staging: lustre: remove ENTRY macro
[linux-2.6-block.git] / drivers / staging / lustre / lustre / lclient / lcommon_cl.c
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * cl code shared between vvp and liblustre (and other Lustre clients in the
37 * future).
38 *
39 * Author: Nikita Danilov <nikita.danilov@sun.com>
40 */
41
42#define DEBUG_SUBSYSTEM S_LLITE
43
44# include <linux/libcfs/libcfs.h>
45# include <linux/fs.h>
46# include <linux/sched.h>
47# include <linux/mm.h>
48# include <linux/quotaops.h>
49# include <linux/highmem.h>
50# include <linux/pagemap.h>
51# include <linux/rbtree.h>
52
53#include <obd.h>
54#include <obd_support.h>
55#include <lustre_fid.h>
56#include <lustre_lite.h>
57#include <lustre_dlm.h>
58#include <lustre_ver.h>
59#include <lustre_mdc.h>
60#include <cl_object.h>
61
62#include <lclient.h>
63
64#include "../llite/llite_internal.h"
65
66const struct cl_req_operations ccc_req_ops;
67
68/*
69 * ccc_ prefix stands for "Common Client Code".
70 */
71
72static struct kmem_cache *ccc_lock_kmem;
73static struct kmem_cache *ccc_object_kmem;
74static struct kmem_cache *ccc_thread_kmem;
75static struct kmem_cache *ccc_session_kmem;
76static struct kmem_cache *ccc_req_kmem;
77
78static struct lu_kmem_descr ccc_caches[] = {
79 {
80 .ckd_cache = &ccc_lock_kmem,
81 .ckd_name = "ccc_lock_kmem",
82 .ckd_size = sizeof (struct ccc_lock)
83 },
84 {
85 .ckd_cache = &ccc_object_kmem,
86 .ckd_name = "ccc_object_kmem",
87 .ckd_size = sizeof (struct ccc_object)
88 },
89 {
90 .ckd_cache = &ccc_thread_kmem,
91 .ckd_name = "ccc_thread_kmem",
92 .ckd_size = sizeof (struct ccc_thread_info),
93 },
94 {
95 .ckd_cache = &ccc_session_kmem,
96 .ckd_name = "ccc_session_kmem",
97 .ckd_size = sizeof (struct ccc_session)
98 },
99 {
100 .ckd_cache = &ccc_req_kmem,
101 .ckd_name = "ccc_req_kmem",
102 .ckd_size = sizeof (struct ccc_req)
103 },
104 {
105 .ckd_cache = NULL
106 }
107};
108
109/*****************************************************************************
110 *
111 * Vvp device and device type functions.
112 *
113 */
114
115void *ccc_key_init(const struct lu_context *ctx,
116 struct lu_context_key *key)
117{
118 struct ccc_thread_info *info;
119
120 OBD_SLAB_ALLOC_PTR_GFP(info, ccc_thread_kmem, __GFP_IO);
121 if (info == NULL)
122 info = ERR_PTR(-ENOMEM);
123 return info;
124}
125
126void ccc_key_fini(const struct lu_context *ctx,
127 struct lu_context_key *key, void *data)
128{
129 struct ccc_thread_info *info = data;
130 OBD_SLAB_FREE_PTR(info, ccc_thread_kmem);
131}
132
133void *ccc_session_key_init(const struct lu_context *ctx,
134 struct lu_context_key *key)
135{
136 struct ccc_session *session;
137
138 OBD_SLAB_ALLOC_PTR_GFP(session, ccc_session_kmem, __GFP_IO);
139 if (session == NULL)
140 session = ERR_PTR(-ENOMEM);
141 return session;
142}
143
144void ccc_session_key_fini(const struct lu_context *ctx,
145 struct lu_context_key *key, void *data)
146{
147 struct ccc_session *session = data;
148 OBD_SLAB_FREE_PTR(session, ccc_session_kmem);
149}
150
151struct lu_context_key ccc_key = {
152 .lct_tags = LCT_CL_THREAD,
153 .lct_init = ccc_key_init,
154 .lct_fini = ccc_key_fini
155};
156
157struct lu_context_key ccc_session_key = {
158 .lct_tags = LCT_SESSION,
159 .lct_init = ccc_session_key_init,
160 .lct_fini = ccc_session_key_fini
161};
162
163
164/* type constructor/destructor: ccc_type_{init,fini,start,stop}(). */
165// LU_TYPE_INIT_FINI(ccc, &ccc_key, &ccc_session_key);
166
167int ccc_device_init(const struct lu_env *env, struct lu_device *d,
168 const char *name, struct lu_device *next)
169{
170 struct ccc_device *vdv;
171 int rc;
d7e09d03
PT
172
173 vdv = lu2ccc_dev(d);
174 vdv->cdv_next = lu2cl_dev(next);
175
176 LASSERT(d->ld_site != NULL && next->ld_type != NULL);
177 next->ld_site = d->ld_site;
178 rc = next->ld_type->ldt_ops->ldto_device_init(
179 env, next, next->ld_type->ldt_name, NULL);
180 if (rc == 0) {
181 lu_device_get(next);
182 lu_ref_add(&next->ld_reference, "lu-stack", &lu_site_init);
183 }
184 RETURN(rc);
185}
186
187struct lu_device *ccc_device_fini(const struct lu_env *env,
188 struct lu_device *d)
189{
190 return cl2lu_dev(lu2ccc_dev(d)->cdv_next);
191}
192
193struct lu_device *ccc_device_alloc(const struct lu_env *env,
194 struct lu_device_type *t,
195 struct lustre_cfg *cfg,
196 const struct lu_device_operations *luops,
197 const struct cl_device_operations *clops)
198{
199 struct ccc_device *vdv;
200 struct lu_device *lud;
201 struct cl_site *site;
202 int rc;
d7e09d03
PT
203
204 OBD_ALLOC_PTR(vdv);
205 if (vdv == NULL)
206 RETURN(ERR_PTR(-ENOMEM));
207
208 lud = &vdv->cdv_cl.cd_lu_dev;
209 cl_device_init(&vdv->cdv_cl, t);
210 ccc2lu_dev(vdv)->ld_ops = luops;
211 vdv->cdv_cl.cd_ops = clops;
212
213 OBD_ALLOC_PTR(site);
214 if (site != NULL) {
215 rc = cl_site_init(site, &vdv->cdv_cl);
216 if (rc == 0)
217 rc = lu_site_init_finish(&site->cs_lu);
218 else {
219 LASSERT(lud->ld_site == NULL);
220 CERROR("Cannot init lu_site, rc %d.\n", rc);
221 OBD_FREE_PTR(site);
222 }
223 } else
224 rc = -ENOMEM;
225 if (rc != 0) {
226 ccc_device_free(env, lud);
227 lud = ERR_PTR(rc);
228 }
229 RETURN(lud);
230}
231
232struct lu_device *ccc_device_free(const struct lu_env *env,
233 struct lu_device *d)
234{
235 struct ccc_device *vdv = lu2ccc_dev(d);
236 struct cl_site *site = lu2cl_site(d->ld_site);
237 struct lu_device *next = cl2lu_dev(vdv->cdv_next);
238
239 if (d->ld_site != NULL) {
240 cl_site_fini(site);
241 OBD_FREE_PTR(site);
242 }
243 cl_device_fini(lu2cl_dev(d));
244 OBD_FREE_PTR(vdv);
245 return next;
246}
247
248int ccc_req_init(const struct lu_env *env, struct cl_device *dev,
249 struct cl_req *req)
250{
251 struct ccc_req *vrq;
252 int result;
253
254 OBD_SLAB_ALLOC_PTR_GFP(vrq, ccc_req_kmem, __GFP_IO);
255 if (vrq != NULL) {
256 cl_req_slice_add(req, &vrq->crq_cl, dev, &ccc_req_ops);
257 result = 0;
258 } else
259 result = -ENOMEM;
260 return result;
261}
262
263/**
264 * An `emergency' environment used by ccc_inode_fini() when cl_env_get()
265 * fails. Access to this environment is serialized by ccc_inode_fini_guard
266 * mutex.
267 */
268static struct lu_env *ccc_inode_fini_env = NULL;
269
270/**
271 * A mutex serializing calls to slp_inode_fini() under extreme memory
272 * pressure, when environments cannot be allocated.
273 */
274static DEFINE_MUTEX(ccc_inode_fini_guard);
275static int dummy_refcheck;
276
277int ccc_global_init(struct lu_device_type *device_type)
278{
279 int result;
280
281 result = lu_kmem_init(ccc_caches);
282 if (result)
283 return result;
284
285 result = lu_device_type_init(device_type);
286 if (result)
287 goto out_kmem;
288
289 ccc_inode_fini_env = cl_env_alloc(&dummy_refcheck,
290 LCT_REMEMBER|LCT_NOREF);
291 if (IS_ERR(ccc_inode_fini_env)) {
292 result = PTR_ERR(ccc_inode_fini_env);
293 goto out_device;
294 }
295
296 ccc_inode_fini_env->le_ctx.lc_cookie = 0x4;
297 return 0;
298out_device:
299 lu_device_type_fini(device_type);
300out_kmem:
301 lu_kmem_fini(ccc_caches);
302 return result;
303}
304
305void ccc_global_fini(struct lu_device_type *device_type)
306{
307 if (ccc_inode_fini_env != NULL) {
308 cl_env_put(ccc_inode_fini_env, &dummy_refcheck);
309 ccc_inode_fini_env = NULL;
310 }
311 lu_device_type_fini(device_type);
312 lu_kmem_fini(ccc_caches);
313}
314
315/*****************************************************************************
316 *
317 * Object operations.
318 *
319 */
320
321struct lu_object *ccc_object_alloc(const struct lu_env *env,
322 const struct lu_object_header *unused,
323 struct lu_device *dev,
324 const struct cl_object_operations *clops,
325 const struct lu_object_operations *luops)
326{
327 struct ccc_object *vob;
328 struct lu_object *obj;
329
330 OBD_SLAB_ALLOC_PTR_GFP(vob, ccc_object_kmem, __GFP_IO);
331 if (vob != NULL) {
332 struct cl_object_header *hdr;
333
334 obj = ccc2lu(vob);
335 hdr = &vob->cob_header;
336 cl_object_header_init(hdr);
337 lu_object_init(obj, &hdr->coh_lu, dev);
338 lu_object_add_top(&hdr->coh_lu, obj);
339
340 vob->cob_cl.co_ops = clops;
341 obj->lo_ops = luops;
342 } else
343 obj = NULL;
344 return obj;
345}
346
347int ccc_object_init0(const struct lu_env *env,
348 struct ccc_object *vob,
349 const struct cl_object_conf *conf)
350{
351 vob->cob_inode = conf->coc_inode;
352 vob->cob_transient_pages = 0;
353 cl_object_page_init(&vob->cob_cl, sizeof(struct ccc_page));
354 return 0;
355}
356
357int ccc_object_init(const struct lu_env *env, struct lu_object *obj,
358 const struct lu_object_conf *conf)
359{
360 struct ccc_device *dev = lu2ccc_dev(obj->lo_dev);
361 struct ccc_object *vob = lu2ccc(obj);
362 struct lu_object *below;
363 struct lu_device *under;
364 int result;
365
366 under = &dev->cdv_next->cd_lu_dev;
367 below = under->ld_ops->ldo_object_alloc(env, obj->lo_header, under);
368 if (below != NULL) {
369 const struct cl_object_conf *cconf;
370
371 cconf = lu2cl_conf(conf);
372 INIT_LIST_HEAD(&vob->cob_pending_list);
373 lu_object_add(obj, below);
374 result = ccc_object_init0(env, vob, cconf);
375 } else
376 result = -ENOMEM;
377 return result;
378}
379
380void ccc_object_free(const struct lu_env *env, struct lu_object *obj)
381{
382 struct ccc_object *vob = lu2ccc(obj);
383
384 lu_object_fini(obj);
385 lu_object_header_fini(obj->lo_header);
386 OBD_SLAB_FREE_PTR(vob, ccc_object_kmem);
387}
388
389int ccc_lock_init(const struct lu_env *env,
390 struct cl_object *obj, struct cl_lock *lock,
391 const struct cl_io *unused,
392 const struct cl_lock_operations *lkops)
393{
394 struct ccc_lock *clk;
395 int result;
396
397 CLOBINVRNT(env, obj, ccc_object_invariant(obj));
398
399 OBD_SLAB_ALLOC_PTR_GFP(clk, ccc_lock_kmem, __GFP_IO);
400 if (clk != NULL) {
401 cl_lock_slice_add(lock, &clk->clk_cl, obj, lkops);
402 result = 0;
403 } else
404 result = -ENOMEM;
405 return result;
406}
407
408int ccc_attr_set(const struct lu_env *env, struct cl_object *obj,
409 const struct cl_attr *attr, unsigned valid)
410{
411 return 0;
412}
413
414int ccc_object_glimpse(const struct lu_env *env,
415 const struct cl_object *obj, struct ost_lvb *lvb)
416{
417 struct inode *inode = ccc_object_inode(obj);
418
d7e09d03
PT
419 lvb->lvb_mtime = cl_inode_mtime(inode);
420 lvb->lvb_atime = cl_inode_atime(inode);
421 lvb->lvb_ctime = cl_inode_ctime(inode);
422 /*
423 * LU-417: Add dirty pages block count lest i_blocks reports 0, some
424 * "cp" or "tar" on remote node may think it's a completely sparse file
425 * and skip it.
426 */
427 if (lvb->lvb_size > 0 && lvb->lvb_blocks == 0)
428 lvb->lvb_blocks = dirty_cnt(inode);
429 RETURN(0);
430}
431
432
433
434int ccc_conf_set(const struct lu_env *env, struct cl_object *obj,
435 const struct cl_object_conf *conf)
436{
437 /* TODO: destroy all pages attached to this object. */
438 return 0;
439}
440
441static void ccc_object_size_lock(struct cl_object *obj)
442{
443 struct inode *inode = ccc_object_inode(obj);
444
445 cl_isize_lock(inode);
446 cl_object_attr_lock(obj);
447}
448
449static void ccc_object_size_unlock(struct cl_object *obj)
450{
451 struct inode *inode = ccc_object_inode(obj);
452
453 cl_object_attr_unlock(obj);
454 cl_isize_unlock(inode);
455}
456
457/*****************************************************************************
458 *
459 * Page operations.
460 *
461 */
462
463struct page *ccc_page_vmpage(const struct lu_env *env,
464 const struct cl_page_slice *slice)
465{
466 return cl2vm_page(slice);
467}
468
469int ccc_page_is_under_lock(const struct lu_env *env,
470 const struct cl_page_slice *slice,
471 struct cl_io *io)
472{
473 struct ccc_io *cio = ccc_env_io(env);
474 struct cl_lock_descr *desc = &ccc_env_info(env)->cti_descr;
475 struct cl_page *page = slice->cpl_page;
476
477 int result;
478
d7e09d03
PT
479 if (io->ci_type == CIT_READ || io->ci_type == CIT_WRITE ||
480 io->ci_type == CIT_FAULT) {
481 if (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)
482 result = -EBUSY;
483 else {
484 desc->cld_start = page->cp_index;
485 desc->cld_end = page->cp_index;
486 desc->cld_obj = page->cp_obj;
487 desc->cld_mode = CLM_READ;
488 result = cl_queue_match(&io->ci_lockset.cls_done,
489 desc) ? -EBUSY : 0;
490 }
491 } else
492 result = 0;
493 RETURN(result);
494}
495
496int ccc_fail(const struct lu_env *env, const struct cl_page_slice *slice)
497{
498 /*
499 * Cached read?
500 */
501 LBUG();
502 return 0;
503}
504
505void ccc_transient_page_verify(const struct cl_page *page)
506{
507}
508
509int ccc_transient_page_own(const struct lu_env *env,
510 const struct cl_page_slice *slice,
511 struct cl_io *unused,
512 int nonblock)
513{
514 ccc_transient_page_verify(slice->cpl_page);
515 return 0;
516}
517
518void ccc_transient_page_assume(const struct lu_env *env,
519 const struct cl_page_slice *slice,
520 struct cl_io *unused)
521{
522 ccc_transient_page_verify(slice->cpl_page);
523}
524
525void ccc_transient_page_unassume(const struct lu_env *env,
526 const struct cl_page_slice *slice,
527 struct cl_io *unused)
528{
529 ccc_transient_page_verify(slice->cpl_page);
530}
531
532void ccc_transient_page_disown(const struct lu_env *env,
533 const struct cl_page_slice *slice,
534 struct cl_io *unused)
535{
536 ccc_transient_page_verify(slice->cpl_page);
537}
538
539void ccc_transient_page_discard(const struct lu_env *env,
540 const struct cl_page_slice *slice,
541 struct cl_io *unused)
542{
543 struct cl_page *page = slice->cpl_page;
544
545 ccc_transient_page_verify(slice->cpl_page);
546
547 /*
548 * For transient pages, remove it from the radix tree.
549 */
550 cl_page_delete(env, page);
551}
552
553int ccc_transient_page_prep(const struct lu_env *env,
554 const struct cl_page_slice *slice,
555 struct cl_io *unused)
556{
d7e09d03
PT
557 /* transient page should always be sent. */
558 RETURN(0);
559}
560
561/*****************************************************************************
562 *
563 * Lock operations.
564 *
565 */
566
567void ccc_lock_delete(const struct lu_env *env,
568 const struct cl_lock_slice *slice)
569{
570 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
571}
572
573void ccc_lock_fini(const struct lu_env *env, struct cl_lock_slice *slice)
574{
575 struct ccc_lock *clk = cl2ccc_lock(slice);
576 OBD_SLAB_FREE_PTR(clk, ccc_lock_kmem);
577}
578
579int ccc_lock_enqueue(const struct lu_env *env,
580 const struct cl_lock_slice *slice,
581 struct cl_io *unused, __u32 enqflags)
582{
583 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
584 return 0;
585}
586
587int ccc_lock_unuse(const struct lu_env *env, const struct cl_lock_slice *slice)
588{
589 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
590 return 0;
591}
592
593int ccc_lock_wait(const struct lu_env *env, const struct cl_lock_slice *slice)
594{
595 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
596 return 0;
597}
598
599/**
600 * Implementation of cl_lock_operations::clo_fits_into() methods for ccc
601 * layer. This function is executed every time io finds an existing lock in
602 * the lock cache while creating new lock. This function has to decide whether
603 * cached lock "fits" into io.
604 *
605 * \param slice lock to be checked
606 * \param io IO that wants a lock.
607 *
608 * \see lov_lock_fits_into().
609 */
610int ccc_lock_fits_into(const struct lu_env *env,
611 const struct cl_lock_slice *slice,
612 const struct cl_lock_descr *need,
613 const struct cl_io *io)
614{
615 const struct cl_lock *lock = slice->cls_lock;
616 const struct cl_lock_descr *descr = &lock->cll_descr;
617 const struct ccc_io *cio = ccc_env_io(env);
618 int result;
619
d7e09d03
PT
620 /*
621 * Work around DLM peculiarity: it assumes that glimpse
622 * (LDLM_FL_HAS_INTENT) lock is always LCK_PR, and returns reads lock
623 * when asked for LCK_PW lock with LDLM_FL_HAS_INTENT flag set. Make
624 * sure that glimpse doesn't get CLM_WRITE top-lock, so that it
625 * doesn't enqueue CLM_WRITE sub-locks.
626 */
627 if (cio->cui_glimpse)
628 result = descr->cld_mode != CLM_WRITE;
629
630 /*
631 * Also, don't match incomplete write locks for read, otherwise read
632 * would enqueue missing sub-locks in the write mode.
633 */
634 else if (need->cld_mode != descr->cld_mode)
635 result = lock->cll_state >= CLS_ENQUEUED;
636 else
637 result = 1;
638 RETURN(result);
639}
640
641/**
642 * Implements cl_lock_operations::clo_state() method for ccc layer, invoked
643 * whenever lock state changes. Transfers object attributes, that might be
644 * updated as a result of lock acquiring into inode.
645 */
646void ccc_lock_state(const struct lu_env *env,
647 const struct cl_lock_slice *slice,
648 enum cl_lock_state state)
649{
650 struct cl_lock *lock = slice->cls_lock;
d7e09d03
PT
651
652 /*
653 * Refresh inode attributes when the lock is moving into CLS_HELD
654 * state, and only when this is a result of real enqueue, rather than
655 * of finding lock in the cache.
656 */
657 if (state == CLS_HELD && lock->cll_state < CLS_HELD) {
658 struct cl_object *obj;
659 struct inode *inode;
660
661 obj = slice->cls_obj;
662 inode = ccc_object_inode(obj);
663
664 /* vmtruncate() sets the i_size
665 * under both a DLM lock and the
666 * ll_inode_size_lock(). If we don't get the
667 * ll_inode_size_lock() here we can match the DLM lock and
668 * reset i_size. generic_file_write can then trust the
669 * stale i_size when doing appending writes and effectively
670 * cancel the result of the truncate. Getting the
671 * ll_inode_size_lock() after the enqueue maintains the DLM
672 * -> ll_inode_size_lock() acquiring order. */
673 if (lock->cll_descr.cld_start == 0 &&
674 lock->cll_descr.cld_end == CL_PAGE_EOF)
675 cl_merge_lvb(env, inode);
676 }
677 EXIT;
678}
679
680/*****************************************************************************
681 *
682 * io operations.
683 *
684 */
685
686void ccc_io_fini(const struct lu_env *env, const struct cl_io_slice *ios)
687{
688 struct cl_io *io = ios->cis_io;
689
690 CLOBINVRNT(env, io->ci_obj, ccc_object_invariant(io->ci_obj));
691}
692
693int ccc_io_one_lock_index(const struct lu_env *env, struct cl_io *io,
694 __u32 enqflags, enum cl_lock_mode mode,
695 pgoff_t start, pgoff_t end)
696{
697 struct ccc_io *cio = ccc_env_io(env);
698 struct cl_lock_descr *descr = &cio->cui_link.cill_descr;
699 struct cl_object *obj = io->ci_obj;
700
701 CLOBINVRNT(env, obj, ccc_object_invariant(obj));
d7e09d03
PT
702
703 CDEBUG(D_VFSTRACE, "lock: %d [%lu, %lu]\n", mode, start, end);
704
705 memset(&cio->cui_link, 0, sizeof cio->cui_link);
706
707 if (cio->cui_fd && (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)) {
708 descr->cld_mode = CLM_GROUP;
709 descr->cld_gid = cio->cui_fd->fd_grouplock.cg_gid;
710 } else {
711 descr->cld_mode = mode;
712 }
713 descr->cld_obj = obj;
714 descr->cld_start = start;
715 descr->cld_end = end;
716 descr->cld_enq_flags = enqflags;
717
718 cl_io_lock_add(env, io, &cio->cui_link);
719 RETURN(0);
720}
721
722void ccc_io_update_iov(const struct lu_env *env,
723 struct ccc_io *cio, struct cl_io *io)
724{
725 int i;
726 size_t size = io->u.ci_rw.crw_count;
727
728 cio->cui_iov_olen = 0;
729 if (!cl_is_normalio(env, io) || cio->cui_tot_nrsegs == 0)
730 return;
731
732 for (i = 0; i < cio->cui_tot_nrsegs; i++) {
733 struct iovec *iv = &cio->cui_iov[i];
734
735 if (iv->iov_len < size)
736 size -= iv->iov_len;
737 else {
738 if (iv->iov_len > size) {
739 cio->cui_iov_olen = iv->iov_len;
740 iv->iov_len = size;
741 }
742 break;
743 }
744 }
745
746 cio->cui_nrsegs = i + 1;
747 LASSERTF(cio->cui_tot_nrsegs >= cio->cui_nrsegs,
748 "tot_nrsegs: %lu, nrsegs: %lu\n",
749 cio->cui_tot_nrsegs, cio->cui_nrsegs);
750}
751
752int ccc_io_one_lock(const struct lu_env *env, struct cl_io *io,
753 __u32 enqflags, enum cl_lock_mode mode,
754 loff_t start, loff_t end)
755{
756 struct cl_object *obj = io->ci_obj;
757 return ccc_io_one_lock_index(env, io, enqflags, mode,
758 cl_index(obj, start), cl_index(obj, end));
759}
760
761void ccc_io_end(const struct lu_env *env, const struct cl_io_slice *ios)
762{
763 CLOBINVRNT(env, ios->cis_io->ci_obj,
764 ccc_object_invariant(ios->cis_io->ci_obj));
765}
766
767void ccc_io_advance(const struct lu_env *env,
768 const struct cl_io_slice *ios,
769 size_t nob)
770{
771 struct ccc_io *cio = cl2ccc_io(env, ios);
772 struct cl_io *io = ios->cis_io;
773 struct cl_object *obj = ios->cis_io->ci_obj;
774
775 CLOBINVRNT(env, obj, ccc_object_invariant(obj));
776
777 if (!cl_is_normalio(env, io))
778 return;
779
780 LASSERT(cio->cui_tot_nrsegs >= cio->cui_nrsegs);
781 LASSERT(cio->cui_tot_count >= nob);
782
783 cio->cui_iov += cio->cui_nrsegs;
784 cio->cui_tot_nrsegs -= cio->cui_nrsegs;
785 cio->cui_tot_count -= nob;
786
787 /* update the iov */
788 if (cio->cui_iov_olen > 0) {
789 struct iovec *iv;
790
791 cio->cui_iov--;
792 cio->cui_tot_nrsegs++;
793 iv = &cio->cui_iov[0];
794 if (io->ci_continue) {
795 iv->iov_base += iv->iov_len;
796 LASSERT(cio->cui_iov_olen > iv->iov_len);
797 iv->iov_len = cio->cui_iov_olen - iv->iov_len;
798 } else {
799 /* restore the iov_len, in case of restart io. */
800 iv->iov_len = cio->cui_iov_olen;
801 }
802 cio->cui_iov_olen = 0;
803 }
804}
805
806/**
807 * Helper function that if necessary adjusts file size (inode->i_size), when
808 * position at the offset \a pos is accessed. File size can be arbitrary stale
809 * on a Lustre client, but client at least knows KMS. If accessed area is
810 * inside [0, KMS], set file size to KMS, otherwise glimpse file size.
811 *
812 * Locking: cl_isize_lock is used to serialize changes to inode size and to
813 * protect consistency between inode size and cl_object
814 * attributes. cl_object_size_lock() protects consistency between cl_attr's of
815 * top-object and sub-objects.
816 */
817int ccc_prep_size(const struct lu_env *env, struct cl_object *obj,
818 struct cl_io *io, loff_t start, size_t count, int *exceed)
819{
820 struct cl_attr *attr = ccc_env_thread_attr(env);
821 struct inode *inode = ccc_object_inode(obj);
822 loff_t pos = start + count - 1;
823 loff_t kms;
824 int result;
825
826 /*
827 * Consistency guarantees: following possibilities exist for the
828 * relation between region being accessed and real file size at this
829 * moment:
830 *
831 * (A): the region is completely inside of the file;
832 *
833 * (B-x): x bytes of region are inside of the file, the rest is
834 * outside;
835 *
836 * (C): the region is completely outside of the file.
837 *
838 * This classification is stable under DLM lock already acquired by
839 * the caller, because to change the class, other client has to take
840 * DLM lock conflicting with our lock. Also, any updates to ->i_size
841 * by other threads on this client are serialized by
842 * ll_inode_size_lock(). This guarantees that short reads are handled
843 * correctly in the face of concurrent writes and truncates.
844 */
845 ccc_object_size_lock(obj);
846 result = cl_object_attr_get(env, obj, attr);
847 if (result == 0) {
848 kms = attr->cat_kms;
849 if (pos > kms) {
850 /*
851 * A glimpse is necessary to determine whether we
852 * return a short read (B) or some zeroes at the end
853 * of the buffer (C)
854 */
855 ccc_object_size_unlock(obj);
856 result = cl_glimpse_lock(env, io, inode, obj, 0);
857 if (result == 0 && exceed != NULL) {
858 /* If objective page index exceed end-of-file
859 * page index, return directly. Do not expect
860 * kernel will check such case correctly.
861 * linux-2.6.18-128.1.1 miss to do that.
862 * --bug 17336 */
863 loff_t size = cl_isize_read(inode);
864 unsigned long cur_index = start >> PAGE_CACHE_SHIFT;
865
866 if ((size == 0 && cur_index != 0) ||
867 (((size - 1) >> PAGE_CACHE_SHIFT) < cur_index))
868 *exceed = 1;
869 }
870 return result;
871 } else {
872 /*
873 * region is within kms and, hence, within real file
874 * size (A). We need to increase i_size to cover the
875 * read region so that generic_file_read() will do its
876 * job, but that doesn't mean the kms size is
877 * _correct_, it is only the _minimum_ size. If
878 * someone does a stat they will get the correct size
879 * which will always be >= the kms value here.
880 * b=11081
881 */
882 if (cl_isize_read(inode) < kms) {
883 cl_isize_write_nolock(inode, kms);
884 CDEBUG(D_VFSTRACE,
885 DFID" updating i_size "LPU64"\n",
886 PFID(lu_object_fid(&obj->co_lu)),
887 (__u64)cl_isize_read(inode));
888
889 }
890 }
891 }
892 ccc_object_size_unlock(obj);
893 return result;
894}
895
896/*****************************************************************************
897 *
898 * Transfer operations.
899 *
900 */
901
902void ccc_req_completion(const struct lu_env *env,
903 const struct cl_req_slice *slice, int ioret)
904{
905 struct ccc_req *vrq;
906
907 if (ioret > 0)
908 cl_stats_tally(slice->crs_dev, slice->crs_req->crq_type, ioret);
909
910 vrq = cl2ccc_req(slice);
911 OBD_SLAB_FREE_PTR(vrq, ccc_req_kmem);
912}
913
914/**
915 * Implementation of struct cl_req_operations::cro_attr_set() for ccc
916 * layer. ccc is responsible for
917 *
918 * - o_[mac]time
919 *
920 * - o_mode
921 *
922 * - o_parent_seq
923 *
924 * - o_[ug]id
925 *
926 * - o_parent_oid
927 *
928 * - o_parent_ver
929 *
930 * - o_ioepoch,
931 *
932 * and capability.
933 */
934void ccc_req_attr_set(const struct lu_env *env,
935 const struct cl_req_slice *slice,
936 const struct cl_object *obj,
937 struct cl_req_attr *attr, obd_valid flags)
938{
939 struct inode *inode;
940 struct obdo *oa;
941 obd_flag valid_flags;
942
943 oa = attr->cra_oa;
944 inode = ccc_object_inode(obj);
945 valid_flags = OBD_MD_FLTYPE;
946
947 if ((flags & OBD_MD_FLOSSCAPA) != 0) {
948 LASSERT(attr->cra_capa == NULL);
949 attr->cra_capa = cl_capa_lookup(inode,
950 slice->crs_req->crq_type);
951 }
952
953 if (slice->crs_req->crq_type == CRT_WRITE) {
954 if (flags & OBD_MD_FLEPOCH) {
955 oa->o_valid |= OBD_MD_FLEPOCH;
956 oa->o_ioepoch = cl_i2info(inode)->lli_ioepoch;
957 valid_flags |= OBD_MD_FLMTIME | OBD_MD_FLCTIME |
958 OBD_MD_FLUID | OBD_MD_FLGID;
959 }
960 }
961 obdo_from_inode(oa, inode, valid_flags & flags);
962 obdo_set_parent_fid(oa, &cl_i2info(inode)->lli_fid);
963 memcpy(attr->cra_jobid, cl_i2info(inode)->lli_jobid,
964 JOBSTATS_JOBID_SIZE);
965}
966
967const struct cl_req_operations ccc_req_ops = {
968 .cro_attr_set = ccc_req_attr_set,
969 .cro_completion = ccc_req_completion
970};
971
972int cl_setattr_ost(struct inode *inode, const struct iattr *attr,
973 struct obd_capa *capa)
974{
975 struct lu_env *env;
976 struct cl_io *io;
977 int result;
978 int refcheck;
979
d7e09d03
PT
980 env = cl_env_get(&refcheck);
981 if (IS_ERR(env))
982 RETURN(PTR_ERR(env));
983
984 io = ccc_env_thread_io(env);
985 io->ci_obj = cl_i2info(inode)->lli_clob;
986
987 io->u.ci_setattr.sa_attr.lvb_atime = LTIME_S(attr->ia_atime);
988 io->u.ci_setattr.sa_attr.lvb_mtime = LTIME_S(attr->ia_mtime);
989 io->u.ci_setattr.sa_attr.lvb_ctime = LTIME_S(attr->ia_ctime);
990 io->u.ci_setattr.sa_attr.lvb_size = attr->ia_size;
991 io->u.ci_setattr.sa_valid = attr->ia_valid;
992 io->u.ci_setattr.sa_capa = capa;
993
994again:
995 if (cl_io_init(env, io, CIT_SETATTR, io->ci_obj) == 0) {
996 struct ccc_io *cio = ccc_env_io(env);
997
998 if (attr->ia_valid & ATTR_FILE)
999 /* populate the file descriptor for ftruncate to honor
1000 * group lock - see LU-787 */
1001 cio->cui_fd = cl_iattr2fd(inode, attr);
1002
1003 result = cl_io_loop(env, io);
1004 } else {
1005 result = io->ci_result;
1006 }
1007 cl_io_fini(env, io);
1008 if (unlikely(io->ci_need_restart))
1009 goto again;
1010 cl_env_put(env, &refcheck);
1011 RETURN(result);
1012}
1013
1014/*****************************************************************************
1015 *
1016 * Type conversions.
1017 *
1018 */
1019
1020struct lu_device *ccc2lu_dev(struct ccc_device *vdv)
1021{
1022 return &vdv->cdv_cl.cd_lu_dev;
1023}
1024
1025struct ccc_device *lu2ccc_dev(const struct lu_device *d)
1026{
1027 return container_of0(d, struct ccc_device, cdv_cl.cd_lu_dev);
1028}
1029
1030struct ccc_device *cl2ccc_dev(const struct cl_device *d)
1031{
1032 return container_of0(d, struct ccc_device, cdv_cl);
1033}
1034
1035struct lu_object *ccc2lu(struct ccc_object *vob)
1036{
1037 return &vob->cob_cl.co_lu;
1038}
1039
1040struct ccc_object *lu2ccc(const struct lu_object *obj)
1041{
1042 return container_of0(obj, struct ccc_object, cob_cl.co_lu);
1043}
1044
1045struct ccc_object *cl2ccc(const struct cl_object *obj)
1046{
1047 return container_of0(obj, struct ccc_object, cob_cl);
1048}
1049
1050struct ccc_lock *cl2ccc_lock(const struct cl_lock_slice *slice)
1051{
1052 return container_of(slice, struct ccc_lock, clk_cl);
1053}
1054
1055struct ccc_io *cl2ccc_io(const struct lu_env *env,
1056 const struct cl_io_slice *slice)
1057{
1058 struct ccc_io *cio;
1059
1060 cio = container_of(slice, struct ccc_io, cui_cl);
1061 LASSERT(cio == ccc_env_io(env));
1062 return cio;
1063}
1064
1065struct ccc_req *cl2ccc_req(const struct cl_req_slice *slice)
1066{
1067 return container_of0(slice, struct ccc_req, crq_cl);
1068}
1069
1070struct page *cl2vm_page(const struct cl_page_slice *slice)
1071{
1072 return cl2ccc_page(slice)->cpg_page;
1073}
1074
1075/*****************************************************************************
1076 *
1077 * Accessors.
1078 *
1079 */
1080int ccc_object_invariant(const struct cl_object *obj)
1081{
1082 struct inode *inode = ccc_object_inode(obj);
1083 struct cl_inode_info *lli = cl_i2info(inode);
1084
1085 return (S_ISREG(cl_inode_mode(inode)) ||
1086 /* i_mode of unlinked inode is zeroed. */
1087 cl_inode_mode(inode) == 0) && lli->lli_clob == obj;
1088}
1089
1090struct inode *ccc_object_inode(const struct cl_object *obj)
1091{
1092 return cl2ccc(obj)->cob_inode;
1093}
1094
1095/**
1096 * Returns a pointer to cl_page associated with \a vmpage, without acquiring
1097 * additional reference to the resulting page. This is an unsafe version of
1098 * cl_vmpage_page() that can only be used under vmpage lock.
1099 */
1100struct cl_page *ccc_vmpage_page_transient(struct page *vmpage)
1101{
1102 KLASSERT(PageLocked(vmpage));
1103 return (struct cl_page *)vmpage->private;
1104}
1105
1106/**
1107 * Initialize or update CLIO structures for regular files when new
1108 * meta-data arrives from the server.
1109 *
1110 * \param inode regular file inode
1111 * \param md new file metadata from MDS
1112 * - allocates cl_object if necessary,
1113 * - updated layout, if object was already here.
1114 */
1115int cl_file_inode_init(struct inode *inode, struct lustre_md *md)
1116{
1117 struct lu_env *env;
1118 struct cl_inode_info *lli;
1119 struct cl_object *clob;
1120 struct lu_site *site;
1121 struct lu_fid *fid;
1122 struct cl_object_conf conf = {
1123 .coc_inode = inode,
1124 .u = {
1125 .coc_md = md
1126 }
1127 };
1128 int result = 0;
1129 int refcheck;
1130
1131 LASSERT(md->body->valid & OBD_MD_FLID);
1132 LASSERT(S_ISREG(cl_inode_mode(inode)));
1133
1134 env = cl_env_get(&refcheck);
1135 if (IS_ERR(env))
1136 return PTR_ERR(env);
1137
1138 site = cl_i2sbi(inode)->ll_site;
1139 lli = cl_i2info(inode);
1140 fid = &lli->lli_fid;
1141 LASSERT(fid_is_sane(fid));
1142
1143 if (lli->lli_clob == NULL) {
1144 /* clob is slave of inode, empty lli_clob means for new inode,
1145 * there is no clob in cache with the given fid, so it is
1146 * unnecessary to perform lookup-alloc-lookup-insert, just
1147 * alloc and insert directly. */
1148 LASSERT(inode->i_state & I_NEW);
1149 conf.coc_lu.loc_flags = LOC_F_NEW;
1150 clob = cl_object_find(env, lu2cl_dev(site->ls_top_dev),
1151 fid, &conf);
1152 if (!IS_ERR(clob)) {
1153 /*
1154 * No locking is necessary, as new inode is
1155 * locked by I_NEW bit.
1156 */
1157 lli->lli_clob = clob;
5dd16419 1158 lli->lli_has_smd = lsm_has_objects(md->lsm);
d7e09d03
PT
1159 lu_object_ref_add(&clob->co_lu, "inode", inode);
1160 } else
1161 result = PTR_ERR(clob);
1162 } else {
1163 result = cl_conf_set(env, lli->lli_clob, &conf);
1164 }
1165
1166 cl_env_put(env, &refcheck);
1167
1168 if (result != 0)
1169 CERROR("Failure to initialize cl object "DFID": %d\n",
1170 PFID(fid), result);
1171 return result;
1172}
1173
1174/**
1175 * Wait for others drop their references of the object at first, then we drop
1176 * the last one, which will lead to the object be destroyed immediately.
1177 * Must be called after cl_object_kill() against this object.
1178 *
1179 * The reason we want to do this is: destroying top object will wait for sub
1180 * objects being destroyed first, so we can't let bottom layer (e.g. from ASTs)
1181 * to initiate top object destroying which may deadlock. See bz22520.
1182 */
1183static void cl_object_put_last(struct lu_env *env, struct cl_object *obj)
1184{
1185 struct lu_object_header *header = obj->co_lu.lo_header;
1186 wait_queue_t waiter;
1187
1188 if (unlikely(atomic_read(&header->loh_ref) != 1)) {
1189 struct lu_site *site = obj->co_lu.lo_dev->ld_site;
1190 struct lu_site_bkt_data *bkt;
1191
1192 bkt = lu_site_bkt_from_fid(site, &header->loh_fid);
1193
1194 init_waitqueue_entry_current(&waiter);
1195 add_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1196
1197 while (1) {
1198 set_current_state(TASK_UNINTERRUPTIBLE);
1199 if (atomic_read(&header->loh_ref) == 1)
1200 break;
1201 waitq_wait(&waiter, TASK_UNINTERRUPTIBLE);
1202 }
1203
1204 set_current_state(TASK_RUNNING);
1205 remove_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1206 }
1207
1208 cl_object_put(env, obj);
1209}
1210
1211void cl_inode_fini(struct inode *inode)
1212{
1213 struct lu_env *env;
1214 struct cl_inode_info *lli = cl_i2info(inode);
1215 struct cl_object *clob = lli->lli_clob;
1216 int refcheck;
1217 int emergency;
1218
1219 if (clob != NULL) {
1220 void *cookie;
1221
1222 cookie = cl_env_reenter();
1223 env = cl_env_get(&refcheck);
1224 emergency = IS_ERR(env);
1225 if (emergency) {
1226 mutex_lock(&ccc_inode_fini_guard);
1227 LASSERT(ccc_inode_fini_env != NULL);
1228 cl_env_implant(ccc_inode_fini_env, &refcheck);
1229 env = ccc_inode_fini_env;
1230 }
1231 /*
1232 * cl_object cache is a slave to inode cache (which, in turn
1233 * is a slave to dentry cache), don't keep cl_object in memory
1234 * when its master is evicted.
1235 */
1236 cl_object_kill(env, clob);
1237 lu_object_ref_del(&clob->co_lu, "inode", inode);
1238 cl_object_put_last(env, clob);
1239 lli->lli_clob = NULL;
1240 if (emergency) {
1241 cl_env_unplant(ccc_inode_fini_env, &refcheck);
1242 mutex_unlock(&ccc_inode_fini_guard);
1243 } else
1244 cl_env_put(env, &refcheck);
1245 cl_env_reexit(cookie);
1246 }
1247}
1248
1249/**
1250 * return IF_* type for given lu_dirent entry.
1251 * IF_* flag shld be converted to particular OS file type in
1252 * platform llite module.
1253 */
1254__u16 ll_dirent_type_get(struct lu_dirent *ent)
1255{
1256 __u16 type = 0;
1257 struct luda_type *lt;
1258 int len = 0;
1259
1260 if (le32_to_cpu(ent->lde_attrs) & LUDA_TYPE) {
1261 const unsigned align = sizeof(struct luda_type) - 1;
1262
1263 len = le16_to_cpu(ent->lde_namelen);
1264 len = (len + align) & ~align;
1265 lt = (void *)ent->lde_name + len;
1266 type = IFTODT(le16_to_cpu(lt->lt_type));
1267 }
1268 return type;
1269}
1270
1271/**
1272 * build inode number from passed @fid */
1273__u64 cl_fid_build_ino(const struct lu_fid *fid, int api32)
1274{
1275 if (BITS_PER_LONG == 32 || api32)
1276 RETURN(fid_flatten32(fid));
1277 else
1278 RETURN(fid_flatten(fid));
1279}
1280
1281/**
1282 * build inode generation from passed @fid. If our FID overflows the 32-bit
1283 * inode number then return a non-zero generation to distinguish them. */
1284__u32 cl_fid_build_gen(const struct lu_fid *fid)
1285{
1286 __u32 gen;
d7e09d03
PT
1287
1288 if (fid_is_igif(fid)) {
1289 gen = lu_igif_gen(fid);
1290 RETURN(gen);
1291 }
1292
1293 gen = (fid_flatten(fid) >> 32);
1294 RETURN(gen);
1295}
1296
1297/* lsm is unreliable after hsm implementation as layout can be changed at
1298 * any time. This is only to support old, non-clio-ized interfaces. It will
1299 * cause deadlock if clio operations are called with this extra layout refcount
1300 * because in case the layout changed during the IO, ll_layout_refresh() will
1301 * have to wait for the refcount to become zero to destroy the older layout.
1302 *
1303 * Notice that the lsm returned by this function may not be valid unless called
1304 * inside layout lock - MDS_INODELOCK_LAYOUT. */
1305struct lov_stripe_md *ccc_inode_lsm_get(struct inode *inode)
1306{
1307 return lov_lsm_get(cl_i2info(inode)->lli_clob);
1308}
1309
1310void inline ccc_inode_lsm_put(struct inode *inode, struct lov_stripe_md *lsm)
1311{
1312 lov_lsm_put(cl_i2info(inode)->lli_clob, lsm);
1313}