fs.h>
27#include <linux/cdev.h>
28#include <linux/spinlock.h>
29#include <linux/mutex.h>
48bae050
EB
30#include <linux/crc32.h>
31#include <linux/poll.h>
32#include <linux/delay.h>
48bae050
EB
33#include <linux/slab.h>
34#include <linux/workqueue.h>
35#include "xillybus.h"
36
37MODULE_DESCRIPTION("Xillybus core functions");
38MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
39MODULE_VERSION("1.07");
40MODULE_ALIAS("xillybus_core");
41MODULE_LICENSE("GPL v2");
42
43/* General timeout is 100 ms, rx timeout is 10 ms */
44#define XILLY_RX_TIMEOUT (10*HZ/1000)
45#define XILLY_TIMEOUT (100*HZ/1000)
46
539889ee
EB
47#define fpga_msg_ctrl_reg 0x0008
48#define fpga_dma_control_reg 0x0020
49#define fpga_dma_bufno_reg 0x0024
50#define fpga_dma_bufaddr_lowaddr_reg 0x0028
51#define fpga_dma_bufaddr_highaddr_reg 0x002c
52#define fpga_buf_ctrl_reg 0x0030
53#define fpga_buf_offset_reg 0x0034
54#define fpga_endian_reg 0x0040
48bae050
EB
55
56#define XILLYMSG_OPCODE_RELEASEBUF 1
57#define XILLYMSG_OPCODE_QUIESCEACK 2
58#define XILLYMSG_OPCODE_FIFOEOF 3
59#define XILLYMSG_OPCODE_FATAL_ERROR 4
60#define XILLYMSG_OPCODE_NONEMPTY 5
61
e71042f2
EB
62static const char xillyname[] = "xillybus";
63
48bae050
EB
64static struct class *xillybus_class;
65
66/*
67 * ep_list_lock is the last lock to be taken; No other lock requests are
68 * allowed while holding it. It merely protects list_of_endpoints, and not
69 * the endpoints listed in it.
70 */
71
72static LIST_HEAD(list_of_endpoints);
73static struct mutex ep_list_lock;
7ee9ded2 74static struct workqueue_struct *xillybus_wq;
48bae050
EB
75
76/*
77 * Locking scheme: Mutexes protect invocations of character device methods.
78 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
79 *
80 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
81 * buffers' end_offset fields against changes made by IRQ handler (and in
82 * theory, other file request handlers, but the mutex handles that). Nothing
83 * else.
84 * They are held for short direct memory manipulations. Needless to say,
85 * no mutex locking is allowed when a spinlock is held.
86 *
87 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
88 *
89 * register_mutex is endpoint-specific, and is held when non-atomic
90 * register operations are performed. wr_mutex and rd_mutex may be
91 * held when register_mutex is taken, but none of the spinlocks. Note that
92 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
93 * which are unrelated to buf_offset_reg, since they are harmless.
94 *
95 * Blocking on the wait queues is allowed with mutexes held, but not with
96 * spinlocks.
97 *
98 * Only interruptible blocking is allowed on mutexes and wait queues.
99 *
100 * All in all, the locking order goes (with skips allowed, of course):
101 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
102 */
103
35fcf7e3 104static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
48bae050
EB
105{
106 int opcode;
107 int msg_channel, msg_bufno, msg_data, msg_dir;
108
109 opcode = (buf[0] >> 24) & 0xff;
110 msg_dir = buf[0] & 1;
111 msg_channel = (buf[0] >> 1) & 0x7ff;
112 msg_bufno = (buf[0] >> 12) & 0x3ff;
113 msg_data = buf[1] & 0xfffffff;
114
35fcf7e3
EB
115 dev_warn(endpoint->dev,
116 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
117 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
48bae050
EB
118}
119
120/*
121 * xillybus_isr assumes the interrupt is allocated exclusively to it,
122 * which is the natural case MSI and several other hardware-oriented
123 * interrupts. Sharing is not allowed.
124 */
125
126irqreturn_t xillybus_isr(int irq, void *data)
127{
128 struct xilly_endpoint *ep = data;
129 u32 *buf;
130 unsigned int buf_size;
131 int i;
132 int opcode;
133 unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
134 struct xilly_channel *channel;
135
48bae050
EB
136 buf = ep->msgbuf_addr;
137 buf_size = ep->msg_buf_size/sizeof(u32);
138
7ee9ded2 139 ep->ephw->hw_sync_sgl_for_cpu(ep,
48bae050
EB
140 ep->msgbuf_dma_addr,
141 ep->msg_buf_size,
142 DMA_FROM_DEVICE);
143
c14cc622 144 for (i = 0; i < buf_size; i += 2) {
48bae050 145 if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
35fcf7e3
EB
146 malformed_message(ep, &buf[i]);
147 dev_warn(ep->dev,
148 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
91a2dea8
EB
149 ((buf[i+1] >> 28) & 0xf),
150 ep->msg_counter,
151 i/2);
48bae050 152
84590b1a 153 if (++ep->failed_messages > 10) {
35fcf7e3
EB
154 dev_err(ep->dev,
155 "Lost sync with interrupt messages. Stopping.\n");
84590b1a 156 } else {
7ee9ded2 157 ep->ephw->hw_sync_sgl_for_device(
48bae050
EB
158 ep,
159 ep->msgbuf_dma_addr,
160 ep->msg_buf_size,
161 DMA_FROM_DEVICE);
162
163 iowrite32(0x01, /* Message NACK */
539889ee 164 ep->registers + fpga_msg_ctrl_reg);
48bae050
EB
165 }
166 return IRQ_HANDLED;
167 } else if (buf[i] & (1 << 22)) /* Last message */
168 break;
c14cc622 169 }
48bae050
EB
170
171 if (i >= buf_size) {
35fcf7e3 172 dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
48bae050
EB
173 return IRQ_HANDLED;
174 }
175
1af1ea6b 176 buf_size = i + 2;
48bae050 177
1af1ea6b 178 for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
48bae050
EB
179 opcode = (buf[i] >> 24) & 0xff;
180
181 msg_dir = buf[i] & 1;
182 msg_channel = (buf[i] >> 1) & 0x7ff;
183 msg_bufno = (buf[i] >> 12) & 0x3ff;
184 msg_data = buf[i+1] & 0xfffffff;
185
186 switch (opcode) {
187 case XILLYMSG_OPCODE_RELEASEBUF:
48bae050
EB
188 if ((msg_channel > ep->num_channels) ||
189 (msg_channel == 0)) {
35fcf7e3 190 malformed_message(ep, &buf[i]);
48bae050
EB
191 break;
192 }
193
194 channel = ep->channels[msg_channel];
195
196 if (msg_dir) { /* Write channel */
197 if (msg_bufno >= channel->num_wr_buffers) {
35fcf7e3 198 malformed_message(ep, &buf[i]);
48bae050
EB
199 break;
200 }
201 spin_lock(&channel->wr_spinlock);
202 channel->wr_buffers[msg_bufno]->end_offset =
203 msg_data;
204 channel->wr_fpga_buf_idx = msg_bufno;
205 channel->wr_empty = 0;
206 channel->wr_sleepy = 0;
207 spin_unlock(&channel->wr_spinlock);
208
209 wake_up_interruptible(&channel->wr_wait);
210
211 } else {
212 /* Read channel */
213
214 if (msg_bufno >= channel->num_rd_buffers) {
35fcf7e3 215 malformed_message(ep, &buf[i]);
48bae050
EB
216 break;
217 }
218
219 spin_lock(&channel->rd_spinlock);
220 channel->rd_fpga_buf_idx = msg_bufno;
221 channel->rd_full = 0;
222 spin_unlock(&channel->rd_spinlock);
223
224 wake_up_interruptible(&channel->rd_wait);
225 if (!channel->rd_synchronous)
226 queue_delayed_work(
227 xillybus_wq,
228 &channel->rd_workitem,
229 XILLY_RX_TIMEOUT);
230 }
231
232 break;
233 case XILLYMSG_OPCODE_NONEMPTY:
234 if ((msg_channel > ep->num_channels) ||
235 (msg_channel == 0) || (!msg_dir) ||
236 !ep->channels[msg_channel]->wr_supports_nonempty) {
35fcf7e3 237 malformed_message(ep, &buf[i]);
48bae050
EB
238 break;
239 }
240
241 channel = ep->channels[msg_channel];
242
243 if (msg_bufno >= channel->num_wr_buffers) {
35fcf7e3 244 malformed_message(ep, &buf[i]);
48bae050
EB
245 break;
246 }
247 spin_lock(&channel->wr_spinlock);
248 if (msg_bufno == channel->wr_host_buf_idx)
249 channel->wr_ready = 1;
250 spin_unlock(&channel->wr_spinlock);
251
252 wake_up_interruptible(&channel->wr_ready_wait);
253
254 break;
255 case XILLYMSG_OPCODE_QUIESCEACK:
256 ep->idtlen = msg_data;
257 wake_up_interruptible(&ep->ep_wait);
258
259 break;
260 case XILLYMSG_OPCODE_FIFOEOF:
cc6289fa
EB
261 if ((msg_channel > ep->num_channels) ||
262 (msg_channel == 0) || (!msg_dir) ||
263 !ep->channels[msg_channel]->num_wr_buffers) {
264 malformed_message(ep, &buf[i]);
265 break;
266 }
48bae050
EB
267 channel = ep->channels[msg_channel];
268 spin_lock(&channel->wr_spinlock);
269 channel->wr_eof = msg_bufno;
270 channel->wr_sleepy = 0;
271
272 channel->wr_hangup = channel->wr_empty &&
273 (channel->wr_host_buf_idx == msg_bufno);
274
275 spin_unlock(&channel->wr_spinlock);
276
277 wake_up_interruptible(&channel->wr_wait);
278
279 break;
280 case XILLYMSG_OPCODE_FATAL_ERROR:
281 ep->fatal_error = 1;
282 wake_up_interruptible(&ep->ep_wait); /* For select() */
35fcf7e3
EB
283 dev_err(ep->dev,
284 "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
48bae050
EB
285 break;
286 default:
35fcf7e3 287 malformed_message(ep, &buf[i]);
48bae050
EB
288 break;
289 }
290 }
291
7ee9ded2 292 ep->ephw->hw_sync_sgl_for_device(ep,
48bae050
EB
293 ep->msgbuf_dma_addr,
294 ep->msg_buf_size,
295 DMA_FROM_DEVICE);
296
297 ep->msg_counter = (ep->msg_counter + 1) & 0xf;
298 ep->failed_messages = 0;
539889ee 299 iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
48bae050
EB
300
301 return IRQ_HANDLED;
302}
303EXPORT_SYMBOL(xillybus_isr);
304
305/*
306 * A few trivial memory management functions.
307 * NOTE: These functions are used only on probe and remove, and therefore
308 * no locks are applied!
309 */
310
48bae050
EB
311static void xillybus_autoflush(struct work_struct *work);
312
049c1fb4
EB
313struct xilly_alloc_state {
314 void *salami;
315 int left_of_salami;
316 int nbuffer;
317 enum dma_data_direction direction;
318 u32 regdirection;
319};
320
321static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
322 struct xilly_alloc_state *s,
323 struct xilly_buffer **buffers,
324 int bufnum, int bytebufsize)
325{
326 int i, rc;
327 dma_addr_t dma_addr;
328 struct device *dev = ep->dev;
329 struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
330
331 if (buffers) { /* Not the message buffer */
5899005f
EB
332 this_buffer = devm_kcalloc(dev, bufnum,
333 sizeof(struct xilly_buffer),
334 GFP_KERNEL);
049c1fb4
EB
335 if (!this_buffer)
336 return -ENOMEM;
337 }
338
339 for (i = 0; i < bufnum; i++) {
340 /*
341 * Buffers are expected in descending size order, so there
342 * is either enough space for this buffer or none at all.
343 */
344
345 if ((s->left_of_salami < bytebufsize) &&
346 (s->left_of_salami > 0)) {
347 dev_err(ep->dev,
348 "Corrupt buffer allocation in IDT. Aborting.\n");
349 return -ENODEV;
350 }
351
352 if (s->left_of_salami == 0) {
353 int allocorder, allocsize;
354
355 allocsize = PAGE_SIZE;
356 allocorder = 0;
357 while (bytebufsize > allocsize) {
358 allocsize *= 2;
359 allocorder++;
360 }
361
362 s->salami = (void *) devm_get_free_pages(
363 dev,
364 GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
365 allocorder);
049c1fb4
EB
366 if (!s->salami)
367 return -ENOMEM;
64fa2b1b 368
049c1fb4
EB
369 s->left_of_salami = allocsize;
370 }
371
372 rc = ep->ephw->map_single(ep, s->salami,
373 bytebufsize, s->direction,
374 &dma_addr);
049c1fb4
EB
375 if (rc)
376 return rc;
377
378 iowrite32((u32) (dma_addr & 0xffffffff),
539889ee 379 ep->registers + fpga_dma_bufaddr_lowaddr_reg);
049c1fb4 380 iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
539889ee 381 ep->registers + fpga_dma_bufaddr_highaddr_reg);
049c1fb4
EB
382
383 if (buffers) { /* Not the message buffer */
384 this_buffer->addr = s->salami;
385 this_buffer->dma_addr = dma_addr;
386 buffers[i] = this_buffer++;
387
388 iowrite32(s->regdirection | s->nbuffer++,
539889ee 389 ep->registers + fpga_dma_bufno_reg);
049c1fb4
EB
390 } else {
391 ep->msgbuf_addr = s->salami;
392 ep->msgbuf_dma_addr = dma_addr;
393 ep->msg_buf_size = bytebufsize;
394
395 iowrite32(s->regdirection,
539889ee 396 ep->registers + fpga_dma_bufno_reg);
049c1fb4
EB
397 }
398
399 s->left_of_salami -= bytebufsize;
400 s->salami += bytebufsize;
401 }
21c3184c 402 return 0;
049c1fb4
EB
403}
404
48bae050 405static int xilly_setupchannels(struct xilly_endpoint *ep,
48bae050 406 unsigned char *chandesc,
79ae92c4 407 int entries)
48bae050 408{
525be905 409 struct device *dev = ep->dev;
049c1fb4 410 int i, entry, rc;
48bae050
EB
411 struct xilly_channel *channel;
412 int channelnum, bufnum, bufsize, format, is_writebuf;
413 int bytebufsize;
414 int synchronous, allowpartial, exclusive_open, seekable;
415 int supports_nonempty;
48bae050
EB
416 int msg_buf_done = 0;
417
049c1fb4
EB
418 struct xilly_alloc_state rd_alloc = {
419 .salami = NULL,
420 .left_of_salami = 0,
421 .nbuffer = 1,
422 .direction = DMA_TO_DEVICE,
423 .regdirection = 0,
424 };
425
426 struct xilly_alloc_state wr_alloc = {
427 .salami = NULL,
428 .left_of_salami = 0,
429 .nbuffer = 1,
430 .direction = DMA_FROM_DEVICE,
431 .regdirection = 0x80000000,
432 };
48bae050 433
5899005f 434 channel = devm_kcalloc(dev, ep->num_channels,
525be905 435 sizeof(struct xilly_channel), GFP_KERNEL);
48bae050 436 if (!channel)
31ca128d 437 return -ENOMEM;
48bae050 438
5899005f 439 ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
525be905
EB
440 sizeof(struct xilly_channel *),
441 GFP_KERNEL);
48bae050 442 if (!ep->channels)
31ca128d 443 return -ENOMEM;
48bae050
EB
444
445 ep->channels[0] = NULL; /* Channel 0 is message buf. */
446
447 /* Initialize all channels with defaults */
448
449 for (i = 1; i <= ep->num_channels; i++) {
450 channel->wr_buffers = NULL;
451 channel->rd_buffers = NULL;
452 channel->num_wr_buffers = 0;
453 channel->num_rd_buffers = 0;
454 channel->wr_fpga_buf_idx = -1;
455 channel->wr_host_buf_idx = 0;
456 channel->wr_host_buf_pos = 0;
457 channel->wr_empty = 1;
458 channel->wr_ready = 0;
459 channel->wr_sleepy = 1;
460 channel->rd_fpga_buf_idx = 0;
461 channel->rd_host_buf_idx = 0;
462 channel->rd_host_buf_pos = 0;
463 channel->rd_full = 0;
464 channel->wr_ref_count = 0;
465 channel->rd_ref_count = 0;
466
467 spin_lock_init(&channel->wr_spinlock);
468 spin_lock_init(&channel->rd_spinlock);
469 mutex_init(&channel->wr_mutex);
470 mutex_init(&channel->rd_mutex);
471 init_waitqueue_head(&channel->rd_wait);
472 init_waitqueue_head(&channel->wr_wait);
473 init_waitqueue_head(&channel->wr_ready_wait);
474
475 INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
476
477 channel->endpoint = ep;
478 channel->chan_num = i;
479
480 channel->log2_element_size = 0;
481
482 ep->channels[i] = channel++;
483 }
484
48bae050 485 for (entry = 0; entry < entries; entry++, chandesc += 4) {
049c1fb4
EB
486 struct xilly_buffer **buffers = NULL;
487
48bae050
EB
488 is_writebuf = chandesc[0] & 0x01;
489 channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
490 format = (chandesc[1] >> 4) & 0x03;
491 allowpartial = (chandesc[1] >> 6) & 0x01;
492 synchronous = (chandesc[1] >> 7) & 0x01;
493 bufsize = 1 << (chandesc[2] & 0x1f);
494 bufnum = 1 << (chandesc[3] & 0x0f);
495 exclusive_open = (chandesc[2] >> 7) & 0x01;
496 seekable = (chandesc[2] >> 6) & 0x01;
497 supports_nonempty = (chandesc[2] >> 5) & 0x01;
498
499 if ((channelnum > ep->num_channels) ||
500 ((channelnum == 0) && !is_writebuf)) {
35fcf7e3
EB
501 dev_err(ep->dev,
502 "IDT requests channel out of range. Aborting.\n");
48bae050
EB
503 return -ENODEV;
504 }
505
506 channel = ep->channels[channelnum]; /* NULL for msg channel */
507
049c1fb4 508 if (!is_writebuf || channelnum > 0) {
48bae050
EB
509 channel->log2_element_size = ((format > 2) ?
510 2 : format);
049c1fb4 511
48bae050
EB
512 bytebufsize = channel->rd_buf_size = bufsize *
513 (1 << channel->log2_element_size);
48bae050 514
5899005f
EB
515 buffers = devm_kcalloc(dev, bufnum,
516 sizeof(struct xilly_buffer *),
517 GFP_KERNEL);
049c1fb4 518 if (!buffers)
31ca128d 519 return -ENOMEM;
84590b1a 520 } else {
049c1fb4 521 bytebufsize = bufsize << 2;
84590b1a 522 }
48bae050 523
049c1fb4
EB
524 if (!is_writebuf) {
525 channel->num_rd_buffers = bufnum;
526 channel->rd_allow_partial = allowpartial;
527 channel->rd_synchronous = synchronous;
528 channel->rd_exclusive_open = exclusive_open;
529 channel->seekable = seekable;
48bae050 530
049c1fb4
EB
531 channel->rd_buffers = buffers;
532 rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
533 bufnum, bytebufsize);
91d42194 534 } else if (channelnum > 0) {
48bae050 535 channel->num_wr_buffers = bufnum;
48bae050
EB
536
537 channel->seekable = seekable;
538 channel->wr_supports_nonempty = supports_nonempty;
539
540 channel->wr_allow_partial = allowpartial;
541 channel->wr_synchronous = synchronous;
542 channel->wr_exclusive_open = exclusive_open;
543
049c1fb4
EB
544 channel->wr_buffers = buffers;
545 rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
546 bufnum, bytebufsize);
547 } else {
548 rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
549 bufnum, bytebufsize);
550 msg_buf_done++;
48bae050
EB
551 }
552
049c1fb4 553 if (rc)
31ca128d 554 return -ENOMEM;
48bae050
EB
555 }
556
557 if (!msg_buf_done) {
35fcf7e3
EB
558 dev_err(ep->dev,
559 "Corrupt IDT: No message buffer. Aborting.\n");
48bae050
EB
560 return -ENODEV;
561 }
48bae050 562 return 0;
48bae050
EB
563}
564
9ac77ec6
EB
565static int xilly_scan_idt(struct xilly_endpoint *endpoint,
566 struct xilly_idt_handle *idt_handle)
48bae050
EB
567{
568 int count = 0;
569 unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
570 unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
571 unsigned char *scan;
572 int len;
573
574 scan = idt;
575 idt_handle->idt = idt;
576
577 scan++; /* Skip version number */
578
579 while ((scan <= end_of_idt) && *scan) {
580 while ((scan <= end_of_idt) && *scan++)
581 /* Do nothing, just scan thru string */;
582 count++;
583 }
584
585 scan++;
586
587 if (scan > end_of_idt) {
35fcf7e3
EB
588 dev_err(endpoint->dev,
589 "IDT device name list overflow. Aborting.\n");
9ac77ec6 590 return -ENODEV;
91d42194
VB
591 }
592 idt_handle->chandesc = scan;
48bae050
EB
593
594 len = endpoint->idtlen - (3 + ((int) (scan - idt)));
595
596 if (len & 0x03) {
35fcf7e3
EB
597 dev_err(endpoint->dev,
598 "Corrupt IDT device name list. Aborting.\n");
9ac77ec6 599 return -ENODEV;
48bae050
EB
600 }
601
602 idt_handle->entries = len >> 2;
48bae050 603 endpoint->num_channels = count;
9ac77ec6
EB
604
605 return 0;
48bae050
EB
606}
607
608static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
609{
48bae050
EB
610 struct xilly_channel *channel;
611 unsigned char *version;
ae870e5d 612 long t;
48bae050
EB
613
614 channel = endpoint->channels[1]; /* This should be generated ad-hoc */
615
616 channel->wr_sleepy = 1;
48bae050
EB
617
618 iowrite32(1 |
91a2dea8
EB
619 (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
620 endpoint->registers + fpga_buf_ctrl_reg);
48bae050 621
ae870e5d
EB
622 t = wait_event_interruptible_timeout(channel->wr_wait,
623 (!channel->wr_sleepy),
624 XILLY_TIMEOUT);
48bae050 625
ae870e5d 626 if (t <= 0) {
35fcf7e3 627 dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
48bae050
EB
628
629 if (endpoint->fatal_error)
630 return -EIO;
631
40931bbb 632 return -ENODEV;
48bae050
EB
633 }
634
7ee9ded2 635 endpoint->ephw->hw_sync_sgl_for_cpu(
48bae050
EB
636 channel->endpoint,
637 channel->wr_buffers[0]->dma_addr,
638 channel->wr_buf_size,
639 DMA_FROM_DEVICE);
640
641 if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
35fcf7e3
EB
642 dev_err(endpoint->dev,
643 "IDT length mismatch (%d != %d). Aborting.\n",
91a2dea8 644 channel->wr_buffers[0]->end_offset, endpoint->idtlen);
40931bbb 645 return -ENODEV;
48bae050
EB
646 }
647
648 if (crc32_le(~0, channel->wr_buffers[0]->addr,
649 endpoint->idtlen+1) != 0) {
35fcf7e3 650 dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
40931bbb 651 return -ENODEV;
48bae050
EB
652 }
653
654 version = channel->wr_buffers[0]->addr;
655
656 /* Check version number. Accept anything below 0x82 for now. */
657 if (*version > 0x82) {
35fcf7e3
EB
658 dev_err(endpoint->dev,
659 "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgarde. Aborting.\n",
48bae050 660 (int) *version);
40931bbb 661 return -ENODEV;
48bae050
EB
662 }
663
21c3184c 664 return 0;
48bae050
EB
665}
666
7ee9ded2
EB
667static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
668 size_t count, loff_t *f_pos)
48bae050
EB
669{
670 ssize_t rc;
671 unsigned long flags;
672 int bytes_done = 0;
673 int no_time_left = 0;
674 long deadline, left_to_sleep;
675 struct xilly_channel *channel = filp->private_data;
676
677 int empty, reached_eof, exhausted, ready;
678 /* Initializations are there only to silence warnings */
679
680 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
681 int waiting_bufidx;
682
683 if (channel->endpoint->fatal_error)
684 return -EIO;
685
686 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
687
688 rc = mutex_lock_interruptible(&channel->wr_mutex);
48bae050
EB
689 if (rc)
690 return rc;
691
48bae050
EB
692 while (1) { /* Note that we may drop mutex within this loop */
693 int bytes_to_do = count - bytes_done;
91d42194 694
48bae050
EB
695 spin_lock_irqsave(&channel->wr_spinlock, flags);
696
697 empty = channel->wr_empty;
698 ready = !empty || channel->wr_ready;
699
700 if (!empty) {
701 bufidx = channel->wr_host_buf_idx;
702 bufpos = channel->wr_host_buf_pos;
703 howmany = ((channel->wr_buffers[bufidx]->end_offset
704 + 1) << channel->log2_element_size)
705 - bufpos;
706
707 /* Update wr_host_* to its post-operation state */
708 if (howmany > bytes_to_do) {
709 bufferdone = 0;
710
711 howmany = bytes_to_do;
712 channel->wr_host_buf_pos += howmany;
713 } else {
714 bufferdone = 1;
715
716 channel->wr_host_buf_pos = 0;
717
718 if (bufidx == channel->wr_fpga_buf_idx) {
719 channel->wr_empty = 1;
720 channel->wr_sleepy = 1;
721 channel->wr_ready = 0;
722 }
723
724 if (bufidx >= (channel->num_wr_buffers - 1))
725 channel->wr_host_buf_idx = 0;
726 else
727 channel->wr_host_buf_idx++;
728 }
729 }
730
731 /*
732 * Marking our situation after the possible changes above,
733 * for use after releasing the spinlock.
734 *
735 * empty = empty before change
736 * exhasted = empty after possible change
737 */
738
739 reached_eof = channel->wr_empty &&
740 (channel->wr_host_buf_idx == channel->wr_eof);
741 channel->wr_hangup = reached_eof;
742 exhausted = channel->wr_empty;
743 waiting_bufidx = channel->wr_host_buf_idx;
744
745 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
746
747 if (!empty) { /* Go on, now without the spinlock */
748
749 if (bufpos == 0) /* Position zero means it's virgin */
7ee9ded2 750 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
48bae050
EB
751 channel->endpoint,
752 channel->wr_buffers[bufidx]->dma_addr,
753 channel->wr_buf_size,
754 DMA_FROM_DEVICE);
755
756 if (copy_to_user(
757 userbuf,
758 channel->wr_buffers[bufidx]->addr
759 + bufpos, howmany))
760 rc = -EFAULT;
761
762 userbuf += howmany;
763 bytes_done += howmany;
764
765 if (bufferdone) {
d3274f20
EB
766 channel->endpoint->ephw->hw_sync_sgl_for_device(
767 channel->endpoint,
768 channel->wr_buffers[bufidx]->dma_addr,
769 channel->wr_buf_size,
770 DMA_FROM_DEVICE);
48bae050
EB
771
772 /*
773 * Tell FPGA the buffer is done with. It's an
774 * atomic operation to the FPGA, so what
775 * happens with other channels doesn't matter,
776 * and the certain channel is protected with
777 * the channel-specific mutex.
778 */
779
79ae92c4
EB
780 iowrite32(1 | (channel->chan_num << 1) |
781 (bufidx << 12),
91a2dea8
EB
782 channel->endpoint->registers +
783 fpga_buf_ctrl_reg);
48bae050
EB
784 }
785
786 if (rc) {
787 mutex_unlock(&channel->wr_mutex);
788 return rc;
789 }
790 }
791
792 /* This includes a zero-count return = EOF */
793 if ((bytes_done >= count) || reached_eof)
794 break;
795
796 if (!exhausted)
797 continue; /* More in RAM buffer(s)? Just go on. */
798
799 if ((bytes_done > 0) &&
800 (no_time_left ||
801 (channel->wr_synchronous && channel->wr_allow_partial)))
802 break;
803
804 /*
805 * Nonblocking read: The "ready" flag tells us that the FPGA
806 * has data to send. In non-blocking mode, if it isn't on,
807 * just return. But if there is, we jump directly to the point
808 * where we ask for the FPGA to send all it has, and wait
809 * until that data arrives. So in a sense, we *do* block in
810 * nonblocking mode, but only for a very short time.
811 */
812
813 if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
814 if (bytes_done > 0)
815 break;
816
817 if (ready)
818 goto desperate;
819
06bda66b 820 rc = -EAGAIN;
48bae050
EB
821 break;
822 }
823
824 if (!no_time_left || (bytes_done > 0)) {
825 /*
826 * Note that in case of an element-misaligned read
827 * request, offsetlimit will include the last element,
828 * which will be partially read from.
829 */
830 int offsetlimit = ((count - bytes_done) - 1) >>
831 channel->log2_element_size;
832 int buf_elements = channel->wr_buf_size >>
833 channel->log2_element_size;
834
835 /*
836 * In synchronous mode, always send an offset limit.
837 * Just don't send a value too big.
838 */
839
840 if (channel->wr_synchronous) {
841 /* Don't request more than one buffer */
842 if (channel->wr_allow_partial &&
843 (offsetlimit >= buf_elements))
844 offsetlimit = buf_elements - 1;
845
846 /* Don't request more than all buffers */
847 if (!channel->wr_allow_partial &&
848 (offsetlimit >=
849 (buf_elements * channel->num_wr_buffers)))
850 offsetlimit = buf_elements *
851 channel->num_wr_buffers - 1;
852 }
853
854 /*
855 * In asynchronous mode, force early flush of a buffer
856 * only if that will allow returning a full count. The
857 * "offsetlimit < ( ... )" rather than "<=" excludes
858 * requesting a full buffer, which would obviously
859 * cause a buffer transmission anyhow
860 */
861
862 if (channel->wr_synchronous ||
863 (offsetlimit < (buf_elements - 1))) {
48bae050
EB
864 mutex_lock(&channel->endpoint->register_mutex);
865
866 iowrite32(offsetlimit,
539889ee
EB
867 channel->endpoint->registers +
868 fpga_buf_offset_reg);
48bae050
EB
869
870 iowrite32(1 | (channel->chan_num << 1) |
91a2dea8
EB
871 (2 << 24) | /* 2 = offset limit */
872 (waiting_bufidx << 12),
873 channel->endpoint->registers +
874 fpga_buf_ctrl_reg);
48bae050 875
48bae050
EB
876 mutex_unlock(&channel->endpoint->
877 register_mutex);
878 }
48bae050
EB
879 }
880
881 /*
882 * If partial completion is disallowed, there is no point in
883 * timeout sleeping. Neither if no_time_left is set and
884 * there's no data.
885 */
886
887 if (!channel->wr_allow_partial ||
888 (no_time_left && (bytes_done == 0))) {
48bae050
EB
889 /*
890 * This do-loop will run more than once if another
891 * thread reasserted wr_sleepy before we got the mutex
892 * back, so we try again.
893 */
894
895 do {
896 mutex_unlock(&channel->wr_mutex);
897
898 if (wait_event_interruptible(
899 channel->wr_wait,
900 (!channel->wr_sleepy)))
901 goto interrupted;
902
903 if (mutex_lock_interruptible(
904 &channel->wr_mutex))
905 goto interrupted;
906 } while (channel->wr_sleepy);
907
908 continue;
909
910interrupted: /* Mutex is not held if got here */
911 if (channel->endpoint->fatal_error)
912 return -EIO;
913 if (bytes_done)
914 return bytes_done;
915 if (filp->f_flags & O_NONBLOCK)
916 return -EAGAIN; /* Don't admit snoozing */
917 return -EINTR;
918 }
919
920 left_to_sleep = deadline - ((long) jiffies);
921
922 /*
923 * If our time is out, skip the waiting. We may miss wr_sleepy
924 * being deasserted but hey, almost missing the train is like
925 * missing it.
926 */
927
928 if (left_to_sleep > 0) {
929 left_to_sleep =
930 wait_event_interruptible_timeout(
931 channel->wr_wait,
932 (!channel->wr_sleepy),
933 left_to_sleep);
934
ae870e5d 935 if (left_to_sleep > 0) /* wr_sleepy deasserted */
48bae050
EB
936 continue;
937
938 if (left_to_sleep < 0) { /* Interrupt */
939 mutex_unlock(&channel->wr_mutex);
940 if (channel->endpoint->fatal_error)
941 return -EIO;
942 if (bytes_done)
943 return bytes_done;
944 return -EINTR;
945 }
946 }
947
948desperate:
949 no_time_left = 1; /* We're out of sleeping time. Desperate! */
950
951 if (bytes_done == 0) {
952 /*
953 * Reaching here means that we allow partial return,
954 * that we've run out of time, and that we have
955 * nothing to return.
956 * So tell the FPGA to send anything it has or gets.
957 */
958
959 iowrite32(1 | (channel->chan_num << 1) |
91a2dea8
EB
960 (3 << 24) | /* Opcode 3, flush it all! */
961 (waiting_bufidx << 12),
962 channel->endpoint->registers +
963 fpga_buf_ctrl_reg);
48bae050
EB
964 }
965
966 /*
21c3184c
EB
967 * Reaching here means that we *do* have data in the buffer,
968 * but the "partial" flag disallows returning less than
969 * required. And we don't have as much. So loop again,
970 * which is likely to end up blocking indefinitely until
971 * enough data has arrived.
48bae050
EB
972 */
973 }
974
975 mutex_unlock(&channel->wr_mutex);
976
977 if (channel->endpoint->fatal_error)
978 return -EIO;
979
06bda66b
EB
980 if (rc)
981 return rc;
982
48bae050
EB
983 return bytes_done;
984}
985
986/*
987 * The timeout argument takes values as follows:
988 * >0 : Flush with timeout
989 * ==0 : Flush, and wait idefinitely for the flush to complete
990 * <0 : Autoflush: Flush only if there's a single buffer occupied
991 */
992
993static int xillybus_myflush(struct xilly_channel *channel, long timeout)
994{
40931bbb 995 int rc;
48bae050
EB
996 unsigned long flags;
997
998 int end_offset_plus1;
999 int bufidx, bufidx_minus1;
1000 int i;
1001 int empty;
1002 int new_rd_host_buf_pos;
1003
1004 if (channel->endpoint->fatal_error)
1005 return -EIO;
1006 rc = mutex_lock_interruptible(&channel->rd_mutex);
48bae050
EB
1007 if (rc)
1008 return rc;
1009
1010 /*
1011 * Don't flush a closed channel. This can happen when the work queued
1012 * autoflush thread fires off after the file has closed. This is not
1013 * an error, just something to dismiss.
1014 */
1015
1016 if (!channel->rd_ref_count)
1017 goto done;
1018
1019 bufidx = channel->rd_host_buf_idx;
1020
d3274f20
EB
1021 bufidx_minus1 = (bufidx == 0) ?
1022 channel->num_rd_buffers - 1 :
1023 bufidx - 1;
48bae050
EB
1024
1025 end_offset_plus1 = channel->rd_host_buf_pos >>
1026 channel->log2_element_size;
1027
1028 new_rd_host_buf_pos = channel->rd_host_buf_pos -
1029 (end_offset_plus1 << channel->log2_element_size);
1030
1031 /* Submit the current buffer if it's nonempty */
1032 if (end_offset_plus1) {
1033 unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1034 (end_offset_plus1 << channel->log2_element_size);
1035
1036 /* Copy unflushed data, so we can put it in next buffer */
1037 for (i = 0; i < new_rd_host_buf_pos; i++)
1038 channel->rd_leftovers[i] = *tail++;
1039
1040 spin_lock_irqsave(&channel->rd_spinlock, flags);
1041
1042 /* Autoflush only if a single buffer is occupied */
1043
1044 if ((timeout < 0) &&
1045 (channel->rd_full ||
1046 (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1047 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1048 /*
1049 * A new work item may be queued by the ISR exactly
1050 * now, since the execution of a work item allows the
1051 * queuing of a new one while it's running.
1052 */
1053 goto done;
1054 }
1055
1056 /* The 4th element is never needed for data, so it's a flag */
1057 channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1058
1059 /* Set up rd_full to reflect a certain moment's state */
1060
1061 if (bufidx == channel->rd_fpga_buf_idx)
1062 channel->rd_full = 1;
1063 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1064
1065 if (bufidx >= (channel->num_rd_buffers - 1))
1066 channel->rd_host_buf_idx = 0;
1067 else
1068 channel->rd_host_buf_idx++;
1069
7ee9ded2 1070 channel->endpoint->ephw->hw_sync_sgl_for_device(
48bae050
EB
1071 channel->endpoint,
1072 channel->rd_buffers[bufidx]->dma_addr,
1073 channel->rd_buf_size,
1074 DMA_TO_DEVICE);
1075
1076 mutex_lock(&channel->endpoint->register_mutex);
1077
1078 iowrite32(end_offset_plus1 - 1,
539889ee 1079 channel->endpoint->registers + fpga_buf_offset_reg);
48bae050
EB
1080
1081 iowrite32((channel->chan_num << 1) | /* Channel ID */
91a2dea8
EB
1082 (2 << 24) | /* Opcode 2, submit buffer */
1083 (bufidx << 12),
1084 channel->endpoint->registers + fpga_buf_ctrl_reg);
48bae050
EB
1085
1086 mutex_unlock(&channel->endpoint->register_mutex);
c14cc622 1087 } else if (bufidx == 0) {
48bae050 1088 bufidx = channel->num_rd_buffers - 1;
c14cc622 1089 } else {
48bae050 1090 bufidx--;
c14cc622 1091 }
48bae050
EB
1092
1093 channel->rd_host_buf_pos = new_rd_host_buf_pos;
1094
1095 if (timeout < 0)
1096 goto done; /* Autoflush */
1097
48bae050
EB
1098 /*
1099 * bufidx is now the last buffer written to (or equal to
1100 * rd_fpga_buf_idx if buffer was never written to), and
1101 * channel->rd_host_buf_idx the one after it.
1102 *
1103 * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1104 */
1105
48bae050
EB
1106 while (1) { /* Loop waiting for draining of buffers */
1107 spin_lock_irqsave(&channel->rd_spinlock, flags);
1108
1109 if (bufidx != channel->rd_fpga_buf_idx)
1110 channel->rd_full = 1; /*
1111 * Not really full,
1112 * but needs waiting.
1113 */
1114
1115 empty = !channel->rd_full;
1116
1117 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1118
1119 if (empty)
1120 break;
1121
1122 /*
1123 * Indefinite sleep with mutex taken. With data waiting for
1124 * flushing user should not be surprised if open() for write
1125 * sleeps.
1126 */
1127 if (timeout == 0)
1128 wait_event_interruptible(channel->rd_wait,
1129 (!channel->rd_full));
1130
1131 else if (wait_event_interruptible_timeout(
1132 channel->rd_wait,
1133 (!channel->rd_full),
1134 timeout) == 0) {
35fcf7e3 1135 dev_warn(channel->endpoint->dev,
91a2dea8 1136 "Timed out while flushing. Output data may be lost.\n");
48bae050
EB
1137
1138 rc = -ETIMEDOUT;
1139 break;
1140 }
1141
1142 if (channel->rd_full) {
1143 rc = -EINTR;
1144 break;
1145 }
1146 }
1147
1148done:
1149 mutex_unlock(&channel->rd_mutex);
1150
1151 if (channel->endpoint->fatal_error)
1152 return -EIO;
1153
1154 return rc;
1155}
1156
1157static int xillybus_flush(struct file *filp, fl_owner_t id)
1158{
1159 if (!(filp->f_mode & FMODE_WRITE))
1160 return 0;
1161
1162 return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1163}
1164
1165static void xillybus_autoflush(struct work_struct *work)
1166{
1167 struct delayed_work *workitem = container_of(
1168 work, struct delayed_work, work);
1169 struct xilly_channel *channel = container_of(
1170 workitem, struct xilly_channel, rd_workitem);
1171 int rc;
1172
1173 rc = xillybus_myflush(channel, -1);
48bae050 1174 if (rc == -EINTR)
35fcf7e3
EB
1175 dev_warn(channel->endpoint->dev,
1176 "Autoflush failed because work queue thread got a signal.\n");
48bae050 1177 else if (rc)
35fcf7e3
EB
1178 dev_err(channel->endpoint->dev,
1179 "Autoflush failed under weird circumstances.\n");
48bae050
EB
1180}
1181
7ee9ded2 1182static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
48bae050
EB
1183 size_t count, loff_t *f_pos)
1184{
1185 ssize_t rc;
1186 unsigned long flags;
1187 int bytes_done = 0;
1188 struct xilly_channel *channel = filp->private_data;
1189
1190 int full, exhausted;
1191 /* Initializations are there only to silence warnings */
1192
1193 int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1194 int end_offset_plus1 = 0;
1195
1196 if (channel->endpoint->fatal_error)
1197 return -EIO;
1198
1199 rc = mutex_lock_interruptible(&channel->rd_mutex);
48bae050
EB
1200 if (rc)
1201 return rc;
1202
48bae050
EB
1203 while (1) {
1204 int bytes_to_do = count - bytes_done;
1205
1206 spin_lock_irqsave(&channel->rd_spinlock, flags);
1207
1208 full = channel->rd_full;
1209
1210 if (!full) {
1211 bufidx = channel->rd_host_buf_idx;
1212 bufpos = channel->rd_host_buf_pos;
1213 howmany = channel->rd_buf_size - bufpos;
1214
1215 /*
1216 * Update rd_host_* to its state after this operation.
1217 * count=0 means committing the buffer immediately,
1218 * which is like flushing, but not necessarily block.
1219 */
1220
1221 if ((howmany > bytes_to_do) &&
1222 (count ||
1223 ((bufpos >> channel->log2_element_size) == 0))) {
1224 bufferdone = 0;
1225
1226 howmany = bytes_to_do;
1227 channel->rd_host_buf_pos += howmany;
1228 } else {
1229 bufferdone = 1;
1230
1231 if (count) {
1232 end_offset_plus1 =
1233 channel->rd_buf_size >>
1234 channel->log2_element_size;
1235 channel->rd_host_buf_pos = 0;
1236 } else {
1237 unsigned char *tail;
1238 int i;
1239
1240 end_offset_plus1 = bufpos >>
1241 channel->log2_element_size;
1242
1243 channel->rd_host_buf_pos -=
1244 end_offset_plus1 <<
1245 channel->log2_element_size;
1246
1247 tail = channel->
1248 rd_buffers[bufidx]->addr +
1249 (end_offset_plus1 <<
1250 channel->log2_element_size);
1251
1252 for (i = 0;
1253 i < channel->rd_host_buf_pos;
1254 i++)
1255 channel->rd_leftovers[i] =
1256 *tail++;
1257 }
1258
1259 if (bufidx == channel->rd_fpga_buf_idx)
1260 channel->rd_full = 1;
1261
1262 if (bufidx >= (channel->num_rd_buffers - 1))
1263 channel->rd_host_buf_idx = 0;
1264 else
1265 channel->rd_host_buf_idx++;
1266 }
1267 }
1268
1269 /*
1270 * Marking our situation after the possible changes above,
1271 * for use after releasing the spinlock.
1272 *
1273 * full = full before change
1274 * exhasted = full after possible change
1275 */
1276
1277 exhausted = channel->rd_full;
1278
1279 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1280
1281 if (!full) { /* Go on, now without the spinlock */
1282 unsigned char *head =
1283 channel->rd_buffers[bufidx]->addr;
1284 int i;
1285
1286 if ((bufpos == 0) || /* Zero means it's virgin */
1287 (channel->rd_leftovers[3] != 0)) {
7ee9ded2 1288 channel->endpoint->ephw->hw_sync_sgl_for_cpu(
48bae050
EB
1289 channel->endpoint,
1290 channel->rd_buffers[bufidx]->dma_addr,
1291 channel->rd_buf_size,
1292 DMA_TO_DEVICE);
1293
1294 /* Virgin, but leftovers are due */
1295 for (i = 0; i < bufpos; i++)
1296 *head++ = channel->rd_leftovers[i];
1297
1298 channel->rd_leftovers[3] = 0; /* Clear flag */
1299 }
1300
1301 if (copy_from_user(
1302 channel->rd_buffers[bufidx]->addr + bufpos,
1303 userbuf, howmany))
1304 rc = -EFAULT;
1305
1306 userbuf += howmany;
1307 bytes_done += howmany;
1308
1309 if (bufferdone) {
d3274f20
EB
1310 channel->endpoint->ephw->hw_sync_sgl_for_device(
1311 channel->endpoint,
1312 channel->rd_buffers[bufidx]->dma_addr,
1313 channel->rd_buf_size,
1314 DMA_TO_DEVICE);
48bae050
EB
1315
1316 mutex_lock(&channel->endpoint->register_mutex);
1317
1318 iowrite32(end_offset_plus1 - 1,
539889ee
EB
1319 channel->endpoint->registers +
1320 fpga_buf_offset_reg);
9fdde366 1321
48bae050 1322 iowrite32((channel->chan_num << 1) |
91a2dea8
EB
1323 (2 << 24) | /* 2 = submit buffer */
1324 (bufidx << 12),
1325 channel->endpoint->registers +
1326 fpga_buf_ctrl_reg);
48bae050
EB
1327
1328 mutex_unlock(&channel->endpoint->
1329 register_mutex);
1330
1331 channel->rd_leftovers[3] =
1332 (channel->rd_host_buf_pos != 0);
1333 }
1334
1335 if (rc) {
1336 mutex_unlock(&channel->rd_mutex);
1337
1338 if (channel->endpoint->fatal_error)
1339 return -EIO;
1340
1341 if (!channel->rd_synchronous)
1342 queue_delayed_work(
1343 xillybus_wq,
1344 &channel->rd_workitem,
1345 XILLY_RX_TIMEOUT);
1346
1347 return rc;
1348 }
1349 }
1350
1351 if (bytes_done >= count)
1352 break;
1353
1354 if (!exhausted)
1355 continue; /* If there's more space, just go on */
1356
1357 if ((bytes_done > 0) && channel->rd_allow_partial)
1358 break;
1359
1360 /*
1361 * Indefinite sleep with mutex taken. With data waiting for
1362 * flushing, user should not be surprised if open() for write
1363 * sleeps.
1364 */
1365
1366 if (filp->f_flags & O_NONBLOCK) {
06bda66b 1367 rc = -EAGAIN;
48bae050
EB
1368 break;
1369 }
1370
ae870e5d
EB
1371 if (wait_event_interruptible(channel->rd_wait,
1372 (!channel->rd_full))) {
48bae050
EB
1373 mutex_unlock(&channel->rd_mutex);
1374
1375 if (channel->endpoint->fatal_error)
1376 return -EIO;
1377
1378 if (bytes_done)
1379 return bytes_done;
1380 return -EINTR;
1381 }
1382 }
1383
1384 mutex_unlock(&channel->rd_mutex);
1385
1386 if (!channel->rd_synchronous)
1387 queue_delayed_work(xillybus_wq,
1388 &channel->rd_workitem,
1389 XILLY_RX_TIMEOUT);
1390
06bda66b
EB
1391 if (channel->endpoint->fatal_error)
1392 return -EIO;
1393
1394 if (rc)
1395 return rc;
1396
48bae050
EB
1397 if ((channel->rd_synchronous) && (bytes_done > 0)) {
1398 rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1399
1400 if (rc && (rc != -EINTR))
1401 return rc;
1402 }
1403
48bae050
EB
1404 return bytes_done;
1405}
1406
1407static int xillybus_open(struct inode *inode, struct file *filp)
1408{
1409 int rc = 0;
1410 unsigned long flags;
1411 int minor = iminor(inode);
1412 int major = imajor(inode);
1413 struct xilly_endpoint *ep_iter, *endpoint = NULL;
1414 struct xilly_channel *channel;
1415
1416 mutex_lock(&ep_list_lock);
1417
1418 list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1419 if ((ep_iter->major == major) &&
1420 (minor >= ep_iter->lowest_minor) &&
1421 (minor < (ep_iter->lowest_minor +
1422 ep_iter->num_channels))) {
1423 endpoint = ep_iter;
1424 break;
1425 }
1426 }
1427 mutex_unlock(&ep_list_lock);
1428
1429 if (!endpoint) {
ae1dd9bc
EA
1430 pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1431 major, minor);
48bae050
EB
1432 return -ENODEV;
1433 }
1434
1435 if (endpoint->fatal_error)
1436 return -EIO;
1437
1438 channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1439 filp->private_data = channel;
1440
48bae050
EB
1441 /*
1442 * It gets complicated because:
1443 * 1. We don't want to take a mutex we don't have to
1444 * 2. We don't want to open one direction if the other will fail.
1445 */
1446
1447 if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1448 return -ENODEV;
1449
1450 if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1451 return -ENODEV;
1452
1453 if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1454 (channel->wr_synchronous || !channel->wr_allow_partial ||
1455 !channel->wr_supports_nonempty)) {
35fcf7e3
EB
1456 dev_err(endpoint->dev,
1457 "open() failed: O_NONBLOCK not allowed for read on this device\n");
48bae050
EB
1458 return -ENODEV;
1459 }
1460
1461 if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1462 (channel->rd_synchronous || !channel->rd_allow_partial)) {
35fcf7e3
EB
1463 dev_err(endpoint->dev,
1464 "open() failed: O_NONBLOCK not allowed for write on this device\n");
48bae050
EB
1465 return -ENODEV;
1466 }
1467
1468 /*
1469 * Note: open() may block on getting mutexes despite O_NONBLOCK.
1470 * This shouldn't occur normally, since multiple open of the same
1471 * file descriptor is almost always prohibited anyhow
1472 * (*_exclusive_open is normally set in real-life systems).
1473 */
1474
1475 if (filp->f_mode & FMODE_READ) {
1476 rc = mutex_lock_interruptible(&channel->wr_mutex);
1477 if (rc)
1478 return rc;
1479 }
1480
1481 if (filp->f_mode & FMODE_WRITE) {
1482 rc = mutex_lock_interruptible(&channel->rd_mutex);
1483 if (rc)
1484 goto unlock_wr;
1485 }
1486
1487 if ((filp->f_mode & FMODE_READ) &&
1488 (channel->wr_ref_count != 0) &&
1489 (channel->wr_exclusive_open)) {
1490 rc = -EBUSY;
1491 goto unlock;
1492 }
1493
1494 if ((filp->f_mode & FMODE_WRITE) &&
1495 (channel->rd_ref_count != 0) &&
1496 (channel->rd_exclusive_open)) {
1497 rc = -EBUSY;
1498 goto unlock;
1499 }
1500
48bae050
EB
1501 if (filp->f_mode & FMODE_READ) {
1502 if (channel->wr_ref_count == 0) { /* First open of file */
1503 /* Move the host to first buffer */
1504 spin_lock_irqsave(&channel->wr_spinlock, flags);
1505 channel->wr_host_buf_idx = 0;
1506 channel->wr_host_buf_pos = 0;
1507 channel->wr_fpga_buf_idx = -1;
1508 channel->wr_empty = 1;
1509 channel->wr_ready = 0;
1510 channel->wr_sleepy = 1;
1511 channel->wr_eof = -1;
1512 channel->wr_hangup = 0;
1513
1514 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1515
1516 iowrite32(1 | (channel->chan_num << 1) |
1517 (4 << 24) | /* Opcode 4, open channel */
1518 ((channel->wr_synchronous & 1) << 23),
539889ee
EB
1519 channel->endpoint->registers +
1520 fpga_buf_ctrl_reg);
48bae050
EB
1521 }
1522
1523 channel->wr_ref_count++;
1524 }
1525
1526 if (filp->f_mode & FMODE_WRITE) {
1527 if (channel->rd_ref_count == 0) { /* First open of file */
1528 /* Move the host to first buffer */
1529 spin_lock_irqsave(&channel->rd_spinlock, flags);
1530 channel->rd_host_buf_idx = 0;
1531 channel->rd_host_buf_pos = 0;
1532 channel->rd_leftovers[3] = 0; /* No leftovers. */
1533 channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1534 channel->rd_full = 0;
1535
1536 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1537
1538 iowrite32((channel->chan_num << 1) |
1539 (4 << 24), /* Opcode 4, open channel */
539889ee
EB
1540 channel->endpoint->registers +
1541 fpga_buf_ctrl_reg);
48bae050
EB
1542 }
1543
1544 channel->rd_ref_count++;
1545 }
1546
1547unlock:
1548 if (filp->f_mode & FMODE_WRITE)
1549 mutex_unlock(&channel->rd_mutex);
1550unlock_wr:
1551 if (filp->f_mode & FMODE_READ)
1552 mutex_unlock(&channel->wr_mutex);
1553
1554 if (!rc && (!channel->seekable))
1555 return nonseekable_open(inode, filp);
1556
1557 return rc;
1558}
1559
1560static int xillybus_release(struct inode *inode, struct file *filp)
1561{
48bae050
EB
1562 unsigned long flags;
1563 struct xilly_channel *channel = filp->private_data;
1564
1565 int buf_idx;
1566 int eof;
1567
1568 if (channel->endpoint->fatal_error)
1569 return -EIO;
1570
1571 if (filp->f_mode & FMODE_WRITE) {
a983dd5d 1572 mutex_lock(&channel->rd_mutex);
48bae050
EB
1573
1574 channel->rd_ref_count--;
1575
1576 if (channel->rd_ref_count == 0) {
48bae050
EB
1577 /*
1578 * We rely on the kernel calling flush()
1579 * before we get here.
1580 */
1581
1582 iowrite32((channel->chan_num << 1) | /* Channel ID */
1583 (5 << 24), /* Opcode 5, close channel */
539889ee
EB
1584 channel->endpoint->registers +
1585 fpga_buf_ctrl_reg);
48bae050
EB
1586 }
1587 mutex_unlock(&channel->rd_mutex);
1588 }
1589
1590 if (filp->f_mode & FMODE_READ) {
a983dd5d 1591 mutex_lock(&channel->wr_mutex);
48bae050
EB
1592
1593 channel->wr_ref_count--;
1594
1595 if (channel->wr_ref_count == 0) {
48bae050 1596 iowrite32(1 | (channel->chan_num << 1) |
91a2dea8
EB
1597 (5 << 24), /* Opcode 5, close channel */
1598 channel->endpoint->registers +
1599 fpga_buf_ctrl_reg);
48bae050
EB
1600
1601 /*
1602 * This is crazily cautious: We make sure that not
1603 * only that we got an EOF (be it because we closed
1604 * the channel or because of a user's EOF), but verify
1605 * that it's one beyond the last buffer arrived, so
1606 * we have no leftover buffers pending before wrapping
1607 * up (which can only happen in asynchronous channels,
1608 * BTW)
1609 */
1610
1611 while (1) {
1612 spin_lock_irqsave(&channel->wr_spinlock,
1613 flags);
1614 buf_idx = channel->wr_fpga_buf_idx;
1615 eof = channel->wr_eof;
1616 channel->wr_sleepy = 1;
1617 spin_unlock_irqrestore(&channel->wr_spinlock,
1618 flags);
1619
1620 /*
1621 * Check if eof points at the buffer after
1622 * the last one the FPGA submitted. Note that
1623 * no EOF is marked by negative eof.
1624 */
1625
1626 buf_idx++;
1627 if (buf_idx == channel->num_wr_buffers)
1628 buf_idx = 0;
1629
1630 if (buf_idx == eof)
1631 break;
1632
1633 /*
1634 * Steal extra 100 ms if awaken by interrupt.
1635 * This is a simple workaround for an
1636 * interrupt pending when entering, which would
1637 * otherwise result in declaring the hardware
1638 * non-responsive.
1639 */
1640
1641 if (wait_event_interruptible(
1642 channel->wr_wait,
1643 (!channel->wr_sleepy)))
1644 msleep(100);
1645
1646 if (channel->wr_sleepy) {
1647 mutex_unlock(&channel->wr_mutex);
35fcf7e3
EB
1648 dev_warn(channel->endpoint->dev,
1649 "Hardware failed to respond to close command, therefore left in messy state.\n");
48bae050
EB
1650 return -EINTR;
1651 }
1652 }
1653 }
1654
1655 mutex_unlock(&channel->wr_mutex);
1656 }
1657
1658 return 0;
1659}
64fa2b1b 1660
7ee9ded2 1661static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
48bae050
EB
1662{
1663 struct xilly_channel *channel = filp->private_data;
1664 loff_t pos = filp->f_pos;
1665 int rc = 0;
1666
1667 /*
1668 * Take both mutexes not allowing interrupts, since it seems like
1669 * common applications don't expect an -EINTR here. Besides, multiple
9379fd54 1670 * access to a single file descriptor on seekable devices is a mess
48bae050
EB
1671 * anyhow.
1672 */
1673
1674 if (channel->endpoint->fatal_error)
1675 return -EIO;
1676
1677 mutex_lock(&channel->wr_mutex);
1678 mutex_lock(&channel->rd_mutex);
1679
1680 switch (whence) {
3cbc7479 1681 case SEEK_SET:
48bae050
EB
1682 pos = offset;
1683 break;
3cbc7479 1684 case SEEK_CUR:
48bae050
EB
1685 pos += offset;
1686 break;
3cbc7479 1687 case SEEK_END:
48bae050
EB
1688 pos = offset; /* Going to the end => to the beginning */
1689 break;
1690 default:
1691 rc = -EINVAL;
1692 goto end;
1693 }
1694
1695 /* In any case, we must finish on an element boundary */
1696 if (pos & ((1 << channel->log2_element_size) - 1)) {
1697 rc = -EINVAL;
1698 goto end;
1699 }
1700
1701 mutex_lock(&channel->endpoint->register_mutex);
1702
1703 iowrite32(pos >> channel->log2_element_size,
539889ee 1704 channel->endpoint->registers + fpga_buf_offset_reg);
9fdde366 1705
48bae050
EB
1706 iowrite32((channel->chan_num << 1) |
1707 (6 << 24), /* Opcode 6, set address */
539889ee 1708 channel->endpoint->registers + fpga_buf_ctrl_reg);
48bae050
EB
1709
1710 mutex_unlock(&channel->endpoint->register_mutex);
1711
1712end:
1713 mutex_unlock(&channel->rd_mutex);
1714 mutex_unlock(&channel->wr_mutex);
1715
1716 if (rc) /* Return error after releasing mutexes */
1717 return rc;
1718
1719 filp->f_pos = pos;
1720
1721 /*
1722 * Since seekable devices are allowed only when the channel is
1723 * synchronous, we assume that there is no data pending in either
1724 * direction (which holds true as long as no concurrent access on the
1725 * file descriptor takes place).
1726 * The only thing we may need to throw away is leftovers from partial
1727 * write() flush.
1728 */
1729
1730 channel->rd_leftovers[3] = 0;
1731
1732 return pos;
1733}
1734
1735static unsigned int xillybus_poll(struct file *filp, poll_table *wait)
1736{
1737 struct xilly_channel *channel = filp->private_data;
1738 unsigned int mask = 0;
1739 unsigned long flags;
1740
1741 poll_wait(filp, &channel->endpoint->ep_wait, wait);
1742
1743 /*
1744 * poll() won't play ball regarding read() channels which
1745 * aren't asynchronous and support the nonempty message. Allowing
1746 * that will create situations where data has been delivered at
1747 * the FPGA, and users expecting select() to wake up, which it may
1748 * not.
1749 */
1750
1751 if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1752 poll_wait(filp, &channel->wr_wait, wait);
1753 poll_wait(filp, &channel->wr_ready_wait, wait);
1754
1755 spin_lock_irqsave(&channel->wr_spinlock, flags);
1756 if (!channel->wr_empty || channel->wr_ready)
1757 mask |= POLLIN | POLLRDNORM;
1758
1759 if (channel->wr_hangup)
1760 /*
1761 * Not POLLHUP, because its behavior is in the
1762 * mist, and POLLIN does what we want: Wake up
1763 * the read file descriptor so it sees EOF.
1764 */
1765 mask |= POLLIN | POLLRDNORM;
1766 spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1767 }
1768
1769 /*
1770 * If partial data write is disallowed on a write() channel,
1771 * it's pointless to ever signal OK to write, because is could
1772 * block despite some space being available.
1773 */
1774
1775 if (channel->rd_allow_partial) {
1776 poll_wait(filp, &channel->rd_wait, wait);
1777
1778 spin_lock_irqsave(&channel->rd_spinlock, flags);
1779 if (!channel->rd_full)
1780 mask |= POLLOUT | POLLWRNORM;
1781 spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1782 }
1783
1784 if (channel->endpoint->fatal_error)
1785 mask |= POLLERR;
1786
1787 return mask;
1788}
1789
1790static const struct file_operations xillybus_fops = {
1791 .owner = THIS_MODULE,
1792 .read = xillybus_read,
1793 .write = xillybus_write,
1794 .open = xillybus_open,
1795 .flush = xillybus_flush,
1796 .release = xillybus_release,
1797 .llseek = xillybus_llseek,
1798 .poll = xillybus_poll,
1799};
1800
1801static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1802 const unsigned char *idt)
1803{
1804 int rc;
1805 dev_t dev;
1806 int devnum, i, minor, major;
1807 char devname[48];
1808 struct device *device;
1809
1810 rc = alloc_chrdev_region(&dev, 0, /* minor start */
1811 endpoint->num_channels,
1812 xillyname);
48bae050 1813 if (rc) {
35fcf7e3 1814 dev_warn(endpoint->dev, "Failed to obtain major/minors");
5b09fc96 1815 return rc;
48bae050
EB
1816 }
1817
1818 endpoint->major = major = MAJOR(dev);
1819 endpoint->lowest_minor = minor = MINOR(dev);
1820
1821 cdev_init(&endpoint->cdev, &xillybus_fops);
1822 endpoint->cdev.owner = endpoint->ephw->owner;
1823 rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1824 endpoint->num_channels);
1825 if (rc) {
35fcf7e3 1826 dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
5b09fc96 1827 goto unregister_chrdev;
48bae050
EB
1828 }
1829
1830 idt++;
1831
1832 for (i = minor, devnum = 0;
1833 devnum < endpoint->num_channels;
1834 devnum++, i++) {
1835 snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1836
1837 devname[sizeof(devname)-1] = 0; /* Should never matter */
1838
1839 while (*idt++)
1840 /* Skip to next */;
1841
1842 device = device_create(xillybus_class,
1843 NULL,
1844 MKDEV(major, i),
1845 NULL,
e72b9da0 1846 "%s", devname);
48bae050
EB
1847
1848 if (IS_ERR(device)) {
35fcf7e3
EB
1849 dev_warn(endpoint->dev,
1850 "Failed to create %s device. Aborting.\n",
1851 devname);
5b09fc96
EB
1852 rc = -ENODEV;
1853 goto unroll_device_create;
48bae050
EB
1854 }
1855 }
1856
35fcf7e3
EB
1857 dev_info(endpoint->dev, "Created %d device files.\n",
1858 endpoint->num_channels);
48bae050
EB
1859 return 0; /* succeed */
1860
5b09fc96 1861unroll_device_create:
48bae050
EB
1862 devnum--; i--;
1863 for (; devnum >= 0; devnum--, i--)
1864 device_destroy(xillybus_class, MKDEV(major, i));
1865
1866 cdev_del(&endpoint->cdev);
5b09fc96 1867unregister_chrdev:
48bae050 1868 unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
48bae050
EB
1869
1870 return rc;
1871}
1872
1873static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1874{
1875 int minor;
1876
1877 for (minor = endpoint->lowest_minor;
1878 minor < (endpoint->lowest_minor + endpoint->num_channels);
1879 minor++)
1880 device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1881 cdev_del(&endpoint->cdev);
1882 unregister_chrdev_region(MKDEV(endpoint->major,
1883 endpoint->lowest_minor),
1884 endpoint->num_channels);
1885
35fcf7e3
EB
1886 dev_info(endpoint->dev, "Removed %d device files.\n",
1887 endpoint->num_channels);
48bae050
EB
1888}
1889
48bae050
EB
1890struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1891 struct device *dev,
1892 struct xilly_endpoint_hardware
1893 *ephw)
1894{
1895 struct xilly_endpoint *endpoint;
1896
9267462e 1897 endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
91d42194 1898 if (!endpoint)
48bae050 1899 return NULL;
48bae050
EB
1900
1901 endpoint->pdev = pdev;
1902 endpoint->dev = dev;
1903 endpoint->ephw = ephw;
48bae050
EB
1904 endpoint->msg_counter = 0x0b;
1905 endpoint->failed_messages = 0;
1906 endpoint->fatal_error = 0;
1907
1908 init_waitqueue_head(&endpoint->ep_wait);
1909 mutex_init(&endpoint->register_mutex);
1910
1911 return endpoint;
1912}
1913EXPORT_SYMBOL(xillybus_init_endpoint);
1914
1915static int xilly_quiesce(struct xilly_endpoint *endpoint)
1916{
ae870e5d
EB
1917 long t;
1918
48bae050 1919 endpoint->idtlen = -1;
21fc0b9f 1920
48bae050 1921 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
539889ee 1922 endpoint->registers + fpga_dma_control_reg);
48bae050 1923
ae870e5d
EB
1924 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1925 (endpoint->idtlen >= 0),
1926 XILLY_TIMEOUT);
1927 if (t <= 0) {
35fcf7e3 1928 dev_err(endpoint->dev,
525be905 1929 "Failed to quiesce the device on exit.\n");
48bae050
EB
1930 return -ENODEV;
1931 }
21c3184c 1932 return 0;
48bae050
EB
1933}
1934
1935int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1936{
40931bbb 1937 int rc;
ae870e5d 1938 long t;
48bae050 1939
525be905 1940 void *bootstrap_resources;
48bae050 1941 int idtbuffersize = (1 << PAGE_SHIFT);
525be905 1942 struct device *dev = endpoint->dev;
48bae050
EB
1943
1944 /*
1945 * The bogus IDT is used during bootstrap for allocating the initial
1946 * message buffer, and then the message buffer and space for the IDT
1947 * itself. The initial message buffer is of a single page's size, but
1948 * it's soon replaced with a more modest one (and memory is freed).
1949 */
1950
1951 unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1952 3, 192, PAGE_SHIFT, 0 };
1953 struct xilly_idt_handle idt_handle;
1954
48bae050 1955 /*
9379fd54
MI
1956 * Writing the value 0x00000001 to Endianness register signals which
1957 * endianness this processor is using, so the FPGA can swap words as
48bae050
EB
1958 * necessary.
1959 */
1960
539889ee 1961 iowrite32(1, endpoint->registers + fpga_endian_reg);
48bae050
EB
1962
1963 /* Bootstrap phase I: Allocate temporary message buffer */
1964
525be905
EB
1965 bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1966 if (!bootstrap_resources)
1967 return -ENOMEM;
1968
48bae050
EB
1969 endpoint->num_channels = 0;
1970
525be905 1971 rc = xilly_setupchannels(endpoint, bogus_idt, 1);
48bae050 1972 if (rc)
525be905 1973 return rc;
48bae050
EB
1974
1975 /* Clear the message subsystem (and counter in particular) */
539889ee 1976 iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
48bae050
EB
1977
1978 endpoint->idtlen = -1;
1979
48bae050
EB
1980 /*
1981 * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1982 * buffer size.
1983 */
1984 iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
91a2dea8 1985 endpoint->registers + fpga_dma_control_reg);
48bae050 1986
ae870e5d
EB
1987 t = wait_event_interruptible_timeout(endpoint->ep_wait,
1988 (endpoint->idtlen >= 0),
1989 XILLY_TIMEOUT);
1990 if (t <= 0) {
35fcf7e3 1991 dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
525be905 1992 return -ENODEV;
48bae050
EB
1993 }
1994
1995 /* Enable DMA */
1996 iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
91a2dea8 1997 endpoint->registers + fpga_dma_control_reg);
48bae050
EB
1998
1999 /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2000 while (endpoint->idtlen >= idtbuffersize) {
2001 idtbuffersize *= 2;
2002 bogus_idt[6]++;
2003 }
2004
2005 endpoint->num_channels = 1;
2006
525be905 2007 rc = xilly_setupchannels(endpoint, bogus_idt, 2);
48bae050
EB
2008 if (rc)
2009 goto failed_idt;
2010
48bae050 2011 rc = xilly_obtain_idt(endpoint);
48bae050
EB
2012 if (rc)
2013 goto failed_idt;
2014
9ac77ec6
EB
2015 rc = xilly_scan_idt(endpoint, &idt_handle);
2016 if (rc)
48bae050 2017 goto failed_idt;
525be905
EB
2018
2019 devres_close_group(dev, bootstrap_resources);
2020
48bae050
EB
2021 /* Bootstrap phase III: Allocate buffers according to IDT */
2022
2023 rc = xilly_setupchannels(endpoint,
48bae050
EB
2024 idt_handle.chandesc,
2025 idt_handle.entries);
48bae050
EB
2026 if (rc)
2027 goto failed_idt;
2028
48bae050
EB
2029 /*
2030 * endpoint is now completely configured. We put it on the list
2031 * available to open() before registering the char device(s)
2032 */
2033
2034 mutex_lock(&ep_list_lock);
2035 list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2036 mutex_unlock(&ep_list_lock);
2037
2038 rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
48bae050
EB
2039 if (rc)
2040 goto failed_chrdevs;
2041
525be905 2042 devres_release_group(dev, bootstrap_resources);
48bae050
EB
2043
2044 return 0;
2045
2046failed_chrdevs:
2047 mutex_lock(&ep_list_lock);
2048 list_del(&endpoint->ep_list);
2049 mutex_unlock(&ep_list_lock);
2050
2051failed_idt:
525be905 2052 xilly_quiesce(endpoint);
48bae050 2053 flush_workqueue(xillybus_wq);
48bae050
EB
2054
2055 return rc;
2056}
2057EXPORT_SYMBOL(xillybus_endpoint_discovery);
2058
2059void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2060{
2061 xillybus_cleanup_chrdev(endpoint);
2062
2063 mutex_lock(&ep_list_lock);
2064 list_del(&endpoint->ep_list);
2065 mutex_unlock(&ep_list_lock);
2066
2067 xilly_quiesce(endpoint);
2068
2069 /*
2070 * Flushing is done upon endpoint release to prevent access to memory
2071 * just about to be released. This makes the quiesce complete.
2072 */
2073 flush_workqueue(xillybus_wq);
2074}
2075EXPORT_SYMBOL(xillybus_endpoint_remove);
2076
2077static int __init xillybus_init(void)
2078{
48bae050
EB
2079 mutex_init(&ep_list_lock);
2080
2081 xillybus_class = class_create(THIS_MODULE, xillyname);
2531f6cc
EB
2082 if (IS_ERR(xillybus_class))
2083 return PTR_ERR(xillybus_class);
48bae050
EB
2084
2085 xillybus_wq = alloc_workqueue(xillyname, 0, 0);
3e67dee2
RW
2086 if (!xillybus_wq) {
2087 class_destroy(xillybus_class);
40931bbb 2088 return -ENOMEM;
3e67dee2 2089 }
48bae050 2090
40931bbb 2091 return 0;
48bae050
EB
2092}
2093
2094static void __exit xillybus_exit(void)
2095{
2096 /* flush_workqueue() was called for each endpoint released */
2097 destroy_workqueue(xillybus_wq);
2098
2099 class_destroy(xillybus_class);
2100}
2101
2102module_init(xillybus_init);
2103module_exit(xillybus_exit);