spi: Uninline spi_unregister_device()
[linux-2.6-block.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
8ae12a0d
DB
16 */
17
8ae12a0d
DB
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
99adef31
MB
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
94040828 24#include <linux/mutex.h>
2b7a32f7 25#include <linux/of_device.h>
d57a4282 26#include <linux/of_irq.h>
86be408b 27#include <linux/clk/clk-conf.h>
5a0e3ad6 28#include <linux/slab.h>
e0626e38 29#include <linux/mod_devicetable.h>
8ae12a0d 30#include <linux/spi/spi.h>
74317984 31#include <linux/of_gpio.h>
3ae22e8c 32#include <linux/pm_runtime.h>
f48c767c 33#include <linux/pm_domain.h>
025ed130 34#include <linux/export.h>
8bd75c77 35#include <linux/sched/rt.h>
ffbbdd21
LW
36#include <linux/delay.h>
37#include <linux/kthread.h>
64bee4d2
MW
38#include <linux/ioport.h>
39#include <linux/acpi.h>
8ae12a0d 40
56ec1978
MB
41#define CREATE_TRACE_POINTS
42#include <trace/events/spi.h>
43
8ae12a0d
DB
44static void spidev_release(struct device *dev)
45{
0ffa0285 46 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
47
48 /* spi masters may cleanup for released devices */
49 if (spi->master->cleanup)
50 spi->master->cleanup(spi);
51
0c868461 52 spi_master_put(spi->master);
07a389fe 53 kfree(spi);
8ae12a0d
DB
54}
55
56static ssize_t
57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58{
59 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
60 int len;
61
62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 if (len != -ENODEV)
64 return len;
8ae12a0d 65
d8e328b3 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 67}
aa7da564 68static DEVICE_ATTR_RO(modalias);
8ae12a0d 69
eca2ebc7
MS
70#define SPI_STATISTICS_ATTRS(field, file) \
71static ssize_t spi_master_##field##_show(struct device *dev, \
72 struct device_attribute *attr, \
73 char *buf) \
74{ \
75 struct spi_master *master = container_of(dev, \
76 struct spi_master, dev); \
77 return spi_statistics_##field##_show(&master->statistics, buf); \
78} \
79static struct device_attribute dev_attr_spi_master_##field = { \
80 .attr = { .name = file, .mode = S_IRUGO }, \
81 .show = spi_master_##field##_show, \
82}; \
83static ssize_t spi_device_##field##_show(struct device *dev, \
84 struct device_attribute *attr, \
85 char *buf) \
86{ \
87 struct spi_device *spi = container_of(dev, \
88 struct spi_device, dev); \
89 return spi_statistics_##field##_show(&spi->statistics, buf); \
90} \
91static struct device_attribute dev_attr_spi_device_##field = { \
92 .attr = { .name = file, .mode = S_IRUGO }, \
93 .show = spi_device_##field##_show, \
94}
95
96#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
97static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 char *buf) \
99{ \
100 unsigned long flags; \
101 ssize_t len; \
102 spin_lock_irqsave(&stat->lock, flags); \
103 len = sprintf(buf, format_string, stat->field); \
104 spin_unlock_irqrestore(&stat->lock, flags); \
105 return len; \
106} \
107SPI_STATISTICS_ATTRS(name, file)
108
109#define SPI_STATISTICS_SHOW(field, format_string) \
110 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
111 field, format_string)
112
113SPI_STATISTICS_SHOW(messages, "%lu");
114SPI_STATISTICS_SHOW(transfers, "%lu");
115SPI_STATISTICS_SHOW(errors, "%lu");
116SPI_STATISTICS_SHOW(timedout, "%lu");
117
118SPI_STATISTICS_SHOW(spi_sync, "%lu");
119SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120SPI_STATISTICS_SHOW(spi_async, "%lu");
121
122SPI_STATISTICS_SHOW(bytes, "%llu");
123SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125
6b7bc061
MS
126#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
127 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
128 "transfer_bytes_histo_" number, \
129 transfer_bytes_histo[index], "%lu")
130SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
131SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
132SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
133SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
134SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
135SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
136SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
137SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
138SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
139SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
140SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147
aa7da564
GKH
148static struct attribute *spi_dev_attrs[] = {
149 &dev_attr_modalias.attr,
150 NULL,
8ae12a0d 151};
eca2ebc7
MS
152
153static const struct attribute_group spi_dev_group = {
154 .attrs = spi_dev_attrs,
155};
156
157static struct attribute *spi_device_statistics_attrs[] = {
158 &dev_attr_spi_device_messages.attr,
159 &dev_attr_spi_device_transfers.attr,
160 &dev_attr_spi_device_errors.attr,
161 &dev_attr_spi_device_timedout.attr,
162 &dev_attr_spi_device_spi_sync.attr,
163 &dev_attr_spi_device_spi_sync_immediate.attr,
164 &dev_attr_spi_device_spi_async.attr,
165 &dev_attr_spi_device_bytes.attr,
166 &dev_attr_spi_device_bytes_rx.attr,
167 &dev_attr_spi_device_bytes_tx.attr,
6b7bc061
MS
168 &dev_attr_spi_device_transfer_bytes_histo0.attr,
169 &dev_attr_spi_device_transfer_bytes_histo1.attr,
170 &dev_attr_spi_device_transfer_bytes_histo2.attr,
171 &dev_attr_spi_device_transfer_bytes_histo3.attr,
172 &dev_attr_spi_device_transfer_bytes_histo4.attr,
173 &dev_attr_spi_device_transfer_bytes_histo5.attr,
174 &dev_attr_spi_device_transfer_bytes_histo6.attr,
175 &dev_attr_spi_device_transfer_bytes_histo7.attr,
176 &dev_attr_spi_device_transfer_bytes_histo8.attr,
177 &dev_attr_spi_device_transfer_bytes_histo9.attr,
178 &dev_attr_spi_device_transfer_bytes_histo10.attr,
179 &dev_attr_spi_device_transfer_bytes_histo11.attr,
180 &dev_attr_spi_device_transfer_bytes_histo12.attr,
181 &dev_attr_spi_device_transfer_bytes_histo13.attr,
182 &dev_attr_spi_device_transfer_bytes_histo14.attr,
183 &dev_attr_spi_device_transfer_bytes_histo15.attr,
184 &dev_attr_spi_device_transfer_bytes_histo16.attr,
eca2ebc7
MS
185 NULL,
186};
187
188static const struct attribute_group spi_device_statistics_group = {
189 .name = "statistics",
190 .attrs = spi_device_statistics_attrs,
191};
192
193static const struct attribute_group *spi_dev_groups[] = {
194 &spi_dev_group,
195 &spi_device_statistics_group,
196 NULL,
197};
198
199static struct attribute *spi_master_statistics_attrs[] = {
200 &dev_attr_spi_master_messages.attr,
201 &dev_attr_spi_master_transfers.attr,
202 &dev_attr_spi_master_errors.attr,
203 &dev_attr_spi_master_timedout.attr,
204 &dev_attr_spi_master_spi_sync.attr,
205 &dev_attr_spi_master_spi_sync_immediate.attr,
206 &dev_attr_spi_master_spi_async.attr,
207 &dev_attr_spi_master_bytes.attr,
208 &dev_attr_spi_master_bytes_rx.attr,
209 &dev_attr_spi_master_bytes_tx.attr,
6b7bc061
MS
210 &dev_attr_spi_master_transfer_bytes_histo0.attr,
211 &dev_attr_spi_master_transfer_bytes_histo1.attr,
212 &dev_attr_spi_master_transfer_bytes_histo2.attr,
213 &dev_attr_spi_master_transfer_bytes_histo3.attr,
214 &dev_attr_spi_master_transfer_bytes_histo4.attr,
215 &dev_attr_spi_master_transfer_bytes_histo5.attr,
216 &dev_attr_spi_master_transfer_bytes_histo6.attr,
217 &dev_attr_spi_master_transfer_bytes_histo7.attr,
218 &dev_attr_spi_master_transfer_bytes_histo8.attr,
219 &dev_attr_spi_master_transfer_bytes_histo9.attr,
220 &dev_attr_spi_master_transfer_bytes_histo10.attr,
221 &dev_attr_spi_master_transfer_bytes_histo11.attr,
222 &dev_attr_spi_master_transfer_bytes_histo12.attr,
223 &dev_attr_spi_master_transfer_bytes_histo13.attr,
224 &dev_attr_spi_master_transfer_bytes_histo14.attr,
225 &dev_attr_spi_master_transfer_bytes_histo15.attr,
226 &dev_attr_spi_master_transfer_bytes_histo16.attr,
eca2ebc7
MS
227 NULL,
228};
229
230static const struct attribute_group spi_master_statistics_group = {
231 .name = "statistics",
232 .attrs = spi_master_statistics_attrs,
233};
234
235static const struct attribute_group *spi_master_groups[] = {
236 &spi_master_statistics_group,
237 NULL,
238};
239
240void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 struct spi_transfer *xfer,
242 struct spi_master *master)
243{
244 unsigned long flags;
6b7bc061
MS
245 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246
247 if (l2len < 0)
248 l2len = 0;
eca2ebc7
MS
249
250 spin_lock_irqsave(&stats->lock, flags);
251
252 stats->transfers++;
6b7bc061 253 stats->transfer_bytes_histo[l2len]++;
eca2ebc7
MS
254
255 stats->bytes += xfer->len;
256 if ((xfer->tx_buf) &&
257 (xfer->tx_buf != master->dummy_tx))
258 stats->bytes_tx += xfer->len;
259 if ((xfer->rx_buf) &&
260 (xfer->rx_buf != master->dummy_rx))
261 stats->bytes_rx += xfer->len;
262
263 spin_unlock_irqrestore(&stats->lock, flags);
264}
265EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
8ae12a0d
DB
266
267/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268 * and the sysfs version makes coldplug work too.
269 */
270
75368bf6
AV
271static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 const struct spi_device *sdev)
273{
274 while (id->name[0]) {
275 if (!strcmp(sdev->modalias, id->name))
276 return id;
277 id++;
278 }
279 return NULL;
280}
281
282const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283{
284 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285
286 return spi_match_id(sdrv->id_table, sdev);
287}
288EXPORT_SYMBOL_GPL(spi_get_device_id);
289
8ae12a0d
DB
290static int spi_match_device(struct device *dev, struct device_driver *drv)
291{
292 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
293 const struct spi_driver *sdrv = to_spi_driver(drv);
294
2b7a32f7
SA
295 /* Attempt an OF style match */
296 if (of_driver_match_device(dev, drv))
297 return 1;
298
64bee4d2
MW
299 /* Then try ACPI */
300 if (acpi_driver_match_device(dev, drv))
301 return 1;
302
75368bf6
AV
303 if (sdrv->id_table)
304 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 305
35f74fca 306 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
307}
308
7eff2e7a 309static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
310{
311 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
312 int rc;
313
314 rc = acpi_device_uevent_modalias(dev, env);
315 if (rc != -ENODEV)
316 return rc;
8ae12a0d 317
e0626e38 318 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
319 return 0;
320}
321
8ae12a0d
DB
322struct bus_type spi_bus_type = {
323 .name = "spi",
aa7da564 324 .dev_groups = spi_dev_groups,
8ae12a0d
DB
325 .match = spi_match_device,
326 .uevent = spi_uevent,
8ae12a0d
DB
327};
328EXPORT_SYMBOL_GPL(spi_bus_type);
329
b885244e
DB
330
331static int spi_drv_probe(struct device *dev)
332{
333 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
44af7927 334 struct spi_device *spi = to_spi_device(dev);
33cf00e5
MW
335 int ret;
336
86be408b
SN
337 ret = of_clk_set_defaults(dev->of_node, false);
338 if (ret)
339 return ret;
340
44af7927
JH
341 if (dev->of_node) {
342 spi->irq = of_irq_get(dev->of_node, 0);
343 if (spi->irq == -EPROBE_DEFER)
344 return -EPROBE_DEFER;
345 if (spi->irq < 0)
346 spi->irq = 0;
347 }
348
676e7c25
UH
349 ret = dev_pm_domain_attach(dev, true);
350 if (ret != -EPROBE_DEFER) {
44af7927 351 ret = sdrv->probe(spi);
676e7c25
UH
352 if (ret)
353 dev_pm_domain_detach(dev, true);
354 }
b885244e 355
33cf00e5 356 return ret;
b885244e
DB
357}
358
359static int spi_drv_remove(struct device *dev)
360{
361 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
362 int ret;
363
aec35f4e 364 ret = sdrv->remove(to_spi_device(dev));
676e7c25 365 dev_pm_domain_detach(dev, true);
b885244e 366
33cf00e5 367 return ret;
b885244e
DB
368}
369
370static void spi_drv_shutdown(struct device *dev)
371{
372 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
373
374 sdrv->shutdown(to_spi_device(dev));
375}
376
33e34dc6 377/**
ca5d2485 378 * __spi_register_driver - register a SPI driver
33e34dc6
DB
379 * @sdrv: the driver to register
380 * Context: can sleep
97d56dc6
JMC
381 *
382 * Return: zero on success, else a negative error code.
33e34dc6 383 */
ca5d2485 384int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
b885244e 385{
ca5d2485 386 sdrv->driver.owner = owner;
b885244e
DB
387 sdrv->driver.bus = &spi_bus_type;
388 if (sdrv->probe)
389 sdrv->driver.probe = spi_drv_probe;
390 if (sdrv->remove)
391 sdrv->driver.remove = spi_drv_remove;
392 if (sdrv->shutdown)
393 sdrv->driver.shutdown = spi_drv_shutdown;
394 return driver_register(&sdrv->driver);
395}
ca5d2485 396EXPORT_SYMBOL_GPL(__spi_register_driver);
b885244e 397
8ae12a0d
DB
398/*-------------------------------------------------------------------------*/
399
400/* SPI devices should normally not be created by SPI device drivers; that
401 * would make them board-specific. Similarly with SPI master drivers.
402 * Device registration normally goes into like arch/.../mach.../board-YYY.c
403 * with other readonly (flashable) information about mainboard devices.
404 */
405
406struct boardinfo {
407 struct list_head list;
2b9603a0 408 struct spi_board_info board_info;
8ae12a0d
DB
409};
410
411static LIST_HEAD(board_list);
2b9603a0
FT
412static LIST_HEAD(spi_master_list);
413
414/*
415 * Used to protect add/del opertion for board_info list and
416 * spi_master list, and their matching process
417 */
94040828 418static DEFINE_MUTEX(board_lock);
8ae12a0d 419
dc87c98e
GL
420/**
421 * spi_alloc_device - Allocate a new SPI device
422 * @master: Controller to which device is connected
423 * Context: can sleep
424 *
425 * Allows a driver to allocate and initialize a spi_device without
426 * registering it immediately. This allows a driver to directly
427 * fill the spi_device with device parameters before calling
428 * spi_add_device() on it.
429 *
430 * Caller is responsible to call spi_add_device() on the returned
431 * spi_device structure to add it to the SPI master. If the caller
432 * needs to discard the spi_device without adding it, then it should
433 * call spi_dev_put() on it.
434 *
97d56dc6 435 * Return: a pointer to the new device, or NULL.
dc87c98e
GL
436 */
437struct spi_device *spi_alloc_device(struct spi_master *master)
438{
439 struct spi_device *spi;
dc87c98e
GL
440
441 if (!spi_master_get(master))
442 return NULL;
443
5fe5f05e 444 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 445 if (!spi) {
dc87c98e
GL
446 spi_master_put(master);
447 return NULL;
448 }
449
450 spi->master = master;
178db7d3 451 spi->dev.parent = &master->dev;
dc87c98e
GL
452 spi->dev.bus = &spi_bus_type;
453 spi->dev.release = spidev_release;
446411e1 454 spi->cs_gpio = -ENOENT;
eca2ebc7
MS
455
456 spin_lock_init(&spi->statistics.lock);
457
dc87c98e
GL
458 device_initialize(&spi->dev);
459 return spi;
460}
461EXPORT_SYMBOL_GPL(spi_alloc_device);
462
e13ac47b
JN
463static void spi_dev_set_name(struct spi_device *spi)
464{
465 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
466
467 if (adev) {
468 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
469 return;
470 }
471
472 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
473 spi->chip_select);
474}
475
b6fb8d3a
MW
476static int spi_dev_check(struct device *dev, void *data)
477{
478 struct spi_device *spi = to_spi_device(dev);
479 struct spi_device *new_spi = data;
480
481 if (spi->master == new_spi->master &&
482 spi->chip_select == new_spi->chip_select)
483 return -EBUSY;
484 return 0;
485}
486
dc87c98e
GL
487/**
488 * spi_add_device - Add spi_device allocated with spi_alloc_device
489 * @spi: spi_device to register
490 *
491 * Companion function to spi_alloc_device. Devices allocated with
492 * spi_alloc_device can be added onto the spi bus with this function.
493 *
97d56dc6 494 * Return: 0 on success; negative errno on failure
dc87c98e
GL
495 */
496int spi_add_device(struct spi_device *spi)
497{
e48880e0 498 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
499 struct spi_master *master = spi->master;
500 struct device *dev = master->dev.parent;
dc87c98e
GL
501 int status;
502
503 /* Chipselects are numbered 0..max; validate. */
74317984 504 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
505 dev_err(dev, "cs%d >= max %d\n",
506 spi->chip_select,
74317984 507 master->num_chipselect);
dc87c98e
GL
508 return -EINVAL;
509 }
510
511 /* Set the bus ID string */
e13ac47b 512 spi_dev_set_name(spi);
e48880e0
DB
513
514 /* We need to make sure there's no other device with this
515 * chipselect **BEFORE** we call setup(), else we'll trash
516 * its configuration. Lock against concurrent add() calls.
517 */
518 mutex_lock(&spi_add_lock);
519
b6fb8d3a
MW
520 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
521 if (status) {
e48880e0
DB
522 dev_err(dev, "chipselect %d already in use\n",
523 spi->chip_select);
e48880e0
DB
524 goto done;
525 }
526
74317984
JCPV
527 if (master->cs_gpios)
528 spi->cs_gpio = master->cs_gpios[spi->chip_select];
529
e48880e0
DB
530 /* Drivers may modify this initial i/o setup, but will
531 * normally rely on the device being setup. Devices
532 * using SPI_CS_HIGH can't coexist well otherwise...
533 */
7d077197 534 status = spi_setup(spi);
dc87c98e 535 if (status < 0) {
eb288a1f
LW
536 dev_err(dev, "can't setup %s, status %d\n",
537 dev_name(&spi->dev), status);
e48880e0 538 goto done;
dc87c98e
GL
539 }
540
e48880e0 541 /* Device may be bound to an active driver when this returns */
dc87c98e 542 status = device_add(&spi->dev);
e48880e0 543 if (status < 0)
eb288a1f
LW
544 dev_err(dev, "can't add %s, status %d\n",
545 dev_name(&spi->dev), status);
e48880e0 546 else
35f74fca 547 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 548
e48880e0
DB
549done:
550 mutex_unlock(&spi_add_lock);
551 return status;
dc87c98e
GL
552}
553EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 554
33e34dc6
DB
555/**
556 * spi_new_device - instantiate one new SPI device
557 * @master: Controller to which device is connected
558 * @chip: Describes the SPI device
559 * Context: can sleep
560 *
561 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
562 * after board init creates the hard-wired devices. Some development
563 * platforms may not be able to use spi_register_board_info though, and
564 * this is exported so that for example a USB or parport based adapter
565 * driver could add devices (which it would learn about out-of-band).
082c8cb4 566 *
97d56dc6 567 * Return: the new device, or NULL.
8ae12a0d 568 */
e9d5a461
AB
569struct spi_device *spi_new_device(struct spi_master *master,
570 struct spi_board_info *chip)
8ae12a0d
DB
571{
572 struct spi_device *proxy;
8ae12a0d
DB
573 int status;
574
082c8cb4
DB
575 /* NOTE: caller did any chip->bus_num checks necessary.
576 *
577 * Also, unless we change the return value convention to use
578 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 * suggests syslogged diagnostics are best here (ugh).
580 */
581
dc87c98e
GL
582 proxy = spi_alloc_device(master);
583 if (!proxy)
8ae12a0d
DB
584 return NULL;
585
102eb975
GL
586 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
587
8ae12a0d
DB
588 proxy->chip_select = chip->chip_select;
589 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 590 proxy->mode = chip->mode;
8ae12a0d 591 proxy->irq = chip->irq;
102eb975 592 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
593 proxy->dev.platform_data = (void *) chip->platform_data;
594 proxy->controller_data = chip->controller_data;
595 proxy->controller_state = NULL;
8ae12a0d 596
dc87c98e 597 status = spi_add_device(proxy);
8ae12a0d 598 if (status < 0) {
dc87c98e
GL
599 spi_dev_put(proxy);
600 return NULL;
8ae12a0d
DB
601 }
602
8ae12a0d
DB
603 return proxy;
604}
605EXPORT_SYMBOL_GPL(spi_new_device);
606
3b1884c2
GU
607/**
608 * spi_unregister_device - unregister a single SPI device
609 * @spi: spi_device to unregister
610 *
611 * Start making the passed SPI device vanish. Normally this would be handled
612 * by spi_unregister_master().
613 */
614void spi_unregister_device(struct spi_device *spi)
615{
616 if (spi)
617 device_unregister(&spi->dev);
618}
619EXPORT_SYMBOL_GPL(spi_unregister_device);
620
2b9603a0
FT
621static void spi_match_master_to_boardinfo(struct spi_master *master,
622 struct spi_board_info *bi)
623{
624 struct spi_device *dev;
625
626 if (master->bus_num != bi->bus_num)
627 return;
628
629 dev = spi_new_device(master, bi);
630 if (!dev)
631 dev_err(master->dev.parent, "can't create new device for %s\n",
632 bi->modalias);
633}
634
33e34dc6
DB
635/**
636 * spi_register_board_info - register SPI devices for a given board
637 * @info: array of chip descriptors
638 * @n: how many descriptors are provided
639 * Context: can sleep
640 *
8ae12a0d
DB
641 * Board-specific early init code calls this (probably during arch_initcall)
642 * with segments of the SPI device table. Any device nodes are created later,
643 * after the relevant parent SPI controller (bus_num) is defined. We keep
644 * this table of devices forever, so that reloading a controller driver will
645 * not make Linux forget about these hard-wired devices.
646 *
647 * Other code can also call this, e.g. a particular add-on board might provide
648 * SPI devices through its expansion connector, so code initializing that board
649 * would naturally declare its SPI devices.
650 *
651 * The board info passed can safely be __initdata ... but be careful of
652 * any embedded pointers (platform_data, etc), they're copied as-is.
97d56dc6
JMC
653 *
654 * Return: zero on success, else a negative error code.
8ae12a0d 655 */
fd4a319b 656int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 657{
2b9603a0
FT
658 struct boardinfo *bi;
659 int i;
8ae12a0d 660
c7908a37
XL
661 if (!n)
662 return -EINVAL;
663
2b9603a0 664 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
665 if (!bi)
666 return -ENOMEM;
8ae12a0d 667
2b9603a0
FT
668 for (i = 0; i < n; i++, bi++, info++) {
669 struct spi_master *master;
8ae12a0d 670
2b9603a0
FT
671 memcpy(&bi->board_info, info, sizeof(*info));
672 mutex_lock(&board_lock);
673 list_add_tail(&bi->list, &board_list);
674 list_for_each_entry(master, &spi_master_list, list)
675 spi_match_master_to_boardinfo(master, &bi->board_info);
676 mutex_unlock(&board_lock);
8ae12a0d 677 }
2b9603a0
FT
678
679 return 0;
8ae12a0d
DB
680}
681
682/*-------------------------------------------------------------------------*/
683
b158935f
MB
684static void spi_set_cs(struct spi_device *spi, bool enable)
685{
686 if (spi->mode & SPI_CS_HIGH)
687 enable = !enable;
688
243f07be 689 if (gpio_is_valid(spi->cs_gpio))
b158935f
MB
690 gpio_set_value(spi->cs_gpio, !enable);
691 else if (spi->master->set_cs)
692 spi->master->set_cs(spi, !enable);
693}
694
2de440f5 695#ifdef CONFIG_HAS_DMA
6ad45a27
MB
696static int spi_map_buf(struct spi_master *master, struct device *dev,
697 struct sg_table *sgt, void *buf, size_t len,
698 enum dma_data_direction dir)
699{
700 const bool vmalloced_buf = is_vmalloc_addr(buf);
65598c13
AG
701 int desc_len;
702 int sgs;
6ad45a27
MB
703 struct page *vm_page;
704 void *sg_buf;
705 size_t min;
706 int i, ret;
707
65598c13
AG
708 if (vmalloced_buf) {
709 desc_len = PAGE_SIZE;
710 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
711 } else {
712 desc_len = master->max_dma_len;
713 sgs = DIV_ROUND_UP(len, desc_len);
714 }
715
6ad45a27
MB
716 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
717 if (ret != 0)
718 return ret;
719
720 for (i = 0; i < sgs; i++) {
6ad45a27
MB
721
722 if (vmalloced_buf) {
65598c13
AG
723 min = min_t(size_t,
724 len, desc_len - offset_in_page(buf));
6ad45a27
MB
725 vm_page = vmalloc_to_page(buf);
726 if (!vm_page) {
727 sg_free_table(sgt);
728 return -ENOMEM;
729 }
c1aefbdd
CK
730 sg_set_page(&sgt->sgl[i], vm_page,
731 min, offset_in_page(buf));
6ad45a27 732 } else {
65598c13 733 min = min_t(size_t, len, desc_len);
6ad45a27 734 sg_buf = buf;
c1aefbdd 735 sg_set_buf(&sgt->sgl[i], sg_buf, min);
6ad45a27
MB
736 }
737
6ad45a27
MB
738
739 buf += min;
740 len -= min;
741 }
742
743 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
744 if (!ret)
745 ret = -ENOMEM;
6ad45a27
MB
746 if (ret < 0) {
747 sg_free_table(sgt);
748 return ret;
749 }
750
751 sgt->nents = ret;
752
753 return 0;
754}
755
756static void spi_unmap_buf(struct spi_master *master, struct device *dev,
757 struct sg_table *sgt, enum dma_data_direction dir)
758{
759 if (sgt->orig_nents) {
760 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
761 sg_free_table(sgt);
762 }
763}
764
2de440f5 765static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
99adef31 766{
99adef31
MB
767 struct device *tx_dev, *rx_dev;
768 struct spi_transfer *xfer;
6ad45a27 769 int ret;
3a2eba9b 770
6ad45a27 771 if (!master->can_dma)
99adef31
MB
772 return 0;
773
c37f45b5
LL
774 if (master->dma_tx)
775 tx_dev = master->dma_tx->device->dev;
776 else
777 tx_dev = &master->dev;
778
779 if (master->dma_rx)
780 rx_dev = master->dma_rx->device->dev;
781 else
782 rx_dev = &master->dev;
99adef31
MB
783
784 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
785 if (!master->can_dma(master, msg->spi, xfer))
786 continue;
787
788 if (xfer->tx_buf != NULL) {
6ad45a27
MB
789 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
790 (void *)xfer->tx_buf, xfer->len,
791 DMA_TO_DEVICE);
792 if (ret != 0)
793 return ret;
99adef31
MB
794 }
795
796 if (xfer->rx_buf != NULL) {
6ad45a27
MB
797 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
798 xfer->rx_buf, xfer->len,
799 DMA_FROM_DEVICE);
800 if (ret != 0) {
801 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
802 DMA_TO_DEVICE);
803 return ret;
99adef31
MB
804 }
805 }
806 }
807
808 master->cur_msg_mapped = true;
809
810 return 0;
811}
812
4b786458 813static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
99adef31
MB
814{
815 struct spi_transfer *xfer;
816 struct device *tx_dev, *rx_dev;
817
6ad45a27 818 if (!master->cur_msg_mapped || !master->can_dma)
99adef31
MB
819 return 0;
820
c37f45b5
LL
821 if (master->dma_tx)
822 tx_dev = master->dma_tx->device->dev;
823 else
824 tx_dev = &master->dev;
825
826 if (master->dma_rx)
827 rx_dev = master->dma_rx->device->dev;
828 else
829 rx_dev = &master->dev;
99adef31
MB
830
831 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
832 if (!master->can_dma(master, msg->spi, xfer))
833 continue;
834
6ad45a27
MB
835 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
836 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
837 }
838
839 return 0;
840}
2de440f5
GU
841#else /* !CONFIG_HAS_DMA */
842static inline int __spi_map_msg(struct spi_master *master,
843 struct spi_message *msg)
844{
845 return 0;
846}
847
4b786458
MS
848static inline int __spi_unmap_msg(struct spi_master *master,
849 struct spi_message *msg)
2de440f5
GU
850{
851 return 0;
852}
853#endif /* !CONFIG_HAS_DMA */
854
4b786458
MS
855static inline int spi_unmap_msg(struct spi_master *master,
856 struct spi_message *msg)
857{
858 struct spi_transfer *xfer;
859
860 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
861 /*
862 * Restore the original value of tx_buf or rx_buf if they are
863 * NULL.
864 */
865 if (xfer->tx_buf == master->dummy_tx)
866 xfer->tx_buf = NULL;
867 if (xfer->rx_buf == master->dummy_rx)
868 xfer->rx_buf = NULL;
869 }
870
871 return __spi_unmap_msg(master, msg);
872}
873
2de440f5
GU
874static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
875{
876 struct spi_transfer *xfer;
877 void *tmp;
878 unsigned int max_tx, max_rx;
879
880 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
881 max_tx = 0;
882 max_rx = 0;
883
884 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
885 if ((master->flags & SPI_MASTER_MUST_TX) &&
886 !xfer->tx_buf)
887 max_tx = max(xfer->len, max_tx);
888 if ((master->flags & SPI_MASTER_MUST_RX) &&
889 !xfer->rx_buf)
890 max_rx = max(xfer->len, max_rx);
891 }
892
893 if (max_tx) {
894 tmp = krealloc(master->dummy_tx, max_tx,
895 GFP_KERNEL | GFP_DMA);
896 if (!tmp)
897 return -ENOMEM;
898 master->dummy_tx = tmp;
899 memset(tmp, 0, max_tx);
900 }
901
902 if (max_rx) {
903 tmp = krealloc(master->dummy_rx, max_rx,
904 GFP_KERNEL | GFP_DMA);
905 if (!tmp)
906 return -ENOMEM;
907 master->dummy_rx = tmp;
908 }
909
910 if (max_tx || max_rx) {
911 list_for_each_entry(xfer, &msg->transfers,
912 transfer_list) {
913 if (!xfer->tx_buf)
914 xfer->tx_buf = master->dummy_tx;
915 if (!xfer->rx_buf)
916 xfer->rx_buf = master->dummy_rx;
917 }
918 }
919 }
920
921 return __spi_map_msg(master, msg);
922}
99adef31 923
b158935f
MB
924/*
925 * spi_transfer_one_message - Default implementation of transfer_one_message()
926 *
927 * This is a standard implementation of transfer_one_message() for
928 * drivers which impelment a transfer_one() operation. It provides
929 * standard handling of delays and chip select management.
930 */
931static int spi_transfer_one_message(struct spi_master *master,
932 struct spi_message *msg)
933{
934 struct spi_transfer *xfer;
b158935f
MB
935 bool keep_cs = false;
936 int ret = 0;
682a71b2 937 unsigned long ms = 1;
eca2ebc7
MS
938 struct spi_statistics *statm = &master->statistics;
939 struct spi_statistics *stats = &msg->spi->statistics;
b158935f
MB
940
941 spi_set_cs(msg->spi, true);
942
eca2ebc7
MS
943 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
944 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
945
b158935f
MB
946 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
947 trace_spi_transfer_start(msg, xfer);
948
eca2ebc7
MS
949 spi_statistics_add_transfer_stats(statm, xfer, master);
950 spi_statistics_add_transfer_stats(stats, xfer, master);
951
38ec10f6
MB
952 if (xfer->tx_buf || xfer->rx_buf) {
953 reinit_completion(&master->xfer_completion);
b158935f 954
38ec10f6
MB
955 ret = master->transfer_one(master, msg->spi, xfer);
956 if (ret < 0) {
eca2ebc7
MS
957 SPI_STATISTICS_INCREMENT_FIELD(statm,
958 errors);
959 SPI_STATISTICS_INCREMENT_FIELD(stats,
960 errors);
38ec10f6
MB
961 dev_err(&msg->spi->dev,
962 "SPI transfer failed: %d\n", ret);
963 goto out;
964 }
b158935f 965
38ec10f6
MB
966 if (ret > 0) {
967 ret = 0;
968 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
969 ms += ms + 100; /* some tolerance */
16a0ce4e 970
38ec10f6
MB
971 ms = wait_for_completion_timeout(&master->xfer_completion,
972 msecs_to_jiffies(ms));
973 }
16a0ce4e 974
38ec10f6 975 if (ms == 0) {
eca2ebc7
MS
976 SPI_STATISTICS_INCREMENT_FIELD(statm,
977 timedout);
978 SPI_STATISTICS_INCREMENT_FIELD(stats,
979 timedout);
38ec10f6
MB
980 dev_err(&msg->spi->dev,
981 "SPI transfer timed out\n");
982 msg->status = -ETIMEDOUT;
983 }
984 } else {
985 if (xfer->len)
986 dev_err(&msg->spi->dev,
987 "Bufferless transfer has length %u\n",
988 xfer->len);
13a42798 989 }
b158935f
MB
990
991 trace_spi_transfer_stop(msg, xfer);
992
993 if (msg->status != -EINPROGRESS)
994 goto out;
995
996 if (xfer->delay_usecs)
997 udelay(xfer->delay_usecs);
998
999 if (xfer->cs_change) {
1000 if (list_is_last(&xfer->transfer_list,
1001 &msg->transfers)) {
1002 keep_cs = true;
1003 } else {
0b73aa63
MB
1004 spi_set_cs(msg->spi, false);
1005 udelay(10);
1006 spi_set_cs(msg->spi, true);
b158935f
MB
1007 }
1008 }
1009
1010 msg->actual_length += xfer->len;
1011 }
1012
1013out:
1014 if (ret != 0 || !keep_cs)
1015 spi_set_cs(msg->spi, false);
1016
1017 if (msg->status == -EINPROGRESS)
1018 msg->status = ret;
1019
ff61eb42 1020 if (msg->status && master->handle_err)
b716c4ff
AS
1021 master->handle_err(master, msg);
1022
b158935f
MB
1023 spi_finalize_current_message(master);
1024
1025 return ret;
1026}
1027
1028/**
1029 * spi_finalize_current_transfer - report completion of a transfer
2c675689 1030 * @master: the master reporting completion
b158935f
MB
1031 *
1032 * Called by SPI drivers using the core transfer_one_message()
1033 * implementation to notify it that the current interrupt driven
9e8f4882 1034 * transfer has finished and the next one may be scheduled.
b158935f
MB
1035 */
1036void spi_finalize_current_transfer(struct spi_master *master)
1037{
1038 complete(&master->xfer_completion);
1039}
1040EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1041
ffbbdd21 1042/**
fc9e0f71
MB
1043 * __spi_pump_messages - function which processes spi message queue
1044 * @master: master to process queue for
1045 * @in_kthread: true if we are in the context of the message pump thread
ffbbdd21
LW
1046 *
1047 * This function checks if there is any spi message in the queue that
1048 * needs processing and if so call out to the driver to initialize hardware
1049 * and transfer each message.
1050 *
0461a414
MB
1051 * Note that it is called both from the kthread itself and also from
1052 * inside spi_sync(); the queue extraction handling at the top of the
1053 * function should deal with this safely.
ffbbdd21 1054 */
fc9e0f71 1055static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
ffbbdd21 1056{
ffbbdd21
LW
1057 unsigned long flags;
1058 bool was_busy = false;
1059 int ret;
1060
983aee5d 1061 /* Lock queue */
ffbbdd21 1062 spin_lock_irqsave(&master->queue_lock, flags);
983aee5d
MB
1063
1064 /* Make sure we are not already running a message */
1065 if (master->cur_msg) {
1066 spin_unlock_irqrestore(&master->queue_lock, flags);
1067 return;
1068 }
1069
0461a414
MB
1070 /* If another context is idling the device then defer */
1071 if (master->idling) {
1072 queue_kthread_work(&master->kworker, &master->pump_messages);
1073 spin_unlock_irqrestore(&master->queue_lock, flags);
1074 return;
1075 }
1076
983aee5d 1077 /* Check if the queue is idle */
ffbbdd21 1078 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
1079 if (!master->busy) {
1080 spin_unlock_irqrestore(&master->queue_lock, flags);
1081 return;
ffbbdd21 1082 }
fc9e0f71
MB
1083
1084 /* Only do teardown in the thread */
1085 if (!in_kthread) {
1086 queue_kthread_work(&master->kworker,
1087 &master->pump_messages);
1088 spin_unlock_irqrestore(&master->queue_lock, flags);
1089 return;
1090 }
1091
ffbbdd21 1092 master->busy = false;
0461a414 1093 master->idling = true;
ffbbdd21 1094 spin_unlock_irqrestore(&master->queue_lock, flags);
0461a414 1095
3a2eba9b
MB
1096 kfree(master->dummy_rx);
1097 master->dummy_rx = NULL;
1098 kfree(master->dummy_tx);
1099 master->dummy_tx = NULL;
b0b36b86
BF
1100 if (master->unprepare_transfer_hardware &&
1101 master->unprepare_transfer_hardware(master))
1102 dev_err(&master->dev,
1103 "failed to unprepare transfer hardware\n");
49834de2
MB
1104 if (master->auto_runtime_pm) {
1105 pm_runtime_mark_last_busy(master->dev.parent);
1106 pm_runtime_put_autosuspend(master->dev.parent);
1107 }
56ec1978 1108 trace_spi_master_idle(master);
ffbbdd21 1109
0461a414
MB
1110 spin_lock_irqsave(&master->queue_lock, flags);
1111 master->idling = false;
ffbbdd21
LW
1112 spin_unlock_irqrestore(&master->queue_lock, flags);
1113 return;
1114 }
ffbbdd21 1115
ffbbdd21
LW
1116 /* Extract head of queue */
1117 master->cur_msg =
a89e2d27 1118 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
1119
1120 list_del_init(&master->cur_msg->queue);
1121 if (master->busy)
1122 was_busy = true;
1123 else
1124 master->busy = true;
1125 spin_unlock_irqrestore(&master->queue_lock, flags);
1126
49834de2
MB
1127 if (!was_busy && master->auto_runtime_pm) {
1128 ret = pm_runtime_get_sync(master->dev.parent);
1129 if (ret < 0) {
1130 dev_err(&master->dev, "Failed to power device: %d\n",
1131 ret);
1132 return;
1133 }
1134 }
1135
56ec1978
MB
1136 if (!was_busy)
1137 trace_spi_master_busy(master);
1138
7dfd2bd7 1139 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
1140 ret = master->prepare_transfer_hardware(master);
1141 if (ret) {
1142 dev_err(&master->dev,
1143 "failed to prepare transfer hardware\n");
49834de2
MB
1144
1145 if (master->auto_runtime_pm)
1146 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
1147 return;
1148 }
1149 }
1150
56ec1978
MB
1151 trace_spi_message_start(master->cur_msg);
1152
2841a5fc
MB
1153 if (master->prepare_message) {
1154 ret = master->prepare_message(master, master->cur_msg);
1155 if (ret) {
1156 dev_err(&master->dev,
1157 "failed to prepare message: %d\n", ret);
1158 master->cur_msg->status = ret;
1159 spi_finalize_current_message(master);
1160 return;
1161 }
1162 master->cur_msg_prepared = true;
1163 }
1164
99adef31
MB
1165 ret = spi_map_msg(master, master->cur_msg);
1166 if (ret) {
1167 master->cur_msg->status = ret;
1168 spi_finalize_current_message(master);
1169 return;
1170 }
1171
ffbbdd21
LW
1172 ret = master->transfer_one_message(master, master->cur_msg);
1173 if (ret) {
1174 dev_err(&master->dev,
1f802f82 1175 "failed to transfer one message from queue\n");
ffbbdd21
LW
1176 return;
1177 }
1178}
1179
fc9e0f71
MB
1180/**
1181 * spi_pump_messages - kthread work function which processes spi message queue
1182 * @work: pointer to kthread work struct contained in the master struct
1183 */
1184static void spi_pump_messages(struct kthread_work *work)
1185{
1186 struct spi_master *master =
1187 container_of(work, struct spi_master, pump_messages);
1188
1189 __spi_pump_messages(master, true);
1190}
1191
ffbbdd21
LW
1192static int spi_init_queue(struct spi_master *master)
1193{
1194 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1195
ffbbdd21
LW
1196 master->running = false;
1197 master->busy = false;
1198
1199 init_kthread_worker(&master->kworker);
1200 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 1201 &master->kworker, "%s",
ffbbdd21
LW
1202 dev_name(&master->dev));
1203 if (IS_ERR(master->kworker_task)) {
1204 dev_err(&master->dev, "failed to create message pump task\n");
98a8f5a0 1205 return PTR_ERR(master->kworker_task);
ffbbdd21
LW
1206 }
1207 init_kthread_work(&master->pump_messages, spi_pump_messages);
1208
1209 /*
1210 * Master config will indicate if this controller should run the
1211 * message pump with high (realtime) priority to reduce the transfer
1212 * latency on the bus by minimising the delay between a transfer
1213 * request and the scheduling of the message pump thread. Without this
1214 * setting the message pump thread will remain at default priority.
1215 */
1216 if (master->rt) {
1217 dev_info(&master->dev,
1218 "will run message pump with realtime priority\n");
1219 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1220 }
1221
1222 return 0;
1223}
1224
1225/**
1226 * spi_get_next_queued_message() - called by driver to check for queued
1227 * messages
1228 * @master: the master to check for queued messages
1229 *
1230 * If there are more messages in the queue, the next message is returned from
1231 * this call.
97d56dc6
JMC
1232 *
1233 * Return: the next message in the queue, else NULL if the queue is empty.
ffbbdd21
LW
1234 */
1235struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1236{
1237 struct spi_message *next;
1238 unsigned long flags;
1239
1240 /* get a pointer to the next message, if any */
1241 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
1242 next = list_first_entry_or_null(&master->queue, struct spi_message,
1243 queue);
ffbbdd21
LW
1244 spin_unlock_irqrestore(&master->queue_lock, flags);
1245
1246 return next;
1247}
1248EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1249
1250/**
1251 * spi_finalize_current_message() - the current message is complete
1252 * @master: the master to return the message to
1253 *
1254 * Called by the driver to notify the core that the message in the front of the
1255 * queue is complete and can be removed from the queue.
1256 */
1257void spi_finalize_current_message(struct spi_master *master)
1258{
1259 struct spi_message *mesg;
1260 unsigned long flags;
2841a5fc 1261 int ret;
ffbbdd21
LW
1262
1263 spin_lock_irqsave(&master->queue_lock, flags);
1264 mesg = master->cur_msg;
ffbbdd21
LW
1265 spin_unlock_irqrestore(&master->queue_lock, flags);
1266
99adef31
MB
1267 spi_unmap_msg(master, mesg);
1268
2841a5fc
MB
1269 if (master->cur_msg_prepared && master->unprepare_message) {
1270 ret = master->unprepare_message(master, mesg);
1271 if (ret) {
1272 dev_err(&master->dev,
1273 "failed to unprepare message: %d\n", ret);
1274 }
1275 }
391949b6 1276
8e76ef88
MS
1277 spin_lock_irqsave(&master->queue_lock, flags);
1278 master->cur_msg = NULL;
2841a5fc 1279 master->cur_msg_prepared = false;
8e76ef88
MS
1280 queue_kthread_work(&master->kworker, &master->pump_messages);
1281 spin_unlock_irqrestore(&master->queue_lock, flags);
1282
1283 trace_spi_message_done(mesg);
2841a5fc 1284
ffbbdd21
LW
1285 mesg->state = NULL;
1286 if (mesg->complete)
1287 mesg->complete(mesg->context);
1288}
1289EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1290
1291static int spi_start_queue(struct spi_master *master)
1292{
1293 unsigned long flags;
1294
1295 spin_lock_irqsave(&master->queue_lock, flags);
1296
1297 if (master->running || master->busy) {
1298 spin_unlock_irqrestore(&master->queue_lock, flags);
1299 return -EBUSY;
1300 }
1301
1302 master->running = true;
1303 master->cur_msg = NULL;
1304 spin_unlock_irqrestore(&master->queue_lock, flags);
1305
1306 queue_kthread_work(&master->kworker, &master->pump_messages);
1307
1308 return 0;
1309}
1310
1311static int spi_stop_queue(struct spi_master *master)
1312{
1313 unsigned long flags;
1314 unsigned limit = 500;
1315 int ret = 0;
1316
1317 spin_lock_irqsave(&master->queue_lock, flags);
1318
1319 /*
1320 * This is a bit lame, but is optimized for the common execution path.
1321 * A wait_queue on the master->busy could be used, but then the common
1322 * execution path (pump_messages) would be required to call wake_up or
1323 * friends on every SPI message. Do this instead.
1324 */
1325 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1326 spin_unlock_irqrestore(&master->queue_lock, flags);
f97b26b0 1327 usleep_range(10000, 11000);
ffbbdd21
LW
1328 spin_lock_irqsave(&master->queue_lock, flags);
1329 }
1330
1331 if (!list_empty(&master->queue) || master->busy)
1332 ret = -EBUSY;
1333 else
1334 master->running = false;
1335
1336 spin_unlock_irqrestore(&master->queue_lock, flags);
1337
1338 if (ret) {
1339 dev_warn(&master->dev,
1340 "could not stop message queue\n");
1341 return ret;
1342 }
1343 return ret;
1344}
1345
1346static int spi_destroy_queue(struct spi_master *master)
1347{
1348 int ret;
1349
1350 ret = spi_stop_queue(master);
1351
1352 /*
1353 * flush_kthread_worker will block until all work is done.
1354 * If the reason that stop_queue timed out is that the work will never
1355 * finish, then it does no good to call flush/stop thread, so
1356 * return anyway.
1357 */
1358 if (ret) {
1359 dev_err(&master->dev, "problem destroying queue\n");
1360 return ret;
1361 }
1362
1363 flush_kthread_worker(&master->kworker);
1364 kthread_stop(master->kworker_task);
1365
1366 return 0;
1367}
1368
0461a414
MB
1369static int __spi_queued_transfer(struct spi_device *spi,
1370 struct spi_message *msg,
1371 bool need_pump)
ffbbdd21
LW
1372{
1373 struct spi_master *master = spi->master;
1374 unsigned long flags;
1375
1376 spin_lock_irqsave(&master->queue_lock, flags);
1377
1378 if (!master->running) {
1379 spin_unlock_irqrestore(&master->queue_lock, flags);
1380 return -ESHUTDOWN;
1381 }
1382 msg->actual_length = 0;
1383 msg->status = -EINPROGRESS;
1384
1385 list_add_tail(&msg->queue, &master->queue);
0461a414 1386 if (!master->busy && need_pump)
ffbbdd21
LW
1387 queue_kthread_work(&master->kworker, &master->pump_messages);
1388
1389 spin_unlock_irqrestore(&master->queue_lock, flags);
1390 return 0;
1391}
1392
0461a414
MB
1393/**
1394 * spi_queued_transfer - transfer function for queued transfers
1395 * @spi: spi device which is requesting transfer
1396 * @msg: spi message which is to handled is queued to driver queue
97d56dc6
JMC
1397 *
1398 * Return: zero on success, else a negative error code.
0461a414
MB
1399 */
1400static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1401{
1402 return __spi_queued_transfer(spi, msg, true);
1403}
1404
ffbbdd21
LW
1405static int spi_master_initialize_queue(struct spi_master *master)
1406{
1407 int ret;
1408
ffbbdd21 1409 master->transfer = spi_queued_transfer;
b158935f
MB
1410 if (!master->transfer_one_message)
1411 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1412
1413 /* Initialize and start queue */
1414 ret = spi_init_queue(master);
1415 if (ret) {
1416 dev_err(&master->dev, "problem initializing queue\n");
1417 goto err_init_queue;
1418 }
c3676d5c 1419 master->queued = true;
ffbbdd21
LW
1420 ret = spi_start_queue(master);
1421 if (ret) {
1422 dev_err(&master->dev, "problem starting queue\n");
1423 goto err_start_queue;
1424 }
1425
1426 return 0;
1427
1428err_start_queue:
ffbbdd21 1429 spi_destroy_queue(master);
c3676d5c 1430err_init_queue:
ffbbdd21
LW
1431 return ret;
1432}
1433
1434/*-------------------------------------------------------------------------*/
1435
7cb94361 1436#if defined(CONFIG_OF)
aff5e3f8
PA
1437static struct spi_device *
1438of_register_spi_device(struct spi_master *master, struct device_node *nc)
1439{
1440 struct spi_device *spi;
1441 int rc;
1442 u32 value;
1443
1444 /* Alloc an spi_device */
1445 spi = spi_alloc_device(master);
1446 if (!spi) {
1447 dev_err(&master->dev, "spi_device alloc error for %s\n",
1448 nc->full_name);
1449 rc = -ENOMEM;
1450 goto err_out;
1451 }
1452
1453 /* Select device driver */
1454 rc = of_modalias_node(nc, spi->modalias,
1455 sizeof(spi->modalias));
1456 if (rc < 0) {
1457 dev_err(&master->dev, "cannot find modalias for %s\n",
1458 nc->full_name);
1459 goto err_out;
1460 }
1461
1462 /* Device address */
1463 rc = of_property_read_u32(nc, "reg", &value);
1464 if (rc) {
1465 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1466 nc->full_name, rc);
1467 goto err_out;
1468 }
1469 spi->chip_select = value;
1470
1471 /* Mode (clock phase/polarity/etc.) */
1472 if (of_find_property(nc, "spi-cpha", NULL))
1473 spi->mode |= SPI_CPHA;
1474 if (of_find_property(nc, "spi-cpol", NULL))
1475 spi->mode |= SPI_CPOL;
1476 if (of_find_property(nc, "spi-cs-high", NULL))
1477 spi->mode |= SPI_CS_HIGH;
1478 if (of_find_property(nc, "spi-3wire", NULL))
1479 spi->mode |= SPI_3WIRE;
1480 if (of_find_property(nc, "spi-lsb-first", NULL))
1481 spi->mode |= SPI_LSB_FIRST;
1482
1483 /* Device DUAL/QUAD mode */
1484 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1485 switch (value) {
1486 case 1:
1487 break;
1488 case 2:
1489 spi->mode |= SPI_TX_DUAL;
1490 break;
1491 case 4:
1492 spi->mode |= SPI_TX_QUAD;
1493 break;
1494 default:
1495 dev_warn(&master->dev,
1496 "spi-tx-bus-width %d not supported\n",
1497 value);
1498 break;
1499 }
1500 }
1501
1502 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1503 switch (value) {
1504 case 1:
1505 break;
1506 case 2:
1507 spi->mode |= SPI_RX_DUAL;
1508 break;
1509 case 4:
1510 spi->mode |= SPI_RX_QUAD;
1511 break;
1512 default:
1513 dev_warn(&master->dev,
1514 "spi-rx-bus-width %d not supported\n",
1515 value);
1516 break;
1517 }
1518 }
1519
1520 /* Device speed */
1521 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1522 if (rc) {
1523 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1524 nc->full_name, rc);
1525 goto err_out;
1526 }
1527 spi->max_speed_hz = value;
1528
aff5e3f8
PA
1529 /* Store a pointer to the node in the device structure */
1530 of_node_get(nc);
1531 spi->dev.of_node = nc;
1532
1533 /* Register the new device */
aff5e3f8
PA
1534 rc = spi_add_device(spi);
1535 if (rc) {
1536 dev_err(&master->dev, "spi_device register error %s\n",
1537 nc->full_name);
1538 goto err_out;
1539 }
1540
1541 return spi;
1542
1543err_out:
1544 spi_dev_put(spi);
1545 return ERR_PTR(rc);
1546}
1547
d57a4282
GL
1548/**
1549 * of_register_spi_devices() - Register child devices onto the SPI bus
1550 * @master: Pointer to spi_master device
1551 *
1552 * Registers an spi_device for each child node of master node which has a 'reg'
1553 * property.
1554 */
1555static void of_register_spi_devices(struct spi_master *master)
1556{
1557 struct spi_device *spi;
1558 struct device_node *nc;
d57a4282
GL
1559
1560 if (!master->dev.of_node)
1561 return;
1562
f3b6159e 1563 for_each_available_child_of_node(master->dev.of_node, nc) {
aff5e3f8
PA
1564 spi = of_register_spi_device(master, nc);
1565 if (IS_ERR(spi))
1566 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
d57a4282 1567 nc->full_name);
d57a4282
GL
1568 }
1569}
1570#else
1571static void of_register_spi_devices(struct spi_master *master) { }
1572#endif
1573
64bee4d2
MW
1574#ifdef CONFIG_ACPI
1575static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1576{
1577 struct spi_device *spi = data;
1578
1579 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1580 struct acpi_resource_spi_serialbus *sb;
1581
1582 sb = &ares->data.spi_serial_bus;
1583 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1584 spi->chip_select = sb->device_selection;
1585 spi->max_speed_hz = sb->connection_speed;
1586
1587 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1588 spi->mode |= SPI_CPHA;
1589 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1590 spi->mode |= SPI_CPOL;
1591 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1592 spi->mode |= SPI_CS_HIGH;
1593 }
1594 } else if (spi->irq < 0) {
1595 struct resource r;
1596
1597 if (acpi_dev_resource_interrupt(ares, 0, &r))
1598 spi->irq = r.start;
1599 }
1600
1601 /* Always tell the ACPI core to skip this resource */
1602 return 1;
1603}
1604
1605static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1606 void *data, void **return_value)
1607{
1608 struct spi_master *master = data;
1609 struct list_head resource_list;
1610 struct acpi_device *adev;
1611 struct spi_device *spi;
1612 int ret;
1613
1614 if (acpi_bus_get_device(handle, &adev))
1615 return AE_OK;
1616 if (acpi_bus_get_status(adev) || !adev->status.present)
1617 return AE_OK;
1618
1619 spi = spi_alloc_device(master);
1620 if (!spi) {
1621 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1622 dev_name(&adev->dev));
1623 return AE_NO_MEMORY;
1624 }
1625
7b199811 1626 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1627 spi->irq = -1;
1628
1629 INIT_LIST_HEAD(&resource_list);
1630 ret = acpi_dev_get_resources(adev, &resource_list,
1631 acpi_spi_add_resource, spi);
1632 acpi_dev_free_resource_list(&resource_list);
1633
1634 if (ret < 0 || !spi->max_speed_hz) {
1635 spi_dev_put(spi);
1636 return AE_OK;
1637 }
1638
33cf00e5 1639 adev->power.flags.ignore_parent = true;
cf9eb39c 1640 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1641 if (spi_add_device(spi)) {
33cf00e5 1642 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1643 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1644 dev_name(&adev->dev));
1645 spi_dev_put(spi);
1646 }
1647
1648 return AE_OK;
1649}
1650
1651static void acpi_register_spi_devices(struct spi_master *master)
1652{
1653 acpi_status status;
1654 acpi_handle handle;
1655
29896178 1656 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1657 if (!handle)
1658 return;
1659
1660 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1661 acpi_spi_add_device, NULL,
1662 master, NULL);
1663 if (ACPI_FAILURE(status))
1664 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1665}
1666#else
1667static inline void acpi_register_spi_devices(struct spi_master *master) {}
1668#endif /* CONFIG_ACPI */
1669
49dce689 1670static void spi_master_release(struct device *dev)
8ae12a0d
DB
1671{
1672 struct spi_master *master;
1673
49dce689 1674 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1675 kfree(master);
1676}
1677
1678static struct class spi_master_class = {
1679 .name = "spi_master",
1680 .owner = THIS_MODULE,
49dce689 1681 .dev_release = spi_master_release,
eca2ebc7 1682 .dev_groups = spi_master_groups,
8ae12a0d
DB
1683};
1684
1685
1686/**
1687 * spi_alloc_master - allocate SPI master controller
1688 * @dev: the controller, possibly using the platform_bus
33e34dc6 1689 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1690 * memory is in the driver_data field of the returned device,
0c868461 1691 * accessible with spi_master_get_devdata().
33e34dc6 1692 * Context: can sleep
8ae12a0d
DB
1693 *
1694 * This call is used only by SPI master controller drivers, which are the
1695 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1696 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d 1697 *
97d56dc6 1698 * This must be called from context that can sleep.
8ae12a0d
DB
1699 *
1700 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1701 * the master's methods before calling spi_register_master(); and (after errors
a394d635 1702 * adding the device) calling spi_master_put() to prevent a memory leak.
97d56dc6
JMC
1703 *
1704 * Return: the SPI master structure on success, else NULL.
8ae12a0d 1705 */
e9d5a461 1706struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1707{
1708 struct spi_master *master;
1709
0c868461
DB
1710 if (!dev)
1711 return NULL;
1712
5fe5f05e 1713 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1714 if (!master)
1715 return NULL;
1716
49dce689 1717 device_initialize(&master->dev);
1e8a52e1
GL
1718 master->bus_num = -1;
1719 master->num_chipselect = 1;
49dce689
TJ
1720 master->dev.class = &spi_master_class;
1721 master->dev.parent = get_device(dev);
0c868461 1722 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1723
1724 return master;
1725}
1726EXPORT_SYMBOL_GPL(spi_alloc_master);
1727
74317984
JCPV
1728#ifdef CONFIG_OF
1729static int of_spi_register_master(struct spi_master *master)
1730{
e80beb27 1731 int nb, i, *cs;
74317984
JCPV
1732 struct device_node *np = master->dev.of_node;
1733
1734 if (!np)
1735 return 0;
1736
1737 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1738 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1739
8ec5d84e
AL
1740 /* Return error only for an incorrectly formed cs-gpios property */
1741 if (nb == 0 || nb == -ENOENT)
74317984 1742 return 0;
8ec5d84e
AL
1743 else if (nb < 0)
1744 return nb;
74317984
JCPV
1745
1746 cs = devm_kzalloc(&master->dev,
1747 sizeof(int) * master->num_chipselect,
1748 GFP_KERNEL);
1749 master->cs_gpios = cs;
1750
1751 if (!master->cs_gpios)
1752 return -ENOMEM;
1753
0da83bb1 1754 for (i = 0; i < master->num_chipselect; i++)
446411e1 1755 cs[i] = -ENOENT;
74317984
JCPV
1756
1757 for (i = 0; i < nb; i++)
1758 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1759
1760 return 0;
1761}
1762#else
1763static int of_spi_register_master(struct spi_master *master)
1764{
1765 return 0;
1766}
1767#endif
1768
8ae12a0d
DB
1769/**
1770 * spi_register_master - register SPI master controller
1771 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1772 * Context: can sleep
8ae12a0d
DB
1773 *
1774 * SPI master controllers connect to their drivers using some non-SPI bus,
1775 * such as the platform bus. The final stage of probe() in that code
1776 * includes calling spi_register_master() to hook up to this SPI bus glue.
1777 *
1778 * SPI controllers use board specific (often SOC specific) bus numbers,
1779 * and board-specific addressing for SPI devices combines those numbers
1780 * with chip select numbers. Since SPI does not directly support dynamic
1781 * device identification, boards need configuration tables telling which
1782 * chip is at which address.
1783 *
1784 * This must be called from context that can sleep. It returns zero on
1785 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1786 * After a successful return, the caller is responsible for calling
1787 * spi_unregister_master().
97d56dc6
JMC
1788 *
1789 * Return: zero on success, else a negative error code.
8ae12a0d 1790 */
e9d5a461 1791int spi_register_master(struct spi_master *master)
8ae12a0d 1792{
e44a45ae 1793 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1794 struct device *dev = master->dev.parent;
2b9603a0 1795 struct boardinfo *bi;
8ae12a0d
DB
1796 int status = -ENODEV;
1797 int dynamic = 0;
1798
0c868461
DB
1799 if (!dev)
1800 return -ENODEV;
1801
74317984
JCPV
1802 status = of_spi_register_master(master);
1803 if (status)
1804 return status;
1805
082c8cb4
DB
1806 /* even if it's just one always-selected device, there must
1807 * be at least one chipselect
1808 */
1809 if (master->num_chipselect == 0)
1810 return -EINVAL;
1811
bb29785e
GL
1812 if ((master->bus_num < 0) && master->dev.of_node)
1813 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1814
8ae12a0d 1815 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1816 if (master->bus_num < 0) {
082c8cb4
DB
1817 /* FIXME switch to an IDR based scheme, something like
1818 * I2C now uses, so we can't run out of "dynamic" IDs
1819 */
8ae12a0d 1820 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1821 dynamic = 1;
8ae12a0d
DB
1822 }
1823
5424d43e
MB
1824 INIT_LIST_HEAD(&master->queue);
1825 spin_lock_init(&master->queue_lock);
cf32b71e
ES
1826 spin_lock_init(&master->bus_lock_spinlock);
1827 mutex_init(&master->bus_lock_mutex);
1828 master->bus_lock_flag = 0;
b158935f 1829 init_completion(&master->xfer_completion);
6ad45a27
MB
1830 if (!master->max_dma_len)
1831 master->max_dma_len = INT_MAX;
cf32b71e 1832
8ae12a0d
DB
1833 /* register the device, then userspace will see it.
1834 * registration fails if the bus ID is in use.
1835 */
35f74fca 1836 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1837 status = device_add(&master->dev);
b885244e 1838 if (status < 0)
8ae12a0d 1839 goto done;
35f74fca 1840 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1841 dynamic ? " (dynamic)" : "");
1842
ffbbdd21
LW
1843 /* If we're using a queued driver, start the queue */
1844 if (master->transfer)
1845 dev_info(dev, "master is unqueued, this is deprecated\n");
1846 else {
1847 status = spi_master_initialize_queue(master);
1848 if (status) {
e93b0724 1849 device_del(&master->dev);
ffbbdd21
LW
1850 goto done;
1851 }
1852 }
eca2ebc7
MS
1853 /* add statistics */
1854 spin_lock_init(&master->statistics.lock);
ffbbdd21 1855
2b9603a0
FT
1856 mutex_lock(&board_lock);
1857 list_add_tail(&master->list, &spi_master_list);
1858 list_for_each_entry(bi, &board_list, list)
1859 spi_match_master_to_boardinfo(master, &bi->board_info);
1860 mutex_unlock(&board_lock);
1861
64bee4d2 1862 /* Register devices from the device tree and ACPI */
12b15e83 1863 of_register_spi_devices(master);
64bee4d2 1864 acpi_register_spi_devices(master);
8ae12a0d
DB
1865done:
1866 return status;
1867}
1868EXPORT_SYMBOL_GPL(spi_register_master);
1869
666d5b4c
MB
1870static void devm_spi_unregister(struct device *dev, void *res)
1871{
1872 spi_unregister_master(*(struct spi_master **)res);
1873}
1874
1875/**
1876 * dev_spi_register_master - register managed SPI master controller
1877 * @dev: device managing SPI master
1878 * @master: initialized master, originally from spi_alloc_master()
1879 * Context: can sleep
1880 *
1881 * Register a SPI device as with spi_register_master() which will
1882 * automatically be unregister
97d56dc6
JMC
1883 *
1884 * Return: zero on success, else a negative error code.
666d5b4c
MB
1885 */
1886int devm_spi_register_master(struct device *dev, struct spi_master *master)
1887{
1888 struct spi_master **ptr;
1889 int ret;
1890
1891 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1892 if (!ptr)
1893 return -ENOMEM;
1894
1895 ret = spi_register_master(master);
4b92894e 1896 if (!ret) {
666d5b4c
MB
1897 *ptr = master;
1898 devres_add(dev, ptr);
1899 } else {
1900 devres_free(ptr);
1901 }
1902
1903 return ret;
1904}
1905EXPORT_SYMBOL_GPL(devm_spi_register_master);
1906
34860089 1907static int __unregister(struct device *dev, void *null)
8ae12a0d 1908{
34860089 1909 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1910 return 0;
1911}
1912
1913/**
1914 * spi_unregister_master - unregister SPI master controller
1915 * @master: the master being unregistered
33e34dc6 1916 * Context: can sleep
8ae12a0d
DB
1917 *
1918 * This call is used only by SPI master controller drivers, which are the
1919 * only ones directly touching chip registers.
1920 *
1921 * This must be called from context that can sleep.
1922 */
1923void spi_unregister_master(struct spi_master *master)
1924{
89fc9a1a
JG
1925 int dummy;
1926
ffbbdd21
LW
1927 if (master->queued) {
1928 if (spi_destroy_queue(master))
1929 dev_err(&master->dev, "queue remove failed\n");
1930 }
1931
2b9603a0
FT
1932 mutex_lock(&board_lock);
1933 list_del(&master->list);
1934 mutex_unlock(&board_lock);
1935
97dbf37d 1936 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1937 device_unregister(&master->dev);
8ae12a0d
DB
1938}
1939EXPORT_SYMBOL_GPL(spi_unregister_master);
1940
ffbbdd21
LW
1941int spi_master_suspend(struct spi_master *master)
1942{
1943 int ret;
1944
1945 /* Basically no-ops for non-queued masters */
1946 if (!master->queued)
1947 return 0;
1948
1949 ret = spi_stop_queue(master);
1950 if (ret)
1951 dev_err(&master->dev, "queue stop failed\n");
1952
1953 return ret;
1954}
1955EXPORT_SYMBOL_GPL(spi_master_suspend);
1956
1957int spi_master_resume(struct spi_master *master)
1958{
1959 int ret;
1960
1961 if (!master->queued)
1962 return 0;
1963
1964 ret = spi_start_queue(master);
1965 if (ret)
1966 dev_err(&master->dev, "queue restart failed\n");
1967
1968 return ret;
1969}
1970EXPORT_SYMBOL_GPL(spi_master_resume);
1971
9f3b795a 1972static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1973{
1974 struct spi_master *m;
9f3b795a 1975 const u16 *bus_num = data;
5ed2c832
DY
1976
1977 m = container_of(dev, struct spi_master, dev);
1978 return m->bus_num == *bus_num;
1979}
1980
8ae12a0d
DB
1981/**
1982 * spi_busnum_to_master - look up master associated with bus_num
1983 * @bus_num: the master's bus number
33e34dc6 1984 * Context: can sleep
8ae12a0d
DB
1985 *
1986 * This call may be used with devices that are registered after
1987 * arch init time. It returns a refcounted pointer to the relevant
1988 * spi_master (which the caller must release), or NULL if there is
1989 * no such master registered.
97d56dc6
JMC
1990 *
1991 * Return: the SPI master structure on success, else NULL.
8ae12a0d
DB
1992 */
1993struct spi_master *spi_busnum_to_master(u16 bus_num)
1994{
49dce689 1995 struct device *dev;
1e9a51dc 1996 struct spi_master *master = NULL;
5ed2c832 1997
695794ae 1998 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1999 __spi_master_match);
2000 if (dev)
2001 master = container_of(dev, struct spi_master, dev);
2002 /* reference got in class_find_device */
1e9a51dc 2003 return master;
8ae12a0d
DB
2004}
2005EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2006
2007
2008/*-------------------------------------------------------------------------*/
2009
7d077197
DB
2010/* Core methods for SPI master protocol drivers. Some of the
2011 * other core methods are currently defined as inline functions.
2012 */
2013
63ab645f
SB
2014static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2015{
2016 if (master->bits_per_word_mask) {
2017 /* Only 32 bits fit in the mask */
2018 if (bits_per_word > 32)
2019 return -EINVAL;
2020 if (!(master->bits_per_word_mask &
2021 SPI_BPW_MASK(bits_per_word)))
2022 return -EINVAL;
2023 }
2024
2025 return 0;
2026}
2027
7d077197
DB
2028/**
2029 * spi_setup - setup SPI mode and clock rate
2030 * @spi: the device whose settings are being modified
2031 * Context: can sleep, and no requests are queued to the device
2032 *
2033 * SPI protocol drivers may need to update the transfer mode if the
2034 * device doesn't work with its default. They may likewise need
2035 * to update clock rates or word sizes from initial values. This function
2036 * changes those settings, and must be called from a context that can sleep.
2037 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2038 * effect the next time the device is selected and data is transferred to
2039 * or from it. When this function returns, the spi device is deselected.
2040 *
2041 * Note that this call will fail if the protocol driver specifies an option
2042 * that the underlying controller or its driver does not support. For
2043 * example, not all hardware supports wire transfers using nine bit words,
2044 * LSB-first wire encoding, or active-high chipselects.
97d56dc6
JMC
2045 *
2046 * Return: zero on success, else a negative error code.
7d077197
DB
2047 */
2048int spi_setup(struct spi_device *spi)
2049{
83596fbe 2050 unsigned bad_bits, ugly_bits;
5ab8d262 2051 int status;
7d077197 2052
f477b7fb 2053 /* check mode to prevent that DUAL and QUAD set at the same time
2054 */
2055 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2056 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2057 dev_err(&spi->dev,
2058 "setup: can not select dual and quad at the same time\n");
2059 return -EINVAL;
2060 }
2061 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2062 */
2063 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2064 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2065 return -EINVAL;
e7db06b5
DB
2066 /* help drivers fail *cleanly* when they need options
2067 * that aren't supported with their current master
2068 */
2069 bad_bits = spi->mode & ~spi->master->mode_bits;
83596fbe
GU
2070 ugly_bits = bad_bits &
2071 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2072 if (ugly_bits) {
2073 dev_warn(&spi->dev,
2074 "setup: ignoring unsupported mode bits %x\n",
2075 ugly_bits);
2076 spi->mode &= ~ugly_bits;
2077 bad_bits &= ~ugly_bits;
2078 }
e7db06b5 2079 if (bad_bits) {
eb288a1f 2080 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
2081 bad_bits);
2082 return -EINVAL;
2083 }
2084
7d077197
DB
2085 if (!spi->bits_per_word)
2086 spi->bits_per_word = 8;
2087
5ab8d262
AS
2088 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2089 if (status)
2090 return status;
63ab645f 2091
052eb2d4
AL
2092 if (!spi->max_speed_hz)
2093 spi->max_speed_hz = spi->master->max_speed_hz;
2094
caae070c
LD
2095 if (spi->master->setup)
2096 status = spi->master->setup(spi);
7d077197 2097
abeedb01
FCJ
2098 spi_set_cs(spi, false);
2099
5fe5f05e 2100 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
2101 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2102 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2103 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2104 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2105 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2106 spi->bits_per_word, spi->max_speed_hz,
2107 status);
2108
2109 return status;
2110}
2111EXPORT_SYMBOL_GPL(spi_setup);
2112
90808738 2113static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
2114{
2115 struct spi_master *master = spi->master;
e6811d1d 2116 struct spi_transfer *xfer;
6ea31293 2117 int w_size;
cf32b71e 2118
24a0013a
MB
2119 if (list_empty(&message->transfers))
2120 return -EINVAL;
24a0013a 2121
cf32b71e
ES
2122 /* Half-duplex links include original MicroWire, and ones with
2123 * only one data pin like SPI_3WIRE (switches direction) or where
2124 * either MOSI or MISO is missing. They can also be caused by
2125 * software limitations.
2126 */
2127 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2128 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
2129 unsigned flags = master->flags;
2130
2131 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2132 if (xfer->rx_buf && xfer->tx_buf)
2133 return -EINVAL;
2134 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2135 return -EINVAL;
2136 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2137 return -EINVAL;
2138 }
2139 }
2140
e6811d1d 2141 /**
059b8ffe
LD
2142 * Set transfer bits_per_word and max speed as spi device default if
2143 * it is not set for this transfer.
f477b7fb 2144 * Set transfer tx_nbits and rx_nbits as single transfer default
2145 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
2146 */
2147 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 2148 message->frame_length += xfer->len;
e6811d1d
LD
2149 if (!xfer->bits_per_word)
2150 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
2151
2152 if (!xfer->speed_hz)
059b8ffe 2153 xfer->speed_hz = spi->max_speed_hz;
7dc9fbc3
MB
2154 if (!xfer->speed_hz)
2155 xfer->speed_hz = master->max_speed_hz;
a6f87fad
AL
2156
2157 if (master->max_speed_hz &&
2158 xfer->speed_hz > master->max_speed_hz)
2159 xfer->speed_hz = master->max_speed_hz;
56ede94a 2160
63ab645f
SB
2161 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2162 return -EINVAL;
a2fd4f9f 2163
4d94bd21
II
2164 /*
2165 * SPI transfer length should be multiple of SPI word size
2166 * where SPI word size should be power-of-two multiple
2167 */
2168 if (xfer->bits_per_word <= 8)
2169 w_size = 1;
2170 else if (xfer->bits_per_word <= 16)
2171 w_size = 2;
2172 else
2173 w_size = 4;
2174
4d94bd21 2175 /* No partial transfers accepted */
6ea31293 2176 if (xfer->len % w_size)
4d94bd21
II
2177 return -EINVAL;
2178
a2fd4f9f
MB
2179 if (xfer->speed_hz && master->min_speed_hz &&
2180 xfer->speed_hz < master->min_speed_hz)
2181 return -EINVAL;
f477b7fb 2182
2183 if (xfer->tx_buf && !xfer->tx_nbits)
2184 xfer->tx_nbits = SPI_NBITS_SINGLE;
2185 if (xfer->rx_buf && !xfer->rx_nbits)
2186 xfer->rx_nbits = SPI_NBITS_SINGLE;
2187 /* check transfer tx/rx_nbits:
1afd9989
GU
2188 * 1. check the value matches one of single, dual and quad
2189 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 2190 */
db90a441
SP
2191 if (xfer->tx_buf) {
2192 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2193 xfer->tx_nbits != SPI_NBITS_DUAL &&
2194 xfer->tx_nbits != SPI_NBITS_QUAD)
2195 return -EINVAL;
2196 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2197 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2198 return -EINVAL;
2199 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2200 !(spi->mode & SPI_TX_QUAD))
2201 return -EINVAL;
db90a441 2202 }
f477b7fb 2203 /* check transfer rx_nbits */
db90a441
SP
2204 if (xfer->rx_buf) {
2205 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2206 xfer->rx_nbits != SPI_NBITS_DUAL &&
2207 xfer->rx_nbits != SPI_NBITS_QUAD)
2208 return -EINVAL;
2209 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2210 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2211 return -EINVAL;
2212 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2213 !(spi->mode & SPI_RX_QUAD))
2214 return -EINVAL;
db90a441 2215 }
e6811d1d
LD
2216 }
2217
cf32b71e 2218 message->status = -EINPROGRESS;
90808738
MB
2219
2220 return 0;
2221}
2222
2223static int __spi_async(struct spi_device *spi, struct spi_message *message)
2224{
2225 struct spi_master *master = spi->master;
2226
2227 message->spi = spi;
2228
eca2ebc7
MS
2229 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2230 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2231
90808738
MB
2232 trace_spi_message_submit(message);
2233
cf32b71e
ES
2234 return master->transfer(spi, message);
2235}
2236
568d0697
DB
2237/**
2238 * spi_async - asynchronous SPI transfer
2239 * @spi: device with which data will be exchanged
2240 * @message: describes the data transfers, including completion callback
2241 * Context: any (irqs may be blocked, etc)
2242 *
2243 * This call may be used in_irq and other contexts which can't sleep,
2244 * as well as from task contexts which can sleep.
2245 *
2246 * The completion callback is invoked in a context which can't sleep.
2247 * Before that invocation, the value of message->status is undefined.
2248 * When the callback is issued, message->status holds either zero (to
2249 * indicate complete success) or a negative error code. After that
2250 * callback returns, the driver which issued the transfer request may
2251 * deallocate the associated memory; it's no longer in use by any SPI
2252 * core or controller driver code.
2253 *
2254 * Note that although all messages to a spi_device are handled in
2255 * FIFO order, messages may go to different devices in other orders.
2256 * Some device might be higher priority, or have various "hard" access
2257 * time requirements, for example.
2258 *
2259 * On detection of any fault during the transfer, processing of
2260 * the entire message is aborted, and the device is deselected.
2261 * Until returning from the associated message completion callback,
2262 * no other spi_message queued to that device will be processed.
2263 * (This rule applies equally to all the synchronous transfer calls,
2264 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
2265 *
2266 * Return: zero on success, else a negative error code.
568d0697
DB
2267 */
2268int spi_async(struct spi_device *spi, struct spi_message *message)
2269{
2270 struct spi_master *master = spi->master;
cf32b71e
ES
2271 int ret;
2272 unsigned long flags;
568d0697 2273
90808738
MB
2274 ret = __spi_validate(spi, message);
2275 if (ret != 0)
2276 return ret;
2277
cf32b71e 2278 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 2279
cf32b71e
ES
2280 if (master->bus_lock_flag)
2281 ret = -EBUSY;
2282 else
2283 ret = __spi_async(spi, message);
568d0697 2284
cf32b71e
ES
2285 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2286
2287 return ret;
568d0697
DB
2288}
2289EXPORT_SYMBOL_GPL(spi_async);
2290
cf32b71e
ES
2291/**
2292 * spi_async_locked - version of spi_async with exclusive bus usage
2293 * @spi: device with which data will be exchanged
2294 * @message: describes the data transfers, including completion callback
2295 * Context: any (irqs may be blocked, etc)
2296 *
2297 * This call may be used in_irq and other contexts which can't sleep,
2298 * as well as from task contexts which can sleep.
2299 *
2300 * The completion callback is invoked in a context which can't sleep.
2301 * Before that invocation, the value of message->status is undefined.
2302 * When the callback is issued, message->status holds either zero (to
2303 * indicate complete success) or a negative error code. After that
2304 * callback returns, the driver which issued the transfer request may
2305 * deallocate the associated memory; it's no longer in use by any SPI
2306 * core or controller driver code.
2307 *
2308 * Note that although all messages to a spi_device are handled in
2309 * FIFO order, messages may go to different devices in other orders.
2310 * Some device might be higher priority, or have various "hard" access
2311 * time requirements, for example.
2312 *
2313 * On detection of any fault during the transfer, processing of
2314 * the entire message is aborted, and the device is deselected.
2315 * Until returning from the associated message completion callback,
2316 * no other spi_message queued to that device will be processed.
2317 * (This rule applies equally to all the synchronous transfer calls,
2318 * which are wrappers around this core asynchronous primitive.)
97d56dc6
JMC
2319 *
2320 * Return: zero on success, else a negative error code.
cf32b71e
ES
2321 */
2322int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2323{
2324 struct spi_master *master = spi->master;
2325 int ret;
2326 unsigned long flags;
2327
90808738
MB
2328 ret = __spi_validate(spi, message);
2329 if (ret != 0)
2330 return ret;
2331
cf32b71e
ES
2332 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2333
2334 ret = __spi_async(spi, message);
2335
2336 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2337
2338 return ret;
2339
2340}
2341EXPORT_SYMBOL_GPL(spi_async_locked);
2342
7d077197
DB
2343
2344/*-------------------------------------------------------------------------*/
2345
2346/* Utility methods for SPI master protocol drivers, layered on
2347 * top of the core. Some other utility methods are defined as
2348 * inline functions.
2349 */
2350
5d870c8e
AM
2351static void spi_complete(void *arg)
2352{
2353 complete(arg);
2354}
2355
cf32b71e
ES
2356static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2357 int bus_locked)
2358{
2359 DECLARE_COMPLETION_ONSTACK(done);
2360 int status;
2361 struct spi_master *master = spi->master;
0461a414
MB
2362 unsigned long flags;
2363
2364 status = __spi_validate(spi, message);
2365 if (status != 0)
2366 return status;
cf32b71e
ES
2367
2368 message->complete = spi_complete;
2369 message->context = &done;
0461a414 2370 message->spi = spi;
cf32b71e 2371
eca2ebc7
MS
2372 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2373 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2374
cf32b71e
ES
2375 if (!bus_locked)
2376 mutex_lock(&master->bus_lock_mutex);
2377
0461a414
MB
2378 /* If we're not using the legacy transfer method then we will
2379 * try to transfer in the calling context so special case.
2380 * This code would be less tricky if we could remove the
2381 * support for driver implemented message queues.
2382 */
2383 if (master->transfer == spi_queued_transfer) {
2384 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2385
2386 trace_spi_message_submit(message);
2387
2388 status = __spi_queued_transfer(spi, message, false);
2389
2390 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2391 } else {
2392 status = spi_async_locked(spi, message);
2393 }
cf32b71e
ES
2394
2395 if (!bus_locked)
2396 mutex_unlock(&master->bus_lock_mutex);
2397
2398 if (status == 0) {
0461a414
MB
2399 /* Push out the messages in the calling context if we
2400 * can.
2401 */
eca2ebc7
MS
2402 if (master->transfer == spi_queued_transfer) {
2403 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2404 spi_sync_immediate);
2405 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2406 spi_sync_immediate);
fc9e0f71 2407 __spi_pump_messages(master, false);
eca2ebc7 2408 }
0461a414 2409
cf32b71e
ES
2410 wait_for_completion(&done);
2411 status = message->status;
2412 }
2413 message->context = NULL;
2414 return status;
2415}
2416
8ae12a0d
DB
2417/**
2418 * spi_sync - blocking/synchronous SPI data transfers
2419 * @spi: device with which data will be exchanged
2420 * @message: describes the data transfers
33e34dc6 2421 * Context: can sleep
8ae12a0d
DB
2422 *
2423 * This call may only be used from a context that may sleep. The sleep
2424 * is non-interruptible, and has no timeout. Low-overhead controller
2425 * drivers may DMA directly into and out of the message buffers.
2426 *
2427 * Note that the SPI device's chip select is active during the message,
2428 * and then is normally disabled between messages. Drivers for some
2429 * frequently-used devices may want to minimize costs of selecting a chip,
2430 * by leaving it selected in anticipation that the next message will go
2431 * to the same chip. (That may increase power usage.)
2432 *
0c868461
DB
2433 * Also, the caller is guaranteeing that the memory associated with the
2434 * message will not be freed before this call returns.
2435 *
97d56dc6 2436 * Return: zero on success, else a negative error code.
8ae12a0d
DB
2437 */
2438int spi_sync(struct spi_device *spi, struct spi_message *message)
2439{
cf32b71e 2440 return __spi_sync(spi, message, 0);
8ae12a0d
DB
2441}
2442EXPORT_SYMBOL_GPL(spi_sync);
2443
cf32b71e
ES
2444/**
2445 * spi_sync_locked - version of spi_sync with exclusive bus usage
2446 * @spi: device with which data will be exchanged
2447 * @message: describes the data transfers
2448 * Context: can sleep
2449 *
2450 * This call may only be used from a context that may sleep. The sleep
2451 * is non-interruptible, and has no timeout. Low-overhead controller
2452 * drivers may DMA directly into and out of the message buffers.
2453 *
2454 * This call should be used by drivers that require exclusive access to the
25985edc 2455 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
2456 * be released by a spi_bus_unlock call when the exclusive access is over.
2457 *
97d56dc6 2458 * Return: zero on success, else a negative error code.
cf32b71e
ES
2459 */
2460int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2461{
2462 return __spi_sync(spi, message, 1);
2463}
2464EXPORT_SYMBOL_GPL(spi_sync_locked);
2465
2466/**
2467 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2468 * @master: SPI bus master that should be locked for exclusive bus access
2469 * Context: can sleep
2470 *
2471 * This call may only be used from a context that may sleep. The sleep
2472 * is non-interruptible, and has no timeout.
2473 *
2474 * This call should be used by drivers that require exclusive access to the
2475 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2476 * exclusive access is over. Data transfer must be done by spi_sync_locked
2477 * and spi_async_locked calls when the SPI bus lock is held.
2478 *
97d56dc6 2479 * Return: always zero.
cf32b71e
ES
2480 */
2481int spi_bus_lock(struct spi_master *master)
2482{
2483 unsigned long flags;
2484
2485 mutex_lock(&master->bus_lock_mutex);
2486
2487 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2488 master->bus_lock_flag = 1;
2489 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2490
2491 /* mutex remains locked until spi_bus_unlock is called */
2492
2493 return 0;
2494}
2495EXPORT_SYMBOL_GPL(spi_bus_lock);
2496
2497/**
2498 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2499 * @master: SPI bus master that was locked for exclusive bus access
2500 * Context: can sleep
2501 *
2502 * This call may only be used from a context that may sleep. The sleep
2503 * is non-interruptible, and has no timeout.
2504 *
2505 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2506 * call.
2507 *
97d56dc6 2508 * Return: always zero.
cf32b71e
ES
2509 */
2510int spi_bus_unlock(struct spi_master *master)
2511{
2512 master->bus_lock_flag = 0;
2513
2514 mutex_unlock(&master->bus_lock_mutex);
2515
2516 return 0;
2517}
2518EXPORT_SYMBOL_GPL(spi_bus_unlock);
2519
a9948b61 2520/* portable code must never pass more than 32 bytes */
5fe5f05e 2521#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
2522
2523static u8 *buf;
2524
2525/**
2526 * spi_write_then_read - SPI synchronous write followed by read
2527 * @spi: device with which data will be exchanged
2528 * @txbuf: data to be written (need not be dma-safe)
2529 * @n_tx: size of txbuf, in bytes
27570497
JP
2530 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2531 * @n_rx: size of rxbuf, in bytes
33e34dc6 2532 * Context: can sleep
8ae12a0d
DB
2533 *
2534 * This performs a half duplex MicroWire style transaction with the
2535 * device, sending txbuf and then reading rxbuf. The return value
2536 * is zero for success, else a negative errno status code.
b885244e 2537 * This call may only be used from a context that may sleep.
8ae12a0d 2538 *
0c868461 2539 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2540 * portable code should never use this for more than 32 bytes.
2541 * Performance-sensitive or bulk transfer code should instead use
0c868461 2542 * spi_{async,sync}() calls with dma-safe buffers.
97d56dc6
JMC
2543 *
2544 * Return: zero on success, else a negative error code.
8ae12a0d
DB
2545 */
2546int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2547 const void *txbuf, unsigned n_tx,
2548 void *rxbuf, unsigned n_rx)
8ae12a0d 2549{
068f4070 2550 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2551
2552 int status;
2553 struct spi_message message;
bdff549e 2554 struct spi_transfer x[2];
8ae12a0d
DB
2555 u8 *local_buf;
2556
b3a223ee
MB
2557 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2558 * copying here, (as a pure convenience thing), but we can
2559 * keep heap costs out of the hot path unless someone else is
2560 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2561 */
b3a223ee 2562 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2563 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2564 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2565 if (!local_buf)
2566 return -ENOMEM;
2567 } else {
2568 local_buf = buf;
2569 }
8ae12a0d 2570
8275c642 2571 spi_message_init(&message);
5fe5f05e 2572 memset(x, 0, sizeof(x));
bdff549e
DB
2573 if (n_tx) {
2574 x[0].len = n_tx;
2575 spi_message_add_tail(&x[0], &message);
2576 }
2577 if (n_rx) {
2578 x[1].len = n_rx;
2579 spi_message_add_tail(&x[1], &message);
2580 }
8275c642 2581
8ae12a0d 2582 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2583 x[0].tx_buf = local_buf;
2584 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2585
2586 /* do the i/o */
8ae12a0d 2587 status = spi_sync(spi, &message);
9b938b74 2588 if (status == 0)
bdff549e 2589 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2590
bdff549e 2591 if (x[0].tx_buf == buf)
068f4070 2592 mutex_unlock(&lock);
8ae12a0d
DB
2593 else
2594 kfree(local_buf);
2595
2596 return status;
2597}
2598EXPORT_SYMBOL_GPL(spi_write_then_read);
2599
2600/*-------------------------------------------------------------------------*/
2601
ce79d54a
PA
2602#if IS_ENABLED(CONFIG_OF_DYNAMIC)
2603static int __spi_of_device_match(struct device *dev, void *data)
2604{
2605 return dev->of_node == data;
2606}
2607
2608/* must call put_device() when done with returned spi_device device */
2609static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2610{
2611 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2612 __spi_of_device_match);
2613 return dev ? to_spi_device(dev) : NULL;
2614}
2615
2616static int __spi_of_master_match(struct device *dev, const void *data)
2617{
2618 return dev->of_node == data;
2619}
2620
2621/* the spi masters are not using spi_bus, so we find it with another way */
2622static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2623{
2624 struct device *dev;
2625
2626 dev = class_find_device(&spi_master_class, NULL, node,
2627 __spi_of_master_match);
2628 if (!dev)
2629 return NULL;
2630
2631 /* reference got in class_find_device */
2632 return container_of(dev, struct spi_master, dev);
2633}
2634
2635static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2636 void *arg)
2637{
2638 struct of_reconfig_data *rd = arg;
2639 struct spi_master *master;
2640 struct spi_device *spi;
2641
2642 switch (of_reconfig_get_state_change(action, arg)) {
2643 case OF_RECONFIG_CHANGE_ADD:
2644 master = of_find_spi_master_by_node(rd->dn->parent);
2645 if (master == NULL)
2646 return NOTIFY_OK; /* not for us */
2647
2648 spi = of_register_spi_device(master, rd->dn);
2649 put_device(&master->dev);
2650
2651 if (IS_ERR(spi)) {
2652 pr_err("%s: failed to create for '%s'\n",
2653 __func__, rd->dn->full_name);
2654 return notifier_from_errno(PTR_ERR(spi));
2655 }
2656 break;
2657
2658 case OF_RECONFIG_CHANGE_REMOVE:
2659 /* find our device by node */
2660 spi = of_find_spi_device_by_node(rd->dn);
2661 if (spi == NULL)
2662 return NOTIFY_OK; /* no? not meant for us */
2663
2664 /* unregister takes one ref away */
2665 spi_unregister_device(spi);
2666
2667 /* and put the reference of the find */
2668 put_device(&spi->dev);
2669 break;
2670 }
2671
2672 return NOTIFY_OK;
2673}
2674
2675static struct notifier_block spi_of_notifier = {
2676 .notifier_call = of_spi_notify,
2677};
2678#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2679extern struct notifier_block spi_of_notifier;
2680#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2681
8ae12a0d
DB
2682static int __init spi_init(void)
2683{
b885244e
DB
2684 int status;
2685
e94b1766 2686 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2687 if (!buf) {
2688 status = -ENOMEM;
2689 goto err0;
2690 }
2691
2692 status = bus_register(&spi_bus_type);
2693 if (status < 0)
2694 goto err1;
8ae12a0d 2695
b885244e
DB
2696 status = class_register(&spi_master_class);
2697 if (status < 0)
2698 goto err2;
ce79d54a 2699
5267720e 2700 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
ce79d54a
PA
2701 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2702
8ae12a0d 2703 return 0;
b885244e
DB
2704
2705err2:
2706 bus_unregister(&spi_bus_type);
2707err1:
2708 kfree(buf);
2709 buf = NULL;
2710err0:
2711 return status;
8ae12a0d 2712}
b885244e 2713
8ae12a0d
DB
2714/* board_info is normally registered in arch_initcall(),
2715 * but even essential drivers wait till later
b885244e
DB
2716 *
2717 * REVISIT only boardinfo really needs static linking. the rest (device and
2718 * driver registration) _could_ be dynamically linked (modular) ... costs
2719 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2720 */
673c0c00 2721postcore_initcall(spi_init);
8ae12a0d 2722