Merge 4.3-rc7 into staging-next
[linux-2.6-block.git] / drivers / staging / comedi / drivers / s626.c
CommitLineData
11e865c1 1/*
7f32c7c4
IA
2 * comedi/drivers/s626.c
3 * Sensoray s626 Comedi driver
4 *
5 * COMEDI - Linux Control and Measurement Device Interface
6 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7 *
8 * Based on Sensoray Model 626 Linux driver Version 0.2
9 * Copyright (C) 2002-2004 Sensoray Co., Inc.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
11e865c1
GP
21
22/*
7f32c7c4
IA
23 * Driver: s626
24 * Description: Sensoray 626 driver
25 * Devices: [Sensoray] 626 (s626)
26 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
27 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
28 * Status: experimental
29
30 * Configuration options: not applicable, uses PCI auto config
31
32 * INSN_CONFIG instructions:
33 * analog input:
34 * none
35 *
36 * analog output:
37 * none
38 *
39 * digital channel:
40 * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
41 * supported configuration options:
42 * INSN_CONFIG_DIO_QUERY
43 * COMEDI_INPUT
44 * COMEDI_OUTPUT
45 *
46 * encoder:
47 * Every channel must be configured before reading.
48 *
49 * Example code
50 *
51 * insn.insn=INSN_CONFIG; //configuration instruction
52 * insn.n=1; //number of operation (must be 1)
53 * insn.data=&initialvalue; //initial value loaded into encoder
54 * //during configuration
55 * insn.subdev=5; //encoder subdevice
56 * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
57 * //to configure
58 *
59 * comedi_do_insn(cf,&insn); //executing configuration
60 */
11e865c1 61
ce157f80
HS
62#include <linux/module.h>
63#include <linux/delay.h>
25436dc9 64#include <linux/interrupt.h>
11e865c1
GP
65#include <linux/kernel.h>
66#include <linux/types.h>
67
6ab38b05 68#include "../comedi_pci.h"
11e865c1 69
11e865c1
GP
70#include "s626.h"
71
dbb263f5 72struct s626_buffer_dma {
8e06d662
IA
73 dma_addr_t physical_base;
74 void *logical_base;
75};
76
eb5e029e 77struct s626_private {
8ee52611 78 uint8_t ai_cmd_running; /* ai_cmd is running */
8ee52611
IA
79 unsigned int ai_sample_timer; /* time between samples in
80 * units of the timer */
81 int ai_convert_count; /* conversion counter */
82 unsigned int ai_convert_timer; /* time between conversion in
83 * units of the timer */
07a36d66 84 uint16_t counter_int_enabs; /* counter interrupt enable mask
8ee52611 85 * for MISC2 register */
07a36d66 86 uint8_t adc_items; /* number of items in ADC poll list */
dbb263f5 87 struct s626_buffer_dma rps_buf; /* DMA buffer used to hold ADC (RPS1)
8ee52611 88 * program */
dbb263f5 89 struct s626_buffer_dma ana_buf; /* DMA buffer used to receive ADC data
8ee52611 90 * and hold DAC data */
07a36d66 91 uint32_t *dac_wbuf; /* pointer to logical adrs of DMA buffer
8ee52611 92 * used to hold DAC data */
07a36d66
IA
93 uint16_t dacpol; /* image of DAC polarity register */
94 uint8_t trim_setpoint[12]; /* images of TrimDAC setpoints */
95 uint32_t i2c_adrs; /* I2C device address for onboard EEPROM
8ee52611 96 * (board rev dependent) */
eb5e029e 97};
11e865c1 98
8ee52611 99/* Counter overflow/index event flag masks for RDMISC2. */
676921c9
IA
100#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
101#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
11e865c1 102
ddd9813e
HS
103/*
104 * Enable/disable a function or test status bit(s) that are accessed
105 * through Main Control Registers 1 or 2.
106 */
107static void s626_mc_enable(struct comedi_device *dev,
108 unsigned int cmd, unsigned int reg)
109{
ddd9813e
HS
110 unsigned int val = (cmd << 16) | cmd;
111
bb49cddc 112 mmiowb();
de9cd5ca 113 writel(val, dev->mmio + reg);
ddd9813e 114}
11e865c1 115
c5cf4606
HS
116static void s626_mc_disable(struct comedi_device *dev,
117 unsigned int cmd, unsigned int reg)
118{
ddd54d65 119 writel(cmd << 16, dev->mmio + reg);
bb49cddc 120 mmiowb();
c5cf4606 121}
11e865c1 122
95bb7982
HS
123static bool s626_mc_test(struct comedi_device *dev,
124 unsigned int cmd, unsigned int reg)
125{
95bb7982
HS
126 unsigned int val;
127
de9cd5ca 128 val = readl(dev->mmio + reg);
95bb7982
HS
129
130 return (val & cmd) ? true : false;
131}
11e865c1 132
676921c9 133#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
11e865c1 134
8ee52611 135/* Write a time slot control record to TSL2. */
d8515652 136#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
11e865c1 137
90d54ff2
HS
138static const struct comedi_lrange s626_range_table = {
139 2, {
140 BIP_RANGE(5),
481ac510 141 BIP_RANGE(10)
90d54ff2 142 }
11e865c1
GP
143};
144
8ee52611
IA
145/*
146 * Execute a DEBI transfer. This must be called from within a critical section.
147 */
31de1948 148static void s626_debi_transfer(struct comedi_device *dev)
6b387b70 149{
59a32a46
CS
150 static const int timeout = 10000;
151 int i;
7f2f7e05 152
ddd9813e 153 /* Initiate upload of shadow RAM to DEBI control register */
d8515652 154 s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
6b387b70 155
95bb7982
HS
156 /*
157 * Wait for completion of upload from shadow RAM to
158 * DEBI control register.
159 */
59a32a46
CS
160 for (i = 0; i < timeout; i++) {
161 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
162 break;
163 udelay(1);
164 }
165 if (i == timeout)
cefe9336
HS
166 dev_err(dev->class_dev,
167 "Timeout while uploading to DEBI control register\n");
6b387b70 168
be008602 169 /* Wait until DEBI transfer is done */
59a32a46 170 for (i = 0; i < timeout; i++) {
de9cd5ca 171 if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
59a32a46
CS
172 break;
173 udelay(1);
174 }
175 if (i == timeout)
cefe9336 176 dev_err(dev->class_dev, "DEBI transfer timeout\n");
6b387b70
HS
177}
178
8ee52611
IA
179/*
180 * Read a value from a gate array register.
181 */
31de1948 182static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
6b387b70 183{
25f8fd5e 184 /* Set up DEBI control register value in shadow RAM */
de9cd5ca 185 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
6b387b70
HS
186
187 /* Execute the DEBI transfer. */
31de1948 188 s626_debi_transfer(dev);
6b387b70 189
de9cd5ca 190 return readl(dev->mmio + S626_P_DEBIAD);
6b387b70
HS
191}
192
8ee52611
IA
193/*
194 * Write a value to a gate array register.
195 */
31de1948
IA
196static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
197 uint16_t wdata)
6b387b70 198{
25f8fd5e 199 /* Set up DEBI control register value in shadow RAM */
de9cd5ca
HS
200 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
201 writel(wdata, dev->mmio + S626_P_DEBIAD);
6b387b70
HS
202
203 /* Execute the DEBI transfer. */
31de1948 204 s626_debi_transfer(dev);
6b387b70
HS
205}
206
8ee52611
IA
207/*
208 * Replace the specified bits in a gate array register. Imports: mask
6b387b70
HS
209 * specifies bits that are to be preserved, wdata is new value to be
210 * or'd with the masked original.
211 */
31de1948
IA
212static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
213 unsigned int mask, unsigned int wdata)
6b387b70 214{
be008602 215 unsigned int val;
6b387b70 216
12f4e2f2 217 addr &= 0xffff;
de9cd5ca 218 writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
31de1948 219 s626_debi_transfer(dev);
6b387b70 220
de9cd5ca
HS
221 writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
222 val = readl(dev->mmio + S626_P_DEBIAD);
be008602
HS
223 val &= mask;
224 val |= wdata;
de9cd5ca 225 writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
31de1948 226 s626_debi_transfer(dev);
6b387b70
HS
227}
228
982e3d11
HS
229/* ************** EEPROM ACCESS FUNCTIONS ************** */
230
571845c6 231static int s626_i2c_handshake_eoc(struct comedi_device *dev,
6c7d2c8b
HS
232 struct comedi_subdevice *s,
233 struct comedi_insn *insn,
234 unsigned long context)
571845c6
CS
235{
236 bool status;
237
238 status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
239 if (status)
240 return 0;
241 return -EBUSY;
242}
243
244static int s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
982e3d11 245{
be008602 246 unsigned int ctrl;
571845c6 247 int ret;
7f2f7e05 248
25f8fd5e 249 /* Write I2C command to I2C Transfer Control shadow register */
de9cd5ca 250 writel(val, dev->mmio + S626_P_I2CCTRL);
982e3d11 251
ddd9813e
HS
252 /*
253 * Upload I2C shadow registers into working registers and
254 * wait for upload confirmation.
255 */
d8515652 256 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
571845c6
CS
257 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
258 if (ret)
259 return ret;
982e3d11 260
be008602
HS
261 /* Wait until I2C bus transfer is finished or an error occurs */
262 do {
de9cd5ca 263 ctrl = readl(dev->mmio + S626_P_I2CCTRL);
d8515652 264 } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
982e3d11 265
be008602 266 /* Return non-zero if I2C error occurred */
d8515652 267 return ctrl & S626_I2C_ERR;
982e3d11
HS
268}
269
8ee52611 270/* Read uint8_t from EEPROM. */
31de1948 271static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
982e3d11 272{
7f2f7e05 273 struct s626_private *devpriv = dev->private;
982e3d11 274
8ee52611
IA
275 /*
276 * Send EEPROM target address:
277 * Byte2 = I2C command: write to I2C EEPROM device.
278 * Byte1 = EEPROM internal target address.
279 * Byte0 = Not sent.
280 */
d8515652
IA
281 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
282 devpriv->i2c_adrs) |
283 S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
284 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 285 /* Abort function and declare error if handshake failed. */
982e3d11 286 return 0;
982e3d11 287
8ee52611
IA
288 /*
289 * Execute EEPROM read:
290 * Byte2 = I2C command: read from I2C EEPROM device.
291 * Byte1 receives uint8_t from EEPROM.
292 * Byte0 = Not sent.
293 */
d8515652 294 if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
6c7d2c8b 295 (devpriv->i2c_adrs | 1)) |
d8515652
IA
296 S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
297 S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
8ee52611 298 /* Abort function and declare error if handshake failed. */
982e3d11 299 return 0;
be008602 300
de9cd5ca 301 return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
982e3d11
HS
302}
303
95414729
HS
304/* *********** DAC FUNCTIONS *********** */
305
8ee52611 306/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
31de1948 307static const uint8_t s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
95414729 308
8ee52611 309/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
31de1948 310static const uint8_t s626_trimadrs[] = {
8ee52611
IA
311 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
312};
95414729 313
59a32a46
CS
314enum {
315 s626_send_dac_wait_not_mc1_a2out,
316 s626_send_dac_wait_ssr_af2_out,
317 s626_send_dac_wait_fb_buffer2_msb_00,
318 s626_send_dac_wait_fb_buffer2_msb_ff
319};
320
321static int s626_send_dac_eoc(struct comedi_device *dev,
322 struct comedi_subdevice *s,
323 struct comedi_insn *insn,
324 unsigned long context)
325{
59a32a46
CS
326 unsigned int status;
327
328 switch (context) {
329 case s626_send_dac_wait_not_mc1_a2out:
de9cd5ca 330 status = readl(dev->mmio + S626_P_MC1);
59a32a46
CS
331 if (!(status & S626_MC1_A2OUT))
332 return 0;
333 break;
334 case s626_send_dac_wait_ssr_af2_out:
de9cd5ca 335 status = readl(dev->mmio + S626_P_SSR);
59a32a46
CS
336 if (status & S626_SSR_AF2_OUT)
337 return 0;
338 break;
339 case s626_send_dac_wait_fb_buffer2_msb_00:
de9cd5ca 340 status = readl(dev->mmio + S626_P_FB_BUFFER2);
59a32a46
CS
341 if (!(status & 0xff000000))
342 return 0;
343 break;
344 case s626_send_dac_wait_fb_buffer2_msb_ff:
de9cd5ca 345 status = readl(dev->mmio + S626_P_FB_BUFFER2);
59a32a46
CS
346 if (status & 0xff000000)
347 return 0;
348 break;
349 default:
350 return -EINVAL;
351 }
352 return -EBUSY;
353}
354
8ee52611
IA
355/*
356 * Private helper function: Transmit serial data to DAC via Audio
95414729 357 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
07a36d66 358 * dacpol contains valid target image.
95414729 359 */
a7aa94ce 360static int s626_send_dac(struct comedi_device *dev, uint32_t val)
95414729 361{
7f2f7e05 362 struct s626_private *devpriv = dev->private;
59a32a46 363 int ret;
95414729
HS
364
365 /* START THE SERIAL CLOCK RUNNING ------------- */
366
8ee52611
IA
367 /*
368 * Assert DAC polarity control and enable gating of DAC serial clock
95414729
HS
369 * and audio bit stream signals. At this point in time we must be
370 * assured of being in time slot 0. If we are not in slot 0, the
371 * serial clock and audio stream signals will be disabled; this is
31de1948
IA
372 * because the following s626_debi_write statement (which enables
373 * signals to be passed through the gate array) would execute before
374 * the trailing edge of WS1/WS3 (which turns off the signals), thus
95414729
HS
375 * causing the signals to be inactive during the DAC write.
376 */
d8515652 377 s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
95414729
HS
378
379 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
380
381 /* Copy DAC setpoint value to DAC's output DMA buffer. */
de9cd5ca 382 /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
07a36d66 383 *devpriv->dac_wbuf = val;
95414729 384
ddd9813e
HS
385 /*
386 * Enable the output DMA transfer. This will cause the DMAC to copy
387 * the DAC's data value to A2's output FIFO. The DMA transfer will
95414729
HS
388 * then immediately terminate because the protection address is
389 * reached upon transfer of the first DWORD value.
390 */
d8515652 391 s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
95414729 392
8ee52611 393 /* While the DMA transfer is executing ... */
95414729 394
25f8fd5e
HS
395 /*
396 * Reset Audio2 output FIFO's underflow flag (along with any
397 * other FIFO underflow/overflow flags). When set, this flag
398 * will indicate that we have emerged from slot 0.
95414729 399 */
de9cd5ca 400 writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
95414729 401
8ee52611
IA
402 /*
403 * Wait for the DMA transfer to finish so that there will be data
95414729
HS
404 * available in the FIFO when time slot 1 tries to transfer a DWORD
405 * from the FIFO to the output buffer register. We test for DMA
406 * Done by polling the DMAC enable flag; this flag is automatically
407 * cleared when the transfer has finished.
408 */
59a32a46
CS
409 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
410 s626_send_dac_wait_not_mc1_a2out);
a7aa94ce 411 if (ret) {
cefe9336 412 dev_err(dev->class_dev, "DMA transfer timeout\n");
a7aa94ce
CS
413 return ret;
414 }
95414729
HS
415
416 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
417
8ee52611
IA
418 /*
419 * FIFO data is now available, so we enable execution of time slots
95414729
HS
420 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
421 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
422 * detection.
423 */
d8515652 424 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
de9cd5ca 425 dev->mmio + S626_VECTPORT(0));
95414729 426
8ee52611
IA
427 /*
428 * Wait for slot 1 to execute to ensure that the Packet will be
95414729
HS
429 * transmitted. This is detected by polling the Audio2 output FIFO
430 * underflow flag, which will be set when slot 1 execution has
431 * finished transferring the DAC's data DWORD from the output FIFO
432 * to the output buffer register.
433 */
59a32a46
CS
434 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
435 s626_send_dac_wait_ssr_af2_out);
a7aa94ce 436 if (ret) {
cefe9336
HS
437 dev_err(dev->class_dev,
438 "TSL timeout waiting for slot 1 to execute\n");
a7aa94ce
CS
439 return ret;
440 }
95414729 441
8ee52611
IA
442 /*
443 * Set up to trap execution at slot 0 when the TSL sequencer cycles
95414729
HS
444 * back to slot 0 after executing the EOS in slot 5. Also,
445 * simultaneously shift out and in the 0x00 that is ALWAYS the value
446 * stored in the last byte to be shifted out of the FIFO's DWORD
447 * buffer register.
448 */
d8515652 449 writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
de9cd5ca 450 dev->mmio + S626_VECTPORT(0));
95414729
HS
451
452 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
453
8ee52611
IA
454 /*
455 * Wait for the TSL to finish executing all time slots before
95414729
HS
456 * exiting this function. We must do this so that the next DAC
457 * write doesn't start, thereby enabling clock/chip select signals:
458 *
459 * 1. Before the TSL sequence cycles back to slot 0, which disables
460 * the clock/cs signal gating and traps slot // list execution.
461 * we have not yet finished slot 5 then the clock/cs signals are
462 * still gated and we have not finished transmitting the stream.
463 *
464 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
465 * this case, the slot sequence is currently repeating, but with
466 * clock/cs signals disabled. We must wait for slot 0 to trap
467 * execution before setting up the next DAC setpoint DMA transfer
468 * and enabling the clock/cs signals. To detect the end of slot 5,
469 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
470 * the TSL has not yet finished executing slot 5 ...
471 */
de9cd5ca 472 if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
8ee52611
IA
473 /*
474 * The trap was set on time and we are still executing somewhere
95414729
HS
475 * in slots 2-5, so we now wait for slot 0 to execute and trap
476 * TSL execution. This is detected when FB_BUFFER2 MSB changes
477 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
478 * out/in on SD2 the 0x00 that is always referenced by slot 5.
479 */
59a32a46
CS
480 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
481 s626_send_dac_wait_fb_buffer2_msb_00);
a7aa94ce 482 if (ret) {
cefe9336
HS
483 dev_err(dev->class_dev,
484 "TSL timeout waiting for slot 0 to execute\n");
a7aa94ce
CS
485 return ret;
486 }
95414729 487 }
8ee52611
IA
488 /*
489 * Either (1) we were too late setting the slot 0 trap; the TSL
95414729
HS
490 * sequencer restarted slot 0 before we could set the EOS trap flag,
491 * or (2) we were not late and execution is now trapped at slot 0.
492 * In either case, we must now change slot 0 so that it will store
493 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
494 * In order to do this, we reprogram slot 0 so that it will shift in
495 * SD3, which is driven only by a pull-up resistor.
496 */
d8515652 497 writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
de9cd5ca 498 dev->mmio + S626_VECTPORT(0));
95414729 499
8ee52611
IA
500 /*
501 * Wait for slot 0 to execute, at which time the TSL is setup for
95414729
HS
502 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
503 * from 0x00 to 0xFF.
504 */
59a32a46
CS
505 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
506 s626_send_dac_wait_fb_buffer2_msb_ff);
a7aa94ce 507 if (ret) {
cefe9336
HS
508 dev_err(dev->class_dev,
509 "TSL timeout waiting for slot 0 to execute\n");
a7aa94ce
CS
510 return ret;
511 }
512 return 0;
95414729
HS
513}
514
8ee52611
IA
515/*
516 * Private helper function: Write setpoint to an application DAC channel.
517 */
6c7d2c8b
HS
518static int s626_set_dac(struct comedi_device *dev,
519 uint16_t chan, int16_t dacdata)
95414729 520{
7f2f7e05 521 struct s626_private *devpriv = dev->private;
8ee52611 522 uint16_t signmask;
f1f7efce 523 uint32_t ws_image;
8ee52611 524 uint32_t val;
95414729 525
8ee52611
IA
526 /*
527 * Adjust DAC data polarity and set up Polarity Control Register image.
528 */
95414729
HS
529 signmask = 1 << chan;
530 if (dacdata < 0) {
531 dacdata = -dacdata;
07a36d66 532 devpriv->dacpol |= signmask;
8ee52611 533 } else {
07a36d66 534 devpriv->dacpol &= ~signmask;
8ee52611 535 }
95414729 536
8ee52611
IA
537 /* Limit DAC setpoint value to valid range. */
538 if ((uint16_t)dacdata > 0x1FFF)
95414729
HS
539 dacdata = 0x1FFF;
540
8ee52611
IA
541 /*
542 * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
95414729
HS
543 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
544 * data to a non-existent TrimDac channel just to keep the clock
545 * running after sending data to the target DAC. This is necessary
546 * to eliminate the clock glitch that would otherwise occur at the
547 * end of the target DAC's serial data stream. When the sequence
548 * restarts at V0 (after executing V5), the gate array automatically
549 * disables gating for the DAC clock and all DAC chip selects.
550 */
551
25f8fd5e 552 /* Choose DAC chip select to be asserted */
d8515652 553 ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
25f8fd5e 554 /* Slot 2: Transmit high data byte to target DAC */
d8515652 555 writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
de9cd5ca 556 dev->mmio + S626_VECTPORT(2));
25f8fd5e 557 /* Slot 3: Transmit low data byte to target DAC */
d8515652 558 writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
de9cd5ca 559 dev->mmio + S626_VECTPORT(3));
95414729 560 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
d8515652 561 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
de9cd5ca 562 dev->mmio + S626_VECTPORT(4));
25f8fd5e 563 /* Slot 5: running after writing target DAC's low data byte */
d8515652 564 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
de9cd5ca 565 dev->mmio + S626_VECTPORT(5));
95414729 566
8ee52611
IA
567 /*
568 * Construct and transmit target DAC's serial packet:
569 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
95414729
HS
570 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
571 * to a non-existent TrimDac channel) that serves to keep the clock
572 * running after the packet has been sent to the target DAC.
573 */
8ee52611
IA
574 val = 0x0F000000; /* Continue clock after target DAC data
575 * (write to non-existent trimdac). */
576 val |= 0x00004000; /* Address the two main dual-DAC devices
577 * (TSL's chip select enables target device). */
578 val |= ((uint32_t)(chan & 1) << 15); /* Address the DAC channel
579 * within the device. */
580 val |= (uint32_t)dacdata; /* Include DAC setpoint data. */
a7aa94ce 581 return s626_send_dac(dev, val);
95414729
HS
582}
583
6c7d2c8b
HS
584static int s626_write_trim_dac(struct comedi_device *dev,
585 uint8_t logical_chan, uint8_t dac_data)
95414729 586{
7f2f7e05 587 struct s626_private *devpriv = dev->private;
95414729
HS
588 uint32_t chan;
589
8ee52611
IA
590 /*
591 * Save the new setpoint in case the application needs to read it back
592 * later.
593 */
f1f7efce 594 devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;
95414729 595
8ee52611 596 /* Map logical channel number to physical channel number. */
31de1948 597 chan = s626_trimchan[logical_chan];
95414729 598
8ee52611
IA
599 /*
600 * Set up TSL2 records for TrimDac write operation. All slots shift
95414729
HS
601 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
602 * can be detected.
603 */
604
25f8fd5e 605 /* Slot 2: Send high uint8_t to target TrimDac */
d8515652 606 writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
de9cd5ca 607 dev->mmio + S626_VECTPORT(2));
25f8fd5e 608 /* Slot 3: Send low uint8_t to target TrimDac */
d8515652 609 writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
de9cd5ca 610 dev->mmio + S626_VECTPORT(3));
25f8fd5e 611 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
d8515652 612 writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
de9cd5ca 613 dev->mmio + S626_VECTPORT(4));
25f8fd5e 614 /* Slot 5: Send NOP low uint8_t to DAC0 */
d8515652 615 writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
de9cd5ca 616 dev->mmio + S626_VECTPORT(5));
95414729 617
8ee52611
IA
618 /*
619 * Construct and transmit target DAC's serial packet:
620 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
95414729
HS
621 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
622 * WORD value (that writes a channel 0 NOP command to a non-existent
623 * main DAC channel) that serves to keep the clock running after the
624 * packet has been sent to the target DAC.
625 */
626
8ee52611
IA
627 /*
628 * Address the DAC channel within the trimdac device.
629 * Include DAC setpoint data.
630 */
a7aa94ce 631 return s626_send_dac(dev, (chan << 8) | dac_data);
95414729
HS
632}
633
a7aa94ce 634static int s626_load_trim_dacs(struct comedi_device *dev)
95414729 635{
8ee52611 636 uint8_t i;
a7aa94ce 637 int ret;
95414729 638
8ee52611 639 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
a7aa94ce
CS
640 for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
641 ret = s626_write_trim_dac(dev, i,
6c7d2c8b 642 s626_i2c_read(dev, s626_trimadrs[i]));
a7aa94ce
CS
643 if (ret)
644 return ret;
645 }
646 return 0;
95414729
HS
647}
648
e3eb08d0 649/* ****** COUNTER FUNCTIONS ******* */
8ee52611
IA
650
651/*
652 * All counter functions address a specific counter by means of the
e3eb08d0
HS
653 * "Counter" argument, which is a logical counter number. The Counter
654 * argument may have any of the following legal values: 0=0A, 1=1A,
655 * 2=2A, 3=0B, 4=1B, 5=2B.
656 */
657
8ee52611
IA
658/*
659 * Return/set a counter pair's latch trigger source. 0: On read
e3eb08d0
HS
660 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
661 * latches B.
662 */
31de1948 663static void s626_set_latch_source(struct comedi_device *dev,
0c9a057c 664 unsigned int chan, uint16_t value)
e3eb08d0 665{
0c9a057c 666 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 667 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
0830ada5 668 S626_SET_CRB_LATCHSRC(value));
e3eb08d0
HS
669}
670
8ee52611
IA
671/*
672 * Write value into counter preload register.
673 */
31de1948 674static void s626_preload(struct comedi_device *dev,
0c9a057c 675 unsigned int chan, uint32_t value)
e3eb08d0 676{
0c9a057c
HS
677 s626_debi_write(dev, S626_LP_CNTR(chan), value);
678 s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
e3eb08d0
HS
679}
680
010be96f
IA
681/* ****** PRIVATE COUNTER FUNCTIONS ****** */
682
683/*
684 * Reset a counter's index and overflow event capture flags.
685 */
26499b8b 686static void s626_reset_cap_flags(struct comedi_device *dev,
0c9a057c 687 unsigned int chan)
010be96f 688{
26499b8b 689 uint16_t set;
010be96f 690
26499b8b 691 set = S626_SET_CRB_INTRESETCMD(1);
0c9a057c 692 if (chan < 3)
26499b8b
HS
693 set |= S626_SET_CRB_INTRESET_A(1);
694 else
695 set |= S626_SET_CRB_INTRESET_B(1);
696
0c9a057c 697 s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
010be96f
IA
698}
699
0a984491 700#ifdef unused
010be96f
IA
701/*
702 * Return counter setup in a format (COUNTER_SETUP) that is consistent
703 * for both A and B counters.
704 */
31de1948 705static uint16_t s626_get_mode_a(struct comedi_device *dev,
0c9a057c 706 unsigned int chan)
010be96f
IA
707{
708 uint16_t cra;
709 uint16_t crb;
710 uint16_t setup;
0830ada5 711 unsigned cntsrc, clkmult, clkpol, encmode;
010be96f
IA
712
713 /* Fetch CRA and CRB register images. */
0c9a057c
HS
714 cra = s626_debi_read(dev, S626_LP_CRA(chan));
715 crb = s626_debi_read(dev, S626_LP_CRB(chan));
010be96f
IA
716
717 /*
718 * Populate the standardized counter setup bit fields.
010be96f 719 */
0830ada5
IA
720 setup =
721 /* LoadSrc = LoadSrcA. */
722 S626_SET_STD_LOADSRC(S626_GET_CRA_LOADSRC_A(cra)) |
723 /* LatchSrc = LatchSrcA. */
724 S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
725 /* IntSrc = IntSrcA. */
726 S626_SET_STD_INTSRC(S626_GET_CRA_INTSRC_A(cra)) |
2cea19fa
IA
727 /* IndxSrc = IndxSrcA. */
728 S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_A(cra)) |
0830ada5
IA
729 /* IndxPol = IndxPolA. */
730 S626_SET_STD_INDXPOL(S626_GET_CRA_INDXPOL_A(cra)) |
731 /* ClkEnab = ClkEnabA. */
732 S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_A(crb));
010be96f
IA
733
734 /* Adjust mode-dependent parameters. */
0830ada5
IA
735 cntsrc = S626_GET_CRA_CNTSRC_A(cra);
736 if (cntsrc & S626_CNTSRC_SYSCLK) {
622ec01a 737 /* Timer mode (CntSrcA<1> == 1): */
0830ada5 738 encmode = S626_ENCMODE_TIMER;
622ec01a 739 /* Set ClkPol to indicate count direction (CntSrcA<0>). */
0830ada5 740 clkpol = cntsrc & 1;
010be96f 741 /* ClkMult must be 1x in Timer mode. */
7a1046e5 742 clkmult = S626_CLKMULT_1X;
010be96f 743 } else {
622ec01a 744 /* Counter mode (CntSrcA<1> == 0): */
0830ada5 745 encmode = S626_ENCMODE_COUNTER;
010be96f 746 /* Pass through ClkPol. */
0830ada5 747 clkpol = S626_GET_CRA_CLKPOL_A(cra);
010be96f 748 /* Force ClkMult to 1x if not legal, else pass through. */
0830ada5 749 clkmult = S626_GET_CRA_CLKMULT_A(cra);
7a1046e5
IA
750 if (clkmult == S626_CLKMULT_SPECIAL)
751 clkmult = S626_CLKMULT_1X;
010be96f 752 }
0830ada5
IA
753 setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
754 S626_SET_STD_CLKPOL(clkpol);
010be96f
IA
755
756 /* Return adjusted counter setup. */
757 return setup;
758}
759
31de1948 760static uint16_t s626_get_mode_b(struct comedi_device *dev,
0c9a057c 761 unsigned int chan)
010be96f
IA
762{
763 uint16_t cra;
764 uint16_t crb;
765 uint16_t setup;
0830ada5 766 unsigned cntsrc, clkmult, clkpol, encmode;
010be96f
IA
767
768 /* Fetch CRA and CRB register images. */
0c9a057c
HS
769 cra = s626_debi_read(dev, S626_LP_CRA(chan));
770 crb = s626_debi_read(dev, S626_LP_CRB(chan));
010be96f
IA
771
772 /*
773 * Populate the standardized counter setup bit fields.
010be96f 774 */
0830ada5
IA
775 setup =
776 /* IntSrc = IntSrcB. */
777 S626_SET_STD_INTSRC(S626_GET_CRB_INTSRC_B(crb)) |
778 /* LatchSrc = LatchSrcB. */
779 S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
780 /* LoadSrc = LoadSrcB. */
781 S626_SET_STD_LOADSRC(S626_GET_CRB_LOADSRC_B(crb)) |
782 /* IndxPol = IndxPolB. */
783 S626_SET_STD_INDXPOL(S626_GET_CRB_INDXPOL_B(crb)) |
784 /* ClkEnab = ClkEnabB. */
785 S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_B(crb)) |
2cea19fa
IA
786 /* IndxSrc = IndxSrcB. */
787 S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_B(cra));
010be96f
IA
788
789 /* Adjust mode-dependent parameters. */
0830ada5
IA
790 cntsrc = S626_GET_CRA_CNTSRC_B(cra);
791 clkmult = S626_GET_CRB_CLKMULT_B(crb);
7a1046e5
IA
792 if (clkmult == S626_CLKMULT_SPECIAL) {
793 /* Extender mode (ClkMultB == S626_CLKMULT_SPECIAL): */
0830ada5 794 encmode = S626_ENCMODE_EXTENDER;
010be96f 795 /* Indicate multiplier is 1x. */
7a1046e5 796 clkmult = S626_CLKMULT_1X;
622ec01a 797 /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
0830ada5
IA
798 clkpol = cntsrc & 1;
799 } else if (cntsrc & S626_CNTSRC_SYSCLK) {
622ec01a 800 /* Timer mode (CntSrcB<1> == 1): */
0830ada5 801 encmode = S626_ENCMODE_TIMER;
010be96f 802 /* Indicate multiplier is 1x. */
7a1046e5 803 clkmult = S626_CLKMULT_1X;
622ec01a 804 /* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
0830ada5 805 clkpol = cntsrc & 1;
010be96f 806 } else {
622ec01a 807 /* If Counter mode (CntSrcB<1> == 0): */
0830ada5 808 encmode = S626_ENCMODE_COUNTER;
010be96f 809 /* Clock multiplier is passed through. */
010be96f 810 /* Clock polarity is passed through. */
0830ada5 811 clkpol = S626_GET_CRB_CLKPOL_B(crb);
010be96f 812 }
0830ada5
IA
813 setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
814 S626_SET_STD_CLKPOL(clkpol);
010be96f
IA
815
816 /* Return adjusted counter setup. */
817 return setup;
818}
819
0a984491 820static uint16_t s626_get_mode(struct comedi_device *dev,
0c9a057c 821 unsigned int chan)
0a984491 822{
193725ba
HS
823 return (chan < 3) ? s626_get_mode_a(dev, chan)
824 : s626_get_mode_b(dev, chan);
0a984491
HS
825}
826#endif
827
17afeac2
IA
828/*
829 * Set the operating mode for the specified counter. The setup
830 * parameter is treated as a COUNTER_SETUP data type. The following
831 * parameters are programmable (all other parms are ignored): ClkMult,
832 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
833 */
31de1948 834static void s626_set_mode_a(struct comedi_device *dev,
0c9a057c 835 unsigned int chan, uint16_t setup,
31de1948 836 uint16_t disable_int_src)
17afeac2
IA
837{
838 struct s626_private *devpriv = dev->private;
839 uint16_t cra;
840 uint16_t crb;
0830ada5 841 unsigned cntsrc, clkmult, clkpol;
17afeac2
IA
842
843 /* Initialize CRA and CRB images. */
844 /* Preload trigger is passed through. */
0830ada5 845 cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
2cea19fa
IA
846 /* IndexSrc is passed through. */
847 cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
848
849 /* Reset any pending CounterA event captures. */
0830ada5 850 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
17afeac2 851 /* Clock enable is passed through. */
0830ada5 852 crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
17afeac2
IA
853
854 /* Force IntSrc to Disabled if disable_int_src is asserted. */
855 if (!disable_int_src)
0830ada5 856 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
17afeac2
IA
857
858 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
859 clkpol = S626_GET_STD_CLKPOL(setup);
860 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a 861 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
d8515652 862 /* Force to Timer mode (Extender valid only for B counters). */
622ec01a
IA
863 /* Fall through to case S626_ENCMODE_TIMER: */
864 case S626_ENCMODE_TIMER: /* Timer Mode: */
865 /* CntSrcA<1> selects system clock */
0830ada5 866 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 867 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
0830ada5 868 cntsrc |= clkpol;
17afeac2 869 /* ClkPolA behaves as always-on clock enable. */
0830ada5 870 clkpol = 1;
17afeac2 871 /* ClkMult must be 1x. */
7a1046e5 872 clkmult = S626_CLKMULT_1X;
17afeac2
IA
873 break;
874 default: /* Counter Mode: */
875 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 876 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 877 /* Clock polarity is passed through. */
17afeac2 878 /* Force multiplier to x1 if not legal, else pass through. */
0830ada5 879 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
880 if (clkmult == S626_CLKMULT_SPECIAL)
881 clkmult = S626_CLKMULT_1X;
17afeac2
IA
882 break;
883 }
0830ada5
IA
884 cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
885 S626_SET_CRA_CLKMULT_A(clkmult);
17afeac2
IA
886
887 /*
888 * Force positive index polarity if IndxSrc is software-driven only,
889 * otherwise pass it through.
890 */
2cea19fa 891 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 892 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
893
894 /*
895 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
896 * enable mask to indicate the counter interrupt is disabled.
897 */
898 if (disable_int_src)
0c9a057c
HS
899 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
900 S626_INDXMASK(chan));
17afeac2
IA
901
902 /*
903 * While retaining CounterB and LatchSrc configurations, program the
904 * new counter operating mode.
905 */
0c9a057c 906 s626_debi_replace(dev, S626_LP_CRA(chan),
622ec01a 907 S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
0c9a057c 908 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 909 ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
17afeac2
IA
910}
911
31de1948 912static void s626_set_mode_b(struct comedi_device *dev,
0c9a057c 913 unsigned int chan, uint16_t setup,
31de1948 914 uint16_t disable_int_src)
17afeac2
IA
915{
916 struct s626_private *devpriv = dev->private;
917 uint16_t cra;
918 uint16_t crb;
0830ada5 919 unsigned cntsrc, clkmult, clkpol;
17afeac2
IA
920
921 /* Initialize CRA and CRB images. */
2cea19fa
IA
922 /* IndexSrc is passed through. */
923 cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
17afeac2
IA
924
925 /* Reset event captures and disable interrupts. */
0830ada5 926 crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
17afeac2 927 /* Clock enable is passed through. */
0830ada5 928 crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
17afeac2 929 /* Preload trigger source is passed through. */
0830ada5 930 crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
17afeac2
IA
931
932 /* Force IntSrc to Disabled if disable_int_src is asserted. */
933 if (!disable_int_src)
0830ada5 934 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
17afeac2
IA
935
936 /* Populate all mode-dependent attributes of CRA & CRB images. */
0830ada5
IA
937 clkpol = S626_GET_STD_CLKPOL(setup);
938 switch (S626_GET_STD_ENCMODE(setup)) {
622ec01a
IA
939 case S626_ENCMODE_TIMER: /* Timer Mode: */
940 /* CntSrcB<1> selects system clock */
0830ada5 941 cntsrc = S626_CNTSRC_SYSCLK;
622ec01a 942 /* with direction (CntSrcB<0>) obtained from ClkPol. */
0830ada5 943 cntsrc |= clkpol;
17afeac2 944 /* ClkPolB behaves as always-on clock enable. */
0830ada5 945 clkpol = 1;
17afeac2 946 /* ClkMultB must be 1x. */
7a1046e5 947 clkmult = S626_CLKMULT_1X;
17afeac2 948 break;
622ec01a
IA
949 case S626_ENCMODE_EXTENDER: /* Extender Mode: */
950 /* CntSrcB source is OverflowA (same as "timer") */
0830ada5 951 cntsrc = S626_CNTSRC_SYSCLK;
17afeac2 952 /* with direction obtained from ClkPol. */
0830ada5 953 cntsrc |= clkpol;
17afeac2 954 /* ClkPolB controls IndexB -- always set to active. */
0830ada5 955 clkpol = 1;
17afeac2 956 /* ClkMultB selects OverflowA as the clock source. */
7a1046e5 957 clkmult = S626_CLKMULT_SPECIAL;
17afeac2
IA
958 break;
959 default: /* Counter Mode: */
960 /* Select ENC_C and ENC_D as clock/direction inputs. */
0830ada5 961 cntsrc = S626_CNTSRC_ENCODER;
17afeac2 962 /* ClkPol is passed through. */
17afeac2 963 /* Force ClkMult to x1 if not legal, otherwise pass through. */
0830ada5 964 clkmult = S626_GET_STD_CLKMULT(setup);
7a1046e5
IA
965 if (clkmult == S626_CLKMULT_SPECIAL)
966 clkmult = S626_CLKMULT_1X;
17afeac2
IA
967 break;
968 }
0830ada5
IA
969 cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
970 crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
17afeac2
IA
971
972 /*
973 * Force positive index polarity if IndxSrc is software-driven only,
974 * otherwise pass it through.
975 */
2cea19fa 976 if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
0830ada5 977 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
17afeac2
IA
978
979 /*
980 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
981 * enable mask to indicate the counter interrupt is disabled.
982 */
983 if (disable_int_src)
0c9a057c
HS
984 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
985 S626_INDXMASK(chan));
17afeac2
IA
986
987 /*
988 * While retaining CounterA and LatchSrc configurations, program the
989 * new counter operating mode.
990 */
0c9a057c 991 s626_debi_replace(dev, S626_LP_CRA(chan),
622ec01a 992 ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
0c9a057c 993 s626_debi_replace(dev, S626_LP_CRB(chan),
d8515652 994 S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
17afeac2
IA
995}
996
b35d6a38 997static void s626_set_mode(struct comedi_device *dev,
0c9a057c 998 unsigned int chan,
b35d6a38
HS
999 uint16_t setup, uint16_t disable_int_src)
1000{
0c9a057c
HS
1001 if (chan < 3)
1002 s626_set_mode_a(dev, chan, setup, disable_int_src);
b35d6a38 1003 else
0c9a057c 1004 s626_set_mode_b(dev, chan, setup, disable_int_src);
b35d6a38
HS
1005}
1006
17afeac2
IA
1007/*
1008 * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
1009 */
c718f4a1 1010static void s626_set_enable(struct comedi_device *dev,
0c9a057c 1011 unsigned int chan, uint16_t enab)
17afeac2 1012{
c718f4a1
HS
1013 unsigned int mask = S626_CRBMSK_INTCTRL;
1014 unsigned int set;
17afeac2 1015
0c9a057c 1016 if (chan < 3) {
c718f4a1
HS
1017 mask |= S626_CRBMSK_CLKENAB_A;
1018 set = S626_SET_CRB_CLKENAB_A(enab);
1019 } else {
1020 mask |= S626_CRBMSK_CLKENAB_B;
1021 set = S626_SET_CRB_CLKENAB_B(enab);
1022 }
0c9a057c 1023 s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
17afeac2
IA
1024}
1025
4487502e
HS
1026#ifdef unused
1027static uint16_t s626_get_enable(struct comedi_device *dev,
0c9a057c 1028 unsigned int chan)
17afeac2 1029{
0c9a057c 1030 uint16_t crb = s626_debi_read(dev, S626_LP_CRB(chan));
17afeac2 1031
193725ba
HS
1032 return (chan < 3) ? S626_GET_CRB_CLKENAB_A(crb)
1033 : S626_GET_CRB_CLKENAB_B(crb);
17afeac2 1034}
4487502e 1035#endif
17afeac2
IA
1036
1037#ifdef unused
31de1948 1038static uint16_t s626_get_latch_source(struct comedi_device *dev,
0c9a057c 1039 unsigned int chan)
17afeac2 1040{
0c9a057c 1041 return S626_GET_CRB_LATCHSRC(s626_debi_read(dev, S626_LP_CRB(chan)));
17afeac2
IA
1042}
1043#endif
1044
1045/*
1046 * Return/set the event that will trigger transfer of the preload
1047 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
1048 * 2=OverflowA (B counters only), 3=disabled.
1049 */
7f03b749 1050static void s626_set_load_trig(struct comedi_device *dev,
0c9a057c 1051 unsigned int chan, uint16_t trig)
17afeac2 1052{
7f03b749
HS
1053 uint16_t reg;
1054 uint16_t mask;
1055 uint16_t set;
17afeac2 1056
0c9a057c
HS
1057 if (chan < 3) {
1058 reg = S626_LP_CRA(chan);
7f03b749
HS
1059 mask = S626_CRAMSK_LOADSRC_A;
1060 set = S626_SET_CRA_LOADSRC_A(trig);
1061 } else {
0c9a057c 1062 reg = S626_LP_CRB(chan);
7f03b749
HS
1063 mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
1064 set = S626_SET_CRB_LOADSRC_B(trig);
1065 }
1066 s626_debi_replace(dev, reg, ~mask, set);
17afeac2
IA
1067}
1068
c35b86a7
HS
1069#ifdef unused
1070static uint16_t s626_get_load_trig(struct comedi_device *dev,
0c9a057c 1071 unsigned int chan)
17afeac2 1072{
0c9a057c 1073 if (chan < 3)
c35b86a7 1074 return S626_GET_CRA_LOADSRC_A(s626_debi_read(dev,
0c9a057c 1075 S626_LP_CRA(chan)));
c35b86a7
HS
1076 else
1077 return S626_GET_CRB_LOADSRC_B(s626_debi_read(dev,
0c9a057c 1078 S626_LP_CRB(chan)));
17afeac2 1079}
c35b86a7 1080#endif
17afeac2 1081
bc284a2a
IA
1082/*
1083 * Return/set counter interrupt source and clear any captured
1084 * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly,
1085 * 2=IndexOnly, 3=IndexAndOverflow.
1086 */
253e2ee4 1087static void s626_set_int_src(struct comedi_device *dev,
0c9a057c 1088 unsigned int chan, uint16_t int_source)
bc284a2a
IA
1089{
1090 struct s626_private *devpriv = dev->private;
0c9a057c
HS
1091 uint16_t cra_reg = S626_LP_CRA(chan);
1092 uint16_t crb_reg = S626_LP_CRB(chan);
bc284a2a 1093
0c9a057c 1094 if (chan < 3) {
253e2ee4
HS
1095 /* Reset any pending counter overflow or index captures */
1096 s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
1097 S626_SET_CRB_INTRESETCMD(1) |
1098 S626_SET_CRB_INTRESET_A(1));
1099
1100 /* Program counter interrupt source */
1101 s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
1102 S626_SET_CRA_INTSRC_A(int_source));
1103 } else {
1104 uint16_t crb;
bc284a2a 1105
253e2ee4
HS
1106 /* Cache writeable CRB register image */
1107 crb = s626_debi_read(dev, crb_reg);
1108 crb &= ~S626_CRBMSK_INTCTRL;
bc284a2a 1109
253e2ee4
HS
1110 /* Reset any pending counter overflow or index captures */
1111 s626_debi_write(dev, crb_reg,
1112 crb | S626_SET_CRB_INTRESETCMD(1) |
1113 S626_SET_CRB_INTRESET_B(1));
bc284a2a 1114
253e2ee4
HS
1115 /* Program counter interrupt source */
1116 s626_debi_write(dev, crb_reg,
1117 (crb & ~S626_CRBMSK_INTSRC_B) |
1118 S626_SET_CRB_INTSRC_B(int_source));
1119 }
bc284a2a
IA
1120
1121 /* Update MISC2 interrupt enable mask. */
0c9a057c
HS
1122 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
1123 S626_INDXMASK(chan));
f76d02f8
HS
1124 switch (int_source) {
1125 case 0:
1126 default:
1127 break;
1128 case 1:
0c9a057c 1129 devpriv->counter_int_enabs |= S626_OVERMASK(chan);
f76d02f8
HS
1130 break;
1131 case 2:
0c9a057c 1132 devpriv->counter_int_enabs |= S626_INDXMASK(chan);
f76d02f8
HS
1133 break;
1134 case 3:
0c9a057c
HS
1135 devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
1136 S626_INDXMASK(chan));
f76d02f8
HS
1137 break;
1138 }
bc284a2a
IA
1139}
1140
13f2609d
HS
1141#ifdef unused
1142static uint16_t s626_get_int_src(struct comedi_device *dev,
0c9a057c 1143 unsigned int chan)
bc284a2a 1144{
13f2609d
HS
1145 if (chan < 3)
1146 return S626_GET_CRA_INTSRC_A(s626_debi_read(dev,
0c9a057c 1147 S626_LP_CRA(chan)));
13f2609d
HS
1148 else
1149 return S626_GET_CRB_INTSRC_B(s626_debi_read(dev,
0c9a057c 1150 S626_LP_CRB(chan)));
bc284a2a 1151}
13f2609d 1152#endif
bc284a2a
IA
1153
1154#ifdef unused
1155/*
1156 * Return/set the clock multiplier.
1157 */
31de1948 1158static void s626_set_clk_mult(struct comedi_device *dev,
0c9a057c 1159 unsigned int chan, uint16_t value)
bc284a2a 1160{
0c9a057c
HS
1161 uint16_t mode;
1162
1163 mode = s626_get_mode(dev, chan);
1164 mode &= ~S626_STDMSK_CLKMULT;
1165 mode |= S626_SET_STD_CLKMULT(value);
1166
1167 s626_set_mode(dev, chan, mode, false);
bc284a2a
IA
1168}
1169
31de1948 1170static uint16_t s626_get_clk_mult(struct comedi_device *dev,
0c9a057c 1171 unsigned int chan)
bc284a2a 1172{
0c9a057c 1173 return S626_GET_STD_CLKMULT(s626_get_mode(dev, chan));
bc284a2a
IA
1174}
1175
1176/*
1177 * Return/set the clock polarity.
1178 */
31de1948 1179static void s626_set_clk_pol(struct comedi_device *dev,
0c9a057c 1180 unsigned int chan, uint16_t value)
bc284a2a 1181{
0c9a057c
HS
1182 uint16_t mode;
1183
1184 mode = s626_get_mode(dev, chan);
1185 mode &= ~S626_STDMSK_CLKPOL;
1186 mode |= S626_SET_STD_CLKPOL(value);
1187
1188 s626_set_mode(dev, chan, mode, false);
bc284a2a
IA
1189}
1190
31de1948 1191static uint16_t s626_get_clk_pol(struct comedi_device *dev,
0c9a057c 1192 unsigned int chan)
bc284a2a 1193{
0c9a057c 1194 return S626_GET_STD_CLKPOL(s626_get_mode(dev, chan));
bc284a2a
IA
1195}
1196
1197/*
622ec01a 1198 * Return/set the encoder mode.
bc284a2a 1199 */
622ec01a 1200static void s626_set_enc_mode(struct comedi_device *dev,
0c9a057c 1201 unsigned int chan, uint16_t value)
bc284a2a 1202{
0c9a057c
HS
1203 uint16_t mode;
1204
1205 mode = s626_get_mode(dev, chan);
1206 mode &= ~S626_STDMSK_ENCMODE;
1207 mode |= S626_SET_STD_ENCMODE(value);
1208
1209 s626_set_mode(dev, chan, mode, false);
bc284a2a
IA
1210}
1211
622ec01a 1212static uint16_t s626_get_enc_mode(struct comedi_device *dev,
0c9a057c 1213 unsigned int chan)
bc284a2a 1214{
0c9a057c 1215 return S626_GET_STD_ENCMODE(s626_get_mode(dev, chan));
bc284a2a
IA
1216}
1217
1218/*
1219 * Return/set the index polarity.
1220 */
31de1948 1221static void s626_set_index_pol(struct comedi_device *dev,
0c9a057c 1222 unsigned int chan, uint16_t value)
bc284a2a 1223{
0c9a057c
HS
1224 uint16_t mode;
1225
1226 mode = s626_get_mode(dev, chan);
1227 mode &= ~S626_STDMSK_INDXPOL;
1228 mode |= S626_SET_STD_INDXPOL(value != 0);
1229
1230 s626_set_mode(dev, chan, mode, false);
bc284a2a
IA
1231}
1232
31de1948 1233static uint16_t s626_get_index_pol(struct comedi_device *dev,
0c9a057c 1234 unsigned int chan)
bc284a2a 1235{
0c9a057c 1236 return S626_GET_STD_INDXPOL(s626_get_mode(dev, chan));
bc284a2a
IA
1237}
1238
1239/*
1240 * Return/set the index source.
1241 */
31de1948 1242static void s626_set_index_src(struct comedi_device *dev,
0c9a057c 1243 unsigned int chan, uint16_t value)
bc284a2a 1244{
0c9a057c
HS
1245 uint16_t mode;
1246
1247 mode = s626_get_mode(dev, chan);
1248 mode &= ~S626_STDMSK_INDXSRC;
1249 mode |= S626_SET_STD_INDXSRC(value != 0);
1250
1251 s626_set_mode(dev, chan, mode, false);
bc284a2a
IA
1252}
1253
31de1948 1254static uint16_t s626_get_index_src(struct comedi_device *dev,
0c9a057c 1255 unsigned int chan)
bc284a2a 1256{
0c9a057c 1257 return S626_GET_STD_INDXSRC(s626_get_mode(dev, chan));
bc284a2a
IA
1258}
1259#endif
1260
1261/*
1262 * Generate an index pulse.
1263 */
92249e1f 1264static void s626_pulse_index(struct comedi_device *dev,
0c9a057c 1265 unsigned int chan)
bc284a2a 1266{
0c9a057c 1267 if (chan < 3) {
92249e1f 1268 uint16_t cra;
bc284a2a 1269
0c9a057c 1270 cra = s626_debi_read(dev, S626_LP_CRA(chan));
bc284a2a 1271
92249e1f 1272 /* Pulse index */
0c9a057c 1273 s626_debi_write(dev, S626_LP_CRA(chan),
92249e1f 1274 (cra ^ S626_CRAMSK_INDXPOL_A));
0c9a057c 1275 s626_debi_write(dev, S626_LP_CRA(chan), cra);
92249e1f
HS
1276 } else {
1277 uint16_t crb;
bc284a2a 1278
0c9a057c 1279 crb = s626_debi_read(dev, S626_LP_CRB(chan));
92249e1f
HS
1280 crb &= ~S626_CRBMSK_INTCTRL;
1281
1282 /* Pulse index */
0c9a057c 1283 s626_debi_write(dev, S626_LP_CRB(chan),
92249e1f 1284 (crb ^ S626_CRBMSK_INDXPOL_B));
0c9a057c 1285 s626_debi_write(dev, S626_LP_CRB(chan), crb);
92249e1f 1286 }
bc284a2a
IA
1287}
1288
5fd4b711 1289static unsigned int s626_ai_reg_to_uint(unsigned int data)
11e865c1 1290{
5fd4b711 1291 return ((data >> 18) & 0x3fff) ^ 0x2000;
020c44f3 1292}
8231eb56 1293
6baffbc2
HS
1294static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1295{
100b4edc
HS
1296 unsigned int group = chan / 16;
1297 unsigned int mask = 1 << (chan - (16 * group));
6baffbc2
HS
1298 unsigned int status;
1299
6baffbc2 1300 /* set channel to capture positive edge */
d8515652
IA
1301 status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1302 s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
6baffbc2
HS
1303
1304 /* enable interrupt on selected channel */
d8515652
IA
1305 status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1306 s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
6baffbc2
HS
1307
1308 /* enable edge capture write command */
d8515652 1309 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
6baffbc2
HS
1310
1311 /* enable edge capture on selected channel */
d8515652
IA
1312 status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1313 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
6baffbc2
HS
1314
1315 return 0;
1316}
1317
1318static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1319 unsigned int mask)
1320{
6baffbc2 1321 /* disable edge capture write command */
d8515652 1322 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2
HS
1323
1324 /* enable edge capture on selected channel */
d8515652 1325 s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
6baffbc2
HS
1326
1327 return 0;
1328}
1329
1330static int s626_dio_clear_irq(struct comedi_device *dev)
1331{
1332 unsigned int group;
1333
1334 /* disable edge capture write command */
d8515652 1335 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
6baffbc2 1336
100b4edc
HS
1337 /* clear all dio pending events and interrupt */
1338 for (group = 0; group < S626_DIO_BANKS; group++)
d8515652 1339 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
6baffbc2
HS
1340
1341 return 0;
1342}
1343
31de1948
IA
1344static void s626_handle_dio_interrupt(struct comedi_device *dev,
1345 uint16_t irqbit, uint8_t group)
65a17c29
HS
1346{
1347 struct s626_private *devpriv = dev->private;
1348 struct comedi_subdevice *s = dev->read_subdev;
1349 struct comedi_cmd *cmd = &s->async->cmd;
1350
1351 s626_dio_reset_irq(dev, group, irqbit);
1352
1353 if (devpriv->ai_cmd_running) {
1354 /* check if interrupt is an ai acquisition start trigger */
1355 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1356 cmd->start_src == TRIG_EXT) {
1357 /* Start executing the RPS program */
d8515652 1358 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
65a17c29
HS
1359
1360 if (cmd->scan_begin_src == TRIG_EXT)
1361 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1362 }
1363 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1364 cmd->scan_begin_src == TRIG_EXT) {
ddd9813e 1365 /* Trigger ADC scan loop start */
d8515652 1366 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1367
1368 if (cmd->convert_src == TRIG_EXT) {
1369 devpriv->ai_convert_count = cmd->chanlist_len;
1370
1371 s626_dio_set_irq(dev, cmd->convert_arg);
1372 }
1373
1374 if (cmd->convert_src == TRIG_TIMER) {
65a17c29 1375 devpriv->ai_convert_count = cmd->chanlist_len;
0c9a057c 1376 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
65a17c29
HS
1377 }
1378 }
1379 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1380 cmd->convert_src == TRIG_EXT) {
ddd9813e 1381 /* Trigger ADC scan loop start */
d8515652 1382 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
65a17c29
HS
1383
1384 devpriv->ai_convert_count--;
1385 if (devpriv->ai_convert_count > 0)
1386 s626_dio_set_irq(dev, cmd->convert_arg);
1387 }
1388 }
1389}
1390
31de1948 1391static void s626_check_dio_interrupts(struct comedi_device *dev)
65a17c29
HS
1392{
1393 uint16_t irqbit;
1394 uint8_t group;
1395
1396 for (group = 0; group < S626_DIO_BANKS; group++) {
65a17c29 1397 /* read interrupt type */
d8515652 1398 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
65a17c29
HS
1399
1400 /* check if interrupt is generated from dio channels */
1401 if (irqbit) {
31de1948 1402 s626_handle_dio_interrupt(dev, irqbit, group);
65a17c29
HS
1403 return;
1404 }
1405 }
1406}
1407
31de1948 1408static void s626_check_counter_interrupts(struct comedi_device *dev)
0b9675d5
HS
1409{
1410 struct s626_private *devpriv = dev->private;
1411 struct comedi_subdevice *s = dev->read_subdev;
1412 struct comedi_async *async = s->async;
1413 struct comedi_cmd *cmd = &async->cmd;
0b9675d5
HS
1414 uint16_t irqbit;
1415
1416 /* read interrupt type */
d8515652 1417 irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
0b9675d5
HS
1418
1419 /* check interrupt on counters */
d8515652 1420 if (irqbit & S626_IRQ_COINT1A) {
0b9675d5 1421 /* clear interrupt capture flag */
0c9a057c 1422 s626_reset_cap_flags(dev, 0);
0b9675d5 1423 }
d8515652 1424 if (irqbit & S626_IRQ_COINT2A) {
0b9675d5 1425 /* clear interrupt capture flag */
0c9a057c 1426 s626_reset_cap_flags(dev, 1);
0b9675d5 1427 }
d8515652 1428 if (irqbit & S626_IRQ_COINT3A) {
0b9675d5 1429 /* clear interrupt capture flag */
0c9a057c 1430 s626_reset_cap_flags(dev, 2);
0b9675d5 1431 }
d8515652 1432 if (irqbit & S626_IRQ_COINT1B) {
0b9675d5 1433 /* clear interrupt capture flag */
0c9a057c 1434 s626_reset_cap_flags(dev, 3);
0b9675d5 1435 }
d8515652 1436 if (irqbit & S626_IRQ_COINT2B) {
0b9675d5 1437 /* clear interrupt capture flag */
0c9a057c 1438 s626_reset_cap_flags(dev, 4);
0b9675d5
HS
1439
1440 if (devpriv->ai_convert_count > 0) {
1441 devpriv->ai_convert_count--;
1442 if (devpriv->ai_convert_count == 0)
0c9a057c 1443 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
0b9675d5
HS
1444
1445 if (cmd->convert_src == TRIG_TIMER) {
ddd9813e 1446 /* Trigger ADC scan loop start */
d8515652
IA
1447 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1448 S626_P_MC2);
0b9675d5
HS
1449 }
1450 }
1451 }
d8515652 1452 if (irqbit & S626_IRQ_COINT3B) {
0b9675d5 1453 /* clear interrupt capture flag */
0c9a057c 1454 s626_reset_cap_flags(dev, 5);
0b9675d5
HS
1455
1456 if (cmd->scan_begin_src == TRIG_TIMER) {
ddd9813e 1457 /* Trigger ADC scan loop start */
d8515652 1458 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
0b9675d5
HS
1459 }
1460
1461 if (cmd->convert_src == TRIG_TIMER) {
0b9675d5 1462 devpriv->ai_convert_count = cmd->chanlist_len;
0c9a057c 1463 s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
0b9675d5
HS
1464 }
1465 }
1466}
1467
31de1948 1468static bool s626_handle_eos_interrupt(struct comedi_device *dev)
4c2d13e0
HS
1469{
1470 struct s626_private *devpriv = dev->private;
1471 struct comedi_subdevice *s = dev->read_subdev;
1472 struct comedi_async *async = s->async;
1473 struct comedi_cmd *cmd = &async->cmd;
1474 /*
1475 * Init ptr to DMA buffer that holds new ADC data. We skip the
1476 * first uint16_t in the buffer because it contains junk data
1477 * from the final ADC of the previous poll list scan.
1478 */
5fd4b711 1479 uint32_t *readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
4c2d13e0
HS
1480 int i;
1481
1482 /* get the data and hand it over to comedi */
1483 for (i = 0; i < cmd->chanlist_len; i++) {
5fd4b711 1484 unsigned short tempdata;
4c2d13e0
HS
1485
1486 /*
1487 * Convert ADC data to 16-bit integer values and copy
1488 * to application buffer.
1489 */
5fd4b711 1490 tempdata = s626_ai_reg_to_uint(*readaddr);
4c2d13e0
HS
1491 readaddr++;
1492
0e017a4b 1493 comedi_buf_write_samples(s, &tempdata, 1);
4c2d13e0
HS
1494 }
1495
aee15aea
HS
1496 if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1497 async->events |= COMEDI_CB_EOA;
4c2d13e0 1498
aee15aea
HS
1499 if (async->events & COMEDI_CB_CANCEL_MASK)
1500 devpriv->ai_cmd_running = 0;
4c2d13e0
HS
1501
1502 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1503 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1504
365dae93 1505 comedi_handle_events(dev, s);
4c2d13e0 1506
365dae93 1507 return !devpriv->ai_cmd_running;
4c2d13e0
HS
1508}
1509
020c44f3
HS
1510static irqreturn_t s626_irq_handler(int irq, void *d)
1511{
1512 struct comedi_device *dev = d;
020c44f3 1513 unsigned long flags;
020c44f3 1514 uint32_t irqtype, irqstatus;
11e865c1 1515
a7401cdd 1516 if (!dev->attached)
020c44f3 1517 return IRQ_NONE;
8ee52611 1518 /* lock to avoid race with comedi_poll */
020c44f3 1519 spin_lock_irqsave(&dev->spinlock, flags);
11e865c1 1520
020c44f3 1521 /* save interrupt enable register state */
de9cd5ca 1522 irqstatus = readl(dev->mmio + S626_P_IER);
11e865c1 1523
020c44f3 1524 /* read interrupt type */
de9cd5ca 1525 irqtype = readl(dev->mmio + S626_P_ISR);
11e865c1 1526
020c44f3 1527 /* disable master interrupt */
de9cd5ca 1528 writel(0, dev->mmio + S626_P_IER);
11e865c1 1529
020c44f3 1530 /* clear interrupt */
de9cd5ca 1531 writel(irqtype, dev->mmio + S626_P_ISR);
11e865c1 1532
020c44f3 1533 switch (irqtype) {
d8515652 1534 case S626_IRQ_RPS1: /* end_of_scan occurs */
31de1948 1535 if (s626_handle_eos_interrupt(dev))
020c44f3 1536 irqstatus = 0;
020c44f3 1537 break;
d8515652 1538 case S626_IRQ_GPIO3: /* check dio and counter interrupt */
020c44f3 1539 /* s626_dio_clear_irq(dev); */
31de1948
IA
1540 s626_check_dio_interrupts(dev);
1541 s626_check_counter_interrupts(dev);
0b9675d5 1542 break;
020c44f3 1543 }
11e865c1 1544
020c44f3 1545 /* enable interrupt */
de9cd5ca 1546 writel(irqstatus, dev->mmio + S626_P_IER);
b6c77757 1547
020c44f3
HS
1548 spin_unlock_irqrestore(&dev->spinlock, flags);
1549 return IRQ_HANDLED;
1550}
b6c77757 1551
020c44f3 1552/*
8ee52611 1553 * This function builds the RPS program for hardware driven acquisition.
020c44f3 1554 */
31de1948 1555static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
020c44f3 1556{
7f2f7e05 1557 struct s626_private *devpriv = dev->private;
9c9ab3c1
HS
1558 struct comedi_subdevice *s = dev->read_subdev;
1559 struct comedi_cmd *cmd = &s->async->cmd;
f1f7efce
IA
1560 uint32_t *rps;
1561 uint32_t jmp_adrs;
020c44f3
HS
1562 uint16_t i;
1563 uint16_t n;
f1f7efce 1564 uint32_t local_ppl;
11e865c1 1565
c5cf4606 1566 /* Stop RPS program in case it is currently running */
d8515652 1567 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1568
8ee52611 1569 /* Set starting logical address to write RPS commands. */
f1f7efce 1570 rps = (uint32_t *)devpriv->rps_buf.logical_base;
11e865c1 1571
25f8fd5e 1572 /* Initialize RPS instruction pointer */
07a36d66 1573 writel((uint32_t)devpriv->rps_buf.physical_base,
de9cd5ca 1574 dev->mmio + S626_P_RPSADDR1);
11e865c1 1575
07a36d66 1576 /* Construct RPS program in rps_buf DMA buffer */
857ced45 1577 if (cmd->scan_begin_src != TRIG_FOLLOW) {
8ee52611 1578 /* Wait for Start trigger. */
d8515652
IA
1579 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1580 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1581 }
11e865c1 1582
8ee52611
IA
1583 /*
1584 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
020c44f3
HS
1585 * because the first RPS DEBI Write following a non-RPS DEBI write
1586 * seems to always fail. If we don't do this dummy write, the ADC
1587 * gain might not be set to the value required for the first slot in
1588 * the poll list; the ADC gain would instead remain unchanged from
1589 * the previously programmed value.
1590 */
020c44f3 1591 /* Write DEBI Write command and address to shadow RAM. */
d8515652
IA
1592 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1593 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1594 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1595 /* Write DEBI immediate data to shadow RAM: */
d8515652
IA
1596 *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
1597 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1598 /* Reset "shadow RAM uploaded" flag. */
d8515652
IA
1599 /* Invoke shadow RAM upload. */
1600 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1601 /* Wait for shadow upload to finish. */
1602 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1603
8ee52611
IA
1604 /*
1605 * Digitize all slots in the poll list. This is implemented as a
020c44f3 1606 * for loop to limit the slot count to 16 in case the application
d8515652 1607 * forgot to set the S626_EOPL flag in the final slot.
020c44f3 1608 */
07a36d66
IA
1609 for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1610 devpriv->adc_items++) {
8ee52611
IA
1611 /*
1612 * Convert application's poll list item to private board class
020c44f3
HS
1613 * format. Each app poll list item is an uint8_t with form
1614 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1615 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
b6c77757 1616 */
d8515652
IA
1617 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1618 S626_GSEL_BIPOLAR10V);
8ee52611
IA
1619
1620 /* Switch ADC analog gain. */
1621 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1622 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1623 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
8ee52611 1624 /* Write DEBI immediate data to shadow RAM. */
d8515652 1625 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
f1f7efce 1626 *rps++ = local_ppl;
8ee52611 1627 /* Reset "shadow RAM uploaded" flag. */
d8515652 1628 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1629 /* Invoke shadow RAM upload. */
d8515652 1630 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1631 /* Wait for shadow upload to finish. */
d8515652 1632 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
8ee52611 1633 /* Select ADC analog input channel. */
d8515652 1634 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
8ee52611 1635 /* Write DEBI command and address to shadow RAM. */
d8515652
IA
1636 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1637 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
8ee52611 1638 /* Write DEBI immediate data to shadow RAM. */
f1f7efce 1639 *rps++ = local_ppl;
8ee52611 1640 /* Reset "shadow RAM uploaded" flag. */
d8515652 1641 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
8ee52611 1642 /* Invoke shadow RAM upload. */
d8515652 1643 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
8ee52611 1644 /* Wait for shadow upload to finish. */
d8515652 1645 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
11e865c1 1646
8ee52611
IA
1647 /*
1648 * Delay at least 10 microseconds for analog input settling.
d8515652
IA
1649 * Instead of padding with NOPs, we use S626_RPS_JUMP
1650 * instructions here; this allows us to produce a longer delay
1651 * than is possible with NOPs because each S626_RPS_JUMP
1652 * flushes the RPS' instruction prefetch pipeline.
020c44f3 1653 */
f1f7efce 1654 jmp_adrs =
07a36d66 1655 (uint32_t)devpriv->rps_buf.physical_base +
f1f7efce 1656 (uint32_t)((unsigned long)rps -
07a36d66
IA
1657 (unsigned long)devpriv->
1658 rps_buf.logical_base);
d8515652 1659 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
f1f7efce 1660 jmp_adrs += 8; /* Repeat to implement time delay: */
d8515652
IA
1661 /* Jump to next RPS instruction. */
1662 *rps++ = S626_RPS_JUMP;
f1f7efce 1663 *rps++ = jmp_adrs;
020c44f3 1664 }
11e865c1 1665
857ced45 1666 if (cmd->convert_src != TRIG_NOW) {
8ee52611 1667 /* Wait for Start trigger. */
d8515652
IA
1668 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1669 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
020c44f3 1670 }
8ee52611
IA
1671 /* Start ADC by pulsing GPIO1. */
1672 /* Begin ADC Start pulse. */
d8515652
IA
1673 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1674 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1675 *rps++ = S626_RPS_NOP;
8ee52611
IA
1676 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1677 /* End ADC Start pulse. */
d8515652
IA
1678 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1679 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
8ee52611
IA
1680 /*
1681 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
020c44f3
HS
1682 * busy) and for data from previous conversion to shift into FB
1683 * BUFFER 1 register.
1684 */
d8515652
IA
1685 /* Wait for ADC done. */
1686 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
11e865c1 1687
8ee52611 1688 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652
IA
1689 *rps++ = S626_RPS_STREG |
1690 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
f1f7efce
IA
1691 *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1692 (devpriv->adc_items << 2);
11e865c1 1693
8ee52611
IA
1694 /*
1695 * If this slot's EndOfPollList flag is set, all channels have
1696 * now been processed.
1697 */
d8515652 1698 if (*ppl++ & S626_EOPL) {
07a36d66 1699 devpriv->adc_items++; /* Adjust poll list item count. */
8ee52611 1700 break; /* Exit poll list processing loop. */
020c44f3
HS
1701 }
1702 }
11e865c1 1703
8ee52611
IA
1704 /*
1705 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
020c44f3
HS
1706 * ADC to stabilize for 2 microseconds before starting the final
1707 * (dummy) conversion. This delay is necessary to allow sufficient
1708 * time between last conversion finished and the start of the dummy
1709 * conversion. Without this delay, the last conversion's data value
1710 * is sometimes set to the previous conversion's data value.
1711 */
d8515652
IA
1712 for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1713 *rps++ = S626_RPS_NOP;
11e865c1 1714
8ee52611
IA
1715 /*
1716 * Start a dummy conversion to cause the data from the last
020c44f3
HS
1717 * conversion of interest to be shifted in.
1718 */
d8515652
IA
1719 /* Begin ADC Start pulse. */
1720 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1721 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1722 *rps++ = S626_RPS_NOP;
020c44f3 1723 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
d8515652
IA
1724 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1725 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
11e865c1 1726
8ee52611
IA
1727 /*
1728 * Wait for the data from the last conversion of interest to arrive
020c44f3
HS
1729 * in FB BUFFER 1 register.
1730 */
d8515652 1731 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
11e865c1 1732
8ee52611 1733 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
d8515652 1734 *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
f1f7efce
IA
1735 *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1736 (devpriv->adc_items << 2);
11e865c1 1737
8ee52611
IA
1738 /* Indicate ADC scan loop is finished. */
1739 /* Signal ReadADC() that scan is done. */
d8515652 1740 /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
11e865c1 1741
020c44f3 1742 /* invoke interrupt */
8ee52611 1743 if (devpriv->ai_cmd_running == 1)
d8515652 1744 *rps++ = S626_RPS_IRQ;
11e865c1 1745
8ee52611 1746 /* Restart RPS program at its beginning. */
d8515652 1747 *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
f1f7efce 1748 *rps++ = (uint32_t)devpriv->rps_buf.physical_base;
8ee52611
IA
1749
1750 /* End of RPS program build */
020c44f3 1751}
11e865c1 1752
e4632a71
HS
1753#ifdef unused_code
1754static int s626_ai_rinsn(struct comedi_device *dev,
1755 struct comedi_subdevice *s,
1756 struct comedi_insn *insn,
1757 unsigned int *data)
1758{
1759 struct s626_private *devpriv = dev->private;
8ee52611
IA
1760 uint8_t i;
1761 int32_t *readaddr;
11e865c1 1762
ddd9813e 1763 /* Trigger ADC scan loop start */
d8515652 1764 s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
11e865c1 1765
e4632a71 1766 /* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
d8515652 1767 while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
e4632a71 1768 ;
11e865c1 1769
e4632a71
HS
1770 /*
1771 * Init ptr to DMA buffer that holds new ADC data. We skip the
1772 * first uint16_t in the buffer because it contains junk data from
1773 * the final ADC of the previous poll list scan.
1774 */
07a36d66 1775 readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
11e865c1 1776
e4632a71
HS
1777 /*
1778 * Convert ADC data to 16-bit integer values and
1779 * copy to application buffer.
1780 */
07a36d66 1781 for (i = 0; i < devpriv->adc_items; i++) {
e4632a71
HS
1782 *data = s626_ai_reg_to_uint(*readaddr++);
1783 data++;
1784 }
11e865c1 1785
e4632a71
HS
1786 return i;
1787}
1788#endif
11e865c1 1789
45b281e4
HS
1790static int s626_ai_eoc(struct comedi_device *dev,
1791 struct comedi_subdevice *s,
1792 struct comedi_insn *insn,
1793 unsigned long context)
1794{
45b281e4
HS
1795 unsigned int status;
1796
de9cd5ca 1797 status = readl(dev->mmio + S626_P_PSR);
45b281e4
HS
1798 if (status & S626_PSR_GPIO2)
1799 return 0;
1800 return -EBUSY;
1801}
1802
020c44f3
HS
1803static int s626_ai_insn_read(struct comedi_device *dev,
1804 struct comedi_subdevice *s,
de9cd5ca
HS
1805 struct comedi_insn *insn,
1806 unsigned int *data)
020c44f3
HS
1807{
1808 uint16_t chan = CR_CHAN(insn->chanspec);
1809 uint16_t range = CR_RANGE(insn->chanspec);
f1f7efce
IA
1810 uint16_t adc_spec = 0;
1811 uint32_t gpio_image;
5fd4b711 1812 uint32_t tmp;
45b281e4 1813 int ret;
020c44f3 1814 int n;
11e865c1 1815
8ee52611
IA
1816 /*
1817 * Convert application's ADC specification into form
020c44f3
HS
1818 * appropriate for register programming.
1819 */
1820 if (range == 0)
d8515652 1821 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
020c44f3 1822 else
d8515652 1823 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
11e865c1 1824
8ee52611 1825 /* Switch ADC analog gain. */
d8515652 1826 s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
11e865c1 1827
8ee52611 1828 /* Select ADC analog input channel. */
d8515652 1829 s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
11e865c1 1830
020c44f3 1831 for (n = 0; n < insn->n; n++) {
8ee52611 1832 /* Delay 10 microseconds for analog input settling. */
020c44f3 1833 udelay(10);
11e865c1 1834
be008602 1835 /* Start ADC by pulsing GPIO1 low */
de9cd5ca 1836 gpio_image = readl(dev->mmio + S626_P_GPIO);
25f8fd5e 1837 /* Assert ADC Start command */
de9cd5ca 1838 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1839 /* and stretch it out */
de9cd5ca
HS
1840 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1841 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1842 /* Negate ADC Start command */
de9cd5ca 1843 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
11e865c1 1844
8ee52611
IA
1845 /*
1846 * Wait for ADC to complete (GPIO2 is asserted high when
1847 * ADC not busy) and for data from previous conversion to
1848 * shift into FB BUFFER 1 register.
1849 */
11e865c1 1850
be008602 1851 /* Wait for ADC done */
45b281e4
HS
1852 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1853 if (ret)
1854 return ret;
11e865c1 1855
be008602
HS
1856 /* Fetch ADC data */
1857 if (n != 0) {
de9cd5ca 1858 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
be008602
HS
1859 data[n - 1] = s626_ai_reg_to_uint(tmp);
1860 }
11e865c1 1861
8ee52611
IA
1862 /*
1863 * Allow the ADC to stabilize for 4 microseconds before
020c44f3
HS
1864 * starting the next (final) conversion. This delay is
1865 * necessary to allow sufficient time between last
1866 * conversion finished and the start of the next
1867 * conversion. Without this delay, the last conversion's
1868 * data value is sometimes set to the previous
1869 * conversion's data value.
1870 */
1871 udelay(4);
1872 }
11e865c1 1873
8ee52611
IA
1874 /*
1875 * Start a dummy conversion to cause the data from the
1876 * previous conversion to be shifted in.
1877 */
de9cd5ca 1878 gpio_image = readl(dev->mmio + S626_P_GPIO);
020c44f3 1879 /* Assert ADC Start command */
de9cd5ca 1880 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1881 /* and stretch it out */
de9cd5ca
HS
1882 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1883 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
25f8fd5e 1884 /* Negate ADC Start command */
de9cd5ca 1885 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
11e865c1 1886
8ee52611 1887 /* Wait for the data to arrive in FB BUFFER 1 register. */
11e865c1 1888
be008602 1889 /* Wait for ADC done */
571845c6
CS
1890 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1891 if (ret)
1892 return ret;
11e865c1 1893
8ee52611 1894 /* Fetch ADC data from audio interface's input shift register. */
11e865c1 1895
be008602
HS
1896 /* Fetch ADC data */
1897 if (n != 0) {
de9cd5ca 1898 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
be008602
HS
1899 data[n - 1] = s626_ai_reg_to_uint(tmp);
1900 }
11e865c1 1901
020c44f3
HS
1902 return n;
1903}
11e865c1 1904
020c44f3
HS
1905static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1906{
020c44f3 1907 int n;
11e865c1 1908
020c44f3 1909 for (n = 0; n < cmd->chanlist_len; n++) {
8ee52611 1910 if (CR_RANGE(cmd->chanlist[n]) == 0)
d8515652 1911 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
020c44f3 1912 else
d8515652 1913 ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
020c44f3
HS
1914 }
1915 if (n != 0)
d8515652 1916 ppl[n - 1] |= S626_EOPL;
11e865c1 1917
020c44f3
HS
1918 return n;
1919}
11e865c1 1920
020c44f3 1921static int s626_ai_inttrig(struct comedi_device *dev,
478da5c9
HS
1922 struct comedi_subdevice *s,
1923 unsigned int trig_num)
020c44f3 1924{
478da5c9
HS
1925 struct comedi_cmd *cmd = &s->async->cmd;
1926
1927 if (trig_num != cmd->start_arg)
020c44f3 1928 return -EINVAL;
11e865c1 1929
ddd9813e 1930 /* Start executing the RPS program */
d8515652 1931 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 1932
020c44f3 1933 s->async->inttrig = NULL;
11e865c1 1934
020c44f3
HS
1935 return 1;
1936}
11e865c1 1937
8ee52611
IA
1938/*
1939 * This function doesn't require a particular form, this is just what
6baffbc2
HS
1940 * happens to be used in some of the drivers. It should convert ns
1941 * nanoseconds to a counter value suitable for programming the device.
1942 * Also, it should adjust ns so that it cooresponds to the actual time
8ee52611
IA
1943 * that the device will use.
1944 */
a207c12f 1945static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
6baffbc2
HS
1946{
1947 int divider, base;
1948
1949 base = 500; /* 2MHz internal clock */
1950
889277b9
IA
1951 switch (flags & CMDF_ROUND_MASK) {
1952 case CMDF_ROUND_NEAREST:
6baffbc2 1953 default:
d9798aa6 1954 divider = DIV_ROUND_CLOSEST(*nanosec, base);
6baffbc2 1955 break;
889277b9 1956 case CMDF_ROUND_DOWN:
6baffbc2
HS
1957 divider = (*nanosec) / base;
1958 break;
889277b9 1959 case CMDF_ROUND_UP:
97996da1 1960 divider = DIV_ROUND_UP(*nanosec, base);
6baffbc2
HS
1961 break;
1962 }
1963
1964 *nanosec = base * divider;
1965 return divider - 1;
1966}
1967
3a305a66 1968static void s626_timer_load(struct comedi_device *dev,
0c9a057c 1969 unsigned int chan, int tick)
e3eb08d0 1970{
f1f7efce 1971 uint16_t setup =
d8515652 1972 /* Preload upon index. */
0830ada5 1973 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 1974 /* Disable hardware index. */
0830ada5 1975 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 1976 /* Operating mode is Timer. */
0830ada5 1977 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
d8515652 1978 /* Count direction is Down. */
0830ada5 1979 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
d8515652 1980 /* Clock multiplier is 1x. */
0830ada5
IA
1981 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1982 /* Enabled by index */
1983 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
d8515652
IA
1984 uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
1985 /* uint16_t enab = S626_CLKENAB_ALWAYS; */
e3eb08d0 1986
0c9a057c 1987 s626_set_mode(dev, chan, setup, false);
e3eb08d0 1988
8ee52611 1989 /* Set the preload register */
0c9a057c 1990 s626_preload(dev, chan, tick);
e3eb08d0 1991
8ee52611
IA
1992 /*
1993 * Software index pulse forces the preload register to load
1994 * into the counter
1995 */
0c9a057c
HS
1996 s626_set_load_trig(dev, chan, 0);
1997 s626_pulse_index(dev, chan);
e3eb08d0
HS
1998
1999 /* set reload on counter overflow */
0c9a057c 2000 s626_set_load_trig(dev, chan, 1);
e3eb08d0
HS
2001
2002 /* set interrupt on overflow */
0c9a057c 2003 s626_set_int_src(dev, chan, S626_INTSRC_OVER);
e3eb08d0 2004
0c9a057c
HS
2005 s626_set_latch_source(dev, chan, value_latchsrc);
2006 /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
e3eb08d0
HS
2007}
2008
8ee52611 2009/* TO COMPLETE */
020c44f3
HS
2010static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
2011{
7f2f7e05 2012 struct s626_private *devpriv = dev->private;
020c44f3
HS
2013 uint8_t ppl[16];
2014 struct comedi_cmd *cmd = &s->async->cmd;
020c44f3 2015 int tick;
11e865c1 2016
020c44f3 2017 if (devpriv->ai_cmd_running) {
730b8e15
IA
2018 dev_err(dev->class_dev,
2019 "s626_ai_cmd: Another ai_cmd is running\n");
020c44f3
HS
2020 return -EBUSY;
2021 }
2022 /* disable interrupt */
de9cd5ca 2023 writel(0, dev->mmio + S626_P_IER);
11e865c1 2024
020c44f3 2025 /* clear interrupt request */
de9cd5ca 2026 writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
11e865c1 2027
020c44f3
HS
2028 /* clear any pending interrupt */
2029 s626_dio_clear_irq(dev);
8ee52611 2030 /* s626_enc_clear_irq(dev); */
11e865c1 2031
020c44f3
HS
2032 /* reset ai_cmd_running flag */
2033 devpriv->ai_cmd_running = 0;
11e865c1 2034
020c44f3
HS
2035 s626_ai_load_polllist(ppl, cmd);
2036 devpriv->ai_cmd_running = 1;
2037 devpriv->ai_convert_count = 0;
11e865c1 2038
020c44f3
HS
2039 switch (cmd->scan_begin_src) {
2040 case TRIG_FOLLOW:
2041 break;
2042 case TRIG_TIMER:
8ee52611
IA
2043 /*
2044 * set a counter to generate adc trigger at scan_begin_arg
2045 * interval
2046 */
a207c12f 2047 tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
11e865c1 2048
020c44f3 2049 /* load timer value and enable interrupt */
0c9a057c
HS
2050 s626_timer_load(dev, 5, tick);
2051 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
020c44f3
HS
2052 break;
2053 case TRIG_EXT:
8ee52611 2054 /* set the digital line and interrupt for scan trigger */
020c44f3
HS
2055 if (cmd->start_src != TRIG_EXT)
2056 s626_dio_set_irq(dev, cmd->scan_begin_arg);
020c44f3
HS
2057 break;
2058 }
11e865c1 2059
020c44f3
HS
2060 switch (cmd->convert_src) {
2061 case TRIG_NOW:
2062 break;
2063 case TRIG_TIMER:
8ee52611
IA
2064 /*
2065 * set a counter to generate adc trigger at convert_arg
2066 * interval
2067 */
a207c12f 2068 tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
11e865c1 2069
020c44f3 2070 /* load timer value and enable interrupt */
0c9a057c
HS
2071 s626_timer_load(dev, 4, tick);
2072 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
020c44f3
HS
2073 break;
2074 case TRIG_EXT:
8ee52611
IA
2075 /* set the digital line and interrupt for convert trigger */
2076 if (cmd->scan_begin_src != TRIG_EXT &&
2077 cmd->start_src == TRIG_EXT)
020c44f3 2078 s626_dio_set_irq(dev, cmd->convert_arg);
020c44f3
HS
2079 break;
2080 }
11e865c1 2081
31de1948 2082 s626_reset_adc(dev, ppl);
11e865c1 2083
020c44f3
HS
2084 switch (cmd->start_src) {
2085 case TRIG_NOW:
ddd9813e 2086 /* Trigger ADC scan loop start */
d8515652 2087 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
11e865c1 2088
ddd9813e 2089 /* Start executing the RPS program */
d8515652 2090 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
020c44f3
HS
2091 s->async->inttrig = NULL;
2092 break;
2093 case TRIG_EXT:
2094 /* configure DIO channel for acquisition trigger */
2095 s626_dio_set_irq(dev, cmd->start_arg);
020c44f3
HS
2096 s->async->inttrig = NULL;
2097 break;
2098 case TRIG_INT:
2099 s->async->inttrig = s626_ai_inttrig;
2100 break;
11e865c1 2101 }
b6c77757 2102
020c44f3 2103 /* enable interrupt */
de9cd5ca 2104 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
b6c77757 2105
020c44f3
HS
2106 return 0;
2107}
b6c77757 2108
020c44f3
HS
2109static int s626_ai_cmdtest(struct comedi_device *dev,
2110 struct comedi_subdevice *s, struct comedi_cmd *cmd)
2111{
2112 int err = 0;
c646efe1 2113 unsigned int arg;
b6c77757 2114
27020ffe 2115 /* Step 1 : check if triggers are trivially valid */
b6c77757 2116
d044e28f
IA
2117 err |= comedi_check_trigger_src(&cmd->start_src,
2118 TRIG_NOW | TRIG_INT | TRIG_EXT);
2119 err |= comedi_check_trigger_src(&cmd->scan_begin_src,
2120 TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
2121 err |= comedi_check_trigger_src(&cmd->convert_src,
2122 TRIG_TIMER | TRIG_EXT | TRIG_NOW);
2123 err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
2124 err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
11e865c1 2125
020c44f3
HS
2126 if (err)
2127 return 1;
11e865c1 2128
27020ffe 2129 /* Step 2a : make sure trigger sources are unique */
11e865c1 2130
d044e28f
IA
2131 err |= comedi_check_trigger_is_unique(cmd->start_src);
2132 err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
2133 err |= comedi_check_trigger_is_unique(cmd->convert_src);
2134 err |= comedi_check_trigger_is_unique(cmd->stop_src);
27020ffe
HS
2135
2136 /* Step 2b : and mutually compatible */
020c44f3
HS
2137
2138 if (err)
2139 return 2;
2140
478da5c9 2141 /* Step 3: check if arguments are trivially valid */
020c44f3 2142
478da5c9
HS
2143 switch (cmd->start_src) {
2144 case TRIG_NOW:
2145 case TRIG_INT:
d044e28f 2146 err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
478da5c9
HS
2147 break;
2148 case TRIG_EXT:
d044e28f 2149 err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
478da5c9
HS
2150 break;
2151 }
2152
53a254b9 2153 if (cmd->scan_begin_src == TRIG_EXT)
d044e28f 2154 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
53a254b9 2155 if (cmd->convert_src == TRIG_EXT)
d044e28f 2156 err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
11e865c1 2157
676921c9
IA
2158#define S626_MAX_SPEED 200000 /* in nanoseconds */
2159#define S626_MIN_SPEED 2000000000 /* in nanoseconds */
11e865c1 2160
020c44f3 2161 if (cmd->scan_begin_src == TRIG_TIMER) {
d044e28f
IA
2162 err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
2163 S626_MAX_SPEED);
2164 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
2165 S626_MIN_SPEED);
020c44f3 2166 } else {
d044e28f
IA
2167 /*
2168 * external trigger
2169 * should be level/edge, hi/lo specification here
2170 * should specify multiple external triggers
2171 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
2172 */
020c44f3
HS
2173 }
2174 if (cmd->convert_src == TRIG_TIMER) {
d044e28f
IA
2175 err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
2176 S626_MAX_SPEED);
2177 err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
2178 S626_MIN_SPEED);
020c44f3 2179 } else {
d044e28f
IA
2180 /*
2181 * external trigger - see above
2182 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
2183 */
020c44f3 2184 }
11e865c1 2185
d044e28f
IA
2186 err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
2187 cmd->chanlist_len);
53a254b9
HS
2188
2189 if (cmd->stop_src == TRIG_COUNT)
d044e28f 2190 err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
53a254b9 2191 else /* TRIG_NONE */
d044e28f 2192 err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
11e865c1 2193
020c44f3
HS
2194 if (err)
2195 return 3;
2196
2197 /* step 4: fix up any arguments */
2198
2199 if (cmd->scan_begin_src == TRIG_TIMER) {
c646efe1 2200 arg = cmd->scan_begin_arg;
a207c12f 2201 s626_ns_to_timer(&arg, cmd->flags);
d044e28f 2202 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
020c44f3 2203 }
c646efe1 2204
020c44f3 2205 if (cmd->convert_src == TRIG_TIMER) {
c646efe1 2206 arg = cmd->convert_arg;
a207c12f 2207 s626_ns_to_timer(&arg, cmd->flags);
d044e28f 2208 err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
c646efe1
HS
2209
2210 if (cmd->scan_begin_src == TRIG_TIMER) {
2211 arg = cmd->convert_arg * cmd->scan_end_arg;
d044e28f
IA
2212 err |= comedi_check_trigger_arg_min(&cmd->
2213 scan_begin_arg,
2214 arg);
020c44f3 2215 }
11e865c1 2216 }
11e865c1 2217
020c44f3
HS
2218 if (err)
2219 return 4;
2220
2221 return 0;
11e865c1
GP
2222}
2223
020c44f3 2224static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
11e865c1 2225{
7f2f7e05
HS
2226 struct s626_private *devpriv = dev->private;
2227
c5cf4606 2228 /* Stop RPS program in case it is currently running */
d8515652 2229 s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
11e865c1 2230
020c44f3 2231 /* disable master interrupt */
de9cd5ca 2232 writel(0, dev->mmio + S626_P_IER);
11e865c1 2233
020c44f3 2234 devpriv->ai_cmd_running = 0;
11e865c1 2235
020c44f3
HS
2236 return 0;
2237}
11e865c1 2238
18259ffc
HS
2239static int s626_ao_insn_write(struct comedi_device *dev,
2240 struct comedi_subdevice *s,
2241 struct comedi_insn *insn,
2242 unsigned int *data)
11e865c1 2243{
18259ffc 2244 unsigned int chan = CR_CHAN(insn->chanspec);
020c44f3 2245 int i;
11e865c1 2246
020c44f3 2247 for (i = 0; i < insn->n; i++) {
18259ffc
HS
2248 int16_t dacdata = (int16_t)data[i];
2249 int ret;
2250
020c44f3 2251 dacdata -= (0x1fff);
11e865c1 2252
a7aa94ce
CS
2253 ret = s626_set_dac(dev, chan, dacdata);
2254 if (ret)
2255 return ret;
11e865c1 2256
18259ffc
HS
2257 s->readback[chan] = data[i];
2258 }
11e865c1 2259
18259ffc 2260 return insn->n;
020c44f3 2261}
11e865c1 2262
8ee52611
IA
2263/* *************** DIGITAL I/O FUNCTIONS *************** */
2264
2265/*
020c44f3
HS
2266 * All DIO functions address a group of DIO channels by means of
2267 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
2268 * ports A, B and C, respectively.
2269 */
11e865c1 2270
020c44f3
HS
2271static void s626_dio_init(struct comedi_device *dev)
2272{
2273 uint16_t group;
11e865c1 2274
8ee52611 2275 /* Prepare to treat writes to WRCapSel as capture disables. */
d8515652 2276 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
11e865c1 2277
8ee52611 2278 /* For each group of sixteen channels ... */
020c44f3 2279 for (group = 0; group < S626_DIO_BANKS; group++) {
100b4edc 2280 /* Disable all interrupts */
d8515652 2281 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
100b4edc 2282 /* Disable all event captures */
d8515652 2283 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
100b4edc 2284 /* Init all DIOs to default edge polarity */
d8515652 2285 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
100b4edc 2286 /* Program all outputs to inactive state */
d8515652 2287 s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
11e865c1 2288 }
020c44f3 2289}
11e865c1 2290
020c44f3
HS
2291static int s626_dio_insn_bits(struct comedi_device *dev,
2292 struct comedi_subdevice *s,
1515e522
HS
2293 struct comedi_insn *insn,
2294 unsigned int *data)
020c44f3 2295{
100b4edc 2296 unsigned long group = (unsigned long)s->private;
11e865c1 2297
6ea79c1d 2298 if (comedi_dio_update_state(s, data))
d8515652 2299 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
6ea79c1d 2300
d8515652 2301 data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
11e865c1 2302
020c44f3 2303 return insn->n;
11e865c1
GP
2304}
2305
020c44f3
HS
2306static int s626_dio_insn_config(struct comedi_device *dev,
2307 struct comedi_subdevice *s,
e920fad2
HS
2308 struct comedi_insn *insn,
2309 unsigned int *data)
11e865c1 2310{
100b4edc 2311 unsigned long group = (unsigned long)s->private;
ddf62f2c
HS
2312 int ret;
2313
2314 ret = comedi_dio_insn_config(dev, s, insn, data, 0);
2315 if (ret)
2316 return ret;
11e865c1 2317
d8515652 2318 s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
11e865c1 2319
e920fad2 2320 return insn->n;
11e865c1
GP
2321}
2322
8ee52611
IA
2323/*
2324 * Now this function initializes the value of the counter (data[0])
2325 * and set the subdevice. To complete with trigger and interrupt
2326 * configuration.
2327 *
2328 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
affdc230 2329 * what is being configured, but this function appears to be using data[0]
8ee52611
IA
2330 * as a variable.
2331 */
020c44f3
HS
2332static int s626_enc_insn_config(struct comedi_device *dev,
2333 struct comedi_subdevice *s,
2334 struct comedi_insn *insn, unsigned int *data)
2335{
0c9a057c 2336 unsigned int chan = CR_CHAN(insn->chanspec);
f1f7efce 2337 uint16_t setup =
d8515652 2338 /* Preload upon index. */
0830ada5 2339 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2340 /* Disable hardware index. */
0830ada5 2341 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2342 /* Operating mode is Counter. */
0830ada5 2343 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2344 /* Active high clock. */
0830ada5 2345 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2346 /* Clock multiplier is 1x. */
0830ada5
IA
2347 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2348 /* Enabled by index */
2349 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
c3e3a56d 2350 /* uint16_t disable_int_src = true; */
8ee52611 2351 /* uint32_t Preloadvalue; //Counter initial value */
d8515652
IA
2352 uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
2353 uint16_t enab = S626_CLKENAB_ALWAYS;
11e865c1 2354
8ee52611 2355 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
11e865c1 2356
0c9a057c
HS
2357 s626_set_mode(dev, chan, setup, true);
2358 s626_preload(dev, chan, data[0]);
2359 s626_pulse_index(dev, chan);
2360 s626_set_latch_source(dev, chan, value_latchsrc);
2361 s626_set_enable(dev, chan, (enab != 0));
11e865c1 2362
020c44f3
HS
2363 return insn->n;
2364}
11e865c1 2365
020c44f3
HS
2366static int s626_enc_insn_read(struct comedi_device *dev,
2367 struct comedi_subdevice *s,
81202ecf
HS
2368 struct comedi_insn *insn,
2369 unsigned int *data)
020c44f3 2370{
81202ecf
HS
2371 unsigned int chan = CR_CHAN(insn->chanspec);
2372 uint16_t cntr_latch_reg = S626_LP_CNTR(chan);
2373 int i;
11e865c1 2374
81202ecf
HS
2375 for (i = 0; i < insn->n; i++) {
2376 unsigned int val;
11e865c1 2377
81202ecf
HS
2378 /*
2379 * Read the counter's output latch LSW/MSW.
2380 * Latches on LSW read.
2381 */
2382 val = s626_debi_read(dev, cntr_latch_reg);
2383 val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2384 data[i] = val;
2385 }
2386
2387 return insn->n;
020c44f3 2388}
11e865c1 2389
020c44f3
HS
2390static int s626_enc_insn_write(struct comedi_device *dev,
2391 struct comedi_subdevice *s,
2392 struct comedi_insn *insn, unsigned int *data)
2393{
0c9a057c 2394 unsigned int chan = CR_CHAN(insn->chanspec);
11e865c1 2395
8ee52611 2396 /* Set the preload register */
0c9a057c 2397 s626_preload(dev, chan, data[0]);
11e865c1 2398
8ee52611
IA
2399 /*
2400 * Software index pulse forces the preload register to load
2401 * into the counter
2402 */
0c9a057c
HS
2403 s626_set_load_trig(dev, chan, 0);
2404 s626_pulse_index(dev, chan);
2405 s626_set_load_trig(dev, chan, 2);
11e865c1 2406
020c44f3 2407 return 1;
11e865c1
GP
2408}
2409
31de1948 2410static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
11e865c1 2411{
d8515652
IA
2412 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2413 s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2414 s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
020c44f3 2415}
11e865c1 2416
31de1948 2417static void s626_counters_init(struct comedi_device *dev)
11e865c1 2418{
020c44f3 2419 int chan;
f1f7efce 2420 uint16_t setup =
d8515652 2421 /* Preload upon index. */
0830ada5 2422 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
d8515652 2423 /* Disable hardware index. */
0830ada5 2424 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
d8515652 2425 /* Operating mode is counter. */
0830ada5 2426 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
d8515652 2427 /* Active high clock. */
0830ada5 2428 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
d8515652 2429 /* Clock multiplier is 1x. */
0830ada5 2430 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
d8515652 2431 /* Enabled by index */
0830ada5 2432 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
8ee52611
IA
2433
2434 /*
2435 * Disable all counter interrupts and clear any captured counter events.
2436 */
020c44f3 2437 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
0c9a057c
HS
2438 s626_set_mode(dev, chan, setup, true);
2439 s626_set_int_src(dev, chan, 0);
2440 s626_reset_cap_flags(dev, chan);
2441 s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
020c44f3 2442 }
020c44f3 2443}
11e865c1 2444
b7047895
HS
2445static int s626_allocate_dma_buffers(struct comedi_device *dev)
2446{
2447 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2448 struct s626_private *devpriv = dev->private;
b7047895
HS
2449 void *addr;
2450 dma_addr_t appdma;
2451
d8515652 2452 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2453 if (!addr)
2454 return -ENOMEM;
07a36d66
IA
2455 devpriv->ana_buf.logical_base = addr;
2456 devpriv->ana_buf.physical_base = appdma;
b7047895 2457
d8515652 2458 addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
b7047895
HS
2459 if (!addr)
2460 return -ENOMEM;
07a36d66
IA
2461 devpriv->rps_buf.logical_base = addr;
2462 devpriv->rps_buf.physical_base = appdma;
b7047895 2463
b7047895
HS
2464 return 0;
2465}
2466
3757e795
HS
2467static void s626_free_dma_buffers(struct comedi_device *dev)
2468{
2469 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2470 struct s626_private *devpriv = dev->private;
2471
2472 if (!devpriv)
2473 return;
2474
2475 if (devpriv->rps_buf.logical_base)
2476 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2477 devpriv->rps_buf.logical_base,
2478 devpriv->rps_buf.physical_base);
2479 if (devpriv->ana_buf.logical_base)
2480 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2481 devpriv->ana_buf.logical_base,
2482 devpriv->ana_buf.physical_base);
2483}
2484
a7aa94ce 2485static int s626_initialize(struct comedi_device *dev)
020c44f3 2486{
7f2f7e05 2487 struct s626_private *devpriv = dev->private;
f1f7efce 2488 dma_addr_t phys_buf;
68ad0ae0 2489 uint16_t chan;
020c44f3 2490 int i;
a7aa94ce 2491 int ret;
11e865c1 2492
54a2a02e 2493 /* Enable DEBI and audio pins, enable I2C interface */
d8515652
IA
2494 s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2495 S626_P_MC1);
54a2a02e
HS
2496
2497 /*
8ee52611 2498 * Configure DEBI operating mode
54a2a02e 2499 *
8ee52611
IA
2500 * Local bus is 16 bits wide
2501 * Declare DEBI transfer timeout interval
2502 * Set up byte lane steering
2503 * Intel-compatible local bus (DEBI never times out)
54a2a02e 2504 */
d8515652
IA
2505 writel(S626_DEBI_CFG_SLAVE16 |
2506 (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
de9cd5ca 2507 S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
54a2a02e
HS
2508
2509 /* Disable MMU paging */
de9cd5ca 2510 writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
54a2a02e
HS
2511
2512 /* Init GPIO so that ADC Start* is negated */
de9cd5ca 2513 writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
68ad0ae0 2514
17553c88 2515 /* I2C device address for onboard eeprom (revb) */
07a36d66 2516 devpriv->i2c_adrs = 0xA0;
11e865c1 2517
54a2a02e
HS
2518 /*
2519 * Issue an I2C ABORT command to halt any I2C
2520 * operation in progress and reset BUSY flag.
2521 */
d8515652 2522 writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
de9cd5ca 2523 dev->mmio + S626_P_I2CSTAT);
d8515652 2524 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
571845c6
CS
2525 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2526 if (ret)
2527 return ret;
68ad0ae0 2528
54a2a02e
HS
2529 /*
2530 * Per SAA7146 data sheet, write to STATUS
2531 * reg twice to reset all I2C error flags.
2532 */
68ad0ae0 2533 for (i = 0; i < 2; i++) {
de9cd5ca 2534 writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
d8515652 2535 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
571845c6
CS
2536 ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2537 if (ret)
2538 return ret;
68ad0ae0 2539 }
11e865c1 2540
54a2a02e
HS
2541 /*
2542 * Init audio interface functional attributes: set DAC/ADC
68ad0ae0
HS
2543 * serial clock rates, invert DAC serial clock so that
2544 * DAC data setup times are satisfied, enable DAC serial
2545 * clock out.
2546 */
de9cd5ca 2547 writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
11e865c1 2548
54a2a02e
HS
2549 /*
2550 * Set up TSL1 slot list, which is used to control the
d8515652
IA
2551 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2552 * S626_SIB_A1 = store data uint8_t at next available location
54a2a02e
HS
2553 * in FB BUFFER1 register.
2554 */
de9cd5ca 2555 writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
d8515652 2556 writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
de9cd5ca 2557 dev->mmio + S626_P_TSL1 + 4);
11e865c1 2558
54a2a02e 2559 /* Enable TSL1 slot list so that it executes all the time */
de9cd5ca 2560 writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
11e865c1 2561
54a2a02e
HS
2562 /*
2563 * Initialize RPS registers used for ADC
2564 */
11e865c1 2565
54a2a02e 2566 /* Physical start of RPS program */
07a36d66 2567 writel((uint32_t)devpriv->rps_buf.physical_base,
de9cd5ca 2568 dev->mmio + S626_P_RPSADDR1);
54a2a02e 2569 /* RPS program performs no explicit mem writes */
de9cd5ca 2570 writel(0, dev->mmio + S626_P_RPSPAGE1);
54a2a02e 2571 /* Disable RPS timeouts */
de9cd5ca 2572 writel(0, dev->mmio + S626_P_RPS1_TOUT);
11e865c1 2573
59747847
HS
2574#if 0
2575 /*
2576 * SAA7146 BUG WORKAROUND
2577 *
2578 * Initialize SAA7146 ADC interface to a known state by
2579 * invoking ADCs until FB BUFFER 1 register shows that it
2580 * is correctly receiving ADC data. This is necessary
2581 * because the SAA7146 ADC interface does not start up in
2582 * a defined state after a PCI reset.
68ad0ae0 2583 */
59747847 2584 {
9c9ab3c1 2585 struct comedi_subdevice *s = dev->read_subdev;
f1f7efce
IA
2586 uint8_t poll_list;
2587 uint16_t adc_data;
2588 uint16_t start_val;
8ee52611
IA
2589 uint16_t index;
2590 unsigned int data[16];
59747847 2591
8ee52611 2592 /* Create a simple polling list for analog input channel 0 */
d8515652 2593 poll_list = S626_EOPL;
31de1948 2594 s626_reset_adc(dev, &poll_list);
59747847 2595
8ee52611 2596 /* Get initial ADC value */
9c9ab3c1 2597 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce 2598 start_val = data[0];
59747847 2599
8ee52611
IA
2600 /*
2601 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2602 * EXECUTION.
2603 *
2604 * Invoke ADCs until the new ADC value differs from the initial
2605 * value or a timeout occurs. The timeout protects against the
2606 * possibility that the driver is restarting and the ADC data is
2607 * a fixed value resulting from the applied ADC analog input
2608 * being unusually quiet or at the rail.
2609 */
2610 for (index = 0; index < 500; index++) {
9c9ab3c1 2611 s626_ai_rinsn(dev, s, NULL, data);
f1f7efce
IA
2612 adc_data = data[0];
2613 if (adc_data != start_val)
8ee52611
IA
2614 break;
2615 }
59747847
HS
2616 }
2617#endif /* SAA7146 BUG WORKAROUND */
11e865c1 2618
54a2a02e
HS
2619 /*
2620 * Initialize the DAC interface
2621 */
11e865c1 2622
54a2a02e
HS
2623 /*
2624 * Init Audio2's output DMAC attributes:
2625 * burst length = 1 DWORD
2626 * threshold = 1 DWORD.
68ad0ae0 2627 */
de9cd5ca 2628 writel(0, dev->mmio + S626_P_PCI_BT_A);
68ad0ae0 2629
54a2a02e
HS
2630 /*
2631 * Init Audio2's output DMA physical addresses. The protection
68ad0ae0
HS
2632 * address is set to 1 DWORD past the base address so that a
2633 * single DWORD will be transferred each time a DMA transfer is
54a2a02e
HS
2634 * enabled.
2635 */
f1f7efce 2636 phys_buf = devpriv->ana_buf.physical_base +
d8515652 2637 (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
de9cd5ca 2638 writel((uint32_t)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
f1f7efce 2639 writel((uint32_t)(phys_buf + sizeof(uint32_t)),
de9cd5ca 2640 dev->mmio + S626_P_PROTA2_OUT);
68ad0ae0 2641
54a2a02e
HS
2642 /*
2643 * Cache Audio2's output DMA buffer logical address. This is
2644 * where DAC data is buffered for A2 output DMA transfers.
2645 */
07a36d66 2646 devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
d8515652 2647 S626_DAC_WDMABUF_OS;
68ad0ae0 2648
54a2a02e
HS
2649 /*
2650 * Audio2's output channels does not use paging. The
2651 * protection violation handling bit is set so that the
2652 * DMAC will automatically halt and its PCI address pointer
2653 * will be reset when the protection address is reached.
2654 */
de9cd5ca 2655 writel(8, dev->mmio + S626_P_PAGEA2_OUT);
68ad0ae0 2656
54a2a02e
HS
2657 /*
2658 * Initialize time slot list 2 (TSL2), which is used to control
68ad0ae0
HS
2659 * the clock generation for and serialization of data to be sent
2660 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2661 * execution; this permits other slots to be safely modified
2662 * without first turning off the TSL sequencer (which is
2663 * apparently impossible to do). Also, SD3 (which is driven by a
2664 * pull-up resistor) is shifted in and stored to the MSB of
2665 * FB_BUFFER2 to be used as evidence that the slot sequence has
2666 * not yet finished executing.
2667 */
11e865c1 2668
54a2a02e 2669 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
d8515652 2670 writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
de9cd5ca 2671 dev->mmio + S626_VECTPORT(0));
11e865c1 2672
54a2a02e
HS
2673 /*
2674 * Initialize slot 1, which is constant. Slot 1 causes a
68ad0ae0
HS
2675 * DWORD to be transferred from audio channel 2's output FIFO
2676 * to the FIFO's output buffer so that it can be serialized
2677 * and sent to the DAC during subsequent slots. All remaining
2678 * slots are dynamically populated as required by the target
2679 * DAC device.
2680 */
54a2a02e
HS
2681
2682 /* Slot 1: Fetch DWORD from Audio2's output FIFO */
de9cd5ca 2683 writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
11e865c1 2684
54a2a02e 2685 /* Start DAC's audio interface (TSL2) running */
de9cd5ca 2686 writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
11e865c1 2687
54a2a02e
HS
2688 /*
2689 * Init Trim DACs to calibrated values. Do it twice because the
68ad0ae0
HS
2690 * SAA7146 audio channel does not always reset properly and
2691 * sometimes causes the first few TrimDAC writes to malfunction.
2692 */
31de1948 2693 s626_load_trim_dacs(dev);
a7aa94ce
CS
2694 ret = s626_load_trim_dacs(dev);
2695 if (ret)
2696 return ret;
11e865c1 2697
54a2a02e
HS
2698 /*
2699 * Manually init all gate array hardware in case this is a soft
68ad0ae0
HS
2700 * reset (we have no way of determining whether this is a warm
2701 * or cold start). This is necessary because the gate array will
2702 * reset only in response to a PCI hard reset; there is no soft
54a2a02e
HS
2703 * reset function.
2704 */
11e865c1 2705
54a2a02e
HS
2706 /*
2707 * Init all DAC outputs to 0V and init all DAC setpoint and
68ad0ae0
HS
2708 * polarity images.
2709 */
a7aa94ce
CS
2710 for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2711 ret = s626_set_dac(dev, chan, 0);
2712 if (ret)
2713 return ret;
2714 }
11e865c1 2715
54a2a02e 2716 /* Init counters */
31de1948 2717 s626_counters_init(dev);
11e865c1 2718
54a2a02e
HS
2719 /*
2720 * Without modifying the state of the Battery Backup enab, disable
68ad0ae0
HS
2721 * the watchdog timer, set DIO channels 0-5 to operate in the
2722 * standard DIO (vs. counter overflow) mode, disable the battery
2723 * charger, and reset the watchdog interval selector to zero.
2724 */
d8515652
IA
2725 s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2726 S626_MISC2_BATT_ENABLE));
11e865c1 2727
54a2a02e 2728 /* Initialize the digital I/O subsystem */
68ad0ae0 2729 s626_dio_init(dev);
a7aa94ce
CS
2730
2731 return 0;
80ec9510
HS
2732}
2733
a690b7e5 2734static int s626_auto_attach(struct comedi_device *dev,
6c7d2c8b 2735 unsigned long context_unused)
80ec9510 2736{
750af5e5 2737 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
7f2f7e05 2738 struct s626_private *devpriv;
80ec9510
HS
2739 struct comedi_subdevice *s;
2740 int ret;
2741
0bdab509 2742 devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
c34fa261
HS
2743 if (!devpriv)
2744 return -ENOMEM;
80ec9510 2745
818f569f 2746 ret = comedi_pci_enable(dev);
80ec9510
HS
2747 if (ret)
2748 return ret;
80ec9510 2749
de9cd5ca
HS
2750 dev->mmio = pci_ioremap_bar(pcidev, 0);
2751 if (!dev->mmio)
80ec9510
HS
2752 return -ENOMEM;
2753
2754 /* disable master interrupt */
de9cd5ca 2755 writel(0, dev->mmio + S626_P_IER);
80ec9510
HS
2756
2757 /* soft reset */
de9cd5ca 2758 writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
80ec9510
HS
2759
2760 /* DMA FIXME DMA// */
2761
2762 ret = s626_allocate_dma_buffers(dev);
2763 if (ret)
2764 return ret;
2765
2766 if (pcidev->irq) {
2767 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2768 dev->board_name, dev);
2769
2770 if (ret == 0)
2771 dev->irq = pcidev->irq;
2772 }
2773
2774 ret = comedi_alloc_subdevices(dev, 6);
2775 if (ret)
2776 return ret;
2777
f0717f5d 2778 s = &dev->subdevices[0];
80ec9510 2779 /* analog input subdevice */
ca2f1091 2780 s->type = COMEDI_SUBD_AI;
f95321f3 2781 s->subdev_flags = SDF_READABLE | SDF_DIFF;
ca2f1091
HS
2782 s->n_chan = S626_ADC_CHANNELS;
2783 s->maxdata = 0x3fff;
2784 s->range_table = &s626_range_table;
2785 s->len_chanlist = S626_ADC_CHANNELS;
ca2f1091 2786 s->insn_read = s626_ai_insn_read;
2281befd
HS
2787 if (dev->irq) {
2788 dev->read_subdev = s;
f95321f3 2789 s->subdev_flags |= SDF_CMD_READ;
2281befd
HS
2790 s->do_cmd = s626_ai_cmd;
2791 s->do_cmdtest = s626_ai_cmdtest;
2792 s->cancel = s626_ai_cancel;
2793 }
80ec9510 2794
f0717f5d 2795 s = &dev->subdevices[1];
80ec9510 2796 /* analog output subdevice */
ca2f1091
HS
2797 s->type = COMEDI_SUBD_AO;
2798 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2799 s->n_chan = S626_DAC_CHANNELS;
2800 s->maxdata = 0x3fff;
2801 s->range_table = &range_bipolar10;
18259ffc 2802 s->insn_write = s626_ao_insn_write;
18259ffc
HS
2803
2804 ret = comedi_alloc_subdev_readback(s);
2805 if (ret)
2806 return ret;
80ec9510 2807
f0717f5d 2808 s = &dev->subdevices[2];
80ec9510 2809 /* digital I/O subdevice */
ca2f1091
HS
2810 s->type = COMEDI_SUBD_DIO;
2811 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2812 s->n_chan = 16;
2813 s->maxdata = 1;
2814 s->io_bits = 0xffff;
2815 s->private = (void *)0; /* DIO group 0 */
2816 s->range_table = &range_digital;
2817 s->insn_config = s626_dio_insn_config;
2818 s->insn_bits = s626_dio_insn_bits;
80ec9510 2819
f0717f5d 2820 s = &dev->subdevices[3];
80ec9510 2821 /* digital I/O subdevice */
ca2f1091
HS
2822 s->type = COMEDI_SUBD_DIO;
2823 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2824 s->n_chan = 16;
2825 s->maxdata = 1;
2826 s->io_bits = 0xffff;
2827 s->private = (void *)1; /* DIO group 1 */
2828 s->range_table = &range_digital;
2829 s->insn_config = s626_dio_insn_config;
2830 s->insn_bits = s626_dio_insn_bits;
80ec9510 2831
f0717f5d 2832 s = &dev->subdevices[4];
80ec9510 2833 /* digital I/O subdevice */
ca2f1091
HS
2834 s->type = COMEDI_SUBD_DIO;
2835 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2836 s->n_chan = 16;
2837 s->maxdata = 1;
2838 s->io_bits = 0xffff;
2839 s->private = (void *)2; /* DIO group 2 */
2840 s->range_table = &range_digital;
8ee52611 2841 s->insn_config = s626_dio_insn_config;
ca2f1091 2842 s->insn_bits = s626_dio_insn_bits;
80ec9510 2843
f0717f5d 2844 s = &dev->subdevices[5];
80ec9510 2845 /* encoder (counter) subdevice */
ca2f1091
HS
2846 s->type = COMEDI_SUBD_COUNTER;
2847 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2848 s->n_chan = S626_ENCODER_CHANNELS;
2849 s->maxdata = 0xffffff;
ca2f1091
HS
2850 s->range_table = &range_unknown;
2851 s->insn_config = s626_enc_insn_config;
2852 s->insn_read = s626_enc_insn_read;
2853 s->insn_write = s626_enc_insn_write;
80ec9510 2854
71b9f42e 2855 return s626_initialize(dev);
11e865c1
GP
2856}
2857
020c44f3 2858static void s626_detach(struct comedi_device *dev)
11e865c1 2859{
7f2f7e05 2860 struct s626_private *devpriv = dev->private;
f574af6d 2861
020c44f3
HS
2862 if (devpriv) {
2863 /* stop ai_command */
2864 devpriv->ai_cmd_running = 0;
11e865c1 2865
de9cd5ca 2866 if (dev->mmio) {
020c44f3 2867 /* interrupt mask */
25f8fd5e 2868 /* Disable master interrupt */
de9cd5ca 2869 writel(0, dev->mmio + S626_P_IER);
25f8fd5e 2870 /* Clear board's IRQ status flag */
d8515652 2871 writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
de9cd5ca 2872 dev->mmio + S626_P_ISR);
11e865c1 2873
8ee52611 2874 /* Disable the watchdog timer and battery charger. */
31de1948 2875 s626_write_misc2(dev, 0);
11e865c1 2876
25f8fd5e 2877 /* Close all interfaces on 7146 device */
de9cd5ca
HS
2878 writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2879 writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
020c44f3 2880 }
f574af6d 2881 }
8075bfb6 2882 comedi_pci_detach(dev);
3757e795 2883 s626_free_dma_buffers(dev);
11e865c1 2884}
7122b76d 2885
75e6301b 2886static struct comedi_driver s626_driver = {
7122b76d
HS
2887 .driver_name = "s626",
2888 .module = THIS_MODULE,
750af5e5 2889 .auto_attach = s626_auto_attach,
7122b76d
HS
2890 .detach = s626_detach,
2891};
2892
a690b7e5 2893static int s626_pci_probe(struct pci_dev *dev,
b8f4ac23 2894 const struct pci_device_id *id)
7122b76d 2895{
b8f4ac23 2896 return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
7122b76d
HS
2897}
2898
7122b76d
HS
2899/*
2900 * For devices with vendor:device id == 0x1131:0x7146 you must specify
2901 * also subvendor:subdevice ids, because otherwise it will conflict with
2902 * Philips SAA7146 media/dvb based cards.
2903 */
41e043fc 2904static const struct pci_device_id s626_pci_table[] = {
498c5070
IA
2905 { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2906 0x6000, 0x0272) },
7122b76d
HS
2907 { 0 }
2908};
2909MODULE_DEVICE_TABLE(pci, s626_pci_table);
2910
75e6301b
HS
2911static struct pci_driver s626_pci_driver = {
2912 .name = "s626",
7122b76d 2913 .id_table = s626_pci_table,
75e6301b 2914 .probe = s626_pci_probe,
9901a4d7 2915 .remove = comedi_pci_auto_unconfig,
7122b76d 2916};
75e6301b 2917module_comedi_pci_driver(s626_driver, s626_pci_driver);
7122b76d
HS
2918
2919MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2920MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2921MODULE_LICENSE("GPL");