staging: comedi: rtd520: use comedi_timeout()
[linux-2.6-block.git] / drivers / staging / comedi / drivers / s626.c
CommitLineData
11e865c1 1/*
7f32c7c4
IA
2 * comedi/drivers/s626.c
3 * Sensoray s626 Comedi driver
4 *
5 * COMEDI - Linux Control and Measurement Device Interface
6 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7 *
8 * Based on Sensoray Model 626 Linux driver Version 0.2
9 * Copyright (C) 2002-2004 Sensoray Co., Inc.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
11e865c1
GP
21
22/*
7f32c7c4
IA
23 * Driver: s626
24 * Description: Sensoray 626 driver
25 * Devices: [Sensoray] 626 (s626)
26 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
27 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
28 * Status: experimental
29
30 * Configuration options: not applicable, uses PCI auto config
31
32 * INSN_CONFIG instructions:
33 * analog input:
34 * none
35 *
36 * analog output:
37 * none
38 *
39 * digital channel:
40 * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
41 * supported configuration options:
42 * INSN_CONFIG_DIO_QUERY
43 * COMEDI_INPUT
44 * COMEDI_OUTPUT
45 *
46 * encoder:
47 * Every channel must be configured before reading.
48 *
49 * Example code
50 *
51 * insn.insn=INSN_CONFIG; //configuration instruction
52 * insn.n=1; //number of operation (must be 1)
53 * insn.data=&initialvalue; //initial value loaded into encoder
54 * //during configuration
55 * insn.subdev=5; //encoder subdevice
56 * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
57 * //to configure
58 *
59 * comedi_do_insn(cf,&insn); //executing configuration
60 */
11e865c1 61
ce157f80
HS
62#include <linux/module.h>
63#include <linux/delay.h>
33782dd5 64#include <linux/pci.h>
25436dc9 65#include <linux/interrupt.h>
11e865c1
GP
66#include <linux/kernel.h>
67#include <linux/types.h>
68
69#include "../comedidev.h"
70
11e865c1
GP
71#include "comedi_fc.h"
72#include "s626.h"
73
dbb263f5 74struct s626_buffer_dma {
8e06d662
IA
75 dma_addr_t physical_base;
76 void *logical_base;
77};
78
eb5e029e 79struct s626_private {
7d856da2 80 void __iomem *mmio;
8ee52611 81 uint8_t ai_cmd_running; /* ai_cmd is running */
e6132fc9 82 uint8_t ai_continuous; /* continuous acquisition */
8ee52611
IA
83 int ai_sample_count; /* number of samples to acquire */
84 unsigned int ai_sample_timer; /* time between samples in
85 * units of the timer */
86 int ai_convert_count; /* conversion counter */
87 unsigned int ai_convert_timer; /* time between conversion in
88 * units of the timer */
07a36d66 89 uint16_t counter_int_enabs; /* counter interrupt enable mask
8ee52611 90 * for MISC2 register */
07a36d66 91 uint8_t adc_items; /* number of items in ADC poll list */
dbb263f5 92 struct s626_buffer_dma rps_buf; /* DMA buffer used to hold ADC (RPS1)
8ee52611 93 * program */
dbb263f5 94 struct s626_buffer_dma ana_buf; /* DMA buffer used to receive ADC data
8ee52611 95 * and hold DAC data */
07a36d66 96 uint32_t *dac_wbuf; /* pointer to logical adrs of DMA buffer
8ee52611 97 * used to hold DAC data */
07a36d66
IA
98 uint16_t dacpol; /* image of DAC polarity register */
99 uint8_t trim_setpoint[12]; /* images of TrimDAC setpoints */
100 uint32_t i2c_adrs; /* I2C device address for onboard EEPROM
8ee52611 101 * (board rev dependent) */
790c5541 102 unsigned int ao_readback[S626_DAC_CHANNELS];
eb5e029e 103};
11e865c1 104
8ee52611 105/* COUNTER OBJECT ------------------------------------------------ */
3a305a66 106struct s626_enc_info {
8ee52611
IA
107 /* Pointers to functions that differ for A and B counters: */
108 /* Return clock enable. */
3a305a66
IA
109 uint16_t(*get_enable)(struct comedi_device *dev,
110 const struct s626_enc_info *k);
8ee52611 111 /* Return interrupt source. */
b075ac8e 112 uint16_t(*get_int_src)(struct comedi_device *dev,
3a305a66 113 const struct s626_enc_info *k);
8ee52611 114 /* Return preload trigger source. */
b075ac8e 115 uint16_t(*get_load_trig)(struct comedi_device *dev,
3a305a66 116 const struct s626_enc_info *k);
8ee52611 117 /* Return standardized operating mode. */
3a305a66
IA
118 uint16_t(*get_mode)(struct comedi_device *dev,
119 const struct s626_enc_info *k);
8ee52611 120 /* Generate soft index strobe. */
3a305a66
IA
121 void (*pulse_index)(struct comedi_device *dev,
122 const struct s626_enc_info *k);
8ee52611 123 /* Program clock enable. */
3a305a66
IA
124 void (*set_enable)(struct comedi_device *dev,
125 const struct s626_enc_info *k, uint16_t enab);
8ee52611 126 /* Program interrupt source. */
3a305a66
IA
127 void (*set_int_src)(struct comedi_device *dev,
128 const struct s626_enc_info *k, uint16_t int_source);
8ee52611 129 /* Program preload trigger source. */
3a305a66
IA
130 void (*set_load_trig)(struct comedi_device *dev,
131 const struct s626_enc_info *k, uint16_t trig);
8ee52611 132 /* Program standardized operating mode. */
3a305a66
IA
133 void (*set_mode)(struct comedi_device *dev,
134 const struct s626_enc_info *k, uint16_t setup,
135 uint16_t disable_int_src);
8ee52611 136 /* Reset event capture flags. */
b075ac8e 137 void (*reset_cap_flags)(struct comedi_device *dev,
3a305a66 138 const struct s626_enc_info *k);
8ee52611 139
b075ac8e
IA
140 uint16_t my_cra; /* address of CRA register */
141 uint16_t my_crb; /* address of CRB register */
142 uint16_t my_latch_lsw; /* address of Latch least-significant-word
8ee52611 143 * register */
b075ac8e 144 uint16_t my_event_bits[4]; /* bit translations for IntSrc -->RDMISC2 */
eb5e029e 145};
11e865c1 146
8ee52611 147/* Counter overflow/index event flag masks for RDMISC2. */
676921c9
IA
148#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
149#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
150#define S626_EVBITS(C) { 0, S626_OVERMASK(C), S626_INDXMASK(C), \
151 S626_OVERMASK(C) | S626_INDXMASK(C) }
11e865c1 152
8ee52611
IA
153/*
154 * Translation table to map IntSrc into equivalent RDMISC2 event flag bits.
31de1948 155 * static const uint16_t s626_event_bits[][4] =
676921c9
IA
156 * { S626_EVBITS(0), S626_EVBITS(1), S626_EVBITS(2), S626_EVBITS(3),
157 * S626_EVBITS(4), S626_EVBITS(5) };
8ee52611 158 */
11e865c1 159
ddd9813e
HS
160/*
161 * Enable/disable a function or test status bit(s) that are accessed
162 * through Main Control Registers 1 or 2.
163 */
164static void s626_mc_enable(struct comedi_device *dev,
165 unsigned int cmd, unsigned int reg)
166{
167 struct s626_private *devpriv = dev->private;
168 unsigned int val = (cmd << 16) | cmd;
169
bb49cddc 170 mmiowb();
7d856da2 171 writel(val, devpriv->mmio + reg);
ddd9813e 172}
11e865c1 173
c5cf4606
HS
174static void s626_mc_disable(struct comedi_device *dev,
175 unsigned int cmd, unsigned int reg)
176{
177 struct s626_private *devpriv = dev->private;
178
7d856da2 179 writel(cmd << 16 , devpriv->mmio + reg);
bb49cddc 180 mmiowb();
c5cf4606 181}
11e865c1 182
95bb7982
HS
183static bool s626_mc_test(struct comedi_device *dev,
184 unsigned int cmd, unsigned int reg)
185{
186 struct s626_private *devpriv = dev->private;
187 unsigned int val;
188
7d856da2 189 val = readl(devpriv->mmio + reg);
95bb7982
HS
190
191 return (val & cmd) ? true : false;
192}
11e865c1 193
676921c9 194#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
11e865c1 195
8ee52611 196/* Write a time slot control record to TSL2. */
d8515652 197#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
11e865c1 198
90d54ff2
HS
199static const struct comedi_lrange s626_range_table = {
200 2, {
201 BIP_RANGE(5),
481ac510 202 BIP_RANGE(10)
90d54ff2 203 }
11e865c1
GP
204};
205
8ee52611
IA
206/*
207 * Execute a DEBI transfer. This must be called from within a critical section.
208 */
31de1948 209static void s626_debi_transfer(struct comedi_device *dev)
6b387b70 210{
7f2f7e05
HS
211 struct s626_private *devpriv = dev->private;
212
ddd9813e 213 /* Initiate upload of shadow RAM to DEBI control register */
d8515652 214 s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
6b387b70 215
95bb7982
HS
216 /*
217 * Wait for completion of upload from shadow RAM to
218 * DEBI control register.
219 */
d8515652 220 while (!s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
6b387b70
HS
221 ;
222
be008602 223 /* Wait until DEBI transfer is done */
d8515652 224 while (readl(devpriv->mmio + S626_P_PSR) & S626_PSR_DEBI_S)
6b387b70
HS
225 ;
226}
227
8ee52611
IA
228/*
229 * Read a value from a gate array register.
230 */
31de1948 231static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
6b387b70 232{
7f2f7e05 233 struct s626_private *devpriv = dev->private;
6b387b70 234
25f8fd5e 235 /* Set up DEBI control register value in shadow RAM */
d8515652 236 writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
6b387b70
HS
237
238 /* Execute the DEBI transfer. */
31de1948 239 s626_debi_transfer(dev);
6b387b70 240
d8515652 241 return readl(devpriv->mmio + S626_P_DEBIAD);
6b387b70
HS
242}
243
8ee52611
IA
244/*
245 * Write a value to a gate array register.
246 */
31de1948
IA
247static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
248 uint16_t wdata)
6b387b70 249{
7f2f7e05 250 struct s626_private *devpriv = dev->private;
6b387b70 251
25f8fd5e 252 /* Set up DEBI control register value in shadow RAM */
d8515652
IA
253 writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
254 writel(wdata, devpriv->mmio + S626_P_DEBIAD);
6b387b70
HS
255
256 /* Execute the DEBI transfer. */
31de1948 257 s626_debi_transfer(dev);
6b387b70
HS
258}
259
8ee52611
IA
260/*
261 * Replace the specified bits in a gate array register. Imports: mask
6b387b70
HS
262 * specifies bits that are to be preserved, wdata is new value to be
263 * or'd with the masked original.
264 */
31de1948
IA
265static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
266 unsigned int mask, unsigned int wdata)
6b387b70 267{
7f2f7e05 268 struct s626_private *devpriv = dev->private;
be008602 269 unsigned int val;
6b387b70 270
12f4e2f2 271 addr &= 0xffff;
d8515652 272 writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
31de1948 273 s626_debi_transfer(dev);
6b387b70 274
d8515652
IA
275 writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
276 val = readl(devpriv->mmio + S626_P_DEBIAD);
be008602
HS
277 val &= mask;
278 val |= wdata;
d8515652 279 writel(val & 0xffff, devpriv->mmio + S626_P_DEBIAD);
31de1948 280 s626_debi_transfer(dev);
6b387b70
HS
281}
282
982e3d11
HS
283/* ************** EEPROM ACCESS FUNCTIONS ************** */
284
31de1948 285static uint32_t s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
982e3d11 286{
7f2f7e05 287 struct s626_private *devpriv = dev->private;
be008602 288 unsigned int ctrl;
7f2f7e05 289
25f8fd5e 290 /* Write I2C command to I2C Transfer Control shadow register */
d8515652 291 writel(val, devpriv->mmio + S626_P_I2CCTRL);
982e3d11 292
ddd9813e
HS
293 /*
294 * Upload I2C shadow registers into working registers and
295 * wait for upload confirmation.
296 */
d8515652
IA
297 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
298 while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
982e3d11
HS
299 ;
300
be008602
HS
301 /* Wait until I2C bus transfer is finished or an error occurs */
302 do {
d8515652
IA
303 ctrl = readl(devpriv->mmio + S626_P_I2CCTRL);
304 } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
982e3d11 305
be008602 306 /* Return non-zero if I2C error occurred */
d8515652 307 return ctrl & S626_I2C_ERR;
982e3d11
HS
308}
309
8ee52611 310/* Read uint8_t from EEPROM. */
31de1948 311static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
982e3d11 312{
7f2f7e05 313 struct s626_private *devpriv = dev->private;
982e3d11 314
8ee52611
IA
315 /*
316 * Send EEPROM target address:
317 * Byte2 = I2C command: write to I2C EEPROM device.
318 * Byte1 = EEPROM internal target address.
319 * Byte0 = Not sent.
320 */
d8515652
IA
321 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
322 devpriv->i2c_adrs) |
323 S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
324 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 325 /* Abort function and declare error if handshake failed. */
982e3d11 326 return 0;
982e3d11 327
8ee52611
IA
328 /*
329 * Execute EEPROM read:
330 * Byte2 = I2C command: read from I2C EEPROM device.
331 * Byte1 receives uint8_t from EEPROM.
332 * Byte0 = Not sent.
333 */
d8515652 334 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
31de1948 335 (devpriv->i2c_adrs | 1)) |
d8515652
IA
336 S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
337 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 338 /* Abort function and declare error if handshake failed. */
982e3d11 339 return 0;
be008602 340
d8515652 341 return (readl(devpriv->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
982e3d11
HS
342}
343
95414729
HS
344/* *********** DAC FUNCTIONS *********** */
345
8ee52611 346/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
31de1948 347static const uint8_t s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
95414729 348
8ee52611 349/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
31de1948 350static const uint8_t s626_trimadrs[] = {
8ee52611
IA
351 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
352};
95414729 353
8ee52611
IA
354/*
355 * Private helper function: Transmit serial data to DAC via Audio
95414729 356 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
07a36d66 357 * dacpol contains valid target image.
95414729 358 */
31de1948 359static void s626_send_dac(struct comedi_device *dev, uint32_t val)
95414729 360{
7f2f7e05 361 struct s626_private *devpriv = dev->private;
95414729
HS
362
363 /* START THE SERIAL CLOCK RUNNING ------------- */
364
8ee52611
IA
365 /*
366 * Assert DAC polarity control and enable gating of DAC serial clock
95414729
HS
367 * and audio bit stream signals. At this point in time we must be
368 * assured of being in time slot 0. If we are not in slot 0, the
369 * serial clock and audio stream signals will be disabled; this is
31de1948
IA
370 * because the following s626_debi_write statement (which enables
371 * signals to be passed through the gate array) would execute before
372 * the trailing edge of WS1/WS3 (which turns off the signals), thus
95414729
HS
373 * causing the signals to be inactive during the DAC write.
374 */
d8515652 375 s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
95414729
HS
376
377 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
378
379 /* Copy DAC setpoint value to DAC's output DMA buffer. */
07a36d66
IA
380 /* writel(val, devpriv->mmio + (uint32_t)devpriv->dac_wbuf); */
381 *devpriv->dac_wbuf = val;
95414729 382
ddd9813e
HS
383 /*
384 * Enable the output DMA transfer. This will cause the DMAC to copy
385 * the DAC's data value to A2's output FIFO. The DMA transfer will
95414729
HS
386 * then immediately terminate because the protection address is
387 * reached upon transfer of the first DWORD value.
388 */
d8515652 389 s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
95414729 390
8ee52611 391 /* While the DMA transfer is executing ... */
95414729 392
25f8fd5e
HS
393 /*
394 * Reset Audio2 output FIFO's underflow flag (along with any
395 * other FIFO underflow/overflow flags). When set, this flag
396 * will indicate that we have emerged from slot 0.
95414729 397 */
d8515652 398 writel(S626_ISR_AFOU, devpriv->mmio + S626_P_ISR);
95414729 399
8ee52611
IA
400 /*
401 * Wait for the DMA transfer to finish so that there will be data
95414729
HS
402 * available in the FIFO when time slot 1 tries to transfer a DWORD
403 * from the FIFO to the output buffer register. We test for DMA
404 * Done by polling the DMAC enable flag; this flag is automatically
405 * cleared when the transfer has finished.
406 */
d8515652 407 while (readl(devpriv->mmio + S626_P_MC1) & S626_MC1_A2OUT)
95414729
HS
408 ;
409
410 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
411
8ee52611
IA
412 /*
413 * FIFO data is now available, so we enable execution of time slots
95414729
HS
414 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
415 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
416 * detection.
417 */
d8515652
IA
418 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
419 devpriv->mmio + S626_VECTPORT(0));
95414729 420
8ee52611
IA
421 /*
422 * Wait for slot 1 to execute to ensure that the Packet will be
95414729
HS
423 * transmitted. This is detected by polling the Audio2 output FIFO
424 * underflow flag, which will be set when slot 1 execution has
425 * finished transferring the DAC's data DWORD from the output FIFO
426 * to the output buffer register.
427 */
d8515652 428 while (!(readl(devpriv->mmio + S626_P_SSR) & S626_SSR_AF2_OUT))
95414729
HS
429 ;
430
8ee52611
IA
431 /*
432 * Set up to trap execution at slot 0 when the TSL sequencer cycles
95414729
HS
433 * back to slot 0 after executing the EOS in slot 5. Also,
434 * simultaneously shift out and in the 0x00 that is ALWAYS the value
435 * stored in the last byte to be shifted out of the FIFO's DWORD
436 * buffer register.
437 */
d8515652 438 writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
676921c9 439 devpriv->mmio + S626_VECTPORT(0));
95414729
HS
440
441 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
442
8ee52611
IA
443 /*
444 * Wait for the TSL to finish executing all time slots before
95414729
HS
445 * exiting this function. We must do this so that the next DAC
446 * write doesn't start, thereby enabling clock/chip select signals:
447 *
448 * 1. Before the TSL sequence cycles back to slot 0, which disables
449 * the clock/cs signal gating and traps slot // list execution.
450 * we have not yet finished slot 5 then the clock/cs signals are
451 * still gated and we have not finished transmitting the stream.
452 *
453 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
454 * this case, the slot sequence is currently repeating, but with
455 * clock/cs signals disabled. We must wait for slot 0 to trap
456 * execution before setting up the next DAC setpoint DMA transfer
457 * and enabling the clock/cs signals. To detect the end of slot 5,
458 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
459 * the TSL has not yet finished executing slot 5 ...
460 */
d8515652 461 if (readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
8ee52611
IA
462 /*
463 * The trap was set on time and we are still executing somewhere
95414729
HS
464 * in slots 2-5, so we now wait for slot 0 to execute and trap
465 * TSL execution. This is detected when FB_BUFFER2 MSB changes
466 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
467 * out/in on SD2 the 0x00 that is always referenced by slot 5.
468 */
d8515652 469 while (readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000)
95414729
HS
470 ;
471 }
8ee52611
IA
472 /*
473 * Either (1) we were too late setting the slot 0 trap; the TSL
95414729
HS
474 * sequencer restarted slot 0 before we could set the EOS trap flag,
475 * or (2) we were not late and execution is now trapped at slot 0.
476 * In either case, we must now change slot 0 so that it will store
477 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
478 * In order to do this, we reprogram slot 0 so that it will shift in
479 * SD3, which is driven only by a pull-up resistor.
480 */
d8515652
IA
481 writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
482 devpriv->mmio + S626_VECTPORT(0));
95414729 483
8ee52611
IA
484 /*
485 * Wait for slot 0 to execute, at which time the TSL is setup for
95414729
HS
486 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
487 * from 0x00 to 0xFF.
488 */
d8515652 489 while (!(readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000))
95414729
HS
490 ;
491}
492
8ee52611
IA
493/*
494 * Private helper function: Write setpoint to an application DAC channel.
495 */
31de1948 496static void s626_set_dac(struct comedi_device *dev, uint16_t chan,
3de00ee4 497 int16_t dacdata)
95414729 498{
7f2f7e05 499 struct s626_private *devpriv = dev->private;
8ee52611 500 uint16_t signmask;
f1f7efce 501 uint32_t ws_image;
8ee52611 502 uint32_t val;
95414729 503
8ee52611
IA
504 /*
505 * Adjust DAC data polarity and set up Polarity Control Register image.
506 */
95414729
HS
507 signmask = 1 << chan;
508 if (dacdata < 0) {
509 dacdata = -dacdata;
07a36d66 510 devpriv->dacpol |= signmask;
8ee52611 511 } else {
07a36d66 512 devpriv->dacpol &= ~signmask;
8ee52611 513 }
95414729 514
8ee52611
IA
515 /* Limit DAC setpoint value to valid range. */
516 if ((uint16_t)dacdata > 0x1FFF)
95414729
HS
517 dacdata = 0x1FFF;
518
8ee52611
IA
519 /*
520 * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
95414729
HS
521 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
522 * data to a non-existent TrimDac channel just to keep the clock
523 * running after sending data to the target DAC. This is necessary
524 * to eliminate the clock glitch that would otherwise occur at the
525 * end of the target DAC's serial data stream. When the sequence
526 * restarts at V0 (after executing V5), the gate array automatically
527 * disables gating for the DAC clock and all DAC chip selects.
528 */
529
25f8fd5e 530 /* Choose DAC chip select to be asserted */
d8515652 531 ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
25f8fd5e 532 /* Slot 2: Transmit high data byte to target DAC */
d8515652
IA
533 writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
534 devpriv->mmio + S626_VECTPORT(2));
25f8fd5e 535 /* Slot 3: Transmit low data byte to target DAC */
d8515652
IA
536 writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
537 devpriv->mmio + S626_VECTPORT(3));
95414729 538 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
d8515652
IA
539 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
540 devpriv->mmio + S626_VECTPORT(4));
25f8fd5e 541 /* Slot 5: running after writing target DAC's low data byte */
d8515652
IA
542 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
543 devpriv->mmio + S626_VECTPORT(5));
95414729 544
8ee52611
IA
545 /*
546 * Construct and transmit target DAC's serial packet:
547 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
95414729
HS
548 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
549 * to a non-existent TrimDac channel) that serves to keep the clock
550 * running after the packet has been sent to the target DAC.
551 */
8ee52611
IA
552 val = 0x0F000000; /* Continue clock after target DAC data
553 * (write to non-existent trimdac). */
554 val |= 0x00004000; /* Address the two main dual-DAC devices
555 * (TSL's chip select enables target device). */
556 val |= ((uint32_t)(chan & 1) << 15); /* Address the DAC channel
557 * within the device. */
558 val |= (uint32_t)dacdata; /* Include DAC setpoint data. */
31de1948 559 s626_send_dac(dev, val);
95414729
HS
560}
561
31de1948
IA
562static void s626_write_trim_dac(struct comedi_device *dev, uint8_t logical_chan,
563 uint8_t dac_data)
95414729 564{
7f2f7e05 565 struct s626_private *devpriv = dev->private;
95414729
HS
566 uint32_t chan;
567
8ee52611
IA
568 /*
569 * Save the new setpoint in case the application needs to read it back
570 * later.
571 */
f1f7efce 572 devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;
95414729 573
8ee52611 574 /* Map logical channel number to physical channel number. */
31de1948 575 chan = s626_trimchan[logical_chan];
95414729 576
8ee52611
IA
577 /*
578 * Set up TSL2 records for TrimDac write operation. All slots shift
95414729
HS
579 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
580 * can be detected.
581 */
582
25f8fd5e 583 /* Slot 2: Send high uint8_t to target TrimDac */
d8515652
IA
584 writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
585 devpriv->mmio + S626_VECTPORT(2));
25f8fd5e 586 /* Slot 3: Send low uint8_t to target TrimDac */
d8515652
IA
587 writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
588 devpriv->mmio + S626_VECTPORT(3));
25f8fd5e 589 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
d8515652
IA
590 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
591 devpriv->mmio + S626_VECTPORT(4));
25f8fd5e 592 /* Slot 5: Send NOP low uint8_t to DAC0 */
d8515652
IA
593 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
594 devpriv->mmio + S626_VECTPORT(5));
95414729 595
8ee52611
IA
596 /*
597 * Construct and transmit target DAC's serial packet:
598 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
95414729
HS
599 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
600 * WORD value (that writes a channel 0 NOP command to a non-existent
601 * main DAC channel) that serves to keep the clock running after the
602 * packet has been sent to the target DAC.
603 */
604
8ee52611
IA
605 /*
606 * Address the DAC channel within the trimdac device.
607 * Include DAC setpoint data.
608 */
31de1948 609 s626_send_dac(dev, (chan << 8) | dac_data);
95414729
HS
610}
611
31de1948 612static void s626_load_trim_dacs(struct comedi_device *dev)
95414729 613{
8ee52611 614 uint8_t i;
95414729 615
8ee52611 616 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
31de1948
IA
617 for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++)
618 s626_write_trim_dac(dev, i,
619 s626_i2c_read(dev, s626_trimadrs[i]));
95414729
HS
620}
621
e3eb08d0 622/* ****** COUNTER FUNCTIONS ******* */
8ee52611
IA
623
624/*
625 * All counter functions address a specific counter by means of the
e3eb08d0
HS
626 * "Counter" argument, which is a logical counter number. The Counter
627 * argument may have any of the following legal values: 0=0A, 1=1A,
628 * 2=2A, 3=0B, 4=1B, 5=2B.
629 */
630
8ee52611
IA
631/*
632 * Read a counter's output latch.
633 */
31de1948
IA
634static uint32_t s626_read_latch(struct comedi_device *dev,
635 const struct s626_enc_info *k)
e3eb08d0 636{
8ee52611 637 uint32_t value;
e3eb08d0 638
8ee52611 639 /* Latch counts and fetch LSW of latched counts value. */
31de1948 640 value = s626_debi_read(dev, k->my_latch_lsw);
e3eb08d0 641
8ee52611 642 /* Fetch MSW of latched counts and combine with LSW. */
31de1948 643 value |= ((uint32_t)s626_debi_read(dev, k->my_latch_lsw + 2) << 16);
e3eb08d0 644
8ee52611 645 /* Return latched counts. */
e3eb08d0
HS
646 return value;
647}
648
8ee52611
IA
649/*
650 * Return/set a counter pair's latch trigger source. 0: On read
e3eb08d0
HS
651 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
652 * latches B.
653 */
31de1948
IA
654static void s626_set_latch_source(struct comedi_device *dev,
655 const struct s626_enc_info *k, uint16_t value)
e3eb08d0 656{
d8515652
IA
657 s626_debi_replace(dev, k->my_crb,
658 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
0830ada5 659 S626_SET_CRB_LATCHSRC(value));
e3eb08d0
HS
660}
661
8ee52611
IA
662/*
663 * Write value into counter preload register.
664 */
31de1948
IA
665static void s626_preload(struct comedi_device *dev,
666 const struct s626_enc_info *k, uint32_t value)
e3eb08d0 667{
31de1948
IA
668 s626_debi_write(dev, k->my_latch_lsw, value);
669 s626_debi_write(dev, k->my_latch_lsw + 2, value >> 16);
e3eb08d0
HS
670}
671
010be96f
IA
672/* ****** PRIVATE COUNTER FUNCTIONS ****** */
673
674/*
675 * Reset a counter's index and overflow event capture flags.
676 */
31de1948
IA
677static void s626_reset_cap_flags_a(struct comedi_device *dev,
678 const struct s626_enc_info *k)
010be96f 679{
d8515652 680 s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
0830ada5
IA
681 (S626_SET_CRB_INTRESETCMD(1) |
682 S626_SET_CRB_INTRESET_A(1)));
010be96f
IA
683}
684
31de1948
IA
685static void s626_reset_cap_flags_b(struct comedi_device *dev,
686 const struct s626_enc_info *k)
010be96f 687{
d8515652 688 s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
0830ada5
IA
689 (S626_SET_CRB_INTRESETCMD(1) |
690 S626_SET_CRB_INTRESET_B(1)));
010be96f
IA
691}
692
693/*
694 * Return counter setup in a format (COUNTER_SETUP) that is consistent
695 * for both A and B counters.
696 */
31de1948
IA
697static uint16_t s626_get_mode_a(struct comedi_device *dev,
698 const struct s626_enc_info *k)
010be96f
IA
699{
700 uint16_t cra;
701 uint16_t crb;
702 uint16_t setup;
0830ada5 703 unsigned cntsrc, clkmult, clkpol, encmode;
010be96f
IA
704
705 /* Fetch CRA and CRB register images. */
31de1948
IA
706 cra = s626_debi_read(dev, k->my_cra);
707 crb = s626_debi_read(dev, k->my_crb);
010be96f
IA
708
709 /*
710 * Populate the standardized counter setup bit fields.
010be96f 711 */
0830ada5
IA
712 setup =
713 /* LoadSrc = LoadSrcA. */
714 S626_SET_STD_LOADSRC(S626_GET_CRA_LOADSRC_A(cra)) |
715 /* LatchSrc = LatchSrcA. */
716 S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
717 /* IntSrc = IntSrcA. */
718 S626_SET_STD_INTSRC(S626_GET_CRA_INTSRC_A(cra)) |
2cea19fa
IA
719 /* IndxSrc = IndxSrcA. */
720 S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_A(cra)) |
0830ada5
IA
721 /* IndxPol = IndxPolA. */
722 S626_SET_STD_INDXPOL(S626_GET_CRA_INDXPOL_A(cra)) |
723 /* ClkEnab = ClkEnabA. */
724 S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_A(crb));
010be96f
IA
725
726 /* Adjust mode-dependent parameters. */
0830ada5
IA
727 cntsrc = S626_GET_CRA_CNTSRC_A(cra);
728 if (cntsrc & S626_CNTSRC_SYSCLK) {
622ec01a 729 /* Timer mode (CntSrcA<1> == 1): */
0830ada5 730 encmode = S626_ENCMODE_TIMER;
622ec01a 731 /* Set ClkPol to indicate count direction (CntSrcA<0>). */
0830ada5 732 clkpol = cntsrc & 1;
010be96f 733 /* ClkMult must be 1x in Timer mode. */
7a1046e5 734 clkmult = S626_CLKMULT_1X;
010be96f 735 } else {
622ec01a 736 /* Counter mode (CntSrcA<1> == 0): */
0830ada5 737 encmode = S626_ENCMODE_COUNTER;
010be96f 738 /* Pass through ClkPol. */
0830ada5 739 clkpol = S626_GET_CRA_CLKPOL_A(cra);
010be96f 740 /* Force ClkMult to 1x if not legal, else pass through. */
0830ada5 741 clkmult = S626_GET_CRA_CLKMULT_A(cra);
7a1046e5
IA
742 if (clkmult == S626_CLKMULT_SPECIAL)
743 clkmult = S626_CLKMULT_1X;
010be96f 744 }
0830ada5
IA
745 setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
746 S626_SET_STD_CLKPOL(clkpol);
010be96f
IA
747
748 /* Return adjusted counter setup. */
749 return setup;
750}
751
31de1948
IA
752static uint16_t s626_get_mode_b(struct comedi_device *dev,
753 const struct s626_enc_info *k)
010be96f
IA
754{
755 uint16_t cra;
756 uint16_t crb;
757 uint16_t setup;
0830ada5 758 unsigned cntsrc, clkmult, clkpol, encmode;
010be96f
IA
759
760 /* Fetch CRA and CRB register images. */
31de1948
IA
761 cra = s626_debi_read(dev, k->my_cra);
762 crb = s626_debi_read(dev, k->my_crb);
010be96f
IA
763
764 /*
765 * Populate the standardized counter setup bit fields.
010be96f 766 */
0830ada5
IA
767 setup =
768 /* IntSrc = IntSrcB. */
769 S626_SET_STD_INTSRC(S626_GET_CRB_INTSRC_B(crb)) |
770 /* LatchSrc = LatchSrcB. */
771 S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
772 /* LoadSrc = LoadSrcB. */
773 S626_SET_STD_LOADSRC(S626_GET_CRB_LOADSRC_B(crb)) |
774 /* IndxPol = IndxPolB. */
775 S626_SET_STD_INDXPOL(S626_GET_CRB_INDXPOL_B(crb)) |
776 /* ClkEnab = ClkEnabB. */
777 S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_B(crb)) |
2cea19fa
IA
778 /* IndxSrc = IndxSrcB. */
779 S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_B(cra));
010be96f
IA
780
781 /* Adjust mode-dependent parameters. */
0830ada5
IA
782 cntsrc = S626_GET_CRA_CNTSRC_B(cra);
783 clkmult = S626_GET_CRB_CLKMULT_B(crb);
7a1046e5
IA
784 if (clkmult == S626_CLKMULT_SPECIAL) {
785 /* Extender mode (ClkMultB == S626_CLKMULT_SPECIAL): */
0830ada5 786 encmode = S626_ENCMODE_EXTENDER;
010be96f 787 /* Indicate multiplier is 1x. */
7a1046e5 788 clkmult = S626_CLKMULT_1X;
622ec01a 789 /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
0830ada5
IA
790 clkpol = cntsrc & 1;
791 } else if (cntsrc & S626_CNTSRC_SYSCLK) {
622ec01a 792 /* Timer mode (CntSrcB<1> == 1): */
0830ada5 793 encmode = S626_ENCMODE_TIMER;
010be96f 794 /* Indicate multiplier is 1x. */
7a1046e5 795 clkmult = S626_CLKMULT_1X;
622ec01a 796 /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
0830ada5 797 clkpol = cntsrc & 1;
010be96f 798 } else {
622ec01a 799 /* If Counter mode (CntSrcB<1> == 0): */
0830ada5 800 encmode = S626_ENCMODE_COUNTER;
010be96f 801 /* Clock multiplier is passed through. */
010be96f 802 /* Clock polarity is passed through. */
0830ada5 803 clkpol = S626_GET_CRB_CLKPOL_B(crb);
010be96f 804 }
0830ada5
IA
805 setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
806 S626_SET_STD_CLKPOL(clkpol);
010be96f
IA
807
808 /* Return adjusted counter setup. */
809 return setup;
810}
811
17afeac2
IA
812/*
813 * Set the operating mode for the specified counter. The setup
814 * parameter is treated as a COUNTER_SETUP data type. The following
815 * parameters are programmable (all other parms are ignored): ClkMult,
816 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
817 */
31de1948
IA
818static void s626_set_mode_a(struct comedi_device *dev,
819 const struct s626_enc_info *k, uint16_t setup,
820 uint16_t disable_int_src)
17afeac2
IA
821{
822 struct s626_private *devpriv = dev->private;
823 uint16_t cra;
824 uint16_t crb;
0830ada5 825 unsigned cntsrc, clkmult, clkpol;
17afeac2
IA
826
827 /* Initialize CRA and CRB images. */
828 /* Preload trigger is passed through. */
0830ada5 829 cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
2cea19fa
IA
830 /* IndexSrc is passed through. */
831 cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
832
833 /* Reset any pending CounterA event captures. */
0830ada5 834 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
17afeac2 835 /* Clock enable is passed through. */
0830ada5 836 crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
17afeac2
IA
837
838 /* Force IntSrc to Disabled if disable_int_src is asserted. */
839 if (!disable_int_src)
0830ada5 840 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
17afeac2
IA
841
842 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
843 clkpol = S626_GET_STD_CLKPOL(setup);
844 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a 845 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
d8515652 846 /* Force to Timer mode (Extender valid only for B counters). */
622ec01a
IA
847 /* Fall through to case S626_ENCMODE_TIMER: */
848 case S626_ENCMODE_TIMER: /* Timer Mode: */
849 /* CntSrcA<1> selects system clock */
0830ada5 850 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 851 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
0830ada5 852 cntsrc |= clkpol;
17afeac2 853 /* ClkPolA behaves as always-on clock enable. */
0830ada5 854 clkpol = 1;
17afeac2 855 /* ClkMult must be 1x. */
7a1046e5 856 clkmult = S626_CLKMULT_1X;
17afeac2
IA
857 break;
858 default: /* Counter Mode: */
859 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 860 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 861 /* Clock polarity is passed through. */
17afeac2 862 /* Force multiplier to x1 if not legal, else pass through. */
0830ada5 863 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
864 if (clkmult == S626_CLKMULT_SPECIAL)
865 clkmult = S626_CLKMULT_1X;
17afeac2
IA
866 break;
867 }
0830ada5
IA
868 cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
869 S626_SET_CRA_CLKMULT_A(clkmult);
17afeac2
IA
870
871 /*
872 * Force positive index polarity if IndxSrc is software-driven only,
873 * otherwise pass it through.
874 */
2cea19fa 875 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 876 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
877
878 /*
879 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
880 * enable mask to indicate the counter interrupt is disabled.
881 */
882 if (disable_int_src)
883 devpriv->counter_int_enabs &= ~k->my_event_bits[3];
884
885 /*
886 * While retaining CounterB and LatchSrc configurations, program the
887 * new counter operating mode.
888 */
d8515652 889 s626_debi_replace(dev, k->my_cra,
622ec01a 890 S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
d8515652
IA
891 s626_debi_replace(dev, k->my_crb,
892 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
17afeac2
IA
893}
894
31de1948
IA
895static void s626_set_mode_b(struct comedi_device *dev,
896 const struct s626_enc_info *k, uint16_t setup,
897 uint16_t disable_int_src)
17afeac2
IA
898{
899 struct s626_private *devpriv = dev->private;
900 uint16_t cra;
901 uint16_t crb;
0830ada5 902 unsigned cntsrc, clkmult, clkpol;
17afeac2
IA
903
904 /* Initialize CRA and CRB images. */
2cea19fa
IA
905 /* IndexSrc is passed through. */
906 cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
907
908 /* Reset event captures and disable interrupts. */
0830ada5 909 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
17afeac2 910 /* Clock enable is passed through. */
0830ada5 911 crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
17afeac2 912 /* Preload trigger source is passed through. */
0830ada5 913 crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
17afeac2
IA
914
915 /* Force IntSrc to Disabled if disable_int_src is asserted. */
916 if (!disable_int_src)
0830ada5 917 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
17afeac2
IA
918
919 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
920 clkpol = S626_GET_STD_CLKPOL(setup);
921 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a
IA
922 case S626_ENCMODE_TIMER: /* Timer Mode: */
923 /* CntSrcB<1> selects system clock */
0830ada5 924 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 925 /* with direction (CntSrcB<0>) obtained from ClkPol. */
0830ada5 926 cntsrc |= clkpol;
17afeac2 927 /* ClkPolB behaves as always-on clock enable. */
0830ada5 928 clkpol = 1;
17afeac2 929 /* ClkMultB must be 1x. */
7a1046e5 930 clkmult = S626_CLKMULT_1X;
17afeac2 931 break;
622ec01a
IA
932 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
933 /* CntSrcB source is OverflowA (same as "timer") */
0830ada5 934 cntsrc = S626_CNTSRC_SYSCLK;
17afeac2 935 /* with direction obtained from ClkPol. */
0830ada5 936 cntsrc |= clkpol;
17afeac2 937 /* ClkPolB controls IndexB -- always set to active. */
0830ada5 938 clkpol = 1;
17afeac2 939 /* ClkMultB selects OverflowA as the clock source. */
7a1046e5 940 clkmult = S626_CLKMULT_SPECIAL;
17afeac2
IA
941 break;
942 default: /* Counter Mode: */
943 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 944 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 945 /* ClkPol is passed through. */
17afeac2 946 /* Force ClkMult to x1 if not legal, otherwise pass through. */
0830ada5 947 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
948 if (clkmult == S626_CLKMULT_SPECIAL)
949 clkmult = S626_CLKMULT_1X;
17afeac2
IA
950 break;
951 }
0830ada5
IA
952 cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
953 crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
17afeac2
IA
954
955 /*
956 * Force positive index polarity if IndxSrc is software-driven only,
957 * otherwise pass it through.
958 */
2cea19fa 959 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 960 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
961
962 /*
963 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
964 * enable mask to indicate the counter interrupt is disabled.
965 */
966 if (disable_int_src)
967 devpriv->counter_int_enabs &= ~k->my_event_bits[3];
968
969 /*
970 * While retaining CounterA and LatchSrc configurations, program the
971 * new counter operating mode.
972 */
d8515652 973 s626_debi_replace(dev, k->my_cra,
622ec01a 974 ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
d8515652
IA
975 s626_debi_replace(dev, k->my_crb,
976 S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
17afeac2
IA
977}
978
979/*
980 * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
981 */
31de1948
IA
982static void s626_set_enable_a(struct comedi_device *dev,
983 const struct s626_enc_info *k, uint16_t enab)
17afeac2 984{
d8515652
IA
985 s626_debi_replace(dev, k->my_crb,
986 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A),
0830ada5 987 S626_SET_CRB_CLKENAB_A(enab));
17afeac2
IA
988}
989
31de1948
IA
990static void s626_set_enable_b(struct comedi_device *dev,
991 const struct s626_enc_info *k, uint16_t enab)
17afeac2 992{
d8515652
IA
993 s626_debi_replace(dev, k->my_crb,
994 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_B),
0830ada5 995 S626_SET_CRB_CLKENAB_B(enab));
17afeac2
IA
996}
997
31de1948
IA
998static uint16_t s626_get_enable_a(struct comedi_device *dev,
999 const struct s626_enc_info *k)
17afeac2 1000{
0830ada5 1001 return S626_GET_CRB_CLKENAB_A(s626_debi_read(dev, k->my_crb));
17afeac2
IA
1002}
1003
31de1948
IA
1004static uint16_t s626_get_enable_b(struct comedi_device *dev,
1005 const struct s626_enc_info *k)
17afeac2 1006{
0830ada5 1007 return S626_GET_CRB_CLKENAB_B(s626_debi_read(dev, k->my_crb));
17afeac2
IA
1008}
1009
1010#ifdef unused
31de1948
IA
1011static uint16_t s626_get_latch_source(struct comedi_device *dev,
1012 const struct s626_enc_info *k)
17afeac2 1013{
0830ada5 1014 return S626_GET_CRB_LATCHSRC(s626_debi_read(dev, k->my_crb));
17afeac2
IA
1015}
1016#endif
1017
1018/*
1019 * Return/set the event that will trigger transfer of the preload
1020 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
1021 * 2=OverflowA (B counters only), 3=disabled.
1022 */
31de1948
IA
1023static void s626_set_load_trig_a(struct comedi_device *dev,
1024 const struct s626_enc_info *k, uint16_t trig)
17afeac2 1025{
d8515652 1026 s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_LOADSRC_A,
0830ada5 1027 S626_SET_CRA_LOADSRC_A(trig));
17afeac2
IA
1028}
1029
31de1948
IA
1030static void s626_set_load_trig_b(struct comedi_device *dev,
1031 const struct s626_enc_info *k, uint16_t trig)
17afeac2 1032{
d8515652
IA
1033 s626_debi_replace(dev, k->my_crb,
1034 ~(S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL),
0830ada5 1035 S626_SET_CRB_LOADSRC_B(trig));
17afeac2
IA
1036}
1037
31de1948
IA
1038static uint16_t s626_get_load_trig_a(struct comedi_device *dev,
1039 const struct s626_enc_info *k)
17afeac2 1040{
0830ada5 1041 return S626_GET_CRA_LOADSRC_A(s626_debi_read(dev, k->my_cra));
17afeac2
IA
1042}
1043
31de1948
IA
1044static uint16_t s626_get_load_trig_b(struct comedi_device *dev,
1045 const struct s626_enc_info *k)
17afeac2 1046{
0830ada5 1047 return S626_GET_CRB_LOADSRC_B(s626_debi_read(dev, k->my_crb));
17afeac2
IA
1048}
1049
bc284a2a
IA
1050/*
1051 * Return/set counter interrupt source and clear any captured
1052 * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
1053 * 2=IndexOnly, 3=IndexAndOverflow.
1054 */
31de1948
IA
1055static void s626_set_int_src_a(struct comedi_device *dev,
1056 const struct s626_enc_info *k,
1057 uint16_t int_source)
bc284a2a
IA
1058{
1059 struct s626_private *devpriv = dev->private;
1060
1061 /* Reset any pending counter overflow or index captures. */
d8515652 1062 s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
0830ada5
IA
1063 (S626_SET_CRB_INTRESETCMD(1) |
1064 S626_SET_CRB_INTRESET_A(1)));
bc284a2a
IA
1065
1066 /* Program counter interrupt source. */
d8515652 1067 s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_INTSRC_A,
0830ada5 1068 S626_SET_CRA_INTSRC_A(int_source));
bc284a2a
IA
1069
1070 /* Update MISC2 interrupt enable mask. */
1071 devpriv->counter_int_enabs =
1072 (devpriv->counter_int_enabs & ~k->my_event_bits[3]) |
1073 k->my_event_bits[int_source];
1074}
1075
31de1948
IA
1076static void s626_set_int_src_b(struct comedi_device *dev,
1077 const struct s626_enc_info *k,
1078 uint16_t int_source)
bc284a2a
IA
1079{
1080 struct s626_private *devpriv = dev->private;
1081 uint16_t crb;
1082
1083 /* Cache writeable CRB register image. */
d8515652 1084 crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
bc284a2a
IA
1085
1086 /* Reset any pending counter overflow or index captures. */
0830ada5
IA
1087 s626_debi_write(dev, k->my_crb, (crb | S626_SET_CRB_INTRESETCMD(1) |
1088 S626_SET_CRB_INTRESET_B(1)));
bc284a2a
IA
1089
1090 /* Program counter interrupt source. */
0830ada5
IA
1091 s626_debi_write(dev, k->my_crb, ((crb & ~S626_CRBMSK_INTSRC_B) |
1092 S626_SET_CRB_INTSRC_B(int_source)));
bc284a2a
IA
1093
1094 /* Update MISC2 interrupt enable mask. */
1095 devpriv->counter_int_enabs =
1096 (devpriv->counter_int_enabs & ~k->my_event_bits[3]) |
1097 k->my_event_bits[int_source];
1098}
1099
31de1948
IA
1100static uint16_t s626_get_int_src_a(struct comedi_device *dev,
1101 const struct s626_enc_info *k)
bc284a2a 1102{
0830ada5 1103 return S626_GET_CRA_INTSRC_A(s626_debi_read(dev, k->my_cra));
bc284a2a
IA
1104}
1105
31de1948
IA
1106static uint16_t s626_get_int_src_b(struct comedi_device *dev,
1107 const struct s626_enc_info *k)
bc284a2a 1108{
0830ada5 1109 return S626_GET_CRB_INTSRC_B(s626_debi_read(dev, k->my_crb));
bc284a2a
IA
1110}
1111
1112#ifdef unused
1113/*
1114 * Return/set the clock multiplier.
1115 */
31de1948
IA
1116static void s626_set_clk_mult(struct comedi_device *dev,
1117 const struct s626_enc_info *k, uint16_t value)
bc284a2a 1118{
d8515652 1119 k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKMULT) |
0830ada5 1120 S626_SET_STD_CLKMULT(value)), false);
bc284a2a
IA
1121}
1122
31de1948
IA
1123static uint16_t s626_get_clk_mult(struct comedi_device *dev,
1124 const struct s626_enc_info *k)
bc284a2a 1125{
0830ada5 1126 return S626_GET_STD_CLKMULT(k->get_mode(dev, k));
bc284a2a
IA
1127}
1128
1129/*
1130 * Return/set the clock polarity.
1131 */
31de1948
IA
1132static void s626_set_clk_pol(struct comedi_device *dev,
1133 const struct s626_enc_info *k, uint16_t value)
bc284a2a 1134{
d8515652 1135 k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKPOL) |
0830ada5 1136 S626_SET_STD_CLKPOL(value)), false);
bc284a2a
IA
1137}
1138
31de1948
IA
1139static uint16_t s626_get_clk_pol(struct comedi_device *dev,
1140 const struct s626_enc_info *k)
bc284a2a 1141{
0830ada5 1142 return S626_GET_STD_CLKPOL(k->get_mode(dev, k));
bc284a2a
IA
1143}
1144
1145/*
622ec01a 1146 * Return/set the encoder mode.
bc284a2a 1147 */
622ec01a
IA
1148static void s626_set_enc_mode(struct comedi_device *dev,
1149 const struct s626_enc_info *k, uint16_t value)
bc284a2a 1150{
622ec01a 1151 k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_ENCMODE) |
0830ada5 1152 S626_SET_STD_ENCMODE(value)), false);
bc284a2a
IA
1153}
1154
622ec01a
IA
1155static uint16_t s626_get_enc_mode(struct comedi_device *dev,
1156 const struct s626_enc_info *k)
bc284a2a 1157{
0830ada5 1158 return S626_GET_STD_ENCMODE(k->get_mode(dev, k));
bc284a2a
IA
1159}
1160
1161/*
1162 * Return/set the index polarity.
1163 */
31de1948
IA
1164static void s626_set_index_pol(struct comedi_device *dev,
1165 const struct s626_enc_info *k, uint16_t value)
bc284a2a 1166{
d8515652 1167 k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXPOL) |
0830ada5 1168 S626_SET_STD_INDXPOL(value != 0)), false);
bc284a2a
IA
1169}
1170
31de1948
IA
1171static uint16_t s626_get_index_pol(struct comedi_device *dev,
1172 const struct s626_enc_info *k)
bc284a2a 1173{
0830ada5 1174 return S626_GET_STD_INDXPOL(k->get_mode(dev, k));
bc284a2a
IA
1175}
1176
1177/*
1178 * Return/set the index source.
1179 */
31de1948
IA
1180static void s626_set_index_src(struct comedi_device *dev,
1181 const struct s626_enc_info *k, uint16_t value)
bc284a2a 1182{
d8515652 1183 k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXSRC) |
0830ada5 1184 S626_SET_STD_INDXSRC(value != 0)), false);
bc284a2a
IA
1185}
1186
31de1948
IA
1187static uint16_t s626_get_index_src(struct comedi_device *dev,
1188 const struct s626_enc_info *k)
bc284a2a 1189{
0830ada5 1190 return S626_GET_STD_INDXSRC(k->get_mode(dev, k));
bc284a2a
IA
1191}
1192#endif
1193
1194/*
1195 * Generate an index pulse.
1196 */
31de1948
IA
1197static void s626_pulse_index_a(struct comedi_device *dev,
1198 const struct s626_enc_info *k)
bc284a2a
IA
1199{
1200 uint16_t cra;
1201
31de1948 1202 cra = s626_debi_read(dev, k->my_cra);
bc284a2a 1203 /* Pulse index. */
d8515652 1204 s626_debi_write(dev, k->my_cra, (cra ^ S626_CRAMSK_INDXPOL_A));
31de1948 1205 s626_debi_write(dev, k->my_cra, cra);
bc284a2a
IA
1206}
1207
31de1948
IA
1208static void s626_pulse_index_b(struct comedi_device *dev,
1209 const struct s626_enc_info *k)
bc284a2a
IA
1210{
1211 uint16_t crb;
1212
d8515652 1213 crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
bc284a2a 1214 /* Pulse index. */
d8515652 1215 s626_debi_write(dev, k->my_crb, (crb ^ S626_CRBMSK_INDXPOL_B));
31de1948 1216 s626_debi_write(dev, k->my_crb, crb);
bc284a2a
IA
1217}
1218
3f1f219c
IA
1219static const struct s626_enc_info s626_enc_chan_info[] = {
1220 {
31de1948
IA
1221 .get_enable = s626_get_enable_a,
1222 .get_int_src = s626_get_int_src_a,
1223 .get_load_trig = s626_get_load_trig_a,
1224 .get_mode = s626_get_mode_a,
1225 .pulse_index = s626_pulse_index_a,
1226 .set_enable = s626_set_enable_a,
1227 .set_int_src = s626_set_int_src_a,
1228 .set_load_trig = s626_set_load_trig_a,
1229 .set_mode = s626_set_mode_a,
1230 .reset_cap_flags = s626_reset_cap_flags_a,
d8515652
IA
1231 .my_cra = S626_LP_CR0A,
1232 .my_crb = S626_LP_CR0B,
1233 .my_latch_lsw = S626_LP_CNTR0ALSW,
676921c9 1234 .my_event_bits = S626_EVBITS(0),
3f1f219c 1235 }, {
31de1948
IA
1236 .get_enable = s626_get_enable_a,
1237 .get_int_src = s626_get_int_src_a,
1238 .get_load_trig = s626_get_load_trig_a,
1239 .get_mode = s626_get_mode_a,
1240 .pulse_index = s626_pulse_index_a,
1241 .set_enable = s626_set_enable_a,
1242 .set_int_src = s626_set_int_src_a,
1243 .set_load_trig = s626_set_load_trig_a,
1244 .set_mode = s626_set_mode_a,
1245 .reset_cap_flags = s626_reset_cap_flags_a,
d8515652
IA
1246 .my_cra = S626_LP_CR1A,
1247 .my_crb = S626_LP_CR1B,
1248 .my_latch_lsw = S626_LP_CNTR1ALSW,
676921c9 1249 .my_event_bits = S626_EVBITS(1),
3f1f219c 1250 }, {
31de1948
IA
1251 .get_enable = s626_get_enable_a,
1252 .get_int_src = s626_get_int_src_a,
1253 .get_load_trig = s626_get_load_trig_a,
1254 .get_mode = s626_get_mode_a,
1255 .pulse_index = s626_pulse_index_a,
1256 .set_enable = s626_set_enable_a,
1257 .set_int_src = s626_set_int_src_a,
1258 .set_load_trig = s626_set_load_trig_a,
1259 .set_mode = s626_set_mode_a,
1260 .reset_cap_flags = s626_reset_cap_flags_a,
d8515652
IA
1261 .my_cra = S626_LP_CR2A,
1262 .my_crb = S626_LP_CR2B,
1263 .my_latch_lsw = S626_LP_CNTR2ALSW,
676921c9 1264 .my_event_bits = S626_EVBITS(2),
3f1f219c 1265 }, {
31de1948
IA
1266 .get_enable = s626_get_enable_b,
1267 .get_int_src = s626_get_int_src_b,
1268 .get_load_trig = s626_get_load_trig_b,
1269 .get_mode = s626_get_mode_b,
1270 .pulse_index = s626_pulse_index_b,
1271 .set_enable = s626_set_enable_b,
1272 .set_int_src = s626_set_int_src_b,
1273 .set_load_trig = s626_set_load_trig_b,
1274 .set_mode = s626_set_mode_b,
1275 .reset_cap_flags = s626_reset_cap_flags_b,
d8515652
IA
1276 .my_cra = S626_LP_CR0A,
1277 .my_crb = S626_LP_CR0B,
1278 .my_latch_lsw = S626_LP_CNTR0BLSW,
676921c9 1279 .my_event_bits = S626_EVBITS(3),
3f1f219c 1280 }, {
31de1948
IA
1281 .get_enable = s626_get_enable_b,
1282 .get_int_src = s626_get_int_src_b,
1283 .get_load_trig = s626_get_load_trig_b,
1284 .get_mode = s626_get_mode_b,
1285 .pulse_index = s626_pulse_index_b,
1286 .set_enable = s626_set_enable_b,
1287 .set_int_src = s626_set_int_src_b,
1288 .set_load_trig = s626_set_load_trig_b,
1289 .set_mode = s626_set_mode_b,
1290 .reset_cap_flags = s626_reset_cap_flags_b,
d8515652
IA
1291 .my_cra = S626_LP_CR1A,
1292 .my_crb = S626_LP_CR1B,
1293 .my_latch_lsw = S626_LP_CNTR1BLSW,
676921c9 1294 .my_event_bits = S626_EVBITS(4),
3f1f219c 1295 }, {
31de1948
IA
1296 .get_enable = s626_get_enable_b,
1297 .get_int_src = s626_get_int_src_b,
1298 .get_load_trig = s626_get_load_trig_b,
1299 .get_mode = s626_get_mode_b,
1300 .pulse_index = s626_pulse_index_b,
1301 .set_enable = s626_set_enable_b,
1302 .set_int_src = s626_set_int_src_b,
1303 .set_load_trig = s626_set_load_trig_b,
1304 .set_mode = s626_set_mode_b,
1305 .reset_cap_flags = s626_reset_cap_flags_b,
d8515652
IA
1306 .my_cra = S626_LP_CR2A,
1307 .my_crb = S626_LP_CR2B,
1308 .my_latch_lsw = S626_LP_CNTR2BLSW,
676921c9 1309 .my_event_bits = S626_EVBITS(5),
3f1f219c
IA
1310 },
1311};
1312
5fd4b711 1313static unsigned int s626_ai_reg_to_uint(unsigned int data)
11e865c1 1314{
5fd4b711 1315 return ((data >> 18) & 0x3fff) ^ 0x2000;
020c44f3 1316}
8231eb56 1317
6baffbc2
HS
1318static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1319{
100b4edc
HS
1320 unsigned int group = chan / 16;
1321 unsigned int mask = 1 << (chan - (16 * group));
6baffbc2
HS
1322 unsigned int status;
1323
6baffbc2 1324 /* set channel to capture positive edge */
d8515652
IA
1325 status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1326 s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
6baffbc2
HS
1327
1328 /* enable interrupt on selected channel */
d8515652
IA
1329 status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1330 s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
6baffbc2
HS
1331
1332 /* enable edge capture write command */
d8515652 1333 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
6baffbc2
HS
1334
1335 /* enable edge capture on selected channel */
d8515652
IA
1336 status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1337 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
6baffbc2
HS
1338
1339 return 0;
1340}
1341
1342static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1343 unsigned int mask)
1344{
6baffbc2 1345 /* disable edge capture write command */
d8515652 1346 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2
HS
1347
1348 /* enable edge capture on selected channel */
d8515652 1349 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
6baffbc2
HS
1350
1351 return 0;
1352}
1353
1354static int s626_dio_clear_irq(struct comedi_device *dev)
1355{
1356 unsigned int group;
1357
1358 /* disable edge capture write command */
d8515652 1359 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2 1360
100b4edc
HS
1361 /* clear all dio pending events and interrupt */
1362 for (group = 0; group < S626_DIO_BANKS; group++)
d8515652 1363 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
6baffbc2
HS
1364
1365 return 0;
1366}
1367
31de1948
IA
1368static void s626_handle_dio_interrupt(struct comedi_device *dev,
1369 uint16_t irqbit, uint8_t group)
65a17c29
HS
1370{
1371 struct s626_private *devpriv = dev->private;
1372 struct comedi_subdevice *s = dev->read_subdev;
1373 struct comedi_cmd *cmd = &s->async->cmd;
1374
1375 s626_dio_reset_irq(dev, group, irqbit);
1376
1377 if (devpriv->ai_cmd_running) {
1378 /* check if interrupt is an ai acquisition start trigger */
1379 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1380 cmd->start_src == TRIG_EXT) {
1381 /* Start executing the RPS program */
d8515652 1382 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
65a17c29
HS
1383
1384 if (cmd->scan_begin_src == TRIG_EXT)
1385 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1386 }
1387 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1388 cmd->scan_begin_src == TRIG_EXT) {
ddd9813e 1389 /* Trigger ADC scan loop start */
d8515652 1390 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1391
1392 if (cmd->convert_src == TRIG_EXT) {
1393 devpriv->ai_convert_count = cmd->chanlist_len;
1394
1395 s626_dio_set_irq(dev, cmd->convert_arg);
1396 }
1397
1398 if (cmd->convert_src == TRIG_TIMER) {
3a305a66
IA
1399 const struct s626_enc_info *k =
1400 &s626_enc_chan_info[5];
65a17c29
HS
1401
1402 devpriv->ai_convert_count = cmd->chanlist_len;
d8515652 1403 k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
65a17c29
HS
1404 }
1405 }
1406 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1407 cmd->convert_src == TRIG_EXT) {
ddd9813e 1408 /* Trigger ADC scan loop start */
d8515652 1409 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1410
1411 devpriv->ai_convert_count--;
1412 if (devpriv->ai_convert_count > 0)
1413 s626_dio_set_irq(dev, cmd->convert_arg);
1414 }
1415 }
1416}
1417
31de1948 1418static void s626_check_dio_interrupts(struct comedi_device *dev)
65a17c29
HS
1419{
1420 uint16_t irqbit;
1421 uint8_t group;
1422
1423 for (group = 0; group < S626_DIO_BANKS; group++) {
1424 irqbit = 0;
1425 /* read interrupt type */
d8515652 1426 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
65a17c29
HS
1427
1428 /* check if interrupt is generated from dio channels */
1429 if (irqbit) {
31de1948 1430 s626_handle_dio_interrupt(dev, irqbit, group);
65a17c29
HS
1431 return;
1432 }
1433 }
1434}
1435
31de1948 1436static void s626_check_counter_interrupts(struct comedi_device *dev)
0b9675d5
HS
1437{
1438 struct s626_private *devpriv = dev->private;
1439 struct comedi_subdevice *s = dev->read_subdev;
1440 struct comedi_async *async = s->async;
1441 struct comedi_cmd *cmd = &async->cmd;
3a305a66 1442 const struct s626_enc_info *k;
0b9675d5
HS
1443 uint16_t irqbit;
1444
1445 /* read interrupt type */
d8515652 1446 irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
0b9675d5
HS
1447
1448 /* check interrupt on counters */
d8515652 1449 if (irqbit & S626_IRQ_COINT1A) {
3a305a66 1450 k = &s626_enc_chan_info[0];
0b9675d5
HS
1451
1452 /* clear interrupt capture flag */
b075ac8e 1453 k->reset_cap_flags(dev, k);
0b9675d5 1454 }
d8515652 1455 if (irqbit & S626_IRQ_COINT2A) {
3a305a66 1456 k = &s626_enc_chan_info[1];
0b9675d5
HS
1457
1458 /* clear interrupt capture flag */
b075ac8e 1459 k->reset_cap_flags(dev, k);
0b9675d5 1460 }
d8515652 1461 if (irqbit & S626_IRQ_COINT3A) {
3a305a66 1462 k = &s626_enc_chan_info[2];
0b9675d5
HS
1463
1464 /* clear interrupt capture flag */
b075ac8e 1465 k->reset_cap_flags(dev, k);
0b9675d5 1466 }
d8515652 1467 if (irqbit & S626_IRQ_COINT1B) {
3a305a66 1468 k = &s626_enc_chan_info[3];
0b9675d5
HS
1469
1470 /* clear interrupt capture flag */
b075ac8e 1471 k->reset_cap_flags(dev, k);
0b9675d5 1472 }
d8515652 1473 if (irqbit & S626_IRQ_COINT2B) {
3a305a66 1474 k = &s626_enc_chan_info[4];
0b9675d5
HS
1475
1476 /* clear interrupt capture flag */
b075ac8e 1477 k->reset_cap_flags(dev, k);
0b9675d5
HS
1478
1479 if (devpriv->ai_convert_count > 0) {
1480 devpriv->ai_convert_count--;
1481 if (devpriv->ai_convert_count == 0)
d8515652 1482 k->set_enable(dev, k, S626_CLKENAB_INDEX);
0b9675d5
HS
1483
1484 if (cmd->convert_src == TRIG_TIMER) {
ddd9813e 1485 /* Trigger ADC scan loop start */
d8515652
IA
1486 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1487 S626_P_MC2);
0b9675d5
HS
1488 }
1489 }
1490 }
d8515652 1491 if (irqbit & S626_IRQ_COINT3B) {
3a305a66 1492 k = &s626_enc_chan_info[5];
0b9675d5
HS
1493
1494 /* clear interrupt capture flag */
b075ac8e 1495 k->reset_cap_flags(dev, k);
0b9675d5
HS
1496
1497 if (cmd->scan_begin_src == TRIG_TIMER) {
ddd9813e 1498 /* Trigger ADC scan loop start */
d8515652 1499 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
0b9675d5
HS
1500 }
1501
1502 if (cmd->convert_src == TRIG_TIMER) {
3a305a66 1503 k = &s626_enc_chan_info[4];
0b9675d5 1504 devpriv->ai_convert_count = cmd->chanlist_len;
d8515652 1505 k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
0b9675d5
HS
1506 }
1507 }
1508}
1509
31de1948 1510static bool s626_handle_eos_interrupt(struct comedi_device *dev)
4c2d13e0
HS
1511{
1512 struct s626_private *devpriv = dev->private;
1513 struct comedi_subdevice *s = dev->read_subdev;
1514 struct comedi_async *async = s->async;
1515 struct comedi_cmd *cmd = &async->cmd;
1516 /*
1517 * Init ptr to DMA buffer that holds new ADC data. We skip the
1518 * first uint16_t in the buffer because it contains junk data
1519 * from the final ADC of the previous poll list scan.
1520 */
5fd4b711 1521 uint32_t *readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
4c2d13e0
HS
1522 bool finished = false;
1523 int i;
1524
1525 /* get the data and hand it over to comedi */
1526 for (i = 0; i < cmd->chanlist_len; i++) {
5fd4b711 1527 unsigned short tempdata;
4c2d13e0
HS
1528
1529 /*
1530 * Convert ADC data to 16-bit integer values and copy
1531 * to application buffer.
1532 */
5fd4b711 1533 tempdata = s626_ai_reg_to_uint(*readaddr);
4c2d13e0
HS
1534 readaddr++;
1535
1536 /* put data into read buffer */
1537 /* comedi_buf_put(async, tempdata); */
1538 cfc_write_to_buffer(s, tempdata);
1539 }
1540
1541 /* end of scan occurs */
1542 async->events |= COMEDI_CB_EOS;
1543
e6132fc9 1544 if (!devpriv->ai_continuous)
4c2d13e0
HS
1545 devpriv->ai_sample_count--;
1546 if (devpriv->ai_sample_count <= 0) {
1547 devpriv->ai_cmd_running = 0;
1548
c5cf4606 1549 /* Stop RPS program */
d8515652 1550 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
4c2d13e0
HS
1551
1552 /* send end of acquisition */
1553 async->events |= COMEDI_CB_EOA;
1554
1555 /* disable master interrupt */
1556 finished = true;
1557 }
1558
1559 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1560 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1561
1562 /* tell comedi that data is there */
1563 comedi_event(dev, s);
1564
1565 return finished;
1566}
1567
020c44f3
HS
1568static irqreturn_t s626_irq_handler(int irq, void *d)
1569{
1570 struct comedi_device *dev = d;
7f2f7e05 1571 struct s626_private *devpriv = dev->private;
020c44f3 1572 unsigned long flags;
020c44f3 1573 uint32_t irqtype, irqstatus;
11e865c1 1574
a7401cdd 1575 if (!dev->attached)
020c44f3 1576 return IRQ_NONE;
8ee52611 1577 /* lock to avoid race with comedi_poll */
020c44f3 1578 spin_lock_irqsave(&dev->spinlock, flags);
11e865c1 1579
020c44f3 1580 /* save interrupt enable register state */
d8515652 1581 irqstatus = readl(devpriv->mmio + S626_P_IER);
11e865c1 1582
020c44f3 1583 /* read interrupt type */
d8515652 1584 irqtype = readl(devpriv->mmio + S626_P_ISR);
11e865c1 1585
020c44f3 1586 /* disable master interrupt */
d8515652 1587 writel(0, devpriv->mmio + S626_P_IER);
11e865c1 1588
020c44f3 1589 /* clear interrupt */
d8515652 1590 writel(irqtype, devpriv->mmio + S626_P_ISR);
11e865c1 1591
020c44f3 1592 switch (irqtype) {
d8515652 1593 case S626_IRQ_RPS1: /* end_of_scan occurs */
31de1948 1594 if (s626_handle_eos_interrupt(dev))
020c44f3 1595 irqstatus = 0;
020c44f3 1596 break;
d8515652 1597 case S626_IRQ_GPIO3: /* check dio and counter interrupt */
020c44f3 1598 /* s626_dio_clear_irq(dev); */
31de1948
IA
1599 s626_check_dio_interrupts(dev);
1600 s626_check_counter_interrupts(dev);
0b9675d5 1601 break;
020c44f3 1602 }
11e865c1 1603
020c44f3 1604 /* enable interrupt */
d8515652 1605 writel(irqstatus, devpriv->mmio + S626_P_IER);
b6c77757 1606
020c44f3
HS
1607 spin_unlock_irqrestore(&dev->spinlock, flags);
1608 return IRQ_HANDLED;
1609}
b6c77757 1610
020c44f3 1611/*
8ee52611 1612 * This function builds the RPS program for hardware driven acquisition.
020c44f3 1613 */
31de1948 1614static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
020c44f3 1615{
7f2f7e05 1616 struct s626_private *devpriv = dev->private;
9c9ab3c1
HS
1617 struct comedi_subdevice *s = dev->read_subdev;
1618 struct comedi_cmd *cmd = &s->async->cmd;
f1f7efce
IA
1619 uint32_t *rps;
1620 uint32_t jmp_adrs;
020c44f3
HS
1621 uint16_t i;
1622 uint16_t n;
f1f7efce 1623 uint32_t local_ppl;
11e865c1 1624
c5cf4606 1625 /* Stop RPS program in case it is currently running */
d8515652 1626 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1627
8ee52611 1628 /* Set starting logical address to write RPS commands. */
f1f7efce 1629 rps = (uint32_t *)devpriv->rps_buf.logical_base;
11e865c1 1630
25f8fd5e 1631 /* Initialize RPS instruction pointer */
07a36d66 1632 writel((uint32_t)devpriv->rps_buf.physical_base,
d8515652 1633 devpriv->mmio + S626_P_RPSADDR1);
11e865c1 1634
07a36d66 1635 /* Construct RPS program in rps_buf DMA buffer */
020c44f3 1636 if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
8ee52611 1637 /* Wait for Start trigger. */
d8515652
IA
1638 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1639 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1640 }
11e865c1 1641
8ee52611
IA
1642 /*
1643 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
020c44f3
HS
1644 * because the first RPS DEBI Write following a non-RPS DEBI write
1645 * seems to always fail. If we don't do this dummy write, the ADC
1646 * gain might not be set to the value required for the first slot in
1647 * the poll list; the ADC gain would instead remain unchanged from
1648 * the previously programmed value.
1649 */
020c44f3 1650 /* Write DEBI Write command and address to shadow RAM. */
d8515652
IA
1651 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1652 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1653 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1654 /* Write DEBI immediate data to shadow RAM: */
d8515652
IA
1655 *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
1656 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1657 /* Reset "shadow RAM uploaded" flag. */
d8515652
IA
1658 /* Invoke shadow RAM upload. */
1659 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1660 /* Wait for shadow upload to finish. */
1661 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1662
8ee52611
IA
1663 /*
1664 * Digitize all slots in the poll list. This is implemented as a
020c44f3 1665 * for loop to limit the slot count to 16 in case the application
d8515652 1666 * forgot to set the S626_EOPL flag in the final slot.
020c44f3 1667 */
07a36d66
IA
1668 for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1669 devpriv->adc_items++) {
8ee52611
IA
1670 /*
1671 * Convert application's poll list item to private board class
020c44f3
HS
1672 * format. Each app poll list item is an uint8_t with form
1673 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1674 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
b6c77757 1675 */
d8515652
IA
1676 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1677 S626_GSEL_BIPOLAR10V);
8ee52611
IA
1678
1679 /* Switch ADC analog gain. */
1680 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1681 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1682 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
8ee52611 1683 /* Write DEBI immediate data to shadow RAM. */
d8515652 1684 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
f1f7efce 1685 *rps++ = local_ppl;
8ee52611 1686 /* Reset "shadow RAM uploaded" flag. */
d8515652 1687 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1688 /* Invoke shadow RAM upload. */
d8515652 1689 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1690 /* Wait for shadow upload to finish. */
d8515652 1691 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
8ee52611 1692 /* Select ADC analog input channel. */
d8515652 1693 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
8ee52611 1694 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1695 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1696 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1697 /* Write DEBI immediate data to shadow RAM. */
f1f7efce 1698 *rps++ = local_ppl;
8ee52611 1699 /* Reset "shadow RAM uploaded" flag. */
d8515652 1700 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1701 /* Invoke shadow RAM upload. */
d8515652 1702 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1703 /* Wait for shadow upload to finish. */
d8515652 1704 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1705
8ee52611
IA
1706 /*
1707 * Delay at least 10 microseconds for analog input settling.
d8515652
IA
1708 * Instead of padding with NOPs, we use S626_RPS_JUMP
1709 * instructions here; this allows us to produce a longer delay
1710 * than is possible with NOPs because each S626_RPS_JUMP
1711 * flushes the RPS' instruction prefetch pipeline.
020c44f3 1712 */
f1f7efce 1713 jmp_adrs =
07a36d66 1714 (uint32_t)devpriv->rps_buf.physical_base +
f1f7efce 1715 (uint32_t)((unsigned long)rps -
07a36d66
IA
1716 (unsigned long)devpriv->
1717 rps_buf.logical_base);
d8515652 1718 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
f1f7efce 1719 jmp_adrs += 8; /* Repeat to implement time delay: */
d8515652
IA
1720 /* Jump to next RPS instruction. */
1721 *rps++ = S626_RPS_JUMP;
f1f7efce 1722 *rps++ = jmp_adrs;
020c44f3 1723 }
11e865c1 1724
020c44f3 1725 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
8ee52611 1726 /* Wait for Start trigger. */
d8515652
IA
1727 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1728 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1729 }
8ee52611
IA
1730 /* Start ADC by pulsing GPIO1. */
1731 /* Begin ADC Start pulse. */
d8515652
IA
1732 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1733 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1734 *rps++ = S626_RPS_NOP;
8ee52611
IA
1735 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1736 /* End ADC Start pulse. */
d8515652
IA
1737 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1738 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
8ee52611
IA
1739 /*
1740 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
020c44f3
HS
1741 * busy) and for data from previous conversion to shift into FB
1742 * BUFFER 1 register.
1743 */
d8515652
IA
1744 /* Wait for ADC done. */
1745 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
11e865c1 1746
8ee52611 1747 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652
IA
1748 *rps++ = S626_RPS_STREG |
1749 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
f1f7efce
IA
1750 *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1751 (devpriv->adc_items << 2);
11e865c1 1752
8ee52611
IA
1753 /*
1754 * If this slot's EndOfPollList flag is set, all channels have
1755 * now been processed.
1756 */
d8515652 1757 if (*ppl++ & S626_EOPL) {
07a36d66 1758 devpriv->adc_items++; /* Adjust poll list item count. */
8ee52611 1759 break; /* Exit poll list processing loop. */
020c44f3
HS
1760 }
1761 }
11e865c1 1762
8ee52611
IA
1763 /*
1764 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
020c44f3
HS
1765 * ADC to stabilize for 2 microseconds before starting the final
1766 * (dummy) conversion. This delay is necessary to allow sufficient
1767 * time between last conversion finished and the start of the dummy
1768 * conversion. Without this delay, the last conversion's data value
1769 * is sometimes set to the previous conversion's data value.
1770 */
d8515652
IA
1771 for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1772 *rps++ = S626_RPS_NOP;
11e865c1 1773
8ee52611
IA
1774 /*
1775 * Start a dummy conversion to cause the data from the last
020c44f3
HS
1776 * conversion of interest to be shifted in.
1777 */
d8515652
IA
1778 /* Begin ADC Start pulse. */
1779 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1780 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1781 *rps++ = S626_RPS_NOP;
020c44f3 1782 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
d8515652
IA
1783 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1784 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
11e865c1 1785
8ee52611
IA
1786 /*
1787 * Wait for the data from the last conversion of interest to arrive
020c44f3
HS
1788 * in FB BUFFER 1 register.
1789 */
d8515652 1790 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
11e865c1 1791
8ee52611 1792 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652 1793 *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
f1f7efce
IA
1794 *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1795 (devpriv->adc_items << 2);
11e865c1 1796
8ee52611
IA
1797 /* Indicate ADC scan loop is finished. */
1798 /* Signal ReadADC() that scan is done. */
d8515652 1799 /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
11e865c1 1800
020c44f3 1801 /* invoke interrupt */
8ee52611 1802 if (devpriv->ai_cmd_running == 1)
d8515652 1803 *rps++ = S626_RPS_IRQ;
11e865c1 1804
8ee52611 1805 /* Restart RPS program at its beginning. */
d8515652 1806 *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
f1f7efce 1807 *rps++ = (uint32_t)devpriv->rps_buf.physical_base;
8ee52611
IA
1808
1809 /* End of RPS program build */
020c44f3 1810}
11e865c1 1811
e4632a71
HS
1812#ifdef unused_code
1813static int s626_ai_rinsn(struct comedi_device *dev,
1814 struct comedi_subdevice *s,
1815 struct comedi_insn *insn,
1816 unsigned int *data)
1817{
1818 struct s626_private *devpriv = dev->private;
8ee52611
IA
1819 uint8_t i;
1820 int32_t *readaddr;
11e865c1 1821
ddd9813e 1822 /* Trigger ADC scan loop start */
d8515652 1823 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
11e865c1 1824
e4632a71 1825 /* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
d8515652 1826 while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
e4632a71 1827 ;
11e865c1 1828
e4632a71
HS
1829 /*
1830 * Init ptr to DMA buffer that holds new ADC data. We skip the
1831 * first uint16_t in the buffer because it contains junk data from
1832 * the final ADC of the previous poll list scan.
1833 */
07a36d66 1834 readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
11e865c1 1835
e4632a71
HS
1836 /*
1837 * Convert ADC data to 16-bit integer values and
1838 * copy to application buffer.
1839 */
07a36d66 1840 for (i = 0; i < devpriv->adc_items; i++) {
e4632a71
HS
1841 *data = s626_ai_reg_to_uint(*readaddr++);
1842 data++;
1843 }
11e865c1 1844
e4632a71
HS
1845 return i;
1846}
1847#endif
11e865c1 1848
020c44f3
HS
1849static int s626_ai_insn_read(struct comedi_device *dev,
1850 struct comedi_subdevice *s,
1851 struct comedi_insn *insn, unsigned int *data)
1852{
7f2f7e05 1853 struct s626_private *devpriv = dev->private;
020c44f3
HS
1854 uint16_t chan = CR_CHAN(insn->chanspec);
1855 uint16_t range = CR_RANGE(insn->chanspec);
f1f7efce
IA
1856 uint16_t adc_spec = 0;
1857 uint32_t gpio_image;
5fd4b711 1858 uint32_t tmp;
020c44f3 1859 int n;
11e865c1 1860
8ee52611
IA
1861 /*
1862 * Convert application's ADC specification into form
020c44f3
HS
1863 * appropriate for register programming.
1864 */
1865 if (range == 0)
d8515652 1866 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
020c44f3 1867 else
d8515652 1868 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
11e865c1 1869
8ee52611 1870 /* Switch ADC analog gain. */
d8515652 1871 s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
11e865c1 1872
8ee52611 1873 /* Select ADC analog input channel. */
d8515652 1874 s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
11e865c1 1875
020c44f3 1876 for (n = 0; n < insn->n; n++) {
8ee52611 1877 /* Delay 10 microseconds for analog input settling. */
020c44f3 1878 udelay(10);
11e865c1 1879
be008602 1880 /* Start ADC by pulsing GPIO1 low */
d8515652 1881 gpio_image = readl(devpriv->mmio + S626_P_GPIO);
25f8fd5e 1882 /* Assert ADC Start command */
d8515652
IA
1883 writel(gpio_image & ~S626_GPIO1_HI,
1884 devpriv->mmio + S626_P_GPIO);
25f8fd5e 1885 /* and stretch it out */
d8515652
IA
1886 writel(gpio_image & ~S626_GPIO1_HI,
1887 devpriv->mmio + S626_P_GPIO);
1888 writel(gpio_image & ~S626_GPIO1_HI,
1889 devpriv->mmio + S626_P_GPIO);
25f8fd5e 1890 /* Negate ADC Start command */
d8515652 1891 writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
11e865c1 1892
8ee52611
IA
1893 /*
1894 * Wait for ADC to complete (GPIO2 is asserted high when
1895 * ADC not busy) and for data from previous conversion to
1896 * shift into FB BUFFER 1 register.
1897 */
11e865c1 1898
be008602 1899 /* Wait for ADC done */
d8515652 1900 while (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_GPIO2))
020c44f3 1901 ;
11e865c1 1902
be008602
HS
1903 /* Fetch ADC data */
1904 if (n != 0) {
d8515652 1905 tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
be008602
HS
1906 data[n - 1] = s626_ai_reg_to_uint(tmp);
1907 }
11e865c1 1908
8ee52611
IA
1909 /*
1910 * Allow the ADC to stabilize for 4 microseconds before
020c44f3
HS
1911 * starting the next (final) conversion. This delay is
1912 * necessary to allow sufficient time between last
1913 * conversion finished and the start of the next
1914 * conversion. Without this delay, the last conversion's
1915 * data value is sometimes set to the previous
1916 * conversion's data value.
1917 */
1918 udelay(4);
1919 }
11e865c1 1920
8ee52611
IA
1921 /*
1922 * Start a dummy conversion to cause the data from the
1923 * previous conversion to be shifted in.
1924 */
d8515652 1925 gpio_image = readl(devpriv->mmio + S626_P_GPIO);
020c44f3 1926 /* Assert ADC Start command */
d8515652 1927 writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
25f8fd5e 1928 /* and stretch it out */
d8515652
IA
1929 writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
1930 writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
25f8fd5e 1931 /* Negate ADC Start command */
d8515652 1932 writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
11e865c1 1933
8ee52611 1934 /* Wait for the data to arrive in FB BUFFER 1 register. */
11e865c1 1935
be008602 1936 /* Wait for ADC done */
d8515652 1937 while (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_GPIO2))
020c44f3 1938 ;
11e865c1 1939
8ee52611 1940 /* Fetch ADC data from audio interface's input shift register. */
11e865c1 1941
be008602
HS
1942 /* Fetch ADC data */
1943 if (n != 0) {
d8515652 1944 tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
be008602
HS
1945 data[n - 1] = s626_ai_reg_to_uint(tmp);
1946 }
11e865c1 1947
020c44f3
HS
1948 return n;
1949}
11e865c1 1950
020c44f3
HS
1951static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1952{
020c44f3 1953 int n;
11e865c1 1954
020c44f3 1955 for (n = 0; n < cmd->chanlist_len; n++) {
8ee52611 1956 if (CR_RANGE(cmd->chanlist[n]) == 0)
d8515652 1957 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
020c44f3 1958 else
d8515652 1959 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
020c44f3
HS
1960 }
1961 if (n != 0)
d8515652 1962 ppl[n - 1] |= S626_EOPL;
11e865c1 1963
020c44f3
HS
1964 return n;
1965}
11e865c1 1966
020c44f3
HS
1967static int s626_ai_inttrig(struct comedi_device *dev,
1968 struct comedi_subdevice *s, unsigned int trignum)
1969{
1970 if (trignum != 0)
1971 return -EINVAL;
11e865c1 1972
ddd9813e 1973 /* Start executing the RPS program */
d8515652 1974 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1975
020c44f3 1976 s->async->inttrig = NULL;
11e865c1 1977
020c44f3
HS
1978 return 1;
1979}
11e865c1 1980
8ee52611
IA
1981/*
1982 * This function doesn't require a particular form, this is just what
6baffbc2
HS
1983 * happens to be used in some of the drivers. It should convert ns
1984 * nanoseconds to a counter value suitable for programming the device.
1985 * Also, it should adjust ns so that it cooresponds to the actual time
8ee52611
IA
1986 * that the device will use.
1987 */
6baffbc2
HS
1988static int s626_ns_to_timer(int *nanosec, int round_mode)
1989{
1990 int divider, base;
1991
1992 base = 500; /* 2MHz internal clock */
1993
1994 switch (round_mode) {
1995 case TRIG_ROUND_NEAREST:
1996 default:
1997 divider = (*nanosec + base / 2) / base;
1998 break;
1999 case TRIG_ROUND_DOWN:
2000 divider = (*nanosec) / base;
2001 break;
2002 case TRIG_ROUND_UP:
2003 divider = (*nanosec + base - 1) / base;
2004 break;
2005 }
2006
2007 *nanosec = base * divider;
2008 return divider - 1;
2009}
2010
3a305a66
IA
2011static void s626_timer_load(struct comedi_device *dev,
2012 const struct s626_enc_info *k, int tick)
e3eb08d0 2013{
f1f7efce 2014 uint16_t setup =
d8515652 2015 /* Preload upon index. */
0830ada5 2016 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2017 /* Disable hardware index. */
0830ada5 2018 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2019 /* Operating mode is Timer. */
0830ada5 2020 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
d8515652 2021 /* Count direction is Down. */
0830ada5 2022 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
d8515652 2023 /* Clock multiplier is 1x. */
0830ada5
IA
2024 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2025 /* Enabled by index */
2026 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
d8515652
IA
2027 uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
2028 /* uint16_t enab = S626_CLKENAB_ALWAYS; */
e3eb08d0 2029
c3e3a56d 2030 k->set_mode(dev, k, setup, false);
e3eb08d0 2031
8ee52611 2032 /* Set the preload register */
31de1948 2033 s626_preload(dev, k, tick);
e3eb08d0 2034
8ee52611
IA
2035 /*
2036 * Software index pulse forces the preload register to load
2037 * into the counter
2038 */
b075ac8e
IA
2039 k->set_load_trig(dev, k, 0);
2040 k->pulse_index(dev, k);
e3eb08d0
HS
2041
2042 /* set reload on counter overflow */
b075ac8e 2043 k->set_load_trig(dev, k, 1);
e3eb08d0
HS
2044
2045 /* set interrupt on overflow */
d8515652 2046 k->set_int_src(dev, k, S626_INTSRC_OVER);
e3eb08d0 2047
31de1948 2048 s626_set_latch_source(dev, k, value_latchsrc);
b075ac8e 2049 /* k->set_enable(dev, k, (uint16_t)(enab != 0)); */
e3eb08d0
HS
2050}
2051
8ee52611 2052/* TO COMPLETE */
020c44f3
HS
2053static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
2054{
7f2f7e05 2055 struct s626_private *devpriv = dev->private;
020c44f3
HS
2056 uint8_t ppl[16];
2057 struct comedi_cmd *cmd = &s->async->cmd;
3a305a66 2058 const struct s626_enc_info *k;
020c44f3 2059 int tick;
11e865c1 2060
020c44f3 2061 if (devpriv->ai_cmd_running) {
730b8e15
IA
2062 dev_err(dev->class_dev,
2063 "s626_ai_cmd: Another ai_cmd is running\n");
020c44f3
HS
2064 return -EBUSY;
2065 }
2066 /* disable interrupt */
d8515652 2067 writel(0, devpriv->mmio + S626_P_IER);
11e865c1 2068
020c44f3 2069 /* clear interrupt request */
d8515652 2070 writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, devpriv->mmio + S626_P_ISR);
11e865c1 2071
020c44f3
HS
2072 /* clear any pending interrupt */
2073 s626_dio_clear_irq(dev);
8ee52611 2074 /* s626_enc_clear_irq(dev); */
11e865c1 2075
020c44f3
HS
2076 /* reset ai_cmd_running flag */
2077 devpriv->ai_cmd_running = 0;
11e865c1 2078
8ee52611 2079 /* test if cmd is valid */
bdf5aa39 2080 if (cmd == NULL)
020c44f3 2081 return -EINVAL;
11e865c1 2082
020c44f3
HS
2083 s626_ai_load_polllist(ppl, cmd);
2084 devpriv->ai_cmd_running = 1;
2085 devpriv->ai_convert_count = 0;
11e865c1 2086
020c44f3
HS
2087 switch (cmd->scan_begin_src) {
2088 case TRIG_FOLLOW:
2089 break;
2090 case TRIG_TIMER:
8ee52611
IA
2091 /*
2092 * set a counter to generate adc trigger at scan_begin_arg
2093 * interval
2094 */
3a305a66 2095 k = &s626_enc_chan_info[5];
020c44f3
HS
2096 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
2097 cmd->flags & TRIG_ROUND_MASK);
11e865c1 2098
020c44f3
HS
2099 /* load timer value and enable interrupt */
2100 s626_timer_load(dev, k, tick);
d8515652 2101 k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
020c44f3
HS
2102 break;
2103 case TRIG_EXT:
8ee52611 2104 /* set the digital line and interrupt for scan trigger */
020c44f3
HS
2105 if (cmd->start_src != TRIG_EXT)
2106 s626_dio_set_irq(dev, cmd->scan_begin_arg);
020c44f3
HS
2107 break;
2108 }
11e865c1 2109
020c44f3
HS
2110 switch (cmd->convert_src) {
2111 case TRIG_NOW:
2112 break;
2113 case TRIG_TIMER:
8ee52611
IA
2114 /*
2115 * set a counter to generate adc trigger at convert_arg
2116 * interval
2117 */
3a305a66 2118 k = &s626_enc_chan_info[4];
020c44f3
HS
2119 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
2120 cmd->flags & TRIG_ROUND_MASK);
11e865c1 2121
020c44f3
HS
2122 /* load timer value and enable interrupt */
2123 s626_timer_load(dev, k, tick);
d8515652 2124 k->set_enable(dev, k, S626_CLKENAB_INDEX);
020c44f3
HS
2125 break;
2126 case TRIG_EXT:
8ee52611
IA
2127 /* set the digital line and interrupt for convert trigger */
2128 if (cmd->scan_begin_src != TRIG_EXT &&
2129 cmd->start_src == TRIG_EXT)
020c44f3 2130 s626_dio_set_irq(dev, cmd->convert_arg);
020c44f3
HS
2131 break;
2132 }
11e865c1 2133
020c44f3
HS
2134 switch (cmd->stop_src) {
2135 case TRIG_COUNT:
8ee52611 2136 /* data arrives as one packet */
020c44f3 2137 devpriv->ai_sample_count = cmd->stop_arg;
e6132fc9 2138 devpriv->ai_continuous = 0;
020c44f3
HS
2139 break;
2140 case TRIG_NONE:
8ee52611 2141 /* continuous acquisition */
e6132fc9 2142 devpriv->ai_continuous = 1;
e4317ce8 2143 devpriv->ai_sample_count = 1;
020c44f3 2144 break;
11e865c1 2145 }
11e865c1 2146
31de1948 2147 s626_reset_adc(dev, ppl);
11e865c1 2148
020c44f3
HS
2149 switch (cmd->start_src) {
2150 case TRIG_NOW:
ddd9813e 2151 /* Trigger ADC scan loop start */
d8515652 2152 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
11e865c1 2153
ddd9813e 2154 /* Start executing the RPS program */
d8515652 2155 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
020c44f3
HS
2156 s->async->inttrig = NULL;
2157 break;
2158 case TRIG_EXT:
2159 /* configure DIO channel for acquisition trigger */
2160 s626_dio_set_irq(dev, cmd->start_arg);
020c44f3
HS
2161 s->async->inttrig = NULL;
2162 break;
2163 case TRIG_INT:
2164 s->async->inttrig = s626_ai_inttrig;
2165 break;
11e865c1 2166 }
b6c77757 2167
020c44f3 2168 /* enable interrupt */
d8515652 2169 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, devpriv->mmio + S626_P_IER);
b6c77757 2170
020c44f3
HS
2171 return 0;
2172}
b6c77757 2173
020c44f3
HS
2174static int s626_ai_cmdtest(struct comedi_device *dev,
2175 struct comedi_subdevice *s, struct comedi_cmd *cmd)
2176{
2177 int err = 0;
2178 int tmp;
b6c77757 2179
27020ffe 2180 /* Step 1 : check if triggers are trivially valid */
b6c77757 2181
27020ffe 2182 err |= cfc_check_trigger_src(&cmd->start_src,
8ee52611 2183 TRIG_NOW | TRIG_INT | TRIG_EXT);
27020ffe 2184 err |= cfc_check_trigger_src(&cmd->scan_begin_src,
8ee52611 2185 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
27020ffe 2186 err |= cfc_check_trigger_src(&cmd->convert_src,
8ee52611 2187 TRIG_TIMER | TRIG_EXT | TRIG_NOW);
27020ffe
HS
2188 err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
2189 err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
11e865c1 2190
020c44f3
HS
2191 if (err)
2192 return 1;
11e865c1 2193
27020ffe 2194 /* Step 2a : make sure trigger sources are unique */
11e865c1 2195
27020ffe
HS
2196 err |= cfc_check_trigger_is_unique(cmd->start_src);
2197 err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
2198 err |= cfc_check_trigger_is_unique(cmd->convert_src);
2199 err |= cfc_check_trigger_is_unique(cmd->stop_src);
2200
2201 /* Step 2b : and mutually compatible */
020c44f3
HS
2202
2203 if (err)
2204 return 2;
2205
2206 /* step 3: make sure arguments are trivially compatible */
2207
53a254b9
HS
2208 if (cmd->start_src != TRIG_EXT)
2209 err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
2210 if (cmd->start_src == TRIG_EXT)
2211 err |= cfc_check_trigger_arg_max(&cmd->start_arg, 39);
53a254b9
HS
2212 if (cmd->scan_begin_src == TRIG_EXT)
2213 err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
53a254b9
HS
2214 if (cmd->convert_src == TRIG_EXT)
2215 err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 39);
11e865c1 2216
676921c9
IA
2217#define S626_MAX_SPEED 200000 /* in nanoseconds */
2218#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
11e865c1 2219
020c44f3 2220 if (cmd->scan_begin_src == TRIG_TIMER) {
53a254b9 2221 err |= cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
676921c9 2222 S626_MAX_SPEED);
53a254b9 2223 err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
676921c9 2224 S626_MIN_SPEED);
020c44f3
HS
2225 } else {
2226 /* external trigger */
2227 /* should be level/edge, hi/lo specification here */
2228 /* should specify multiple external triggers */
8ee52611 2229 /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
020c44f3
HS
2230 }
2231 if (cmd->convert_src == TRIG_TIMER) {
676921c9
IA
2232 err |= cfc_check_trigger_arg_min(&cmd->convert_arg,
2233 S626_MAX_SPEED);
2234 err |= cfc_check_trigger_arg_max(&cmd->convert_arg,
2235 S626_MIN_SPEED);
020c44f3
HS
2236 } else {
2237 /* external trigger */
2238 /* see above */
8ee52611 2239 /* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
020c44f3 2240 }
11e865c1 2241
53a254b9
HS
2242 err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len);
2243
2244 if (cmd->stop_src == TRIG_COUNT)
2245 err |= cfc_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff);
2246 else /* TRIG_NONE */
2247 err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
11e865c1 2248
020c44f3
HS
2249 if (err)
2250 return 3;
2251
2252 /* step 4: fix up any arguments */
2253
2254 if (cmd->scan_begin_src == TRIG_TIMER) {
2255 tmp = cmd->scan_begin_arg;
2256 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
2257 cmd->flags & TRIG_ROUND_MASK);
2258 if (tmp != cmd->scan_begin_arg)
2259 err++;
2260 }
2261 if (cmd->convert_src == TRIG_TIMER) {
2262 tmp = cmd->convert_arg;
2263 s626_ns_to_timer((int *)&cmd->convert_arg,
2264 cmd->flags & TRIG_ROUND_MASK);
2265 if (tmp != cmd->convert_arg)
2266 err++;
2267 if (cmd->scan_begin_src == TRIG_TIMER &&
8ee52611
IA
2268 cmd->scan_begin_arg < cmd->convert_arg *
2269 cmd->scan_end_arg) {
2270 cmd->scan_begin_arg = cmd->convert_arg *
2271 cmd->scan_end_arg;
020c44f3
HS
2272 err++;
2273 }
11e865c1 2274 }
11e865c1 2275
020c44f3
HS
2276 if (err)
2277 return 4;
2278
2279 return 0;
11e865c1
GP
2280}
2281
020c44f3 2282static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
11e865c1 2283{
7f2f7e05
HS
2284 struct s626_private *devpriv = dev->private;
2285
c5cf4606 2286 /* Stop RPS program in case it is currently running */
d8515652 2287 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 2288
020c44f3 2289 /* disable master interrupt */
d8515652 2290 writel(0, devpriv->mmio + S626_P_IER);
11e865c1 2291
020c44f3 2292 devpriv->ai_cmd_running = 0;
11e865c1 2293
020c44f3
HS
2294 return 0;
2295}
11e865c1 2296
020c44f3
HS
2297static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2298 struct comedi_insn *insn, unsigned int *data)
11e865c1 2299{
7f2f7e05 2300 struct s626_private *devpriv = dev->private;
020c44f3 2301 int i;
11e865c1 2302 uint16_t chan = CR_CHAN(insn->chanspec);
020c44f3 2303 int16_t dacdata;
11e865c1 2304
020c44f3
HS
2305 for (i = 0; i < insn->n; i++) {
2306 dacdata = (int16_t) data[i];
2307 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2308 dacdata -= (0x1fff);
11e865c1 2309
31de1948 2310 s626_set_dac(dev, chan, dacdata);
020c44f3 2311 }
11e865c1 2312
020c44f3
HS
2313 return i;
2314}
11e865c1 2315
020c44f3
HS
2316static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2317 struct comedi_insn *insn, unsigned int *data)
2318{
7f2f7e05 2319 struct s626_private *devpriv = dev->private;
020c44f3 2320 int i;
11e865c1 2321
020c44f3
HS
2322 for (i = 0; i < insn->n; i++)
2323 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
11e865c1 2324
020c44f3
HS
2325 return i;
2326}
11e865c1 2327
8ee52611
IA
2328/* *************** DIGITAL I/O FUNCTIONS *************** */
2329
2330/*
020c44f3
HS
2331 * All DIO functions address a group of DIO channels by means of
2332 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
2333 * ports A, B and C, respectively.
2334 */
11e865c1 2335
020c44f3
HS
2336static void s626_dio_init(struct comedi_device *dev)
2337{
2338 uint16_t group;
11e865c1 2339
8ee52611 2340 /* Prepare to treat writes to WRCapSel as capture disables. */
d8515652 2341 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
11e865c1 2342
8ee52611 2343 /* For each group of sixteen channels ... */
020c44f3 2344 for (group = 0; group < S626_DIO_BANKS; group++) {
100b4edc 2345 /* Disable all interrupts */
d8515652 2346 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
100b4edc 2347 /* Disable all event captures */
d8515652 2348 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
100b4edc 2349 /* Init all DIOs to default edge polarity */
d8515652 2350 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
100b4edc 2351 /* Program all outputs to inactive state */
d8515652 2352 s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
11e865c1 2353 }
020c44f3 2354}
11e865c1 2355
020c44f3
HS
2356static int s626_dio_insn_bits(struct comedi_device *dev,
2357 struct comedi_subdevice *s,
1515e522
HS
2358 struct comedi_insn *insn,
2359 unsigned int *data)
020c44f3 2360{
100b4edc 2361 unsigned long group = (unsigned long)s->private;
11e865c1 2362
6ea79c1d 2363 if (comedi_dio_update_state(s, data))
d8515652 2364 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
6ea79c1d 2365
d8515652 2366 data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
11e865c1 2367
020c44f3 2368 return insn->n;
11e865c1
GP
2369}
2370
020c44f3
HS
2371static int s626_dio_insn_config(struct comedi_device *dev,
2372 struct comedi_subdevice *s,
e920fad2
HS
2373 struct comedi_insn *insn,
2374 unsigned int *data)
11e865c1 2375{
100b4edc 2376 unsigned long group = (unsigned long)s->private;
ddf62f2c
HS
2377 int ret;
2378
2379 ret = comedi_dio_insn_config(dev, s, insn, data, 0);
2380 if (ret)
2381 return ret;
11e865c1 2382
d8515652 2383 s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
11e865c1 2384
e920fad2 2385 return insn->n;
11e865c1
GP
2386}
2387
8ee52611
IA
2388/*
2389 * Now this function initializes the value of the counter (data[0])
2390 * and set the subdevice. To complete with trigger and interrupt
2391 * configuration.
2392 *
2393 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
affdc230 2394 * what is being configured, but this function appears to be using data[0]
8ee52611
IA
2395 * as a variable.
2396 */
020c44f3
HS
2397static int s626_enc_insn_config(struct comedi_device *dev,
2398 struct comedi_subdevice *s,
2399 struct comedi_insn *insn, unsigned int *data)
2400{
f1f7efce 2401 uint16_t setup =
d8515652 2402 /* Preload upon index. */
0830ada5 2403 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2404 /* Disable hardware index. */
0830ada5 2405 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2406 /* Operating mode is Counter. */
0830ada5 2407 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2408 /* Active high clock. */
0830ada5 2409 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2410 /* Clock multiplier is 1x. */
0830ada5
IA
2411 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2412 /* Enabled by index */
2413 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
c3e3a56d 2414 /* uint16_t disable_int_src = true; */
8ee52611 2415 /* uint32_t Preloadvalue; //Counter initial value */
d8515652
IA
2416 uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
2417 uint16_t enab = S626_CLKENAB_ALWAYS;
3a305a66
IA
2418 const struct s626_enc_info *k =
2419 &s626_enc_chan_info[CR_CHAN(insn->chanspec)];
11e865c1 2420
8ee52611 2421 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
11e865c1 2422
c3e3a56d 2423 k->set_mode(dev, k, setup, true);
31de1948 2424 s626_preload(dev, k, data[0]);
b075ac8e 2425 k->pulse_index(dev, k);
31de1948 2426 s626_set_latch_source(dev, k, value_latchsrc);
b075ac8e 2427 k->set_enable(dev, k, (enab != 0));
11e865c1 2428
020c44f3
HS
2429 return insn->n;
2430}
11e865c1 2431
020c44f3
HS
2432static int s626_enc_insn_read(struct comedi_device *dev,
2433 struct comedi_subdevice *s,
2434 struct comedi_insn *insn, unsigned int *data)
2435{
020c44f3 2436 int n;
3a305a66
IA
2437 const struct s626_enc_info *k =
2438 &s626_enc_chan_info[CR_CHAN(insn->chanspec)];
11e865c1 2439
020c44f3 2440 for (n = 0; n < insn->n; n++)
31de1948 2441 data[n] = s626_read_latch(dev, k);
11e865c1 2442
020c44f3
HS
2443 return n;
2444}
11e865c1 2445
020c44f3
HS
2446static int s626_enc_insn_write(struct comedi_device *dev,
2447 struct comedi_subdevice *s,
2448 struct comedi_insn *insn, unsigned int *data)
2449{
3a305a66
IA
2450 const struct s626_enc_info *k =
2451 &s626_enc_chan_info[CR_CHAN(insn->chanspec)];
11e865c1 2452
8ee52611 2453 /* Set the preload register */
31de1948 2454 s626_preload(dev, k, data[0]);
11e865c1 2455
8ee52611
IA
2456 /*
2457 * Software index pulse forces the preload register to load
2458 * into the counter
2459 */
b075ac8e
IA
2460 k->set_load_trig(dev, k, 0);
2461 k->pulse_index(dev, k);
2462 k->set_load_trig(dev, k, 2);
11e865c1 2463
020c44f3 2464 return 1;
11e865c1
GP
2465}
2466
31de1948 2467static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
11e865c1 2468{
d8515652
IA
2469 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2470 s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2471 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
020c44f3 2472}
11e865c1 2473
31de1948
IA
2474static void s626_close_dma_b(struct comedi_device *dev,
2475 struct s626_buffer_dma *pdma, size_t bsize)
020c44f3 2476{
f574af6d 2477 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
020c44f3
HS
2478 void *vbptr;
2479 dma_addr_t vpptr;
11e865c1 2480
020c44f3
HS
2481 if (pdma == NULL)
2482 return;
11e865c1 2483
8ee52611 2484 /* find the matching allocation from the board struct */
3a387506
IA
2485 vbptr = pdma->logical_base;
2486 vpptr = pdma->physical_base;
020c44f3 2487 if (vbptr) {
f574af6d 2488 pci_free_consistent(pcidev, bsize, vbptr, vpptr);
3a387506
IA
2489 pdma->logical_base = NULL;
2490 pdma->physical_base = 0;
020c44f3 2491 }
11e865c1
GP
2492}
2493
31de1948 2494static void s626_counters_init(struct comedi_device *dev)
11e865c1 2495{
020c44f3 2496 int chan;
3a305a66 2497 const struct s626_enc_info *k;
f1f7efce 2498 uint16_t setup =
d8515652 2499 /* Preload upon index. */
0830ada5 2500 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2501 /* Disable hardware index. */
0830ada5 2502 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2503 /* Operating mode is counter. */
0830ada5 2504 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2505 /* Active high clock. */
0830ada5 2506 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2507 /* Clock multiplier is 1x. */
0830ada5 2508 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
d8515652 2509 /* Enabled by index */
0830ada5 2510 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
8ee52611
IA
2511
2512 /*
2513 * Disable all counter interrupts and clear any captured counter events.
2514 */
020c44f3 2515 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3a305a66 2516 k = &s626_enc_chan_info[chan];
c3e3a56d 2517 k->set_mode(dev, k, setup, true);
b075ac8e
IA
2518 k->set_int_src(dev, k, 0);
2519 k->reset_cap_flags(dev, k);
d8515652 2520 k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
020c44f3 2521 }
020c44f3 2522}
11e865c1 2523
b7047895
HS
2524static int s626_allocate_dma_buffers(struct comedi_device *dev)
2525{
2526 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2527 struct s626_private *devpriv = dev->private;
b7047895
HS
2528 void *addr;
2529 dma_addr_t appdma;
2530
d8515652 2531 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2532 if (!addr)
2533 return -ENOMEM;
07a36d66
IA
2534 devpriv->ana_buf.logical_base = addr;
2535 devpriv->ana_buf.physical_base = appdma;
b7047895 2536
d8515652 2537 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2538 if (!addr)
2539 return -ENOMEM;
07a36d66
IA
2540 devpriv->rps_buf.logical_base = addr;
2541 devpriv->rps_buf.physical_base = appdma;
b7047895 2542
b7047895
HS
2543 return 0;
2544}
2545
80ec9510 2546static void s626_initialize(struct comedi_device *dev)
020c44f3 2547{
7f2f7e05 2548 struct s626_private *devpriv = dev->private;
f1f7efce 2549 dma_addr_t phys_buf;
68ad0ae0 2550 uint16_t chan;
020c44f3 2551 int i;
11e865c1 2552
54a2a02e 2553 /* Enable DEBI and audio pins, enable I2C interface */
d8515652
IA
2554 s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2555 S626_P_MC1);
54a2a02e
HS
2556
2557 /*
8ee52611 2558 * Configure DEBI operating mode
54a2a02e 2559 *
8ee52611
IA
2560 * Local bus is 16 bits wide
2561 * Declare DEBI transfer timeout interval
2562 * Set up byte lane steering
2563 * Intel-compatible local bus (DEBI never times out)
54a2a02e 2564 */
d8515652
IA
2565 writel(S626_DEBI_CFG_SLAVE16 |
2566 (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2567 S626_DEBI_CFG_INTEL, devpriv->mmio + S626_P_DEBICFG);
54a2a02e
HS
2568
2569 /* Disable MMU paging */
d8515652 2570 writel(S626_DEBI_PAGE_DISABLE, devpriv->mmio + S626_P_DEBIPAGE);
54a2a02e
HS
2571
2572 /* Init GPIO so that ADC Start* is negated */
d8515652 2573 writel(S626_GPIO_BASE | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
68ad0ae0 2574
17553c88 2575 /* I2C device address for onboard eeprom (revb) */
07a36d66 2576 devpriv->i2c_adrs = 0xA0;
11e865c1 2577
54a2a02e
HS
2578 /*
2579 * Issue an I2C ABORT command to halt any I2C
2580 * operation in progress and reset BUSY flag.
2581 */
d8515652
IA
2582 writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2583 devpriv->mmio + S626_P_I2CSTAT);
2584 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2585 while (!(readl(devpriv->mmio + S626_P_MC2) & S626_MC2_UPLD_IIC))
68ad0ae0 2586 ;
68ad0ae0 2587
54a2a02e
HS
2588 /*
2589 * Per SAA7146 data sheet, write to STATUS
2590 * reg twice to reset all I2C error flags.
2591 */
68ad0ae0 2592 for (i = 0; i < 2; i++) {
d8515652
IA
2593 writel(S626_I2C_CLKSEL, devpriv->mmio + S626_P_I2CSTAT);
2594 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2595 while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
020c44f3 2596 ;
68ad0ae0 2597 }
11e865c1 2598
54a2a02e
HS
2599 /*
2600 * Init audio interface functional attributes: set DAC/ADC
68ad0ae0
HS
2601 * serial clock rates, invert DAC serial clock so that
2602 * DAC data setup times are satisfied, enable DAC serial
2603 * clock out.
2604 */
d8515652 2605 writel(S626_ACON2_INIT, devpriv->mmio + S626_P_ACON2);
11e865c1 2606
54a2a02e
HS
2607 /*
2608 * Set up TSL1 slot list, which is used to control the
d8515652
IA
2609 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2610 * S626_SIB_A1 = store data uint8_t at next available location
54a2a02e
HS
2611 * in FB BUFFER1 register.
2612 */
d8515652
IA
2613 writel(S626_RSD1 | S626_SIB_A1, devpriv->mmio + S626_P_TSL1);
2614 writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2615 devpriv->mmio + S626_P_TSL1 + 4);
11e865c1 2616
54a2a02e 2617 /* Enable TSL1 slot list so that it executes all the time */
d8515652 2618 writel(S626_ACON1_ADCSTART, devpriv->mmio + S626_P_ACON1);
11e865c1 2619
54a2a02e
HS
2620 /*
2621 * Initialize RPS registers used for ADC
2622 */
11e865c1 2623
54a2a02e 2624 /* Physical start of RPS program */
07a36d66 2625 writel((uint32_t)devpriv->rps_buf.physical_base,
d8515652 2626 devpriv->mmio + S626_P_RPSADDR1);
54a2a02e 2627 /* RPS program performs no explicit mem writes */
d8515652 2628 writel(0, devpriv->mmio + S626_P_RPSPAGE1);
54a2a02e 2629 /* Disable RPS timeouts */
d8515652 2630 writel(0, devpriv->mmio + S626_P_RPS1_TOUT);
11e865c1 2631
59747847
HS
2632#if 0
2633 /*
2634 * SAA7146 BUG WORKAROUND
2635 *
2636 * Initialize SAA7146 ADC interface to a known state by
2637 * invoking ADCs until FB BUFFER 1 register shows that it
2638 * is correctly receiving ADC data. This is necessary
2639 * because the SAA7146 ADC interface does not start up in
2640 * a defined state after a PCI reset.
68ad0ae0 2641 */
59747847 2642 {
9c9ab3c1 2643 struct comedi_subdevice *s = dev->read_subdev;
f1f7efce
IA
2644 uint8_t poll_list;
2645 uint16_t adc_data;
2646 uint16_t start_val;
8ee52611
IA
2647 uint16_t index;
2648 unsigned int data[16];
59747847 2649
8ee52611 2650 /* Create a simple polling list for analog input channel 0 */
d8515652 2651 poll_list = S626_EOPL;
31de1948 2652 s626_reset_adc(dev, &poll_list);
59747847 2653
8ee52611 2654 /* Get initial ADC value */
9c9ab3c1 2655 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce 2656 start_val = data[0];
59747847 2657
8ee52611
IA
2658 /*
2659 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2660 * EXECUTION.
2661 *
2662 * Invoke ADCs until the new ADC value differs from the initial
2663 * value or a timeout occurs. The timeout protects against the
2664 * possibility that the driver is restarting and the ADC data is
2665 * a fixed value resulting from the applied ADC analog input
2666 * being unusually quiet or at the rail.
2667 */
2668 for (index = 0; index < 500; index++) {
9c9ab3c1 2669 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce
IA
2670 adc_data = data[0];
2671 if (adc_data != start_val)
8ee52611
IA
2672 break;
2673 }
59747847
HS
2674 }
2675#endif /* SAA7146 BUG WORKAROUND */
11e865c1 2676
54a2a02e
HS
2677 /*
2678 * Initialize the DAC interface
2679 */
11e865c1 2680
54a2a02e
HS
2681 /*
2682 * Init Audio2's output DMAC attributes:
2683 * burst length = 1 DWORD
2684 * threshold = 1 DWORD.
68ad0ae0 2685 */
d8515652 2686 writel(0, devpriv->mmio + S626_P_PCI_BT_A);
68ad0ae0 2687
54a2a02e
HS
2688 /*
2689 * Init Audio2's output DMA physical addresses. The protection
68ad0ae0
HS
2690 * address is set to 1 DWORD past the base address so that a
2691 * single DWORD will be transferred each time a DMA transfer is
54a2a02e
HS
2692 * enabled.
2693 */
f1f7efce 2694 phys_buf = devpriv->ana_buf.physical_base +
d8515652
IA
2695 (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
2696 writel((uint32_t)phys_buf, devpriv->mmio + S626_P_BASEA2_OUT);
f1f7efce 2697 writel((uint32_t)(phys_buf + sizeof(uint32_t)),
d8515652 2698 devpriv->mmio + S626_P_PROTA2_OUT);
68ad0ae0 2699
54a2a02e
HS
2700 /*
2701 * Cache Audio2's output DMA buffer logical address. This is
2702 * where DAC data is buffered for A2 output DMA transfers.
2703 */
07a36d66 2704 devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
d8515652 2705 S626_DAC_WDMABUF_OS;
68ad0ae0 2706
54a2a02e
HS
2707 /*
2708 * Audio2's output channels does not use paging. The
2709 * protection violation handling bit is set so that the
2710 * DMAC will automatically halt and its PCI address pointer
2711 * will be reset when the protection address is reached.
2712 */
d8515652 2713 writel(8, devpriv->mmio + S626_P_PAGEA2_OUT);
68ad0ae0 2714
54a2a02e
HS
2715 /*
2716 * Initialize time slot list 2 (TSL2), which is used to control
68ad0ae0
HS
2717 * the clock generation for and serialization of data to be sent
2718 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2719 * execution; this permits other slots to be safely modified
2720 * without first turning off the TSL sequencer (which is
2721 * apparently impossible to do). Also, SD3 (which is driven by a
2722 * pull-up resistor) is shifted in and stored to the MSB of
2723 * FB_BUFFER2 to be used as evidence that the slot sequence has
2724 * not yet finished executing.
2725 */
11e865c1 2726
54a2a02e 2727 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
d8515652
IA
2728 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2729 devpriv->mmio + S626_VECTPORT(0));
11e865c1 2730
54a2a02e
HS
2731 /*
2732 * Initialize slot 1, which is constant. Slot 1 causes a
68ad0ae0
HS
2733 * DWORD to be transferred from audio channel 2's output FIFO
2734 * to the FIFO's output buffer so that it can be serialized
2735 * and sent to the DAC during subsequent slots. All remaining
2736 * slots are dynamically populated as required by the target
2737 * DAC device.
2738 */
54a2a02e
HS
2739
2740 /* Slot 1: Fetch DWORD from Audio2's output FIFO */
d8515652 2741 writel(S626_LF_A2, devpriv->mmio + S626_VECTPORT(1));
11e865c1 2742
54a2a02e 2743 /* Start DAC's audio interface (TSL2) running */
d8515652 2744 writel(S626_ACON1_DACSTART, devpriv->mmio + S626_P_ACON1);
11e865c1 2745
54a2a02e
HS
2746 /*
2747 * Init Trim DACs to calibrated values. Do it twice because the
68ad0ae0
HS
2748 * SAA7146 audio channel does not always reset properly and
2749 * sometimes causes the first few TrimDAC writes to malfunction.
2750 */
31de1948
IA
2751 s626_load_trim_dacs(dev);
2752 s626_load_trim_dacs(dev);
11e865c1 2753
54a2a02e
HS
2754 /*
2755 * Manually init all gate array hardware in case this is a soft
68ad0ae0
HS
2756 * reset (we have no way of determining whether this is a warm
2757 * or cold start). This is necessary because the gate array will
2758 * reset only in response to a PCI hard reset; there is no soft
54a2a02e
HS
2759 * reset function.
2760 */
11e865c1 2761
54a2a02e
HS
2762 /*
2763 * Init all DAC outputs to 0V and init all DAC setpoint and
68ad0ae0
HS
2764 * polarity images.
2765 */
2766 for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
31de1948 2767 s626_set_dac(dev, chan, 0);
11e865c1 2768
54a2a02e 2769 /* Init counters */
31de1948 2770 s626_counters_init(dev);
11e865c1 2771
54a2a02e
HS
2772 /*
2773 * Without modifying the state of the Battery Backup enab, disable
68ad0ae0
HS
2774 * the watchdog timer, set DIO channels 0-5 to operate in the
2775 * standard DIO (vs. counter overflow) mode, disable the battery
2776 * charger, and reset the watchdog interval selector to zero.
2777 */
d8515652
IA
2778 s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2779 S626_MISC2_BATT_ENABLE));
11e865c1 2780
54a2a02e 2781 /* Initialize the digital I/O subsystem */
68ad0ae0 2782 s626_dio_init(dev);
80ec9510
HS
2783}
2784
a690b7e5 2785static int s626_auto_attach(struct comedi_device *dev,
750af5e5 2786 unsigned long context_unused)
80ec9510 2787{
750af5e5 2788 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2789 struct s626_private *devpriv;
80ec9510
HS
2790 struct comedi_subdevice *s;
2791 int ret;
2792
0bdab509 2793 devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
c34fa261
HS
2794 if (!devpriv)
2795 return -ENOMEM;
80ec9510 2796
818f569f 2797 ret = comedi_pci_enable(dev);
80ec9510
HS
2798 if (ret)
2799 return ret;
80ec9510 2800
5970b102 2801 devpriv->mmio = pci_ioremap_bar(pcidev, 0);
7d856da2 2802 if (!devpriv->mmio)
80ec9510
HS
2803 return -ENOMEM;
2804
2805 /* disable master interrupt */
d8515652 2806 writel(0, devpriv->mmio + S626_P_IER);
80ec9510
HS
2807
2808 /* soft reset */
d8515652 2809 writel(S626_MC1_SOFT_RESET, devpriv->mmio + S626_P_MC1);
80ec9510
HS
2810
2811 /* DMA FIXME DMA// */
2812
2813 ret = s626_allocate_dma_buffers(dev);
2814 if (ret)
2815 return ret;
2816
2817 if (pcidev->irq) {
2818 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2819 dev->board_name, dev);
2820
2821 if (ret == 0)
2822 dev->irq = pcidev->irq;
2823 }
2824
2825 ret = comedi_alloc_subdevices(dev, 6);
2826 if (ret)
2827 return ret;
2828
f0717f5d 2829 s = &dev->subdevices[0];
80ec9510 2830 /* analog input subdevice */
ca2f1091 2831 s->type = COMEDI_SUBD_AI;
f95321f3 2832 s->subdev_flags = SDF_READABLE | SDF_DIFF;
ca2f1091
HS
2833 s->n_chan = S626_ADC_CHANNELS;
2834 s->maxdata = 0x3fff;
2835 s->range_table = &s626_range_table;
2836 s->len_chanlist = S626_ADC_CHANNELS;
ca2f1091 2837 s->insn_read = s626_ai_insn_read;
2281befd
HS
2838 if (dev->irq) {
2839 dev->read_subdev = s;
f95321f3 2840 s->subdev_flags |= SDF_CMD_READ;
2281befd
HS
2841 s->do_cmd = s626_ai_cmd;
2842 s->do_cmdtest = s626_ai_cmdtest;
2843 s->cancel = s626_ai_cancel;
2844 }
80ec9510 2845
f0717f5d 2846 s = &dev->subdevices[1];
80ec9510 2847 /* analog output subdevice */
ca2f1091
HS
2848 s->type = COMEDI_SUBD_AO;
2849 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2850 s->n_chan = S626_DAC_CHANNELS;
2851 s->maxdata = 0x3fff;
2852 s->range_table = &range_bipolar10;
2853 s->insn_write = s626_ao_winsn;
2854 s->insn_read = s626_ao_rinsn;
80ec9510 2855
f0717f5d 2856 s = &dev->subdevices[2];
80ec9510 2857 /* digital I/O subdevice */
ca2f1091
HS
2858 s->type = COMEDI_SUBD_DIO;
2859 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2860 s->n_chan = 16;
2861 s->maxdata = 1;
2862 s->io_bits = 0xffff;
2863 s->private = (void *)0; /* DIO group 0 */
2864 s->range_table = &range_digital;
2865 s->insn_config = s626_dio_insn_config;
2866 s->insn_bits = s626_dio_insn_bits;
80ec9510 2867
f0717f5d 2868 s = &dev->subdevices[3];
80ec9510 2869 /* digital I/O subdevice */
ca2f1091
HS
2870 s->type = COMEDI_SUBD_DIO;
2871 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2872 s->n_chan = 16;
2873 s->maxdata = 1;
2874 s->io_bits = 0xffff;
2875 s->private = (void *)1; /* DIO group 1 */
2876 s->range_table = &range_digital;
2877 s->insn_config = s626_dio_insn_config;
2878 s->insn_bits = s626_dio_insn_bits;
80ec9510 2879
f0717f5d 2880 s = &dev->subdevices[4];
80ec9510 2881 /* digital I/O subdevice */
ca2f1091
HS
2882 s->type = COMEDI_SUBD_DIO;
2883 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2884 s->n_chan = 16;
2885 s->maxdata = 1;
2886 s->io_bits = 0xffff;
2887 s->private = (void *)2; /* DIO group 2 */
2888 s->range_table = &range_digital;
8ee52611 2889 s->insn_config = s626_dio_insn_config;
ca2f1091 2890 s->insn_bits = s626_dio_insn_bits;
80ec9510 2891
f0717f5d 2892 s = &dev->subdevices[5];
80ec9510 2893 /* encoder (counter) subdevice */
ca2f1091
HS
2894 s->type = COMEDI_SUBD_COUNTER;
2895 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2896 s->n_chan = S626_ENCODER_CHANNELS;
2897 s->maxdata = 0xffffff;
ca2f1091
HS
2898 s->range_table = &range_unknown;
2899 s->insn_config = s626_enc_insn_config;
2900 s->insn_read = s626_enc_insn_read;
2901 s->insn_write = s626_enc_insn_write;
80ec9510 2902
80ec9510 2903 s626_initialize(dev);
11e865c1 2904
f996ab29 2905 return 0;
11e865c1
GP
2906}
2907
020c44f3 2908static void s626_detach(struct comedi_device *dev)
11e865c1 2909{
7f2f7e05 2910 struct s626_private *devpriv = dev->private;
f574af6d 2911
020c44f3
HS
2912 if (devpriv) {
2913 /* stop ai_command */
2914 devpriv->ai_cmd_running = 0;
11e865c1 2915
7d856da2 2916 if (devpriv->mmio) {
020c44f3 2917 /* interrupt mask */
25f8fd5e 2918 /* Disable master interrupt */
d8515652 2919 writel(0, devpriv->mmio + S626_P_IER);
25f8fd5e 2920 /* Clear board's IRQ status flag */
d8515652
IA
2921 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2922 devpriv->mmio + S626_P_ISR);
11e865c1 2923
8ee52611 2924 /* Disable the watchdog timer and battery charger. */
31de1948 2925 s626_write_misc2(dev, 0);
11e865c1 2926
25f8fd5e 2927 /* Close all interfaces on 7146 device */
d8515652
IA
2928 writel(S626_MC1_SHUTDOWN, devpriv->mmio + S626_P_MC1);
2929 writel(S626_ACON1_BASE, devpriv->mmio + S626_P_ACON1);
11e865c1 2930
d8515652
IA
2931 s626_close_dma_b(dev, &devpriv->rps_buf,
2932 S626_DMABUF_SIZE);
2933 s626_close_dma_b(dev, &devpriv->ana_buf,
2934 S626_DMABUF_SIZE);
020c44f3 2935 }
b6c77757 2936
020c44f3
HS
2937 if (dev->irq)
2938 free_irq(dev->irq, dev);
7d856da2
HS
2939 if (devpriv->mmio)
2940 iounmap(devpriv->mmio);
f574af6d 2941 }
7f072f54 2942 comedi_pci_disable(dev);
11e865c1 2943}
7122b76d 2944
75e6301b 2945static struct comedi_driver s626_driver = {
7122b76d
HS
2946 .driver_name = "s626",
2947 .module = THIS_MODULE,
750af5e5 2948 .auto_attach = s626_auto_attach,
7122b76d
HS
2949 .detach = s626_detach,
2950};
2951
a690b7e5 2952static int s626_pci_probe(struct pci_dev *dev,
b8f4ac23 2953 const struct pci_device_id *id)
7122b76d 2954{
b8f4ac23 2955 return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
7122b76d
HS
2956}
2957
7122b76d
HS
2958/*
2959 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2960 * also subvendor:subdevice ids, because otherwise it will conflict with
2961 * Philips SAA7146 media/dvb based cards.
2962 */
41e043fc 2963static const struct pci_device_id s626_pci_table[] = {
498c5070
IA
2964 { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2965 0x6000, 0x0272) },
7122b76d
HS
2966 { 0 }
2967};
2968MODULE_DEVICE_TABLE(pci, s626_pci_table);
2969
75e6301b
HS
2970static struct pci_driver s626_pci_driver = {
2971 .name = "s626",
7122b76d 2972 .id_table = s626_pci_table,
75e6301b 2973 .probe = s626_pci_probe,
9901a4d7 2974 .remove = comedi_pci_auto_unconfig,
7122b76d 2975};
75e6301b 2976module_comedi_pci_driver(s626_driver, s626_pci_driver);
7122b76d
HS
2977
2978MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2979MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2980MODULE_LICENSE("GPL");