Staging: lustre: Avoid using 0 instead of NULL
[linux-2.6-block.git] / drivers / staging / lustre / lustre / ldlm / ldlm_pool.c
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2010, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/ldlm/ldlm_pool.c
37 *
38 * Author: Yury Umanets <umka@clusterfs.com>
39 */
40
41/*
42 * Idea of this code is rather simple. Each second, for each server namespace
43 * we have SLV - server lock volume which is calculated on current number of
44 * granted locks, grant speed for past period, etc - that is, locking load.
45 * This SLV number may be thought as a flow definition for simplicity. It is
46 * sent to clients with each occasion to let them know what is current load
47 * situation on the server. By default, at the beginning, SLV on server is
48 * set max value which is calculated as the following: allow to one client
49 * have all locks of limit ->pl_limit for 10h.
50 *
51 * Next, on clients, number of cached locks is not limited artificially in any
52 * way as it was before. Instead, client calculates CLV, that is, client lock
53 * volume for each lock and compares it with last SLV from the server. CLV is
54 * calculated as the number of locks in LRU * lock live time in seconds. If
55 * CLV > SLV - lock is canceled.
56 *
57 * Client has LVF, that is, lock volume factor which regulates how much sensitive
58 * client should be about last SLV from server. The higher LVF is the more locks
59 * will be canceled on client. Default value for it is 1. Setting LVF to 2 means
60 * that client will cancel locks 2 times faster.
61 *
62 * Locks on a client will be canceled more intensively in these cases:
63 * (1) if SLV is smaller, that is, load is higher on the server;
64 * (2) client has a lot of locks (the more locks are held by client, the bigger
65 * chances that some of them should be canceled);
66 * (3) client has old locks (taken some time ago);
67 *
68 * Thus, according to flow paradigm that we use for better understanding SLV,
69 * CLV is the volume of particle in flow described by SLV. According to this,
70 * if flow is getting thinner, more and more particles become outside of it and
71 * as particles are locks, they should be canceled.
72 *
73 * General idea of this belongs to Vitaly Fertman (vitaly@clusterfs.com). Andreas
74 * Dilger (adilger@clusterfs.com) proposed few nice ideas like using LVF and many
75 * cleanups. Flow definition to allow more easy understanding of the logic belongs
76 * to Nikita Danilov (nikita@clusterfs.com) as well as many cleanups and fixes.
77 * And design and implementation are done by Yury Umanets (umka@clusterfs.com).
78 *
79 * Glossary for terms used:
80 *
81 * pl_limit - Number of allowed locks in pool. Applies to server and client
82 * side (tunable);
83 *
84 * pl_granted - Number of granted locks (calculated);
85 * pl_grant_rate - Number of granted locks for last T (calculated);
86 * pl_cancel_rate - Number of canceled locks for last T (calculated);
87 * pl_grant_speed - Grant speed (GR - CR) for last T (calculated);
88 * pl_grant_plan - Planned number of granted locks for next T (calculated);
89 * pl_server_lock_volume - Current server lock volume (calculated);
90 *
91 * As it may be seen from list above, we have few possible tunables which may
92 * affect behavior much. They all may be modified via proc. However, they also
93 * give a possibility for constructing few pre-defined behavior policies. If
94 * none of predefines is suitable for a working pattern being used, new one may
95 * be "constructed" via proc tunables.
96 */
97
98#define DEBUG_SUBSYSTEM S_LDLM
99
100# include <lustre_dlm.h>
101
102#include <cl_object.h>
103
104#include <obd_class.h>
105#include <obd_support.h>
106#include "ldlm_internal.h"
107
108
109/*
110 * 50 ldlm locks for 1MB of RAM.
111 */
112#define LDLM_POOL_HOST_L ((NUM_CACHEPAGES >> (20 - PAGE_CACHE_SHIFT)) * 50)
113
114/*
115 * Maximal possible grant step plan in %.
116 */
117#define LDLM_POOL_MAX_GSP (30)
118
119/*
120 * Minimal possible grant step plan in %.
121 */
122#define LDLM_POOL_MIN_GSP (1)
123
124/*
125 * This controls the speed of reaching LDLM_POOL_MAX_GSP
126 * with increasing thread period.
127 */
128#define LDLM_POOL_GSP_STEP_SHIFT (2)
129
130/*
131 * LDLM_POOL_GSP% of all locks is default GP.
132 */
133#define LDLM_POOL_GP(L) (((L) * LDLM_POOL_MAX_GSP) / 100)
134
135/*
136 * Max age for locks on clients.
137 */
138#define LDLM_POOL_MAX_AGE (36000)
139
140/*
141 * The granularity of SLV calculation.
142 */
143#define LDLM_POOL_SLV_SHIFT (10)
144
b59fe845 145extern struct proc_dir_entry *ldlm_ns_proc_dir;
d7e09d03
PT
146
147static inline __u64 dru(__u64 val, __u32 shift, int round_up)
148{
149 return (val + (round_up ? (1 << shift) - 1 : 0)) >> shift;
150}
151
152static inline __u64 ldlm_pool_slv_max(__u32 L)
153{
154 /*
155 * Allow to have all locks for 1 client for 10 hrs.
156 * Formula is the following: limit * 10h / 1 client.
157 */
158 __u64 lim = (__u64)L * LDLM_POOL_MAX_AGE / 1;
159 return lim;
160}
161
162static inline __u64 ldlm_pool_slv_min(__u32 L)
163{
164 return 1;
165}
166
167enum {
168 LDLM_POOL_FIRST_STAT = 0,
169 LDLM_POOL_GRANTED_STAT = LDLM_POOL_FIRST_STAT,
170 LDLM_POOL_GRANT_STAT,
171 LDLM_POOL_CANCEL_STAT,
172 LDLM_POOL_GRANT_RATE_STAT,
173 LDLM_POOL_CANCEL_RATE_STAT,
174 LDLM_POOL_GRANT_PLAN_STAT,
175 LDLM_POOL_SLV_STAT,
176 LDLM_POOL_SHRINK_REQTD_STAT,
177 LDLM_POOL_SHRINK_FREED_STAT,
178 LDLM_POOL_RECALC_STAT,
179 LDLM_POOL_TIMING_STAT,
180 LDLM_POOL_LAST_STAT
181};
182
183static inline struct ldlm_namespace *ldlm_pl2ns(struct ldlm_pool *pl)
184{
185 return container_of(pl, struct ldlm_namespace, ns_pool);
186}
187
188/**
189 * Calculates suggested grant_step in % of available locks for passed
190 * \a period. This is later used in grant_plan calculations.
191 */
192static inline int ldlm_pool_t2gsp(unsigned int t)
193{
194 /*
195 * This yields 1% grant step for anything below LDLM_POOL_GSP_STEP
196 * and up to 30% for anything higher than LDLM_POOL_GSP_STEP.
197 *
198 * How this will affect execution is the following:
199 *
200 * - for thread period 1s we will have grant_step 1% which good from
201 * pov of taking some load off from server and push it out to clients.
202 * This is like that because 1% for grant_step means that server will
203 * not allow clients to get lots of locks in short period of time and
204 * keep all old locks in their caches. Clients will always have to
205 * get some locks back if they want to take some new;
206 *
207 * - for thread period 10s (which is default) we will have 23% which
208 * means that clients will have enough of room to take some new locks
209 * without getting some back. All locks from this 23% which were not
210 * taken by clients in current period will contribute in SLV growing.
211 * SLV growing means more locks cached on clients until limit or grant
212 * plan is reached.
213 */
214 return LDLM_POOL_MAX_GSP -
215 ((LDLM_POOL_MAX_GSP - LDLM_POOL_MIN_GSP) >>
216 (t >> LDLM_POOL_GSP_STEP_SHIFT));
217}
218
219/**
220 * Recalculates next grant limit on passed \a pl.
221 *
222 * \pre ->pl_lock is locked.
223 */
224static void ldlm_pool_recalc_grant_plan(struct ldlm_pool *pl)
225{
226 int granted, grant_step, limit;
227
228 limit = ldlm_pool_get_limit(pl);
229 granted = atomic_read(&pl->pl_granted);
230
231 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
232 grant_step = ((limit - granted) * grant_step) / 100;
233 pl->pl_grant_plan = granted + grant_step;
234 limit = (limit * 5) >> 2;
235 if (pl->pl_grant_plan > limit)
236 pl->pl_grant_plan = limit;
237}
238
239/**
240 * Recalculates next SLV on passed \a pl.
241 *
242 * \pre ->pl_lock is locked.
243 */
244static void ldlm_pool_recalc_slv(struct ldlm_pool *pl)
245{
246 int granted;
247 int grant_plan;
248 int round_up;
249 __u64 slv;
250 __u64 slv_factor;
251 __u64 grant_usage;
252 __u32 limit;
253
254 slv = pl->pl_server_lock_volume;
255 grant_plan = pl->pl_grant_plan;
256 limit = ldlm_pool_get_limit(pl);
257 granted = atomic_read(&pl->pl_granted);
258 round_up = granted < limit;
259
260 grant_usage = max_t(int, limit - (granted - grant_plan), 1);
261
262 /*
263 * Find out SLV change factor which is the ratio of grant usage
264 * from limit. SLV changes as fast as the ratio of grant plan
265 * consumption. The more locks from grant plan are not consumed
266 * by clients in last interval (idle time), the faster grows
267 * SLV. And the opposite, the more grant plan is over-consumed
268 * (load time) the faster drops SLV.
269 */
270 slv_factor = (grant_usage << LDLM_POOL_SLV_SHIFT);
271 do_div(slv_factor, limit);
272 slv = slv * slv_factor;
273 slv = dru(slv, LDLM_POOL_SLV_SHIFT, round_up);
274
275 if (slv > ldlm_pool_slv_max(limit)) {
276 slv = ldlm_pool_slv_max(limit);
277 } else if (slv < ldlm_pool_slv_min(limit)) {
278 slv = ldlm_pool_slv_min(limit);
279 }
280
281 pl->pl_server_lock_volume = slv;
282}
283
284/**
285 * Recalculates next stats on passed \a pl.
286 *
287 * \pre ->pl_lock is locked.
288 */
289static void ldlm_pool_recalc_stats(struct ldlm_pool *pl)
290{
291 int grant_plan = pl->pl_grant_plan;
292 __u64 slv = pl->pl_server_lock_volume;
293 int granted = atomic_read(&pl->pl_granted);
294 int grant_rate = atomic_read(&pl->pl_grant_rate);
295 int cancel_rate = atomic_read(&pl->pl_cancel_rate);
296
297 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_SLV_STAT,
298 slv);
299 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
300 granted);
301 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
302 grant_rate);
303 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
304 grant_plan);
305 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
306 cancel_rate);
307}
308
309/**
310 * Sets current SLV into obd accessible via ldlm_pl2ns(pl)->ns_obd.
311 */
312static void ldlm_srv_pool_push_slv(struct ldlm_pool *pl)
313{
314 struct obd_device *obd;
315
316 /*
317 * Set new SLV in obd field for using it later without accessing the
318 * pool. This is required to avoid race between sending reply to client
319 * with new SLV and cleanup server stack in which we can't guarantee
320 * that namespace is still alive. We know only that obd is alive as
321 * long as valid export is alive.
322 */
323 obd = ldlm_pl2ns(pl)->ns_obd;
324 LASSERT(obd != NULL);
325 write_lock(&obd->obd_pool_lock);
326 obd->obd_pool_slv = pl->pl_server_lock_volume;
327 write_unlock(&obd->obd_pool_lock);
328}
329
330/**
331 * Recalculates all pool fields on passed \a pl.
332 *
333 * \pre ->pl_lock is not locked.
334 */
335static int ldlm_srv_pool_recalc(struct ldlm_pool *pl)
336{
337 time_t recalc_interval_sec;
d7e09d03
PT
338
339 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
340 if (recalc_interval_sec < pl->pl_recalc_period)
0a3bdb00 341 return 0;
d7e09d03
PT
342
343 spin_lock(&pl->pl_lock);
344 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
345 if (recalc_interval_sec < pl->pl_recalc_period) {
346 spin_unlock(&pl->pl_lock);
0a3bdb00 347 return 0;
d7e09d03
PT
348 }
349 /*
350 * Recalc SLV after last period. This should be done
351 * _before_ recalculating new grant plan.
352 */
353 ldlm_pool_recalc_slv(pl);
354
355 /*
356 * Make sure that pool informed obd of last SLV changes.
357 */
358 ldlm_srv_pool_push_slv(pl);
359
360 /*
361 * Update grant_plan for new period.
362 */
363 ldlm_pool_recalc_grant_plan(pl);
364
365 pl->pl_recalc_time = cfs_time_current_sec();
366 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
367 recalc_interval_sec);
368 spin_unlock(&pl->pl_lock);
0a3bdb00 369 return 0;
d7e09d03
PT
370}
371
372/**
373 * This function is used on server side as main entry point for memory
374 * pressure handling. It decreases SLV on \a pl according to passed
375 * \a nr and \a gfp_mask.
376 *
377 * Our goal here is to decrease SLV such a way that clients hold \a nr
378 * locks smaller in next 10h.
379 */
380static int ldlm_srv_pool_shrink(struct ldlm_pool *pl,
381 int nr, unsigned int gfp_mask)
382{
383 __u32 limit;
384
385 /*
386 * VM is asking how many entries may be potentially freed.
387 */
388 if (nr == 0)
389 return atomic_read(&pl->pl_granted);
390
391 /*
392 * Client already canceled locks but server is already in shrinker
393 * and can't cancel anything. Let's catch this race.
394 */
395 if (atomic_read(&pl->pl_granted) == 0)
0a3bdb00 396 return 0;
d7e09d03
PT
397
398 spin_lock(&pl->pl_lock);
399
400 /*
401 * We want shrinker to possibly cause cancellation of @nr locks from
402 * clients or grant approximately @nr locks smaller next intervals.
403 *
404 * This is why we decreased SLV by @nr. This effect will only be as
405 * long as one re-calc interval (1s these days) and this should be
406 * enough to pass this decreased SLV to all clients. On next recalc
407 * interval pool will either increase SLV if locks load is not high
408 * or will keep on same level or even decrease again, thus, shrinker
409 * decreased SLV will affect next recalc intervals and this way will
410 * make locking load lower.
411 */
412 if (nr < pl->pl_server_lock_volume) {
413 pl->pl_server_lock_volume = pl->pl_server_lock_volume - nr;
414 } else {
415 limit = ldlm_pool_get_limit(pl);
416 pl->pl_server_lock_volume = ldlm_pool_slv_min(limit);
417 }
418
419 /*
420 * Make sure that pool informed obd of last SLV changes.
421 */
422 ldlm_srv_pool_push_slv(pl);
423 spin_unlock(&pl->pl_lock);
424
425 /*
426 * We did not really free any memory here so far, it only will be
427 * freed later may be, so that we return 0 to not confuse VM.
428 */
429 return 0;
430}
431
432/**
433 * Setup server side pool \a pl with passed \a limit.
434 */
435static int ldlm_srv_pool_setup(struct ldlm_pool *pl, int limit)
436{
437 struct obd_device *obd;
438
439 obd = ldlm_pl2ns(pl)->ns_obd;
440 LASSERT(obd != NULL && obd != LP_POISON);
441 LASSERT(obd->obd_type != LP_POISON);
442 write_lock(&obd->obd_pool_lock);
443 obd->obd_pool_limit = limit;
444 write_unlock(&obd->obd_pool_lock);
445
446 ldlm_pool_set_limit(pl, limit);
447 return 0;
448}
449
450/**
451 * Sets SLV and Limit from ldlm_pl2ns(pl)->ns_obd tp passed \a pl.
452 */
453static void ldlm_cli_pool_pop_slv(struct ldlm_pool *pl)
454{
455 struct obd_device *obd;
456
457 /*
458 * Get new SLV and Limit from obd which is updated with coming
459 * RPCs.
460 */
461 obd = ldlm_pl2ns(pl)->ns_obd;
462 LASSERT(obd != NULL);
463 read_lock(&obd->obd_pool_lock);
464 pl->pl_server_lock_volume = obd->obd_pool_slv;
465 ldlm_pool_set_limit(pl, obd->obd_pool_limit);
466 read_unlock(&obd->obd_pool_lock);
467}
468
469/**
470 * Recalculates client size pool \a pl according to current SLV and Limit.
471 */
472static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
473{
474 time_t recalc_interval_sec;
d7e09d03
PT
475
476 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
477 if (recalc_interval_sec < pl->pl_recalc_period)
0a3bdb00 478 return 0;
d7e09d03
PT
479
480 spin_lock(&pl->pl_lock);
481 /*
482 * Check if we need to recalc lists now.
483 */
484 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
485 if (recalc_interval_sec < pl->pl_recalc_period) {
486 spin_unlock(&pl->pl_lock);
0a3bdb00 487 return 0;
d7e09d03
PT
488 }
489
490 /*
491 * Make sure that pool knows last SLV and Limit from obd.
492 */
493 ldlm_cli_pool_pop_slv(pl);
494
495 pl->pl_recalc_time = cfs_time_current_sec();
496 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
497 recalc_interval_sec);
498 spin_unlock(&pl->pl_lock);
499
500 /*
501 * Do not cancel locks in case lru resize is disabled for this ns.
502 */
503 if (!ns_connect_lru_resize(ldlm_pl2ns(pl)))
0a3bdb00 504 return 0;
d7e09d03
PT
505
506 /*
507 * In the time of canceling locks on client we do not need to maintain
508 * sharp timing, we only want to cancel locks asap according to new SLV.
509 * It may be called when SLV has changed much, this is why we do not
510 * take into account pl->pl_recalc_time here.
511 */
0a3bdb00 512 return ldlm_cancel_lru(ldlm_pl2ns(pl), 0, LCF_ASYNC, LDLM_CANCEL_LRUR);
d7e09d03
PT
513}
514
515/**
516 * This function is main entry point for memory pressure handling on client
517 * side. Main goal of this function is to cancel some number of locks on
518 * passed \a pl according to \a nr and \a gfp_mask.
519 */
520static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
521 int nr, unsigned int gfp_mask)
522{
523 struct ldlm_namespace *ns;
cbc3769e 524 int unused;
d7e09d03
PT
525
526 ns = ldlm_pl2ns(pl);
527
528 /*
529 * Do not cancel locks in case lru resize is disabled for this ns.
530 */
531 if (!ns_connect_lru_resize(ns))
0a3bdb00 532 return 0;
d7e09d03
PT
533
534 /*
535 * Make sure that pool knows last SLV and Limit from obd.
536 */
537 ldlm_cli_pool_pop_slv(pl);
538
539 spin_lock(&ns->ns_lock);
540 unused = ns->ns_nr_unused;
541 spin_unlock(&ns->ns_lock);
542
cbc3769e
PT
543 if (nr == 0)
544 return (unused / 100) * sysctl_vfs_cache_pressure;
545 else
546 return ldlm_cancel_lru(ns, nr, LCF_ASYNC, LDLM_CANCEL_SHRINK);
d7e09d03
PT
547}
548
549struct ldlm_pool_ops ldlm_srv_pool_ops = {
550 .po_recalc = ldlm_srv_pool_recalc,
551 .po_shrink = ldlm_srv_pool_shrink,
552 .po_setup = ldlm_srv_pool_setup
553};
554
555struct ldlm_pool_ops ldlm_cli_pool_ops = {
556 .po_recalc = ldlm_cli_pool_recalc,
557 .po_shrink = ldlm_cli_pool_shrink
558};
559
560/**
561 * Pool recalc wrapper. Will call either client or server pool recalc callback
562 * depending what pool \a pl is used.
563 */
564int ldlm_pool_recalc(struct ldlm_pool *pl)
565{
566 time_t recalc_interval_sec;
567 int count;
568
569 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
570 if (recalc_interval_sec <= 0)
571 goto recalc;
572
573 spin_lock(&pl->pl_lock);
d7e09d03
PT
574 if (recalc_interval_sec > 0) {
575 /*
576 * Update pool statistics every 1s.
577 */
578 ldlm_pool_recalc_stats(pl);
579
580 /*
581 * Zero out all rates and speed for the last period.
582 */
583 atomic_set(&pl->pl_grant_rate, 0);
584 atomic_set(&pl->pl_cancel_rate, 0);
585 }
586 spin_unlock(&pl->pl_lock);
587
588 recalc:
589 if (pl->pl_ops->po_recalc != NULL) {
590 count = pl->pl_ops->po_recalc(pl);
591 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_RECALC_STAT,
592 count);
d7e09d03 593 }
3eface59
OD
594 recalc_interval_sec = pl->pl_recalc_time - cfs_time_current_sec() +
595 pl->pl_recalc_period;
d7e09d03 596
3eface59 597 return recalc_interval_sec;
d7e09d03 598}
d7e09d03 599
cbc3769e 600/*
d7e09d03 601 * Pool shrink wrapper. Will call either client or server pool recalc callback
cbc3769e
PT
602 * depending what pool pl is used. When nr == 0, just return the number of
603 * freeable locks. Otherwise, return the number of canceled locks.
d7e09d03
PT
604 */
605int ldlm_pool_shrink(struct ldlm_pool *pl, int nr,
606 unsigned int gfp_mask)
607{
608 int cancel = 0;
609
610 if (pl->pl_ops->po_shrink != NULL) {
611 cancel = pl->pl_ops->po_shrink(pl, nr, gfp_mask);
612 if (nr > 0) {
613 lprocfs_counter_add(pl->pl_stats,
614 LDLM_POOL_SHRINK_REQTD_STAT,
615 nr);
616 lprocfs_counter_add(pl->pl_stats,
617 LDLM_POOL_SHRINK_FREED_STAT,
618 cancel);
619 CDEBUG(D_DLMTRACE, "%s: request to shrink %d locks, "
620 "shrunk %d\n", pl->pl_name, nr, cancel);
621 }
622 }
623 return cancel;
624}
625EXPORT_SYMBOL(ldlm_pool_shrink);
626
627/**
628 * Pool setup wrapper. Will call either client or server pool recalc callback
629 * depending what pool \a pl is used.
630 *
631 * Sets passed \a limit into pool \a pl.
632 */
633int ldlm_pool_setup(struct ldlm_pool *pl, int limit)
634{
635 if (pl->pl_ops->po_setup != NULL)
636 return(pl->pl_ops->po_setup(pl, limit));
637 return 0;
638}
639EXPORT_SYMBOL(ldlm_pool_setup);
640
2c185ffa 641#ifdef LPROCFS
73bb1da6 642static int lprocfs_pool_state_seq_show(struct seq_file *m, void *unused)
d7e09d03
PT
643{
644 int granted, grant_rate, cancel_rate, grant_step;
73bb1da6
PT
645 int grant_speed, grant_plan, lvf;
646 struct ldlm_pool *pl = m->private;
d7e09d03
PT
647 __u64 slv, clv;
648 __u32 limit;
649
650 spin_lock(&pl->pl_lock);
651 slv = pl->pl_server_lock_volume;
652 clv = pl->pl_client_lock_volume;
653 limit = ldlm_pool_get_limit(pl);
654 grant_plan = pl->pl_grant_plan;
655 granted = atomic_read(&pl->pl_granted);
656 grant_rate = atomic_read(&pl->pl_grant_rate);
657 cancel_rate = atomic_read(&pl->pl_cancel_rate);
658 grant_speed = grant_rate - cancel_rate;
659 lvf = atomic_read(&pl->pl_lock_volume_factor);
660 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
661 spin_unlock(&pl->pl_lock);
662
73bb1da6
PT
663 seq_printf(m, "LDLM pool state (%s):\n"
664 " SLV: "LPU64"\n"
665 " CLV: "LPU64"\n"
666 " LVF: %d\n",
667 pl->pl_name, slv, clv, lvf);
d7e09d03
PT
668
669 if (ns_is_server(ldlm_pl2ns(pl))) {
73bb1da6
PT
670 seq_printf(m, " GSP: %d%%\n"
671 " GP: %d\n",
672 grant_step, grant_plan);
d7e09d03 673 }
73bb1da6
PT
674 seq_printf(m, " GR: %d\n" " CR: %d\n" " GS: %d\n"
675 " G: %d\n" " L: %d\n",
676 grant_rate, cancel_rate, grant_speed,
677 granted, limit);
678
679 return 0;
d7e09d03 680}
73bb1da6 681LPROC_SEQ_FOPS_RO(lprocfs_pool_state);
d7e09d03 682
73bb1da6 683static int lprocfs_grant_speed_seq_show(struct seq_file *m, void *unused)
d7e09d03 684{
73bb1da6 685 struct ldlm_pool *pl = m->private;
d7e09d03
PT
686 int grant_speed;
687
688 spin_lock(&pl->pl_lock);
689 /* serialize with ldlm_pool_recalc */
690 grant_speed = atomic_read(&pl->pl_grant_rate) -
691 atomic_read(&pl->pl_cancel_rate);
692 spin_unlock(&pl->pl_lock);
73bb1da6 693 return lprocfs_rd_uint(m, &grant_speed);
d7e09d03
PT
694}
695
73bb1da6
PT
696LDLM_POOL_PROC_READER_SEQ_SHOW(grant_plan, int);
697LPROC_SEQ_FOPS_RO(lprocfs_grant_plan);
698
699LDLM_POOL_PROC_READER_SEQ_SHOW(recalc_period, int);
d7e09d03 700LDLM_POOL_PROC_WRITER(recalc_period, int);
73bb1da6
PT
701static ssize_t lprocfs_recalc_period_seq_write(struct file *file, const char *buf,
702 size_t len, loff_t *off)
703{
704 struct seq_file *seq = file->private_data;
705
706 return lprocfs_wr_recalc_period(file, buf, len, seq->private);
707}
708LPROC_SEQ_FOPS(lprocfs_recalc_period);
709
710LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, u64);
711LPROC_SEQ_FOPS_RO_TYPE(ldlm_pool, atomic);
712LPROC_SEQ_FOPS_RW_TYPE(ldlm_pool_rw, atomic);
713
714LPROC_SEQ_FOPS_RO(lprocfs_grant_speed);
715
716#define LDLM_POOL_ADD_VAR(name, var, ops) \
717 do { \
718 snprintf(var_name, MAX_STRING_SIZE, #name); \
719 pool_vars[0].data = var; \
720 pool_vars[0].fops = ops; \
3eb84460 721 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, NULL);\
73bb1da6 722 } while (0)
d7e09d03
PT
723
724static int ldlm_pool_proc_init(struct ldlm_pool *pl)
725{
726 struct ldlm_namespace *ns = ldlm_pl2ns(pl);
727 struct proc_dir_entry *parent_ns_proc;
728 struct lprocfs_vars pool_vars[2];
729 char *var_name = NULL;
730 int rc = 0;
d7e09d03
PT
731
732 OBD_ALLOC(var_name, MAX_STRING_SIZE + 1);
733 if (!var_name)
0a3bdb00 734 return -ENOMEM;
d7e09d03 735
73bb1da6 736 parent_ns_proc = ns->ns_proc_dir_entry;
d7e09d03
PT
737 if (parent_ns_proc == NULL) {
738 CERROR("%s: proc entry is not initialized\n",
739 ldlm_ns_name(ns));
740 GOTO(out_free_name, rc = -EINVAL);
741 }
742 pl->pl_proc_dir = lprocfs_register("pool", parent_ns_proc,
743 NULL, NULL);
744 if (IS_ERR(pl->pl_proc_dir)) {
745 CERROR("LProcFS failed in ldlm-pool-init\n");
746 rc = PTR_ERR(pl->pl_proc_dir);
5907838a 747 pl->pl_proc_dir = NULL;
d7e09d03
PT
748 GOTO(out_free_name, rc);
749 }
750
751 var_name[MAX_STRING_SIZE] = '\0';
752 memset(pool_vars, 0, sizeof(pool_vars));
753 pool_vars[0].name = var_name;
754
73bb1da6
PT
755 LDLM_POOL_ADD_VAR("server_lock_volume", &pl->pl_server_lock_volume,
756 &ldlm_pool_u64_fops);
757 LDLM_POOL_ADD_VAR("limit", &pl->pl_limit, &ldlm_pool_rw_atomic_fops);
758 LDLM_POOL_ADD_VAR("granted", &pl->pl_granted, &ldlm_pool_atomic_fops);
759 LDLM_POOL_ADD_VAR("grant_speed", pl, &lprocfs_grant_speed_fops);
760 LDLM_POOL_ADD_VAR("cancel_rate", &pl->pl_cancel_rate,
761 &ldlm_pool_atomic_fops);
762 LDLM_POOL_ADD_VAR("grant_rate", &pl->pl_grant_rate,
763 &ldlm_pool_atomic_fops);
764 LDLM_POOL_ADD_VAR("grant_plan", pl, &lprocfs_grant_plan_fops);
765 LDLM_POOL_ADD_VAR("recalc_period", pl, &lprocfs_recalc_period_fops);
766 LDLM_POOL_ADD_VAR("lock_volume_factor", &pl->pl_lock_volume_factor,
767 &ldlm_pool_rw_atomic_fops);
768 LDLM_POOL_ADD_VAR("state", pl, &lprocfs_pool_state_fops);
d7e09d03
PT
769
770 pl->pl_stats = lprocfs_alloc_stats(LDLM_POOL_LAST_STAT -
771 LDLM_POOL_FIRST_STAT, 0);
772 if (!pl->pl_stats)
773 GOTO(out_free_name, rc = -ENOMEM);
774
775 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
776 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
777 "granted", "locks");
778 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_STAT,
779 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
780 "grant", "locks");
781 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_STAT,
782 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
783 "cancel", "locks");
784 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
785 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
786 "grant_rate", "locks/s");
787 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
788 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
789 "cancel_rate", "locks/s");
790 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
791 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
792 "grant_plan", "locks/s");
793 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SLV_STAT,
794 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
795 "slv", "slv");
796 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_REQTD_STAT,
797 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
798 "shrink_request", "locks");
799 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_FREED_STAT,
800 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
801 "shrink_freed", "locks");
802 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_RECALC_STAT,
803 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
804 "recalc_freed", "locks");
805 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_TIMING_STAT,
806 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
807 "recalc_timing", "sec");
808 rc = lprocfs_register_stats(pl->pl_proc_dir, "stats", pl->pl_stats);
809
d7e09d03
PT
810out_free_name:
811 OBD_FREE(var_name, MAX_STRING_SIZE + 1);
812 return rc;
813}
814
815static void ldlm_pool_proc_fini(struct ldlm_pool *pl)
816{
817 if (pl->pl_stats != NULL) {
818 lprocfs_free_stats(&pl->pl_stats);
819 pl->pl_stats = NULL;
820 }
821 if (pl->pl_proc_dir != NULL) {
822 lprocfs_remove(&pl->pl_proc_dir);
823 pl->pl_proc_dir = NULL;
824 }
825}
2c185ffa
PT
826#else /* !LPROCFS */
827static int ldlm_pool_proc_init(struct ldlm_pool *pl)
828{
829 return 0;
830}
831
832static void ldlm_pool_proc_fini(struct ldlm_pool *pl) {}
833#endif /* LPROCFS */
d7e09d03
PT
834
835int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
836 int idx, ldlm_side_t client)
837{
838 int rc;
d7e09d03
PT
839
840 spin_lock_init(&pl->pl_lock);
841 atomic_set(&pl->pl_granted, 0);
842 pl->pl_recalc_time = cfs_time_current_sec();
843 atomic_set(&pl->pl_lock_volume_factor, 1);
844
845 atomic_set(&pl->pl_grant_rate, 0);
846 atomic_set(&pl->pl_cancel_rate, 0);
847 pl->pl_grant_plan = LDLM_POOL_GP(LDLM_POOL_HOST_L);
848
849 snprintf(pl->pl_name, sizeof(pl->pl_name), "ldlm-pool-%s-%d",
850 ldlm_ns_name(ns), idx);
851
852 if (client == LDLM_NAMESPACE_SERVER) {
853 pl->pl_ops = &ldlm_srv_pool_ops;
854 ldlm_pool_set_limit(pl, LDLM_POOL_HOST_L);
855 pl->pl_recalc_period = LDLM_POOL_SRV_DEF_RECALC_PERIOD;
856 pl->pl_server_lock_volume = ldlm_pool_slv_max(LDLM_POOL_HOST_L);
857 } else {
858 ldlm_pool_set_limit(pl, 1);
859 pl->pl_server_lock_volume = 0;
860 pl->pl_ops = &ldlm_cli_pool_ops;
861 pl->pl_recalc_period = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
862 }
863 pl->pl_client_lock_volume = 0;
864 rc = ldlm_pool_proc_init(pl);
865 if (rc)
0a3bdb00 866 return rc;
d7e09d03
PT
867
868 CDEBUG(D_DLMTRACE, "Lock pool %s is initialized\n", pl->pl_name);
869
0a3bdb00 870 return rc;
d7e09d03
PT
871}
872EXPORT_SYMBOL(ldlm_pool_init);
873
874void ldlm_pool_fini(struct ldlm_pool *pl)
875{
d7e09d03
PT
876 ldlm_pool_proc_fini(pl);
877
878 /*
879 * Pool should not be used after this point. We can't free it here as
880 * it lives in struct ldlm_namespace, but still interested in catching
881 * any abnormal using cases.
882 */
883 POISON(pl, 0x5a, sizeof(*pl));
d7e09d03
PT
884}
885EXPORT_SYMBOL(ldlm_pool_fini);
886
887/**
888 * Add new taken ldlm lock \a lock into pool \a pl accounting.
889 */
890void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
891{
892 /*
893 * FLOCK locks are special in a sense that they are almost never
894 * cancelled, instead special kind of lock is used to drop them.
895 * also there is no LRU for flock locks, so no point in tracking
896 * them anyway.
897 */
898 if (lock->l_resource->lr_type == LDLM_FLOCK)
899 return;
900
901 atomic_inc(&pl->pl_granted);
902 atomic_inc(&pl->pl_grant_rate);
903 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_GRANT_STAT);
904 /*
905 * Do not do pool recalc for client side as all locks which
906 * potentially may be canceled has already been packed into
907 * enqueue/cancel rpc. Also we do not want to run out of stack
908 * with too long call paths.
909 */
910 if (ns_is_server(ldlm_pl2ns(pl)))
911 ldlm_pool_recalc(pl);
912}
913EXPORT_SYMBOL(ldlm_pool_add);
914
915/**
916 * Remove ldlm lock \a lock from pool \a pl accounting.
917 */
918void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
919{
920 /*
921 * Filter out FLOCK locks. Read above comment in ldlm_pool_add().
922 */
923 if (lock->l_resource->lr_type == LDLM_FLOCK)
924 return;
925
926 LASSERT(atomic_read(&pl->pl_granted) > 0);
927 atomic_dec(&pl->pl_granted);
928 atomic_inc(&pl->pl_cancel_rate);
929
930 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_CANCEL_STAT);
931
932 if (ns_is_server(ldlm_pl2ns(pl)))
933 ldlm_pool_recalc(pl);
934}
935EXPORT_SYMBOL(ldlm_pool_del);
936
937/**
938 * Returns current \a pl SLV.
939 *
940 * \pre ->pl_lock is not locked.
941 */
942__u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
943{
944 __u64 slv;
945 spin_lock(&pl->pl_lock);
946 slv = pl->pl_server_lock_volume;
947 spin_unlock(&pl->pl_lock);
948 return slv;
949}
950EXPORT_SYMBOL(ldlm_pool_get_slv);
951
952/**
953 * Sets passed \a slv to \a pl.
954 *
955 * \pre ->pl_lock is not locked.
956 */
957void ldlm_pool_set_slv(struct ldlm_pool *pl, __u64 slv)
958{
959 spin_lock(&pl->pl_lock);
960 pl->pl_server_lock_volume = slv;
961 spin_unlock(&pl->pl_lock);
962}
963EXPORT_SYMBOL(ldlm_pool_set_slv);
964
965/**
966 * Returns current \a pl CLV.
967 *
968 * \pre ->pl_lock is not locked.
969 */
970__u64 ldlm_pool_get_clv(struct ldlm_pool *pl)
971{
972 __u64 slv;
973 spin_lock(&pl->pl_lock);
974 slv = pl->pl_client_lock_volume;
975 spin_unlock(&pl->pl_lock);
976 return slv;
977}
978EXPORT_SYMBOL(ldlm_pool_get_clv);
979
980/**
981 * Sets passed \a clv to \a pl.
982 *
983 * \pre ->pl_lock is not locked.
984 */
985void ldlm_pool_set_clv(struct ldlm_pool *pl, __u64 clv)
986{
987 spin_lock(&pl->pl_lock);
988 pl->pl_client_lock_volume = clv;
989 spin_unlock(&pl->pl_lock);
990}
991EXPORT_SYMBOL(ldlm_pool_set_clv);
992
993/**
994 * Returns current \a pl limit.
995 */
996__u32 ldlm_pool_get_limit(struct ldlm_pool *pl)
997{
998 return atomic_read(&pl->pl_limit);
999}
1000EXPORT_SYMBOL(ldlm_pool_get_limit);
1001
1002/**
1003 * Sets passed \a limit to \a pl.
1004 */
1005void ldlm_pool_set_limit(struct ldlm_pool *pl, __u32 limit)
1006{
1007 atomic_set(&pl->pl_limit, limit);
1008}
1009EXPORT_SYMBOL(ldlm_pool_set_limit);
1010
1011/**
1012 * Returns current LVF from \a pl.
1013 */
1014__u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
1015{
1016 return atomic_read(&pl->pl_lock_volume_factor);
1017}
1018EXPORT_SYMBOL(ldlm_pool_get_lvf);
1019
1020static int ldlm_pool_granted(struct ldlm_pool *pl)
1021{
1022 return atomic_read(&pl->pl_granted);
1023}
1024
1025static struct ptlrpc_thread *ldlm_pools_thread;
d7e09d03
PT
1026static struct completion ldlm_pools_comp;
1027
1028/*
cbc3769e
PT
1029 * count locks from all namespaces (if possible). Returns number of
1030 * cached locks.
d7e09d03 1031 */
cbc3769e 1032static unsigned long ldlm_pools_count(ldlm_side_t client, unsigned int gfp_mask)
d7e09d03 1033{
cbc3769e 1034 int total = 0, nr_ns;
d7e09d03 1035 struct ldlm_namespace *ns;
91a50030 1036 struct ldlm_namespace *ns_old = NULL; /* loop detection */
d7e09d03
PT
1037 void *cookie;
1038
cbc3769e
PT
1039 if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
1040 return 0;
d7e09d03 1041
cbc3769e
PT
1042 CDEBUG(D_DLMTRACE, "Request to count %s locks from all pools\n",
1043 client == LDLM_NAMESPACE_CLIENT ? "client" : "server");
d7e09d03
PT
1044
1045 cookie = cl_env_reenter();
1046
1047 /*
1048 * Find out how many resources we may release.
1049 */
91a50030 1050 for (nr_ns = ldlm_namespace_nr_read(client);
cbc3769e 1051 nr_ns > 0; nr_ns--) {
d7e09d03
PT
1052 mutex_lock(ldlm_namespace_lock(client));
1053 if (list_empty(ldlm_namespace_list(client))) {
1054 mutex_unlock(ldlm_namespace_lock(client));
1055 cl_env_reexit(cookie);
1056 return 0;
1057 }
1058 ns = ldlm_namespace_first_locked(client);
91a50030
OD
1059
1060 if (ns == ns_old) {
1061 mutex_unlock(ldlm_namespace_lock(client));
1062 break;
1063 }
1064
1065 if (ldlm_ns_empty(ns)) {
1066 ldlm_namespace_move_to_inactive_locked(ns, client);
1067 mutex_unlock(ldlm_namespace_lock(client));
1068 continue;
1069 }
1070
1071 if (ns_old == NULL)
1072 ns_old = ns;
1073
d7e09d03 1074 ldlm_namespace_get(ns);
91a50030 1075 ldlm_namespace_move_to_active_locked(ns, client);
d7e09d03
PT
1076 mutex_unlock(ldlm_namespace_lock(client));
1077 total += ldlm_pool_shrink(&ns->ns_pool, 0, gfp_mask);
1078 ldlm_namespace_put(ns);
1079 }
1080
cbc3769e
PT
1081 cl_env_reexit(cookie);
1082 return total;
1083}
1084
1085static unsigned long ldlm_pools_scan(ldlm_side_t client, int nr, unsigned int gfp_mask)
1086{
1087 unsigned long freed = 0;
1088 int tmp, nr_ns;
1089 struct ldlm_namespace *ns;
1090 void *cookie;
1091
1092 if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
1093 return -1;
1094
1095 cookie = cl_env_reenter();
d7e09d03
PT
1096
1097 /*
cbc3769e 1098 * Shrink at least ldlm_namespace_nr_read(client) namespaces.
d7e09d03 1099 */
cbc3769e
PT
1100 for (tmp = nr_ns = ldlm_namespace_nr_read(client);
1101 tmp > 0; tmp--) {
d7e09d03
PT
1102 int cancel, nr_locks;
1103
1104 /*
1105 * Do not call shrink under ldlm_namespace_lock(client)
1106 */
1107 mutex_lock(ldlm_namespace_lock(client));
1108 if (list_empty(ldlm_namespace_list(client))) {
1109 mutex_unlock(ldlm_namespace_lock(client));
d7e09d03
PT
1110 break;
1111 }
1112 ns = ldlm_namespace_first_locked(client);
1113 ldlm_namespace_get(ns);
91a50030 1114 ldlm_namespace_move_to_active_locked(ns, client);
d7e09d03
PT
1115 mutex_unlock(ldlm_namespace_lock(client));
1116
1117 nr_locks = ldlm_pool_granted(&ns->ns_pool);
cbc3769e
PT
1118 /*
1119 * We use to shrink propotionally but with new shrinker API,
1120 * we lost the total number of freeable locks.
1121 */
1122 cancel = 1 + min_t(int, nr_locks, nr / nr_ns);
1123 freed += ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
d7e09d03
PT
1124 ldlm_namespace_put(ns);
1125 }
1126 cl_env_reexit(cookie);
cbc3769e
PT
1127 /*
1128 * we only decrease the SLV in server pools shrinker, return
1129 * SHRINK_STOP to kernel to avoid needless loop. LU-1128
1130 */
1131 return (client == LDLM_NAMESPACE_SERVER) ? SHRINK_STOP : freed;
1132}
1133
1134static unsigned long ldlm_pools_srv_count(struct shrinker *s, struct shrink_control *sc)
1135{
1136 return ldlm_pools_count(LDLM_NAMESPACE_SERVER, sc->gfp_mask);
d7e09d03
PT
1137}
1138
cbc3769e 1139static unsigned long ldlm_pools_srv_scan(struct shrinker *s, struct shrink_control *sc)
d7e09d03 1140{
cbc3769e
PT
1141 return ldlm_pools_scan(LDLM_NAMESPACE_SERVER, sc->nr_to_scan,
1142 sc->gfp_mask);
d7e09d03
PT
1143}
1144
cbc3769e 1145static unsigned long ldlm_pools_cli_count(struct shrinker *s, struct shrink_control *sc)
d7e09d03 1146{
cbc3769e
PT
1147 return ldlm_pools_count(LDLM_NAMESPACE_CLIENT, sc->gfp_mask);
1148}
1149
1150static unsigned long ldlm_pools_cli_scan(struct shrinker *s, struct shrink_control *sc)
1151{
1152 return ldlm_pools_scan(LDLM_NAMESPACE_CLIENT, sc->nr_to_scan,
1153 sc->gfp_mask);
d7e09d03
PT
1154}
1155
3eface59 1156int ldlm_pools_recalc(ldlm_side_t client)
d7e09d03
PT
1157{
1158 __u32 nr_l = 0, nr_p = 0, l;
1159 struct ldlm_namespace *ns;
91a50030 1160 struct ldlm_namespace *ns_old = NULL;
d7e09d03 1161 int nr, equal = 0;
3eface59 1162 int time = 50; /* seconds of sleep if no active namespaces */
d7e09d03
PT
1163
1164 /*
1165 * No need to setup pool limit for client pools.
1166 */
1167 if (client == LDLM_NAMESPACE_SERVER) {
1168 /*
1169 * Check all modest namespaces first.
1170 */
1171 mutex_lock(ldlm_namespace_lock(client));
1172 list_for_each_entry(ns, ldlm_namespace_list(client),
1173 ns_list_chain)
1174 {
1175 if (ns->ns_appetite != LDLM_NAMESPACE_MODEST)
1176 continue;
1177
1178 l = ldlm_pool_granted(&ns->ns_pool);
1179 if (l == 0)
1180 l = 1;
1181
1182 /*
1183 * Set the modest pools limit equal to their avg granted
1184 * locks + ~6%.
1185 */
1186 l += dru(l, LDLM_POOLS_MODEST_MARGIN_SHIFT, 0);
1187 ldlm_pool_setup(&ns->ns_pool, l);
1188 nr_l += l;
1189 nr_p++;
1190 }
1191
1192 /*
1193 * Make sure that modest namespaces did not eat more that 2/3
1194 * of limit.
1195 */
1196 if (nr_l >= 2 * (LDLM_POOL_HOST_L / 3)) {
1197 CWARN("\"Modest\" pools eat out 2/3 of server locks "
1198 "limit (%d of %lu). This means that you have too "
1199 "many clients for this amount of server RAM. "
1200 "Upgrade server!\n", nr_l, LDLM_POOL_HOST_L);
1201 equal = 1;
1202 }
1203
1204 /*
1205 * The rest is given to greedy namespaces.
1206 */
1207 list_for_each_entry(ns, ldlm_namespace_list(client),
1208 ns_list_chain)
1209 {
1210 if (!equal && ns->ns_appetite != LDLM_NAMESPACE_GREEDY)
1211 continue;
1212
1213 if (equal) {
1214 /*
1215 * In the case 2/3 locks are eaten out by
1216 * modest pools, we re-setup equal limit
1217 * for _all_ pools.
1218 */
1219 l = LDLM_POOL_HOST_L /
91a50030 1220 ldlm_namespace_nr_read(client);
d7e09d03
PT
1221 } else {
1222 /*
1223 * All the rest of greedy pools will have
1224 * all locks in equal parts.
1225 */
1226 l = (LDLM_POOL_HOST_L - nr_l) /
91a50030 1227 (ldlm_namespace_nr_read(client) -
d7e09d03
PT
1228 nr_p);
1229 }
1230 ldlm_pool_setup(&ns->ns_pool, l);
1231 }
1232 mutex_unlock(ldlm_namespace_lock(client));
1233 }
1234
1235 /*
cbc3769e 1236 * Recalc at least ldlm_namespace_nr_read(client) namespaces.
d7e09d03 1237 */
91a50030 1238 for (nr = ldlm_namespace_nr_read(client); nr > 0; nr--) {
d7e09d03
PT
1239 int skip;
1240 /*
1241 * Lock the list, get first @ns in the list, getref, move it
1242 * to the tail, unlock and call pool recalc. This way we avoid
1243 * calling recalc under @ns lock what is really good as we get
1244 * rid of potential deadlock on client nodes when canceling
1245 * locks synchronously.
1246 */
1247 mutex_lock(ldlm_namespace_lock(client));
1248 if (list_empty(ldlm_namespace_list(client))) {
1249 mutex_unlock(ldlm_namespace_lock(client));
1250 break;
1251 }
1252 ns = ldlm_namespace_first_locked(client);
1253
91a50030
OD
1254 if (ns_old == ns) { /* Full pass complete */
1255 mutex_unlock(ldlm_namespace_lock(client));
1256 break;
1257 }
1258
1259 /* We got an empty namespace, need to move it back to inactive
1260 * list.
1261 * The race with parallel resource creation is fine:
1262 * - If they do namespace_get before our check, we fail the
1263 * check and they move this item to the end of the list anyway
1264 * - If we do the check and then they do namespace_get, then
1265 * we move the namespace to inactive and they will move
1266 * it back to active (synchronised by the lock, so no clash
1267 * there).
1268 */
1269 if (ldlm_ns_empty(ns)) {
1270 ldlm_namespace_move_to_inactive_locked(ns, client);
1271 mutex_unlock(ldlm_namespace_lock(client));
1272 continue;
1273 }
1274
1275 if (ns_old == NULL)
1276 ns_old = ns;
1277
d7e09d03
PT
1278 spin_lock(&ns->ns_lock);
1279 /*
1280 * skip ns which is being freed, and we don't want to increase
1281 * its refcount again, not even temporarily. bz21519 & LU-499.
1282 */
1283 if (ns->ns_stopping) {
1284 skip = 1;
1285 } else {
1286 skip = 0;
1287 ldlm_namespace_get(ns);
1288 }
1289 spin_unlock(&ns->ns_lock);
1290
91a50030 1291 ldlm_namespace_move_to_active_locked(ns, client);
d7e09d03
PT
1292 mutex_unlock(ldlm_namespace_lock(client));
1293
1294 /*
1295 * After setup is done - recalc the pool.
1296 */
1297 if (!skip) {
3eface59
OD
1298 int ttime = ldlm_pool_recalc(&ns->ns_pool);
1299
1300 if (ttime < time)
1301 time = ttime;
1302
d7e09d03
PT
1303 ldlm_namespace_put(ns);
1304 }
1305 }
3eface59 1306 return time;
d7e09d03
PT
1307}
1308EXPORT_SYMBOL(ldlm_pools_recalc);
1309
1310static int ldlm_pools_thread_main(void *arg)
1311{
1312 struct ptlrpc_thread *thread = (struct ptlrpc_thread *)arg;
3eface59 1313 int s_time, c_time;
d7e09d03
PT
1314
1315 thread_set_flags(thread, SVC_RUNNING);
1316 wake_up(&thread->t_ctl_waitq);
1317
1318 CDEBUG(D_DLMTRACE, "%s: pool thread starting, process %d\n",
1319 "ldlm_poold", current_pid());
1320
1321 while (1) {
1322 struct l_wait_info lwi;
1323
1324 /*
1325 * Recal all pools on this tick.
1326 */
3eface59
OD
1327 s_time = ldlm_pools_recalc(LDLM_NAMESPACE_SERVER);
1328 c_time = ldlm_pools_recalc(LDLM_NAMESPACE_CLIENT);
d7e09d03
PT
1329
1330 /*
1331 * Wait until the next check time, or until we're
1332 * stopped.
1333 */
3eface59 1334 lwi = LWI_TIMEOUT(cfs_time_seconds(min(s_time, c_time)),
d7e09d03
PT
1335 NULL, NULL);
1336 l_wait_event(thread->t_ctl_waitq,
1337 thread_is_stopping(thread) ||
1338 thread_is_event(thread),
1339 &lwi);
1340
1341 if (thread_test_and_clear_flags(thread, SVC_STOPPING))
1342 break;
1343 else
1344 thread_test_and_clear_flags(thread, SVC_EVENT);
1345 }
1346
1347 thread_set_flags(thread, SVC_STOPPED);
1348 wake_up(&thread->t_ctl_waitq);
1349
1350 CDEBUG(D_DLMTRACE, "%s: pool thread exiting, process %d\n",
1351 "ldlm_poold", current_pid());
1352
1353 complete_and_exit(&ldlm_pools_comp, 0);
1354}
1355
1356static int ldlm_pools_thread_start(void)
1357{
1358 struct l_wait_info lwi = { 0 };
68b636b6 1359 struct task_struct *task;
d7e09d03
PT
1360
1361 if (ldlm_pools_thread != NULL)
0a3bdb00 1362 return -EALREADY;
d7e09d03
PT
1363
1364 OBD_ALLOC_PTR(ldlm_pools_thread);
1365 if (ldlm_pools_thread == NULL)
0a3bdb00 1366 return -ENOMEM;
d7e09d03
PT
1367
1368 init_completion(&ldlm_pools_comp);
1369 init_waitqueue_head(&ldlm_pools_thread->t_ctl_waitq);
1370
1371 task = kthread_run(ldlm_pools_thread_main, ldlm_pools_thread,
1372 "ldlm_poold");
1373 if (IS_ERR(task)) {
1374 CERROR("Can't start pool thread, error %ld\n", PTR_ERR(task));
1375 OBD_FREE(ldlm_pools_thread, sizeof(*ldlm_pools_thread));
1376 ldlm_pools_thread = NULL;
0a3bdb00 1377 return PTR_ERR(task);
d7e09d03
PT
1378 }
1379 l_wait_event(ldlm_pools_thread->t_ctl_waitq,
1380 thread_is_running(ldlm_pools_thread), &lwi);
0a3bdb00 1381 return 0;
d7e09d03
PT
1382}
1383
1384static void ldlm_pools_thread_stop(void)
1385{
d7e09d03 1386 if (ldlm_pools_thread == NULL) {
d7e09d03
PT
1387 return;
1388 }
1389
1390 thread_set_flags(ldlm_pools_thread, SVC_STOPPING);
1391 wake_up(&ldlm_pools_thread->t_ctl_waitq);
1392
1393 /*
1394 * Make sure that pools thread is finished before freeing @thread.
1395 * This fixes possible race and oops due to accessing freed memory
1396 * in pools thread.
1397 */
1398 wait_for_completion(&ldlm_pools_comp);
1399 OBD_FREE_PTR(ldlm_pools_thread);
1400 ldlm_pools_thread = NULL;
d7e09d03
PT
1401}
1402
cbc3769e
PT
1403static struct shrinker ldlm_pools_srv_shrinker = {
1404 .count_objects = ldlm_pools_srv_count,
1405 .scan_objects = ldlm_pools_srv_scan,
1406 .seeks = DEFAULT_SEEKS,
1407};
1408
1409static struct shrinker ldlm_pools_cli_shrinker = {
1410 .count_objects = ldlm_pools_cli_count,
1411 .scan_objects = ldlm_pools_cli_scan,
1412 .seeks = DEFAULT_SEEKS,
1413};
1414
d7e09d03
PT
1415int ldlm_pools_init(void)
1416{
1417 int rc;
d7e09d03
PT
1418
1419 rc = ldlm_pools_thread_start();
1420 if (rc == 0) {
cbc3769e
PT
1421 register_shrinker(&ldlm_pools_srv_shrinker);
1422 register_shrinker(&ldlm_pools_cli_shrinker);
d7e09d03 1423 }
0a3bdb00 1424 return rc;
d7e09d03
PT
1425}
1426EXPORT_SYMBOL(ldlm_pools_init);
1427
1428void ldlm_pools_fini(void)
1429{
cbc3769e
PT
1430 unregister_shrinker(&ldlm_pools_srv_shrinker);
1431 unregister_shrinker(&ldlm_pools_cli_shrinker);
d7e09d03
PT
1432 ldlm_pools_thread_stop();
1433}
1434EXPORT_SYMBOL(ldlm_pools_fini);