spi: fix kernel-doc warnings about missing return desc in spi.h
[linux-2.6-block.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
8ae12a0d
DB
16 */
17
8ae12a0d
DB
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
99adef31
MB
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
94040828 24#include <linux/mutex.h>
2b7a32f7 25#include <linux/of_device.h>
d57a4282 26#include <linux/of_irq.h>
86be408b 27#include <linux/clk/clk-conf.h>
5a0e3ad6 28#include <linux/slab.h>
e0626e38 29#include <linux/mod_devicetable.h>
8ae12a0d 30#include <linux/spi/spi.h>
74317984 31#include <linux/of_gpio.h>
3ae22e8c 32#include <linux/pm_runtime.h>
f48c767c 33#include <linux/pm_domain.h>
025ed130 34#include <linux/export.h>
8bd75c77 35#include <linux/sched/rt.h>
ffbbdd21
LW
36#include <linux/delay.h>
37#include <linux/kthread.h>
64bee4d2
MW
38#include <linux/ioport.h>
39#include <linux/acpi.h>
8ae12a0d 40
56ec1978
MB
41#define CREATE_TRACE_POINTS
42#include <trace/events/spi.h>
43
8ae12a0d
DB
44static void spidev_release(struct device *dev)
45{
0ffa0285 46 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
0c868461 52 spi_master_put(spi->master);
07a389fe 53 kfree(spi);
8ae12a0d
DB
54}
55
56static ssize_t
57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58{
59 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
8ae12a0d 65
d8e328b3 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 67}
aa7da564 68static DEVICE_ATTR_RO(modalias);
8ae12a0d 69
eca2ebc7
MS
70#define SPI_STATISTICS_ATTRS(field, file) \
71static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74{ \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78} \
79static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82}; \
83static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86{ \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90} \
91static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94}
95
96#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99{ \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106} \
107SPI_STATISTICS_ATTRS(name, file)
108
109#define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113SPI_STATISTICS_SHOW(messages, "%lu");
114SPI_STATISTICS_SHOW(transfers, "%lu");
115SPI_STATISTICS_SHOW(errors, "%lu");
116SPI_STATISTICS_SHOW(timedout, "%lu");
117
118SPI_STATISTICS_SHOW(spi_sync, "%lu");
119SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122SPI_STATISTICS_SHOW(bytes, "%llu");
123SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
6b7bc061
MS
126#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
aa7da564
GKH
148static struct attribute *spi_dev_attrs[] = {
149 &dev_attr_modalias.attr,
150 NULL,
8ae12a0d 151};
eca2ebc7
MS
152
153static const struct attribute_group spi_dev_group = {
154 .attrs = spi_dev_attrs,
155};
156
157static struct attribute *spi_device_statistics_attrs[] = {
158 &dev_attr_spi_device_messages.attr,
159 &dev_attr_spi_device_transfers.attr,
160 &dev_attr_spi_device_errors.attr,
161 &dev_attr_spi_device_timedout.attr,
162 &dev_attr_spi_device_spi_sync.attr,
163 &dev_attr_spi_device_spi_sync_immediate.attr,
164 &dev_attr_spi_device_spi_async.attr,
165 &dev_attr_spi_device_bytes.attr,
166 &dev_attr_spi_device_bytes_rx.attr,
167 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
168 &dev_attr_spi_device_transfer_bytes_histo0.attr,
169 &dev_attr_spi_device_transfer_bytes_histo1.attr,
170 &dev_attr_spi_device_transfer_bytes_histo2.attr,
171 &dev_attr_spi_device_transfer_bytes_histo3.attr,
172 &dev_attr_spi_device_transfer_bytes_histo4.attr,
173 &dev_attr_spi_device_transfer_bytes_histo5.attr,
174 &dev_attr_spi_device_transfer_bytes_histo6.attr,
175 &dev_attr_spi_device_transfer_bytes_histo7.attr,
176 &dev_attr_spi_device_transfer_bytes_histo8.attr,
177 &dev_attr_spi_device_transfer_bytes_histo9.attr,
178 &dev_attr_spi_device_transfer_bytes_histo10.attr,
179 &dev_attr_spi_device_transfer_bytes_histo11.attr,
180 &dev_attr_spi_device_transfer_bytes_histo12.attr,
181 &dev_attr_spi_device_transfer_bytes_histo13.attr,
182 &dev_attr_spi_device_transfer_bytes_histo14.attr,
183 &dev_attr_spi_device_transfer_bytes_histo15.attr,
184 &dev_attr_spi_device_transfer_bytes_histo16.attr,
eca2ebc7
MS
185 NULL,
186};
187
188static const struct attribute_group spi_device_statistics_group = {
189 .name = "statistics",
190 .attrs = spi_device_statistics_attrs,
191};
192
193static const struct attribute_group *spi_dev_groups[] = {
194 &spi_dev_group,
195 &spi_device_statistics_group,
196 NULL,
197};
198
199static struct attribute *spi_master_statistics_attrs[] = {
200 &dev_attr_spi_master_messages.attr,
201 &dev_attr_spi_master_transfers.attr,
202 &dev_attr_spi_master_errors.attr,
203 &dev_attr_spi_master_timedout.attr,
204 &dev_attr_spi_master_spi_sync.attr,
205 &dev_attr_spi_master_spi_sync_immediate.attr,
206 &dev_attr_spi_master_spi_async.attr,
207 &dev_attr_spi_master_bytes.attr,
208 &dev_attr_spi_master_bytes_rx.attr,
209 &dev_attr_spi_master_bytes_tx.attr,
6b7bc061
MS
210 &dev_attr_spi_master_transfer_bytes_histo0.attr,
211 &dev_attr_spi_master_transfer_bytes_histo1.attr,
212 &dev_attr_spi_master_transfer_bytes_histo2.attr,
213 &dev_attr_spi_master_transfer_bytes_histo3.attr,
214 &dev_attr_spi_master_transfer_bytes_histo4.attr,
215 &dev_attr_spi_master_transfer_bytes_histo5.attr,
216 &dev_attr_spi_master_transfer_bytes_histo6.attr,
217 &dev_attr_spi_master_transfer_bytes_histo7.attr,
218 &dev_attr_spi_master_transfer_bytes_histo8.attr,
219 &dev_attr_spi_master_transfer_bytes_histo9.attr,
220 &dev_attr_spi_master_transfer_bytes_histo10.attr,
221 &dev_attr_spi_master_transfer_bytes_histo11.attr,
222 &dev_attr_spi_master_transfer_bytes_histo12.attr,
223 &dev_attr_spi_master_transfer_bytes_histo13.attr,
224 &dev_attr_spi_master_transfer_bytes_histo14.attr,
225 &dev_attr_spi_master_transfer_bytes_histo15.attr,
226 &dev_attr_spi_master_transfer_bytes_histo16.attr,
eca2ebc7
MS
227 NULL,
228};
229
230static const struct attribute_group spi_master_statistics_group = {
231 .name = "statistics",
232 .attrs = spi_master_statistics_attrs,
233};
234
235static const struct attribute_group *spi_master_groups[] = {
236 &spi_master_statistics_group,
237 NULL,
238};
239
240void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 struct spi_transfer *xfer,
242 struct spi_master *master)
243{
244 unsigned long flags;
6b7bc061
MS
245 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246
247 if (l2len < 0)
248 l2len = 0;
eca2ebc7
MS
249
250 spin_lock_irqsave(&stats->lock, flags);
251
252 stats->transfers++;
6b7bc061 253 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
254
255 stats->bytes += xfer->len;
256 if ((xfer->tx_buf) &&
257 (xfer->tx_buf != master->dummy_tx))
258 stats->bytes_tx += xfer->len;
259 if ((xfer->rx_buf) &&
260 (xfer->rx_buf != master->dummy_rx))
261 stats->bytes_rx += xfer->len;
262
263 spin_unlock_irqrestore(&stats->lock, flags);
264}
265EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
266
267/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
269 */
270
75368bf6
AV
271static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 const struct spi_device *sdev)
273{
274 while (id->name[0]) {
275 if (!strcmp(sdev->modalias, id->name))
276 return id;
277 id++;
278 }
279 return NULL;
280}
281
282const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283{
284 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285
286 return spi_match_id(sdrv->id_table, sdev);
287}
288EXPORT_SYMBOL_GPL(spi_get_device_id);
289
8ae12a0d
DB
290static int spi_match_device(struct device *dev, struct device_driver *drv)
291{
292 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
293 const struct spi_driver *sdrv = to_spi_driver(drv);
294
2b7a32f7
SA
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev, drv))
297 return 1;
298
64bee4d2
MW
299 /* Then try ACPI */
300 if (acpi_driver_match_device(dev, drv))
301 return 1;
302
75368bf6
AV
303 if (sdrv->id_table)
304 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 305
35f74fca 306 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
307}
308
7eff2e7a 309static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
310{
311 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
312 int rc;
313
314 rc = acpi_device_uevent_modalias(dev, env);
315 if (rc != -ENODEV)
316 return rc;
8ae12a0d 317
e0626e38 318 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
319 return 0;
320}
321
8ae12a0d
DB
322struct bus_type spi_bus_type = {
323 .name = "spi",
aa7da564 324 .dev_groups = spi_dev_groups,
8ae12a0d
DB
325 .match = spi_match_device,
326 .uevent = spi_uevent,
8ae12a0d
DB
327};
328EXPORT_SYMBOL_GPL(spi_bus_type);
329
b885244e
DB
330
331static int spi_drv_probe(struct device *dev)
332{
333 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 334 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
335 int ret;
336
86be408b
SN
337 ret = of_clk_set_defaults(dev->of_node, false);
338 if (ret)
339 return ret;
340
44af7927
JH
341 if (dev->of_node) {
342 spi->irq = of_irq_get(dev->of_node, 0);
343 if (spi->irq == -EPROBE_DEFER)
344 return -EPROBE_DEFER;
345 if (spi->irq < 0)
346 spi->irq = 0;
347 }
348
676e7c25
UH
349 ret = dev_pm_domain_attach(dev, true);
350 if (ret != -EPROBE_DEFER) {
44af7927 351 ret = sdrv->probe(spi);
676e7c25
UH
352 if (ret)
353 dev_pm_domain_detach(dev, true);
354 }
b885244e 355
33cf00e5 356 return ret;
b885244e
DB
357}
358
359static int spi_drv_remove(struct device *dev)
360{
361 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
362 int ret;
363
aec35f4e 364 ret = sdrv->remove(to_spi_device(dev));
676e7c25 365 dev_pm_domain_detach(dev, true);
b885244e 366
33cf00e5 367 return ret;
b885244e
DB
368}
369
370static void spi_drv_shutdown(struct device *dev)
371{
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
373
374 sdrv->shutdown(to_spi_device(dev));
375}
376
33e34dc6
DB
377/**
378 * spi_register_driver - register a SPI driver
379 * @sdrv: the driver to register
380 * Context: can sleep
381 */
b885244e
DB
382int spi_register_driver(struct spi_driver *sdrv)
383{
384 sdrv->driver.bus = &spi_bus_type;
385 if (sdrv->probe)
386 sdrv->driver.probe = spi_drv_probe;
387 if (sdrv->remove)
388 sdrv->driver.remove = spi_drv_remove;
389 if (sdrv->shutdown)
390 sdrv->driver.shutdown = spi_drv_shutdown;
391 return driver_register(&sdrv->driver);
392}
393EXPORT_SYMBOL_GPL(spi_register_driver);
394
8ae12a0d
DB
395/*-------------------------------------------------------------------------*/
396
397/* SPI devices should normally not be created by SPI device drivers; that
398 * would make them board-specific. Similarly with SPI master drivers.
399 * Device registration normally goes into like arch/.../mach.../board-YYY.c
400 * with other readonly (flashable) information about mainboard devices.
401 */
402
403struct boardinfo {
404 struct list_head list;
2b9603a0 405 struct spi_board_info board_info;
8ae12a0d
DB
406};
407
408static LIST_HEAD(board_list);
2b9603a0
FT
409static LIST_HEAD(spi_master_list);
410
411/*
412 * Used to protect add/del opertion for board_info list and
413 * spi_master list, and their matching process
414 */
94040828 415static DEFINE_MUTEX(board_lock);
8ae12a0d 416
dc87c98e
GL
417/**
418 * spi_alloc_device - Allocate a new SPI device
419 * @master: Controller to which device is connected
420 * Context: can sleep
421 *
422 * Allows a driver to allocate and initialize a spi_device without
423 * registering it immediately. This allows a driver to directly
424 * fill the spi_device with device parameters before calling
425 * spi_add_device() on it.
426 *
427 * Caller is responsible to call spi_add_device() on the returned
428 * spi_device structure to add it to the SPI master. If the caller
429 * needs to discard the spi_device without adding it, then it should
430 * call spi_dev_put() on it.
431 *
432 * Returns a pointer to the new device, or NULL.
433 */
434struct spi_device *spi_alloc_device(struct spi_master *master)
435{
436 struct spi_device *spi;
dc87c98e
GL
437
438 if (!spi_master_get(master))
439 return NULL;
440
5fe5f05e 441 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 442 if (!spi) {
dc87c98e
GL
443 spi_master_put(master);
444 return NULL;
445 }
446
447 spi->master = master;
178db7d3 448 spi->dev.parent = &master->dev;
dc87c98e
GL
449 spi->dev.bus = &spi_bus_type;
450 spi->dev.release = spidev_release;
446411e1 451 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
452
453 spin_lock_init(&spi->statistics.lock);
454
dc87c98e
GL
455 device_initialize(&spi->dev);
456 return spi;
457}
458EXPORT_SYMBOL_GPL(spi_alloc_device);
459
e13ac47b
JN
460static void spi_dev_set_name(struct spi_device *spi)
461{
462 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
463
464 if (adev) {
465 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
466 return;
467 }
468
469 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
470 spi->chip_select);
471}
472
b6fb8d3a
MW
473static int spi_dev_check(struct device *dev, void *data)
474{
475 struct spi_device *spi = to_spi_device(dev);
476 struct spi_device *new_spi = data;
477
478 if (spi->master == new_spi->master &&
479 spi->chip_select == new_spi->chip_select)
480 return -EBUSY;
481 return 0;
482}
483
dc87c98e
GL
484/**
485 * spi_add_device - Add spi_device allocated with spi_alloc_device
486 * @spi: spi_device to register
487 *
488 * Companion function to spi_alloc_device. Devices allocated with
489 * spi_alloc_device can be added onto the spi bus with this function.
490 *
e48880e0 491 * Returns 0 on success; negative errno on failure
dc87c98e
GL
492 */
493int spi_add_device(struct spi_device *spi)
494{
e48880e0 495 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
496 struct spi_master *master = spi->master;
497 struct device *dev = master->dev.parent;
dc87c98e
GL
498 int status;
499
500 /* Chipselects are numbered 0..max; validate. */
74317984 501 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
502 dev_err(dev, "cs%d >= max %d\n",
503 spi->chip_select,
74317984 504 master->num_chipselect);
dc87c98e
GL
505 return -EINVAL;
506 }
507
508 /* Set the bus ID string */
e13ac47b 509 spi_dev_set_name(spi);
e48880e0
DB
510
511 /* We need to make sure there's no other device with this
512 * chipselect **BEFORE** we call setup(), else we'll trash
513 * its configuration. Lock against concurrent add() calls.
514 */
515 mutex_lock(&spi_add_lock);
516
b6fb8d3a
MW
517 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
518 if (status) {
e48880e0
DB
519 dev_err(dev, "chipselect %d already in use\n",
520 spi->chip_select);
e48880e0
DB
521 goto done;
522 }
523
74317984
JCPV
524 if (master->cs_gpios)
525 spi->cs_gpio = master->cs_gpios[spi->chip_select];
526
e48880e0
DB
527 /* Drivers may modify this initial i/o setup, but will
528 * normally rely on the device being setup. Devices
529 * using SPI_CS_HIGH can't coexist well otherwise...
530 */
7d077197 531 status = spi_setup(spi);
dc87c98e 532 if (status < 0) {
eb288a1f
LW
533 dev_err(dev, "can't setup %s, status %d\n",
534 dev_name(&spi->dev), status);
e48880e0 535 goto done;
dc87c98e
GL
536 }
537
e48880e0 538 /* Device may be bound to an active driver when this returns */
dc87c98e 539 status = device_add(&spi->dev);
e48880e0 540 if (status < 0)
eb288a1f
LW
541 dev_err(dev, "can't add %s, status %d\n",
542 dev_name(&spi->dev), status);
e48880e0 543 else
35f74fca 544 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 545
e48880e0
DB
546done:
547 mutex_unlock(&spi_add_lock);
548 return status;
dc87c98e
GL
549}
550EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 551
33e34dc6
DB
552/**
553 * spi_new_device - instantiate one new SPI device
554 * @master: Controller to which device is connected
555 * @chip: Describes the SPI device
556 * Context: can sleep
557 *
558 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
559 * after board init creates the hard-wired devices. Some development
560 * platforms may not be able to use spi_register_board_info though, and
561 * this is exported so that for example a USB or parport based adapter
562 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
563 *
564 * Returns the new device, or NULL.
8ae12a0d 565 */
e9d5a461
AB
566struct spi_device *spi_new_device(struct spi_master *master,
567 struct spi_board_info *chip)
8ae12a0d
DB
568{
569 struct spi_device *proxy;
8ae12a0d
DB
570 int status;
571
082c8cb4
DB
572 /* NOTE: caller did any chip->bus_num checks necessary.
573 *
574 * Also, unless we change the return value convention to use
575 * error-or-pointer (not NULL-or-pointer), troubleshootability
576 * suggests syslogged diagnostics are best here (ugh).
577 */
578
dc87c98e
GL
579 proxy = spi_alloc_device(master);
580 if (!proxy)
8ae12a0d
DB
581 return NULL;
582
102eb975
GL
583 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
584
8ae12a0d
DB
585 proxy->chip_select = chip->chip_select;
586 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 587 proxy->mode = chip->mode;
8ae12a0d 588 proxy->irq = chip->irq;
102eb975 589 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
590 proxy->dev.platform_data = (void *) chip->platform_data;
591 proxy->controller_data = chip->controller_data;
592 proxy->controller_state = NULL;
8ae12a0d 593
dc87c98e 594 status = spi_add_device(proxy);
8ae12a0d 595 if (status < 0) {
dc87c98e
GL
596 spi_dev_put(proxy);
597 return NULL;
8ae12a0d
DB
598 }
599
8ae12a0d
DB
600 return proxy;
601}
602EXPORT_SYMBOL_GPL(spi_new_device);
603
2b9603a0
FT
604static void spi_match_master_to_boardinfo(struct spi_master *master,
605 struct spi_board_info *bi)
606{
607 struct spi_device *dev;
608
609 if (master->bus_num != bi->bus_num)
610 return;
611
612 dev = spi_new_device(master, bi);
613 if (!dev)
614 dev_err(master->dev.parent, "can't create new device for %s\n",
615 bi->modalias);
616}
617
33e34dc6
DB
618/**
619 * spi_register_board_info - register SPI devices for a given board
620 * @info: array of chip descriptors
621 * @n: how many descriptors are provided
622 * Context: can sleep
623 *
8ae12a0d
DB
624 * Board-specific early init code calls this (probably during arch_initcall)
625 * with segments of the SPI device table. Any device nodes are created later,
626 * after the relevant parent SPI controller (bus_num) is defined. We keep
627 * this table of devices forever, so that reloading a controller driver will
628 * not make Linux forget about these hard-wired devices.
629 *
630 * Other code can also call this, e.g. a particular add-on board might provide
631 * SPI devices through its expansion connector, so code initializing that board
632 * would naturally declare its SPI devices.
633 *
634 * The board info passed can safely be __initdata ... but be careful of
635 * any embedded pointers (platform_data, etc), they're copied as-is.
636 */
fd4a319b 637int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 638{
2b9603a0
FT
639 struct boardinfo *bi;
640 int i;
8ae12a0d 641
c7908a37
XL
642 if (!n)
643 return -EINVAL;
644
2b9603a0 645 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
646 if (!bi)
647 return -ENOMEM;
8ae12a0d 648
2b9603a0
FT
649 for (i = 0; i < n; i++, bi++, info++) {
650 struct spi_master *master;
8ae12a0d 651
2b9603a0
FT
652 memcpy(&bi->board_info, info, sizeof(*info));
653 mutex_lock(&board_lock);
654 list_add_tail(&bi->list, &board_list);
655 list_for_each_entry(master, &spi_master_list, list)
656 spi_match_master_to_boardinfo(master, &bi->board_info);
657 mutex_unlock(&board_lock);
8ae12a0d 658 }
2b9603a0
FT
659
660 return 0;
8ae12a0d
DB
661}
662
663/*-------------------------------------------------------------------------*/
664
b158935f
MB
665static void spi_set_cs(struct spi_device *spi, bool enable)
666{
667 if (spi->mode & SPI_CS_HIGH)
668 enable = !enable;
669
243f07be 670 if (gpio_is_valid(spi->cs_gpio))
b158935f
MB
671 gpio_set_value(spi->cs_gpio, !enable);
672 else if (spi->master->set_cs)
673 spi->master->set_cs(spi, !enable);
674}
675
2de440f5 676#ifdef CONFIG_HAS_DMA
6ad45a27
MB
677static int spi_map_buf(struct spi_master *master, struct device *dev,
678 struct sg_table *sgt, void *buf, size_t len,
679 enum dma_data_direction dir)
680{
681 const bool vmalloced_buf = is_vmalloc_addr(buf);
65598c13
AG
682 int desc_len;
683 int sgs;
6ad45a27
MB
684 struct page *vm_page;
685 void *sg_buf;
686 size_t min;
687 int i, ret;
688
65598c13
AG
689 if (vmalloced_buf) {
690 desc_len = PAGE_SIZE;
691 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
692 } else {
693 desc_len = master->max_dma_len;
694 sgs = DIV_ROUND_UP(len, desc_len);
695 }
696
6ad45a27
MB
697 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
698 if (ret != 0)
699 return ret;
700
701 for (i = 0; i < sgs; i++) {
6ad45a27
MB
702
703 if (vmalloced_buf) {
65598c13
AG
704 min = min_t(size_t,
705 len, desc_len - offset_in_page(buf));
6ad45a27
MB
706 vm_page = vmalloc_to_page(buf);
707 if (!vm_page) {
708 sg_free_table(sgt);
709 return -ENOMEM;
710 }
c1aefbdd
CK
711 sg_set_page(&sgt->sgl[i], vm_page,
712 min, offset_in_page(buf));
6ad45a27 713 } else {
65598c13 714 min = min_t(size_t, len, desc_len);
6ad45a27 715 sg_buf = buf;
c1aefbdd 716 sg_set_buf(&sgt->sgl[i], sg_buf, min);
6ad45a27
MB
717 }
718
6ad45a27
MB
719
720 buf += min;
721 len -= min;
722 }
723
724 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
725 if (!ret)
726 ret = -ENOMEM;
6ad45a27
MB
727 if (ret < 0) {
728 sg_free_table(sgt);
729 return ret;
730 }
731
732 sgt->nents = ret;
733
734 return 0;
735}
736
737static void spi_unmap_buf(struct spi_master *master, struct device *dev,
738 struct sg_table *sgt, enum dma_data_direction dir)
739{
740 if (sgt->orig_nents) {
741 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
742 sg_free_table(sgt);
743 }
744}
745
2de440f5 746static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
99adef31 747{
99adef31
MB
748 struct device *tx_dev, *rx_dev;
749 struct spi_transfer *xfer;
6ad45a27 750 int ret;
3a2eba9b 751
6ad45a27 752 if (!master->can_dma)
99adef31
MB
753 return 0;
754
c37f45b5
LL
755 if (master->dma_tx)
756 tx_dev = master->dma_tx->device->dev;
757 else
758 tx_dev = &master->dev;
759
760 if (master->dma_rx)
761 rx_dev = master->dma_rx->device->dev;
762 else
763 rx_dev = &master->dev;
99adef31
MB
764
765 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
766 if (!master->can_dma(master, msg->spi, xfer))
767 continue;
768
769 if (xfer->tx_buf != NULL) {
6ad45a27
MB
770 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
771 (void *)xfer->tx_buf, xfer->len,
772 DMA_TO_DEVICE);
773 if (ret != 0)
774 return ret;
99adef31
MB
775 }
776
777 if (xfer->rx_buf != NULL) {
6ad45a27
MB
778 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
779 xfer->rx_buf, xfer->len,
780 DMA_FROM_DEVICE);
781 if (ret != 0) {
782 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
783 DMA_TO_DEVICE);
784 return ret;
99adef31
MB
785 }
786 }
787 }
788
789 master->cur_msg_mapped = true;
790
791 return 0;
792}
793
4b786458 794static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
99adef31
MB
795{
796 struct spi_transfer *xfer;
797 struct device *tx_dev, *rx_dev;
798
6ad45a27 799 if (!master->cur_msg_mapped || !master->can_dma)
99adef31
MB
800 return 0;
801
c37f45b5
LL
802 if (master->dma_tx)
803 tx_dev = master->dma_tx->device->dev;
804 else
805 tx_dev = &master->dev;
806
807 if (master->dma_rx)
808 rx_dev = master->dma_rx->device->dev;
809 else
810 rx_dev = &master->dev;
99adef31
MB
811
812 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
813 if (!master->can_dma(master, msg->spi, xfer))
814 continue;
815
6ad45a27
MB
816 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
817 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
818 }
819
820 return 0;
821}
2de440f5
GU
822#else /* !CONFIG_HAS_DMA */
823static inline int __spi_map_msg(struct spi_master *master,
824 struct spi_message *msg)
825{
826 return 0;
827}
828
4b786458
MS
829static inline int __spi_unmap_msg(struct spi_master *master,
830 struct spi_message *msg)
2de440f5
GU
831{
832 return 0;
833}
834#endif /* !CONFIG_HAS_DMA */
835
4b786458
MS
836static inline int spi_unmap_msg(struct spi_master *master,
837 struct spi_message *msg)
838{
839 struct spi_transfer *xfer;
840
841 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
842 /*
843 * Restore the original value of tx_buf or rx_buf if they are
844 * NULL.
845 */
846 if (xfer->tx_buf == master->dummy_tx)
847 xfer->tx_buf = NULL;
848 if (xfer->rx_buf == master->dummy_rx)
849 xfer->rx_buf = NULL;
850 }
851
852 return __spi_unmap_msg(master, msg);
853}
854
2de440f5
GU
855static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
856{
857 struct spi_transfer *xfer;
858 void *tmp;
859 unsigned int max_tx, max_rx;
860
861 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
862 max_tx = 0;
863 max_rx = 0;
864
865 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866 if ((master->flags & SPI_MASTER_MUST_TX) &&
867 !xfer->tx_buf)
868 max_tx = max(xfer->len, max_tx);
869 if ((master->flags & SPI_MASTER_MUST_RX) &&
870 !xfer->rx_buf)
871 max_rx = max(xfer->len, max_rx);
872 }
873
874 if (max_tx) {
875 tmp = krealloc(master->dummy_tx, max_tx,
876 GFP_KERNEL | GFP_DMA);
877 if (!tmp)
878 return -ENOMEM;
879 master->dummy_tx = tmp;
880 memset(tmp, 0, max_tx);
881 }
882
883 if (max_rx) {
884 tmp = krealloc(master->dummy_rx, max_rx,
885 GFP_KERNEL | GFP_DMA);
886 if (!tmp)
887 return -ENOMEM;
888 master->dummy_rx = tmp;
889 }
890
891 if (max_tx || max_rx) {
892 list_for_each_entry(xfer, &msg->transfers,
893 transfer_list) {
894 if (!xfer->tx_buf)
895 xfer->tx_buf = master->dummy_tx;
896 if (!xfer->rx_buf)
897 xfer->rx_buf = master->dummy_rx;
898 }
899 }
900 }
901
902 return __spi_map_msg(master, msg);
903}
99adef31 904
b158935f
MB
905/*
906 * spi_transfer_one_message - Default implementation of transfer_one_message()
907 *
908 * This is a standard implementation of transfer_one_message() for
909 * drivers which impelment a transfer_one() operation. It provides
910 * standard handling of delays and chip select management.
911 */
912static int spi_transfer_one_message(struct spi_master *master,
913 struct spi_message *msg)
914{
915 struct spi_transfer *xfer;
b158935f
MB
916 bool keep_cs = false;
917 int ret = 0;
682a71b2 918 unsigned long ms = 1;
eca2ebc7
MS
919 struct spi_statistics *statm = &master->statistics;
920 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
921
922 spi_set_cs(msg->spi, true);
923
eca2ebc7
MS
924 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
925 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
926
b158935f
MB
927 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
928 trace_spi_transfer_start(msg, xfer);
929
eca2ebc7
MS
930 spi_statistics_add_transfer_stats(statm, xfer, master);
931 spi_statistics_add_transfer_stats(stats, xfer, master);
932
38ec10f6
MB
933 if (xfer->tx_buf || xfer->rx_buf) {
934 reinit_completion(&master->xfer_completion);
b158935f 935
38ec10f6
MB
936 ret = master->transfer_one(master, msg->spi, xfer);
937 if (ret < 0) {
eca2ebc7
MS
938 SPI_STATISTICS_INCREMENT_FIELD(statm,
939 errors);
940 SPI_STATISTICS_INCREMENT_FIELD(stats,
941 errors);
38ec10f6
MB
942 dev_err(&msg->spi->dev,
943 "SPI transfer failed: %d\n", ret);
944 goto out;
945 }
b158935f 946
38ec10f6
MB
947 if (ret > 0) {
948 ret = 0;
949 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
950 ms += ms + 100; /* some tolerance */
16a0ce4e 951
38ec10f6
MB
952 ms = wait_for_completion_timeout(&master->xfer_completion,
953 msecs_to_jiffies(ms));
954 }
16a0ce4e 955
38ec10f6 956 if (ms == 0) {
eca2ebc7
MS
957 SPI_STATISTICS_INCREMENT_FIELD(statm,
958 timedout);
959 SPI_STATISTICS_INCREMENT_FIELD(stats,
960 timedout);
38ec10f6
MB
961 dev_err(&msg->spi->dev,
962 "SPI transfer timed out\n");
963 msg->status = -ETIMEDOUT;
964 }
965 } else {
966 if (xfer->len)
967 dev_err(&msg->spi->dev,
968 "Bufferless transfer has length %u\n",
969 xfer->len);
13a42798 970 }
b158935f
MB
971
972 trace_spi_transfer_stop(msg, xfer);
973
974 if (msg->status != -EINPROGRESS)
975 goto out;
976
977 if (xfer->delay_usecs)
978 udelay(xfer->delay_usecs);
979
980 if (xfer->cs_change) {
981 if (list_is_last(&xfer->transfer_list,
982 &msg->transfers)) {
983 keep_cs = true;
984 } else {
0b73aa63
MB
985 spi_set_cs(msg->spi, false);
986 udelay(10);
987 spi_set_cs(msg->spi, true);
b158935f
MB
988 }
989 }
990
991 msg->actual_length += xfer->len;
992 }
993
994out:
995 if (ret != 0 || !keep_cs)
996 spi_set_cs(msg->spi, false);
997
998 if (msg->status == -EINPROGRESS)
999 msg->status = ret;
1000
ff61eb42 1001 if (msg->status && master->handle_err)
b716c4ff
AS
1002 master->handle_err(master, msg);
1003
b158935f
MB
1004 spi_finalize_current_message(master);
1005
1006 return ret;
1007}
1008
1009/**
1010 * spi_finalize_current_transfer - report completion of a transfer
2c675689 1011 * @master: the master reporting completion
b158935f
MB
1012 *
1013 * Called by SPI drivers using the core transfer_one_message()
1014 * implementation to notify it that the current interrupt driven
9e8f4882 1015 * transfer has finished and the next one may be scheduled.
b158935f
MB
1016 */
1017void spi_finalize_current_transfer(struct spi_master *master)
1018{
1019 complete(&master->xfer_completion);
1020}
1021EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1022
ffbbdd21 1023/**
fc9e0f71
MB
1024 * __spi_pump_messages - function which processes spi message queue
1025 * @master: master to process queue for
1026 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1027 *
1028 * This function checks if there is any spi message in the queue that
1029 * needs processing and if so call out to the driver to initialize hardware
1030 * and transfer each message.
1031 *
0461a414
MB
1032 * Note that it is called both from the kthread itself and also from
1033 * inside spi_sync(); the queue extraction handling at the top of the
1034 * function should deal with this safely.
ffbbdd21 1035 */
fc9e0f71 1036static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
ffbbdd21 1037{
ffbbdd21
LW
1038 unsigned long flags;
1039 bool was_busy = false;
1040 int ret;
1041
983aee5d 1042 /* Lock queue */
ffbbdd21 1043 spin_lock_irqsave(&master->queue_lock, flags);
983aee5d
MB
1044
1045 /* Make sure we are not already running a message */
1046 if (master->cur_msg) {
1047 spin_unlock_irqrestore(&master->queue_lock, flags);
1048 return;
1049 }
1050
0461a414
MB
1051 /* If another context is idling the device then defer */
1052 if (master->idling) {
1053 queue_kthread_work(&master->kworker, &master->pump_messages);
1054 spin_unlock_irqrestore(&master->queue_lock, flags);
1055 return;
1056 }
1057
983aee5d 1058 /* Check if the queue is idle */
ffbbdd21 1059 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
1060 if (!master->busy) {
1061 spin_unlock_irqrestore(&master->queue_lock, flags);
1062 return;
ffbbdd21 1063 }
fc9e0f71
MB
1064
1065 /* Only do teardown in the thread */
1066 if (!in_kthread) {
1067 queue_kthread_work(&master->kworker,
1068 &master->pump_messages);
1069 spin_unlock_irqrestore(&master->queue_lock, flags);
1070 return;
1071 }
1072
ffbbdd21 1073 master->busy = false;
0461a414 1074 master->idling = true;
ffbbdd21 1075 spin_unlock_irqrestore(&master->queue_lock, flags);
0461a414 1076
3a2eba9b
MB
1077 kfree(master->dummy_rx);
1078 master->dummy_rx = NULL;
1079 kfree(master->dummy_tx);
1080 master->dummy_tx = NULL;
b0b36b86
BF
1081 if (master->unprepare_transfer_hardware &&
1082 master->unprepare_transfer_hardware(master))
1083 dev_err(&master->dev,
1084 "failed to unprepare transfer hardware\n");
49834de2
MB
1085 if (master->auto_runtime_pm) {
1086 pm_runtime_mark_last_busy(master->dev.parent);
1087 pm_runtime_put_autosuspend(master->dev.parent);
1088 }
56ec1978 1089 trace_spi_master_idle(master);
ffbbdd21 1090
0461a414
MB
1091 spin_lock_irqsave(&master->queue_lock, flags);
1092 master->idling = false;
ffbbdd21
LW
1093 spin_unlock_irqrestore(&master->queue_lock, flags);
1094 return;
1095 }
ffbbdd21 1096
ffbbdd21
LW
1097 /* Extract head of queue */
1098 master->cur_msg =
a89e2d27 1099 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
1100
1101 list_del_init(&master->cur_msg->queue);
1102 if (master->busy)
1103 was_busy = true;
1104 else
1105 master->busy = true;
1106 spin_unlock_irqrestore(&master->queue_lock, flags);
1107
49834de2
MB
1108 if (!was_busy && master->auto_runtime_pm) {
1109 ret = pm_runtime_get_sync(master->dev.parent);
1110 if (ret < 0) {
1111 dev_err(&master->dev, "Failed to power device: %d\n",
1112 ret);
1113 return;
1114 }
1115 }
1116
56ec1978
MB
1117 if (!was_busy)
1118 trace_spi_master_busy(master);
1119
7dfd2bd7 1120 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
1121 ret = master->prepare_transfer_hardware(master);
1122 if (ret) {
1123 dev_err(&master->dev,
1124 "failed to prepare transfer hardware\n");
49834de2
MB
1125
1126 if (master->auto_runtime_pm)
1127 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
1128 return;
1129 }
1130 }
1131
56ec1978
MB
1132 trace_spi_message_start(master->cur_msg);
1133
2841a5fc
MB
1134 if (master->prepare_message) {
1135 ret = master->prepare_message(master, master->cur_msg);
1136 if (ret) {
1137 dev_err(&master->dev,
1138 "failed to prepare message: %d\n", ret);
1139 master->cur_msg->status = ret;
1140 spi_finalize_current_message(master);
1141 return;
1142 }
1143 master->cur_msg_prepared = true;
1144 }
1145
99adef31
MB
1146 ret = spi_map_msg(master, master->cur_msg);
1147 if (ret) {
1148 master->cur_msg->status = ret;
1149 spi_finalize_current_message(master);
1150 return;
1151 }
1152
ffbbdd21
LW
1153 ret = master->transfer_one_message(master, master->cur_msg);
1154 if (ret) {
1155 dev_err(&master->dev,
1f802f82 1156 "failed to transfer one message from queue\n");
ffbbdd21
LW
1157 return;
1158 }
1159}
1160
fc9e0f71
MB
1161/**
1162 * spi_pump_messages - kthread work function which processes spi message queue
1163 * @work: pointer to kthread work struct contained in the master struct
1164 */
1165static void spi_pump_messages(struct kthread_work *work)
1166{
1167 struct spi_master *master =
1168 container_of(work, struct spi_master, pump_messages);
1169
1170 __spi_pump_messages(master, true);
1171}
1172
ffbbdd21
LW
1173static int spi_init_queue(struct spi_master *master)
1174{
1175 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1176
ffbbdd21
LW
1177 master->running = false;
1178 master->busy = false;
1179
1180 init_kthread_worker(&master->kworker);
1181 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 1182 &master->kworker, "%s",
ffbbdd21
LW
1183 dev_name(&master->dev));
1184 if (IS_ERR(master->kworker_task)) {
1185 dev_err(&master->dev, "failed to create message pump task\n");
98a8f5a0 1186 return PTR_ERR(master->kworker_task);
ffbbdd21
LW
1187 }
1188 init_kthread_work(&master->pump_messages, spi_pump_messages);
1189
1190 /*
1191 * Master config will indicate if this controller should run the
1192 * message pump with high (realtime) priority to reduce the transfer
1193 * latency on the bus by minimising the delay between a transfer
1194 * request and the scheduling of the message pump thread. Without this
1195 * setting the message pump thread will remain at default priority.
1196 */
1197 if (master->rt) {
1198 dev_info(&master->dev,
1199 "will run message pump with realtime priority\n");
1200 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1201 }
1202
1203 return 0;
1204}
1205
1206/**
1207 * spi_get_next_queued_message() - called by driver to check for queued
1208 * messages
1209 * @master: the master to check for queued messages
1210 *
1211 * If there are more messages in the queue, the next message is returned from
1212 * this call.
1213 */
1214struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1215{
1216 struct spi_message *next;
1217 unsigned long flags;
1218
1219 /* get a pointer to the next message, if any */
1220 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
1221 next = list_first_entry_or_null(&master->queue, struct spi_message,
1222 queue);
ffbbdd21
LW
1223 spin_unlock_irqrestore(&master->queue_lock, flags);
1224
1225 return next;
1226}
1227EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1228
1229/**
1230 * spi_finalize_current_message() - the current message is complete
1231 * @master: the master to return the message to
1232 *
1233 * Called by the driver to notify the core that the message in the front of the
1234 * queue is complete and can be removed from the queue.
1235 */
1236void spi_finalize_current_message(struct spi_master *master)
1237{
1238 struct spi_message *mesg;
1239 unsigned long flags;
2841a5fc 1240 int ret;
ffbbdd21
LW
1241
1242 spin_lock_irqsave(&master->queue_lock, flags);
1243 mesg = master->cur_msg;
ffbbdd21
LW
1244 spin_unlock_irqrestore(&master->queue_lock, flags);
1245
99adef31
MB
1246 spi_unmap_msg(master, mesg);
1247
2841a5fc
MB
1248 if (master->cur_msg_prepared && master->unprepare_message) {
1249 ret = master->unprepare_message(master, mesg);
1250 if (ret) {
1251 dev_err(&master->dev,
1252 "failed to unprepare message: %d\n", ret);
1253 }
1254 }
391949b6 1255
8e76ef88
MS
1256 spin_lock_irqsave(&master->queue_lock, flags);
1257 master->cur_msg = NULL;
2841a5fc 1258 master->cur_msg_prepared = false;
8e76ef88
MS
1259 queue_kthread_work(&master->kworker, &master->pump_messages);
1260 spin_unlock_irqrestore(&master->queue_lock, flags);
1261
1262 trace_spi_message_done(mesg);
2841a5fc 1263
ffbbdd21
LW
1264 mesg->state = NULL;
1265 if (mesg->complete)
1266 mesg->complete(mesg->context);
1267}
1268EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1269
1270static int spi_start_queue(struct spi_master *master)
1271{
1272 unsigned long flags;
1273
1274 spin_lock_irqsave(&master->queue_lock, flags);
1275
1276 if (master->running || master->busy) {
1277 spin_unlock_irqrestore(&master->queue_lock, flags);
1278 return -EBUSY;
1279 }
1280
1281 master->running = true;
1282 master->cur_msg = NULL;
1283 spin_unlock_irqrestore(&master->queue_lock, flags);
1284
1285 queue_kthread_work(&master->kworker, &master->pump_messages);
1286
1287 return 0;
1288}
1289
1290static int spi_stop_queue(struct spi_master *master)
1291{
1292 unsigned long flags;
1293 unsigned limit = 500;
1294 int ret = 0;
1295
1296 spin_lock_irqsave(&master->queue_lock, flags);
1297
1298 /*
1299 * This is a bit lame, but is optimized for the common execution path.
1300 * A wait_queue on the master->busy could be used, but then the common
1301 * execution path (pump_messages) would be required to call wake_up or
1302 * friends on every SPI message. Do this instead.
1303 */
1304 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1305 spin_unlock_irqrestore(&master->queue_lock, flags);
f97b26b0 1306 usleep_range(10000, 11000);
ffbbdd21
LW
1307 spin_lock_irqsave(&master->queue_lock, flags);
1308 }
1309
1310 if (!list_empty(&master->queue) || master->busy)
1311 ret = -EBUSY;
1312 else
1313 master->running = false;
1314
1315 spin_unlock_irqrestore(&master->queue_lock, flags);
1316
1317 if (ret) {
1318 dev_warn(&master->dev,
1319 "could not stop message queue\n");
1320 return ret;
1321 }
1322 return ret;
1323}
1324
1325static int spi_destroy_queue(struct spi_master *master)
1326{
1327 int ret;
1328
1329 ret = spi_stop_queue(master);
1330
1331 /*
1332 * flush_kthread_worker will block until all work is done.
1333 * If the reason that stop_queue timed out is that the work will never
1334 * finish, then it does no good to call flush/stop thread, so
1335 * return anyway.
1336 */
1337 if (ret) {
1338 dev_err(&master->dev, "problem destroying queue\n");
1339 return ret;
1340 }
1341
1342 flush_kthread_worker(&master->kworker);
1343 kthread_stop(master->kworker_task);
1344
1345 return 0;
1346}
1347
0461a414
MB
1348static int __spi_queued_transfer(struct spi_device *spi,
1349 struct spi_message *msg,
1350 bool need_pump)
ffbbdd21
LW
1351{
1352 struct spi_master *master = spi->master;
1353 unsigned long flags;
1354
1355 spin_lock_irqsave(&master->queue_lock, flags);
1356
1357 if (!master->running) {
1358 spin_unlock_irqrestore(&master->queue_lock, flags);
1359 return -ESHUTDOWN;
1360 }
1361 msg->actual_length = 0;
1362 msg->status = -EINPROGRESS;
1363
1364 list_add_tail(&msg->queue, &master->queue);
0461a414 1365 if (!master->busy && need_pump)
ffbbdd21
LW
1366 queue_kthread_work(&master->kworker, &master->pump_messages);
1367
1368 spin_unlock_irqrestore(&master->queue_lock, flags);
1369 return 0;
1370}
1371
0461a414
MB
1372/**
1373 * spi_queued_transfer - transfer function for queued transfers
1374 * @spi: spi device which is requesting transfer
1375 * @msg: spi message which is to handled is queued to driver queue
1376 */
1377static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1378{
1379 return __spi_queued_transfer(spi, msg, true);
1380}
1381
ffbbdd21
LW
1382static int spi_master_initialize_queue(struct spi_master *master)
1383{
1384 int ret;
1385
ffbbdd21 1386 master->transfer = spi_queued_transfer;
b158935f
MB
1387 if (!master->transfer_one_message)
1388 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1389
1390 /* Initialize and start queue */
1391 ret = spi_init_queue(master);
1392 if (ret) {
1393 dev_err(&master->dev, "problem initializing queue\n");
1394 goto err_init_queue;
1395 }
c3676d5c 1396 master->queued = true;
ffbbdd21
LW
1397 ret = spi_start_queue(master);
1398 if (ret) {
1399 dev_err(&master->dev, "problem starting queue\n");
1400 goto err_start_queue;
1401 }
1402
1403 return 0;
1404
1405err_start_queue:
ffbbdd21 1406 spi_destroy_queue(master);
c3676d5c 1407err_init_queue:
ffbbdd21
LW
1408 return ret;
1409}
1410
1411/*-------------------------------------------------------------------------*/
1412
7cb94361 1413#if defined(CONFIG_OF)
aff5e3f8
PA
1414static struct spi_device *
1415of_register_spi_device(struct spi_master *master, struct device_node *nc)
1416{
1417 struct spi_device *spi;
1418 int rc;
1419 u32 value;
1420
1421 /* Alloc an spi_device */
1422 spi = spi_alloc_device(master);
1423 if (!spi) {
1424 dev_err(&master->dev, "spi_device alloc error for %s\n",
1425 nc->full_name);
1426 rc = -ENOMEM;
1427 goto err_out;
1428 }
1429
1430 /* Select device driver */
1431 rc = of_modalias_node(nc, spi->modalias,
1432 sizeof(spi->modalias));
1433 if (rc < 0) {
1434 dev_err(&master->dev, "cannot find modalias for %s\n",
1435 nc->full_name);
1436 goto err_out;
1437 }
1438
1439 /* Device address */
1440 rc = of_property_read_u32(nc, "reg", &value);
1441 if (rc) {
1442 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1443 nc->full_name, rc);
1444 goto err_out;
1445 }
1446 spi->chip_select = value;
1447
1448 /* Mode (clock phase/polarity/etc.) */
1449 if (of_find_property(nc, "spi-cpha", NULL))
1450 spi->mode |= SPI_CPHA;
1451 if (of_find_property(nc, "spi-cpol", NULL))
1452 spi->mode |= SPI_CPOL;
1453 if (of_find_property(nc, "spi-cs-high", NULL))
1454 spi->mode |= SPI_CS_HIGH;
1455 if (of_find_property(nc, "spi-3wire", NULL))
1456 spi->mode |= SPI_3WIRE;
1457 if (of_find_property(nc, "spi-lsb-first", NULL))
1458 spi->mode |= SPI_LSB_FIRST;
1459
1460 /* Device DUAL/QUAD mode */
1461 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1462 switch (value) {
1463 case 1:
1464 break;
1465 case 2:
1466 spi->mode |= SPI_TX_DUAL;
1467 break;
1468 case 4:
1469 spi->mode |= SPI_TX_QUAD;
1470 break;
1471 default:
1472 dev_warn(&master->dev,
1473 "spi-tx-bus-width %d not supported\n",
1474 value);
1475 break;
1476 }
1477 }
1478
1479 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1480 switch (value) {
1481 case 1:
1482 break;
1483 case 2:
1484 spi->mode |= SPI_RX_DUAL;
1485 break;
1486 case 4:
1487 spi->mode |= SPI_RX_QUAD;
1488 break;
1489 default:
1490 dev_warn(&master->dev,
1491 "spi-rx-bus-width %d not supported\n",
1492 value);
1493 break;
1494 }
1495 }
1496
1497 /* Device speed */
1498 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1499 if (rc) {
1500 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1501 nc->full_name, rc);
1502 goto err_out;
1503 }
1504 spi->max_speed_hz = value;
1505
aff5e3f8
PA
1506 /* Store a pointer to the node in the device structure */
1507 of_node_get(nc);
1508 spi->dev.of_node = nc;
1509
1510 /* Register the new device */
aff5e3f8
PA
1511 rc = spi_add_device(spi);
1512 if (rc) {
1513 dev_err(&master->dev, "spi_device register error %s\n",
1514 nc->full_name);
1515 goto err_out;
1516 }
1517
1518 return spi;
1519
1520err_out:
1521 spi_dev_put(spi);
1522 return ERR_PTR(rc);
1523}
1524
d57a4282
GL
1525/**
1526 * of_register_spi_devices() - Register child devices onto the SPI bus
1527 * @master: Pointer to spi_master device
1528 *
1529 * Registers an spi_device for each child node of master node which has a 'reg'
1530 * property.
1531 */
1532static void of_register_spi_devices(struct spi_master *master)
1533{
1534 struct spi_device *spi;
1535 struct device_node *nc;
d57a4282
GL
1536
1537 if (!master->dev.of_node)
1538 return;
1539
f3b6159e 1540 for_each_available_child_of_node(master->dev.of_node, nc) {
aff5e3f8
PA
1541 spi = of_register_spi_device(master, nc);
1542 if (IS_ERR(spi))
1543 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
d57a4282 1544 nc->full_name);
d57a4282
GL
1545 }
1546}
1547#else
1548static void of_register_spi_devices(struct spi_master *master) { }
1549#endif
1550
64bee4d2
MW
1551#ifdef CONFIG_ACPI
1552static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1553{
1554 struct spi_device *spi = data;
1555
1556 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1557 struct acpi_resource_spi_serialbus *sb;
1558
1559 sb = &ares->data.spi_serial_bus;
1560 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1561 spi->chip_select = sb->device_selection;
1562 spi->max_speed_hz = sb->connection_speed;
1563
1564 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1565 spi->mode |= SPI_CPHA;
1566 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1567 spi->mode |= SPI_CPOL;
1568 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1569 spi->mode |= SPI_CS_HIGH;
1570 }
1571 } else if (spi->irq < 0) {
1572 struct resource r;
1573
1574 if (acpi_dev_resource_interrupt(ares, 0, &r))
1575 spi->irq = r.start;
1576 }
1577
1578 /* Always tell the ACPI core to skip this resource */
1579 return 1;
1580}
1581
1582static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1583 void *data, void **return_value)
1584{
1585 struct spi_master *master = data;
1586 struct list_head resource_list;
1587 struct acpi_device *adev;
1588 struct spi_device *spi;
1589 int ret;
1590
1591 if (acpi_bus_get_device(handle, &adev))
1592 return AE_OK;
1593 if (acpi_bus_get_status(adev) || !adev->status.present)
1594 return AE_OK;
1595
1596 spi = spi_alloc_device(master);
1597 if (!spi) {
1598 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1599 dev_name(&adev->dev));
1600 return AE_NO_MEMORY;
1601 }
1602
7b199811 1603 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1604 spi->irq = -1;
1605
1606 INIT_LIST_HEAD(&resource_list);
1607 ret = acpi_dev_get_resources(adev, &resource_list,
1608 acpi_spi_add_resource, spi);
1609 acpi_dev_free_resource_list(&resource_list);
1610
1611 if (ret < 0 || !spi->max_speed_hz) {
1612 spi_dev_put(spi);
1613 return AE_OK;
1614 }
1615
33cf00e5 1616 adev->power.flags.ignore_parent = true;
cf9eb39c 1617 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1618 if (spi_add_device(spi)) {
33cf00e5 1619 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1620 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1621 dev_name(&adev->dev));
1622 spi_dev_put(spi);
1623 }
1624
1625 return AE_OK;
1626}
1627
1628static void acpi_register_spi_devices(struct spi_master *master)
1629{
1630 acpi_status status;
1631 acpi_handle handle;
1632
29896178 1633 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1634 if (!handle)
1635 return;
1636
1637 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1638 acpi_spi_add_device, NULL,
1639 master, NULL);
1640 if (ACPI_FAILURE(status))
1641 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1642}
1643#else
1644static inline void acpi_register_spi_devices(struct spi_master *master) {}
1645#endif /* CONFIG_ACPI */
1646
49dce689 1647static void spi_master_release(struct device *dev)
8ae12a0d
DB
1648{
1649 struct spi_master *master;
1650
49dce689 1651 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1652 kfree(master);
1653}
1654
1655static struct class spi_master_class = {
1656 .name = "spi_master",
1657 .owner = THIS_MODULE,
49dce689 1658 .dev_release = spi_master_release,
eca2ebc7 1659 .dev_groups = spi_master_groups,
8ae12a0d
DB
1660};
1661
1662
1663/**
1664 * spi_alloc_master - allocate SPI master controller
1665 * @dev: the controller, possibly using the platform_bus
33e34dc6 1666 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1667 * memory is in the driver_data field of the returned device,
0c868461 1668 * accessible with spi_master_get_devdata().
33e34dc6 1669 * Context: can sleep
8ae12a0d
DB
1670 *
1671 * This call is used only by SPI master controller drivers, which are the
1672 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1673 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1674 *
1675 * This must be called from context that can sleep. It returns the SPI
1676 * master structure on success, else NULL.
1677 *
1678 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1679 * the master's methods before calling spi_register_master(); and (after errors
a394d635 1680 * adding the device) calling spi_master_put() to prevent a memory leak.
8ae12a0d 1681 */
e9d5a461 1682struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1683{
1684 struct spi_master *master;
1685
0c868461
DB
1686 if (!dev)
1687 return NULL;
1688
5fe5f05e 1689 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1690 if (!master)
1691 return NULL;
1692
49dce689 1693 device_initialize(&master->dev);
1e8a52e1
GL
1694 master->bus_num = -1;
1695 master->num_chipselect = 1;
49dce689
TJ
1696 master->dev.class = &spi_master_class;
1697 master->dev.parent = get_device(dev);
0c868461 1698 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1699
1700 return master;
1701}
1702EXPORT_SYMBOL_GPL(spi_alloc_master);
1703
74317984
JCPV
1704#ifdef CONFIG_OF
1705static int of_spi_register_master(struct spi_master *master)
1706{
e80beb27 1707 int nb, i, *cs;
74317984
JCPV
1708 struct device_node *np = master->dev.of_node;
1709
1710 if (!np)
1711 return 0;
1712
1713 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1714 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1715
8ec5d84e
AL
1716 /* Return error only for an incorrectly formed cs-gpios property */
1717 if (nb == 0 || nb == -ENOENT)
74317984 1718 return 0;
8ec5d84e
AL
1719 else if (nb < 0)
1720 return nb;
74317984
JCPV
1721
1722 cs = devm_kzalloc(&master->dev,
1723 sizeof(int) * master->num_chipselect,
1724 GFP_KERNEL);
1725 master->cs_gpios = cs;
1726
1727 if (!master->cs_gpios)
1728 return -ENOMEM;
1729
0da83bb1 1730 for (i = 0; i < master->num_chipselect; i++)
446411e1 1731 cs[i] = -ENOENT;
74317984
JCPV
1732
1733 for (i = 0; i < nb; i++)
1734 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1735
1736 return 0;
1737}
1738#else
1739static int of_spi_register_master(struct spi_master *master)
1740{
1741 return 0;
1742}
1743#endif
1744
8ae12a0d
DB
1745/**
1746 * spi_register_master - register SPI master controller
1747 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1748 * Context: can sleep
8ae12a0d
DB
1749 *
1750 * SPI master controllers connect to their drivers using some non-SPI bus,
1751 * such as the platform bus. The final stage of probe() in that code
1752 * includes calling spi_register_master() to hook up to this SPI bus glue.
1753 *
1754 * SPI controllers use board specific (often SOC specific) bus numbers,
1755 * and board-specific addressing for SPI devices combines those numbers
1756 * with chip select numbers. Since SPI does not directly support dynamic
1757 * device identification, boards need configuration tables telling which
1758 * chip is at which address.
1759 *
1760 * This must be called from context that can sleep. It returns zero on
1761 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1762 * After a successful return, the caller is responsible for calling
1763 * spi_unregister_master().
8ae12a0d 1764 */
e9d5a461 1765int spi_register_master(struct spi_master *master)
8ae12a0d 1766{
e44a45ae 1767 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1768 struct device *dev = master->dev.parent;
2b9603a0 1769 struct boardinfo *bi;
8ae12a0d
DB
1770 int status = -ENODEV;
1771 int dynamic = 0;
1772
0c868461
DB
1773 if (!dev)
1774 return -ENODEV;
1775
74317984
JCPV
1776 status = of_spi_register_master(master);
1777 if (status)
1778 return status;
1779
082c8cb4
DB
1780 /* even if it's just one always-selected device, there must
1781 * be at least one chipselect
1782 */
1783 if (master->num_chipselect == 0)
1784 return -EINVAL;
1785
bb29785e
GL
1786 if ((master->bus_num < 0) && master->dev.of_node)
1787 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1788
8ae12a0d 1789 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1790 if (master->bus_num < 0) {
082c8cb4
DB
1791 /* FIXME switch to an IDR based scheme, something like
1792 * I2C now uses, so we can't run out of "dynamic" IDs
1793 */
8ae12a0d 1794 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1795 dynamic = 1;
8ae12a0d
DB
1796 }
1797
5424d43e
MB
1798 INIT_LIST_HEAD(&master->queue);
1799 spin_lock_init(&master->queue_lock);
cf32b71e
ES
1800 spin_lock_init(&master->bus_lock_spinlock);
1801 mutex_init(&master->bus_lock_mutex);
1802 master->bus_lock_flag = 0;
b158935f 1803 init_completion(&master->xfer_completion);
6ad45a27
MB
1804 if (!master->max_dma_len)
1805 master->max_dma_len = INT_MAX;
cf32b71e 1806
8ae12a0d
DB
1807 /* register the device, then userspace will see it.
1808 * registration fails if the bus ID is in use.
1809 */
35f74fca 1810 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1811 status = device_add(&master->dev);
b885244e 1812 if (status < 0)
8ae12a0d 1813 goto done;
35f74fca 1814 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1815 dynamic ? " (dynamic)" : "");
1816
ffbbdd21
LW
1817 /* If we're using a queued driver, start the queue */
1818 if (master->transfer)
1819 dev_info(dev, "master is unqueued, this is deprecated\n");
1820 else {
1821 status = spi_master_initialize_queue(master);
1822 if (status) {
e93b0724 1823 device_del(&master->dev);
ffbbdd21
LW
1824 goto done;
1825 }
1826 }
eca2ebc7
MS
1827 /* add statistics */
1828 spin_lock_init(&master->statistics.lock);
ffbbdd21 1829
2b9603a0
FT
1830 mutex_lock(&board_lock);
1831 list_add_tail(&master->list, &spi_master_list);
1832 list_for_each_entry(bi, &board_list, list)
1833 spi_match_master_to_boardinfo(master, &bi->board_info);
1834 mutex_unlock(&board_lock);
1835
64bee4d2 1836 /* Register devices from the device tree and ACPI */
12b15e83 1837 of_register_spi_devices(master);
64bee4d2 1838 acpi_register_spi_devices(master);
8ae12a0d
DB
1839done:
1840 return status;
1841}
1842EXPORT_SYMBOL_GPL(spi_register_master);
1843
666d5b4c
MB
1844static void devm_spi_unregister(struct device *dev, void *res)
1845{
1846 spi_unregister_master(*(struct spi_master **)res);
1847}
1848
1849/**
1850 * dev_spi_register_master - register managed SPI master controller
1851 * @dev: device managing SPI master
1852 * @master: initialized master, originally from spi_alloc_master()
1853 * Context: can sleep
1854 *
1855 * Register a SPI device as with spi_register_master() which will
1856 * automatically be unregister
1857 */
1858int devm_spi_register_master(struct device *dev, struct spi_master *master)
1859{
1860 struct spi_master **ptr;
1861 int ret;
1862
1863 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1864 if (!ptr)
1865 return -ENOMEM;
1866
1867 ret = spi_register_master(master);
4b92894e 1868 if (!ret) {
666d5b4c
MB
1869 *ptr = master;
1870 devres_add(dev, ptr);
1871 } else {
1872 devres_free(ptr);
1873 }
1874
1875 return ret;
1876}
1877EXPORT_SYMBOL_GPL(devm_spi_register_master);
1878
34860089 1879static int __unregister(struct device *dev, void *null)
8ae12a0d 1880{
34860089 1881 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1882 return 0;
1883}
1884
1885/**
1886 * spi_unregister_master - unregister SPI master controller
1887 * @master: the master being unregistered
33e34dc6 1888 * Context: can sleep
8ae12a0d
DB
1889 *
1890 * This call is used only by SPI master controller drivers, which are the
1891 * only ones directly touching chip registers.
1892 *
1893 * This must be called from context that can sleep.
1894 */
1895void spi_unregister_master(struct spi_master *master)
1896{
89fc9a1a
JG
1897 int dummy;
1898
ffbbdd21
LW
1899 if (master->queued) {
1900 if (spi_destroy_queue(master))
1901 dev_err(&master->dev, "queue remove failed\n");
1902 }
1903
2b9603a0
FT
1904 mutex_lock(&board_lock);
1905 list_del(&master->list);
1906 mutex_unlock(&board_lock);
1907
97dbf37d 1908 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1909 device_unregister(&master->dev);
8ae12a0d
DB
1910}
1911EXPORT_SYMBOL_GPL(spi_unregister_master);
1912
ffbbdd21
LW
1913int spi_master_suspend(struct spi_master *master)
1914{
1915 int ret;
1916
1917 /* Basically no-ops for non-queued masters */
1918 if (!master->queued)
1919 return 0;
1920
1921 ret = spi_stop_queue(master);
1922 if (ret)
1923 dev_err(&master->dev, "queue stop failed\n");
1924
1925 return ret;
1926}
1927EXPORT_SYMBOL_GPL(spi_master_suspend);
1928
1929int spi_master_resume(struct spi_master *master)
1930{
1931 int ret;
1932
1933 if (!master->queued)
1934 return 0;
1935
1936 ret = spi_start_queue(master);
1937 if (ret)
1938 dev_err(&master->dev, "queue restart failed\n");
1939
1940 return ret;
1941}
1942EXPORT_SYMBOL_GPL(spi_master_resume);
1943
9f3b795a 1944static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1945{
1946 struct spi_master *m;
9f3b795a 1947 const u16 *bus_num = data;
5ed2c832
DY
1948
1949 m = container_of(dev, struct spi_master, dev);
1950 return m->bus_num == *bus_num;
1951}
1952
8ae12a0d
DB
1953/**
1954 * spi_busnum_to_master - look up master associated with bus_num
1955 * @bus_num: the master's bus number
33e34dc6 1956 * Context: can sleep
8ae12a0d
DB
1957 *
1958 * This call may be used with devices that are registered after
1959 * arch init time. It returns a refcounted pointer to the relevant
1960 * spi_master (which the caller must release), or NULL if there is
1961 * no such master registered.
1962 */
1963struct spi_master *spi_busnum_to_master(u16 bus_num)
1964{
49dce689 1965 struct device *dev;
1e9a51dc 1966 struct spi_master *master = NULL;
5ed2c832 1967
695794ae 1968 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1969 __spi_master_match);
1970 if (dev)
1971 master = container_of(dev, struct spi_master, dev);
1972 /* reference got in class_find_device */
1e9a51dc 1973 return master;
8ae12a0d
DB
1974}
1975EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1976
1977
1978/*-------------------------------------------------------------------------*/
1979
7d077197
DB
1980/* Core methods for SPI master protocol drivers. Some of the
1981 * other core methods are currently defined as inline functions.
1982 */
1983
63ab645f
SB
1984static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
1985{
1986 if (master->bits_per_word_mask) {
1987 /* Only 32 bits fit in the mask */
1988 if (bits_per_word > 32)
1989 return -EINVAL;
1990 if (!(master->bits_per_word_mask &
1991 SPI_BPW_MASK(bits_per_word)))
1992 return -EINVAL;
1993 }
1994
1995 return 0;
1996}
1997
7d077197
DB
1998/**
1999 * spi_setup - setup SPI mode and clock rate
2000 * @spi: the device whose settings are being modified
2001 * Context: can sleep, and no requests are queued to the device
2002 *
2003 * SPI protocol drivers may need to update the transfer mode if the
2004 * device doesn't work with its default. They may likewise need
2005 * to update clock rates or word sizes from initial values. This function
2006 * changes those settings, and must be called from a context that can sleep.
2007 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2008 * effect the next time the device is selected and data is transferred to
2009 * or from it. When this function returns, the spi device is deselected.
2010 *
2011 * Note that this call will fail if the protocol driver specifies an option
2012 * that the underlying controller or its driver does not support. For
2013 * example, not all hardware supports wire transfers using nine bit words,
2014 * LSB-first wire encoding, or active-high chipselects.
2015 */
2016int spi_setup(struct spi_device *spi)
2017{
83596fbe 2018 unsigned bad_bits, ugly_bits;
5ab8d262 2019 int status;
7d077197 2020
f477b7fb 2021 /* check mode to prevent that DUAL and QUAD set at the same time
2022 */
2023 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2024 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2025 dev_err(&spi->dev,
2026 "setup: can not select dual and quad at the same time\n");
2027 return -EINVAL;
2028 }
2029 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2030 */
2031 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2032 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2033 return -EINVAL;
e7db06b5
DB
2034 /* help drivers fail *cleanly* when they need options
2035 * that aren't supported with their current master
2036 */
2037 bad_bits = spi->mode & ~spi->master->mode_bits;
83596fbe
GU
2038 ugly_bits = bad_bits &
2039 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2040 if (ugly_bits) {
2041 dev_warn(&spi->dev,
2042 "setup: ignoring unsupported mode bits %x\n",
2043 ugly_bits);
2044 spi->mode &= ~ugly_bits;
2045 bad_bits &= ~ugly_bits;
2046 }
e7db06b5 2047 if (bad_bits) {
eb288a1f 2048 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
2049 bad_bits);
2050 return -EINVAL;
2051 }
2052
7d077197
DB
2053 if (!spi->bits_per_word)
2054 spi->bits_per_word = 8;
2055
5ab8d262
AS
2056 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2057 if (status)
2058 return status;
63ab645f 2059
052eb2d4
AL
2060 if (!spi->max_speed_hz)
2061 spi->max_speed_hz = spi->master->max_speed_hz;
2062
1a7b7ee7
II
2063 spi_set_cs(spi, false);
2064
caae070c
LD
2065 if (spi->master->setup)
2066 status = spi->master->setup(spi);
7d077197 2067
5fe5f05e 2068 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
2069 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2070 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2071 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2072 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2073 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2074 spi->bits_per_word, spi->max_speed_hz,
2075 status);
2076
2077 return status;
2078}
2079EXPORT_SYMBOL_GPL(spi_setup);
2080
90808738 2081static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
2082{
2083 struct spi_master *master = spi->master;
e6811d1d 2084 struct spi_transfer *xfer;
6ea31293 2085 int w_size;
cf32b71e 2086
24a0013a
MB
2087 if (list_empty(&message->transfers))
2088 return -EINVAL;
24a0013a 2089
cf32b71e
ES
2090 /* Half-duplex links include original MicroWire, and ones with
2091 * only one data pin like SPI_3WIRE (switches direction) or where
2092 * either MOSI or MISO is missing. They can also be caused by
2093 * software limitations.
2094 */
2095 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2096 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
2097 unsigned flags = master->flags;
2098
2099 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2100 if (xfer->rx_buf && xfer->tx_buf)
2101 return -EINVAL;
2102 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2103 return -EINVAL;
2104 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2105 return -EINVAL;
2106 }
2107 }
2108
e6811d1d 2109 /**
059b8ffe
LD
2110 * Set transfer bits_per_word and max speed as spi device default if
2111 * it is not set for this transfer.
f477b7fb 2112 * Set transfer tx_nbits and rx_nbits as single transfer default
2113 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
2114 */
2115 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 2116 message->frame_length += xfer->len;
e6811d1d
LD
2117 if (!xfer->bits_per_word)
2118 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
2119
2120 if (!xfer->speed_hz)
059b8ffe 2121 xfer->speed_hz = spi->max_speed_hz;
7dc9fbc3
MB
2122 if (!xfer->speed_hz)
2123 xfer->speed_hz = master->max_speed_hz;
a6f87fad
AL
2124
2125 if (master->max_speed_hz &&
2126 xfer->speed_hz > master->max_speed_hz)
2127 xfer->speed_hz = master->max_speed_hz;
56ede94a 2128
63ab645f
SB
2129 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2130 return -EINVAL;
a2fd4f9f 2131
4d94bd21
II
2132 /*
2133 * SPI transfer length should be multiple of SPI word size
2134 * where SPI word size should be power-of-two multiple
2135 */
2136 if (xfer->bits_per_word <= 8)
2137 w_size = 1;
2138 else if (xfer->bits_per_word <= 16)
2139 w_size = 2;
2140 else
2141 w_size = 4;
2142
4d94bd21 2143 /* No partial transfers accepted */
6ea31293 2144 if (xfer->len % w_size)
4d94bd21
II
2145 return -EINVAL;
2146
a2fd4f9f
MB
2147 if (xfer->speed_hz && master->min_speed_hz &&
2148 xfer->speed_hz < master->min_speed_hz)
2149 return -EINVAL;
f477b7fb 2150
2151 if (xfer->tx_buf && !xfer->tx_nbits)
2152 xfer->tx_nbits = SPI_NBITS_SINGLE;
2153 if (xfer->rx_buf && !xfer->rx_nbits)
2154 xfer->rx_nbits = SPI_NBITS_SINGLE;
2155 /* check transfer tx/rx_nbits:
1afd9989
GU
2156 * 1. check the value matches one of single, dual and quad
2157 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 2158 */
db90a441
SP
2159 if (xfer->tx_buf) {
2160 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2161 xfer->tx_nbits != SPI_NBITS_DUAL &&
2162 xfer->tx_nbits != SPI_NBITS_QUAD)
2163 return -EINVAL;
2164 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2165 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2166 return -EINVAL;
2167 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2168 !(spi->mode & SPI_TX_QUAD))
2169 return -EINVAL;
db90a441 2170 }
f477b7fb 2171 /* check transfer rx_nbits */
db90a441
SP
2172 if (xfer->rx_buf) {
2173 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2174 xfer->rx_nbits != SPI_NBITS_DUAL &&
2175 xfer->rx_nbits != SPI_NBITS_QUAD)
2176 return -EINVAL;
2177 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2178 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2179 return -EINVAL;
2180 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2181 !(spi->mode & SPI_RX_QUAD))
2182 return -EINVAL;
db90a441 2183 }
e6811d1d
LD
2184 }
2185
cf32b71e 2186 message->status = -EINPROGRESS;
90808738
MB
2187
2188 return 0;
2189}
2190
2191static int __spi_async(struct spi_device *spi, struct spi_message *message)
2192{
2193 struct spi_master *master = spi->master;
2194
2195 message->spi = spi;
2196
eca2ebc7
MS
2197 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2198 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2199
90808738
MB
2200 trace_spi_message_submit(message);
2201
cf32b71e
ES
2202 return master->transfer(spi, message);
2203}
2204
568d0697
DB
2205/**
2206 * spi_async - asynchronous SPI transfer
2207 * @spi: device with which data will be exchanged
2208 * @message: describes the data transfers, including completion callback
2209 * Context: any (irqs may be blocked, etc)
2210 *
2211 * This call may be used in_irq and other contexts which can't sleep,
2212 * as well as from task contexts which can sleep.
2213 *
2214 * The completion callback is invoked in a context which can't sleep.
2215 * Before that invocation, the value of message->status is undefined.
2216 * When the callback is issued, message->status holds either zero (to
2217 * indicate complete success) or a negative error code. After that
2218 * callback returns, the driver which issued the transfer request may
2219 * deallocate the associated memory; it's no longer in use by any SPI
2220 * core or controller driver code.
2221 *
2222 * Note that although all messages to a spi_device are handled in
2223 * FIFO order, messages may go to different devices in other orders.
2224 * Some device might be higher priority, or have various "hard" access
2225 * time requirements, for example.
2226 *
2227 * On detection of any fault during the transfer, processing of
2228 * the entire message is aborted, and the device is deselected.
2229 * Until returning from the associated message completion callback,
2230 * no other spi_message queued to that device will be processed.
2231 * (This rule applies equally to all the synchronous transfer calls,
2232 * which are wrappers around this core asynchronous primitive.)
2233 */
2234int spi_async(struct spi_device *spi, struct spi_message *message)
2235{
2236 struct spi_master *master = spi->master;
cf32b71e
ES
2237 int ret;
2238 unsigned long flags;
568d0697 2239
90808738
MB
2240 ret = __spi_validate(spi, message);
2241 if (ret != 0)
2242 return ret;
2243
cf32b71e 2244 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 2245
cf32b71e
ES
2246 if (master->bus_lock_flag)
2247 ret = -EBUSY;
2248 else
2249 ret = __spi_async(spi, message);
568d0697 2250
cf32b71e
ES
2251 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2252
2253 return ret;
568d0697
DB
2254}
2255EXPORT_SYMBOL_GPL(spi_async);
2256
cf32b71e
ES
2257/**
2258 * spi_async_locked - version of spi_async with exclusive bus usage
2259 * @spi: device with which data will be exchanged
2260 * @message: describes the data transfers, including completion callback
2261 * Context: any (irqs may be blocked, etc)
2262 *
2263 * This call may be used in_irq and other contexts which can't sleep,
2264 * as well as from task contexts which can sleep.
2265 *
2266 * The completion callback is invoked in a context which can't sleep.
2267 * Before that invocation, the value of message->status is undefined.
2268 * When the callback is issued, message->status holds either zero (to
2269 * indicate complete success) or a negative error code. After that
2270 * callback returns, the driver which issued the transfer request may
2271 * deallocate the associated memory; it's no longer in use by any SPI
2272 * core or controller driver code.
2273 *
2274 * Note that although all messages to a spi_device are handled in
2275 * FIFO order, messages may go to different devices in other orders.
2276 * Some device might be higher priority, or have various "hard" access
2277 * time requirements, for example.
2278 *
2279 * On detection of any fault during the transfer, processing of
2280 * the entire message is aborted, and the device is deselected.
2281 * Until returning from the associated message completion callback,
2282 * no other spi_message queued to that device will be processed.
2283 * (This rule applies equally to all the synchronous transfer calls,
2284 * which are wrappers around this core asynchronous primitive.)
2285 */
2286int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2287{
2288 struct spi_master *master = spi->master;
2289 int ret;
2290 unsigned long flags;
2291
90808738
MB
2292 ret = __spi_validate(spi, message);
2293 if (ret != 0)
2294 return ret;
2295
cf32b71e
ES
2296 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2297
2298 ret = __spi_async(spi, message);
2299
2300 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2301
2302 return ret;
2303
2304}
2305EXPORT_SYMBOL_GPL(spi_async_locked);
2306
7d077197
DB
2307
2308/*-------------------------------------------------------------------------*/
2309
2310/* Utility methods for SPI master protocol drivers, layered on
2311 * top of the core. Some other utility methods are defined as
2312 * inline functions.
2313 */
2314
5d870c8e
AM
2315static void spi_complete(void *arg)
2316{
2317 complete(arg);
2318}
2319
cf32b71e
ES
2320static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2321 int bus_locked)
2322{
2323 DECLARE_COMPLETION_ONSTACK(done);
2324 int status;
2325 struct spi_master *master = spi->master;
0461a414
MB
2326 unsigned long flags;
2327
2328 status = __spi_validate(spi, message);
2329 if (status != 0)
2330 return status;
cf32b71e
ES
2331
2332 message->complete = spi_complete;
2333 message->context = &done;
0461a414 2334 message->spi = spi;
cf32b71e 2335
eca2ebc7
MS
2336 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2337 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2338
cf32b71e
ES
2339 if (!bus_locked)
2340 mutex_lock(&master->bus_lock_mutex);
2341
0461a414
MB
2342 /* If we're not using the legacy transfer method then we will
2343 * try to transfer in the calling context so special case.
2344 * This code would be less tricky if we could remove the
2345 * support for driver implemented message queues.
2346 */
2347 if (master->transfer == spi_queued_transfer) {
2348 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2349
2350 trace_spi_message_submit(message);
2351
2352 status = __spi_queued_transfer(spi, message, false);
2353
2354 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2355 } else {
2356 status = spi_async_locked(spi, message);
2357 }
cf32b71e
ES
2358
2359 if (!bus_locked)
2360 mutex_unlock(&master->bus_lock_mutex);
2361
2362 if (status == 0) {
0461a414
MB
2363 /* Push out the messages in the calling context if we
2364 * can.
2365 */
eca2ebc7
MS
2366 if (master->transfer == spi_queued_transfer) {
2367 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2368 spi_sync_immediate);
2369 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2370 spi_sync_immediate);
fc9e0f71 2371 __spi_pump_messages(master, false);
eca2ebc7 2372 }
0461a414 2373
cf32b71e
ES
2374 wait_for_completion(&done);
2375 status = message->status;
2376 }
2377 message->context = NULL;
2378 return status;
2379}
2380
8ae12a0d
DB
2381/**
2382 * spi_sync - blocking/synchronous SPI data transfers
2383 * @spi: device with which data will be exchanged
2384 * @message: describes the data transfers
33e34dc6 2385 * Context: can sleep
8ae12a0d
DB
2386 *
2387 * This call may only be used from a context that may sleep. The sleep
2388 * is non-interruptible, and has no timeout. Low-overhead controller
2389 * drivers may DMA directly into and out of the message buffers.
2390 *
2391 * Note that the SPI device's chip select is active during the message,
2392 * and then is normally disabled between messages. Drivers for some
2393 * frequently-used devices may want to minimize costs of selecting a chip,
2394 * by leaving it selected in anticipation that the next message will go
2395 * to the same chip. (That may increase power usage.)
2396 *
0c868461
DB
2397 * Also, the caller is guaranteeing that the memory associated with the
2398 * message will not be freed before this call returns.
2399 *
9b938b74 2400 * It returns zero on success, else a negative error code.
8ae12a0d
DB
2401 */
2402int spi_sync(struct spi_device *spi, struct spi_message *message)
2403{
cf32b71e 2404 return __spi_sync(spi, message, 0);
8ae12a0d
DB
2405}
2406EXPORT_SYMBOL_GPL(spi_sync);
2407
cf32b71e
ES
2408/**
2409 * spi_sync_locked - version of spi_sync with exclusive bus usage
2410 * @spi: device with which data will be exchanged
2411 * @message: describes the data transfers
2412 * Context: can sleep
2413 *
2414 * This call may only be used from a context that may sleep. The sleep
2415 * is non-interruptible, and has no timeout. Low-overhead controller
2416 * drivers may DMA directly into and out of the message buffers.
2417 *
2418 * This call should be used by drivers that require exclusive access to the
25985edc 2419 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
2420 * be released by a spi_bus_unlock call when the exclusive access is over.
2421 *
2422 * It returns zero on success, else a negative error code.
2423 */
2424int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2425{
2426 return __spi_sync(spi, message, 1);
2427}
2428EXPORT_SYMBOL_GPL(spi_sync_locked);
2429
2430/**
2431 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2432 * @master: SPI bus master that should be locked for exclusive bus access
2433 * Context: can sleep
2434 *
2435 * This call may only be used from a context that may sleep. The sleep
2436 * is non-interruptible, and has no timeout.
2437 *
2438 * This call should be used by drivers that require exclusive access to the
2439 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2440 * exclusive access is over. Data transfer must be done by spi_sync_locked
2441 * and spi_async_locked calls when the SPI bus lock is held.
2442 *
2443 * It returns zero on success, else a negative error code.
2444 */
2445int spi_bus_lock(struct spi_master *master)
2446{
2447 unsigned long flags;
2448
2449 mutex_lock(&master->bus_lock_mutex);
2450
2451 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2452 master->bus_lock_flag = 1;
2453 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2454
2455 /* mutex remains locked until spi_bus_unlock is called */
2456
2457 return 0;
2458}
2459EXPORT_SYMBOL_GPL(spi_bus_lock);
2460
2461/**
2462 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2463 * @master: SPI bus master that was locked for exclusive bus access
2464 * Context: can sleep
2465 *
2466 * This call may only be used from a context that may sleep. The sleep
2467 * is non-interruptible, and has no timeout.
2468 *
2469 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2470 * call.
2471 *
2472 * It returns zero on success, else a negative error code.
2473 */
2474int spi_bus_unlock(struct spi_master *master)
2475{
2476 master->bus_lock_flag = 0;
2477
2478 mutex_unlock(&master->bus_lock_mutex);
2479
2480 return 0;
2481}
2482EXPORT_SYMBOL_GPL(spi_bus_unlock);
2483
a9948b61 2484/* portable code must never pass more than 32 bytes */
5fe5f05e 2485#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
2486
2487static u8 *buf;
2488
2489/**
2490 * spi_write_then_read - SPI synchronous write followed by read
2491 * @spi: device with which data will be exchanged
2492 * @txbuf: data to be written (need not be dma-safe)
2493 * @n_tx: size of txbuf, in bytes
27570497
JP
2494 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2495 * @n_rx: size of rxbuf, in bytes
33e34dc6 2496 * Context: can sleep
8ae12a0d
DB
2497 *
2498 * This performs a half duplex MicroWire style transaction with the
2499 * device, sending txbuf and then reading rxbuf. The return value
2500 * is zero for success, else a negative errno status code.
b885244e 2501 * This call may only be used from a context that may sleep.
8ae12a0d 2502 *
0c868461 2503 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2504 * portable code should never use this for more than 32 bytes.
2505 * Performance-sensitive or bulk transfer code should instead use
0c868461 2506 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
2507 */
2508int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2509 const void *txbuf, unsigned n_tx,
2510 void *rxbuf, unsigned n_rx)
8ae12a0d 2511{
068f4070 2512 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2513
2514 int status;
2515 struct spi_message message;
bdff549e 2516 struct spi_transfer x[2];
8ae12a0d
DB
2517 u8 *local_buf;
2518
b3a223ee
MB
2519 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2520 * copying here, (as a pure convenience thing), but we can
2521 * keep heap costs out of the hot path unless someone else is
2522 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2523 */
b3a223ee 2524 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2525 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2526 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2527 if (!local_buf)
2528 return -ENOMEM;
2529 } else {
2530 local_buf = buf;
2531 }
8ae12a0d 2532
8275c642 2533 spi_message_init(&message);
5fe5f05e 2534 memset(x, 0, sizeof(x));
bdff549e
DB
2535 if (n_tx) {
2536 x[0].len = n_tx;
2537 spi_message_add_tail(&x[0], &message);
2538 }
2539 if (n_rx) {
2540 x[1].len = n_rx;
2541 spi_message_add_tail(&x[1], &message);
2542 }
8275c642 2543
8ae12a0d 2544 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2545 x[0].tx_buf = local_buf;
2546 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2547
2548 /* do the i/o */
8ae12a0d 2549 status = spi_sync(spi, &message);
9b938b74 2550 if (status == 0)
bdff549e 2551 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2552
bdff549e 2553 if (x[0].tx_buf == buf)
068f4070 2554 mutex_unlock(&lock);
8ae12a0d
DB
2555 else
2556 kfree(local_buf);
2557
2558 return status;
2559}
2560EXPORT_SYMBOL_GPL(spi_write_then_read);
2561
2562/*-------------------------------------------------------------------------*/
2563
ce79d54a
PA
2564#if IS_ENABLED(CONFIG_OF_DYNAMIC)
2565static int __spi_of_device_match(struct device *dev, void *data)
2566{
2567 return dev->of_node == data;
2568}
2569
2570/* must call put_device() when done with returned spi_device device */
2571static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2572{
2573 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2574 __spi_of_device_match);
2575 return dev ? to_spi_device(dev) : NULL;
2576}
2577
2578static int __spi_of_master_match(struct device *dev, const void *data)
2579{
2580 return dev->of_node == data;
2581}
2582
2583/* the spi masters are not using spi_bus, so we find it with another way */
2584static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2585{
2586 struct device *dev;
2587
2588 dev = class_find_device(&spi_master_class, NULL, node,
2589 __spi_of_master_match);
2590 if (!dev)
2591 return NULL;
2592
2593 /* reference got in class_find_device */
2594 return container_of(dev, struct spi_master, dev);
2595}
2596
2597static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2598 void *arg)
2599{
2600 struct of_reconfig_data *rd = arg;
2601 struct spi_master *master;
2602 struct spi_device *spi;
2603
2604 switch (of_reconfig_get_state_change(action, arg)) {
2605 case OF_RECONFIG_CHANGE_ADD:
2606 master = of_find_spi_master_by_node(rd->dn->parent);
2607 if (master == NULL)
2608 return NOTIFY_OK; /* not for us */
2609
2610 spi = of_register_spi_device(master, rd->dn);
2611 put_device(&master->dev);
2612
2613 if (IS_ERR(spi)) {
2614 pr_err("%s: failed to create for '%s'\n",
2615 __func__, rd->dn->full_name);
2616 return notifier_from_errno(PTR_ERR(spi));
2617 }
2618 break;
2619
2620 case OF_RECONFIG_CHANGE_REMOVE:
2621 /* find our device by node */
2622 spi = of_find_spi_device_by_node(rd->dn);
2623 if (spi == NULL)
2624 return NOTIFY_OK; /* no? not meant for us */
2625
2626 /* unregister takes one ref away */
2627 spi_unregister_device(spi);
2628
2629 /* and put the reference of the find */
2630 put_device(&spi->dev);
2631 break;
2632 }
2633
2634 return NOTIFY_OK;
2635}
2636
2637static struct notifier_block spi_of_notifier = {
2638 .notifier_call = of_spi_notify,
2639};
2640#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2641extern struct notifier_block spi_of_notifier;
2642#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2643
8ae12a0d
DB
2644static int __init spi_init(void)
2645{
b885244e
DB
2646 int status;
2647
e94b1766 2648 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2649 if (!buf) {
2650 status = -ENOMEM;
2651 goto err0;
2652 }
2653
2654 status = bus_register(&spi_bus_type);
2655 if (status < 0)
2656 goto err1;
8ae12a0d 2657
b885244e
DB
2658 status = class_register(&spi_master_class);
2659 if (status < 0)
2660 goto err2;
ce79d54a 2661
5267720e 2662 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a
PA
2663 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2664
8ae12a0d 2665 return 0;
b885244e
DB
2666
2667err2:
2668 bus_unregister(&spi_bus_type);
2669err1:
2670 kfree(buf);
2671 buf = NULL;
2672err0:
2673 return status;
8ae12a0d 2674}
b885244e 2675
8ae12a0d
DB
2676/* board_info is normally registered in arch_initcall(),
2677 * but even essential drivers wait till later
b885244e
DB
2678 *
2679 * REVISIT only boardinfo really needs static linking. the rest (device and
2680 * driver registration) _could_ be dynamically linked (modular) ... costs
2681 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2682 */
673c0c00 2683postcore_initcall(spi_init);
8ae12a0d 2684