drm/amd: Convert amdgpu to use suballocation helper.
[linux-block.git] / drivers / spi / spi-zynqmp-gqspi.c
CommitLineData
59899843 1// SPDX-License-Identifier: GPL-2.0-or-later
dfe11a11
RW
2/*
3 * Xilinx Zynq UltraScale+ MPSoC Quad-SPI (QSPI) controller driver
4 * (master mode only)
5 *
6 * Copyright (C) 2009 - 2015 Xilinx, Inc.
dfe11a11
RW
7 */
8
9#include <linux/clk.h>
10#include <linux/delay.h>
11#include <linux/dma-mapping.h>
12#include <linux/dmaengine.h>
ab7b7c71 13#include <linux/firmware/xlnx-zynqmp.h>
dfe11a11
RW
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/module.h>
17#include <linux/of_irq.h>
18#include <linux/of_address.h>
29f4d95b 19#include <linux/of_device.h>
dfe11a11 20#include <linux/platform_device.h>
9e3a0003 21#include <linux/pm_runtime.h>
dfe11a11
RW
22#include <linux/spi/spi.h>
23#include <linux/spinlock.h>
24#include <linux/workqueue.h>
1c26372e 25#include <linux/spi/spi-mem.h>
dfe11a11
RW
26
27/* Generic QSPI register offsets */
28#define GQSPI_CONFIG_OFST 0x00000100
29#define GQSPI_ISR_OFST 0x00000104
30#define GQSPI_IDR_OFST 0x0000010C
31#define GQSPI_IER_OFST 0x00000108
32#define GQSPI_IMASK_OFST 0x00000110
33#define GQSPI_EN_OFST 0x00000114
34#define GQSPI_TXD_OFST 0x0000011C
35#define GQSPI_RXD_OFST 0x00000120
36#define GQSPI_TX_THRESHOLD_OFST 0x00000128
37#define GQSPI_RX_THRESHOLD_OFST 0x0000012C
29f4d95b 38#define IOU_TAPDLY_BYPASS_OFST 0x0000003C
dfe11a11
RW
39#define GQSPI_LPBK_DLY_ADJ_OFST 0x00000138
40#define GQSPI_GEN_FIFO_OFST 0x00000140
41#define GQSPI_SEL_OFST 0x00000144
42#define GQSPI_GF_THRESHOLD_OFST 0x00000150
43#define GQSPI_FIFO_CTRL_OFST 0x0000014C
44#define GQSPI_QSPIDMA_DST_CTRL_OFST 0x0000080C
45#define GQSPI_QSPIDMA_DST_SIZE_OFST 0x00000804
46#define GQSPI_QSPIDMA_DST_STS_OFST 0x00000808
47#define GQSPI_QSPIDMA_DST_I_STS_OFST 0x00000814
48#define GQSPI_QSPIDMA_DST_I_EN_OFST 0x00000818
49#define GQSPI_QSPIDMA_DST_I_DIS_OFST 0x0000081C
50#define GQSPI_QSPIDMA_DST_I_MASK_OFST 0x00000820
51#define GQSPI_QSPIDMA_DST_ADDR_OFST 0x00000800
52#define GQSPI_QSPIDMA_DST_ADDR_MSB_OFST 0x00000828
fae7b3c3 53#define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8
dfe11a11
RW
54
55/* GQSPI register bit masks */
56#define GQSPI_SEL_MASK 0x00000001
57#define GQSPI_EN_MASK 0x00000001
58#define GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK 0x00000020
59#define GQSPI_ISR_WR_TO_CLR_MASK 0x00000002
60#define GQSPI_IDR_ALL_MASK 0x00000FBE
61#define GQSPI_CFG_MODE_EN_MASK 0xC0000000
62#define GQSPI_CFG_GEN_FIFO_START_MODE_MASK 0x20000000
63#define GQSPI_CFG_ENDIAN_MASK 0x04000000
64#define GQSPI_CFG_EN_POLL_TO_MASK 0x00100000
65#define GQSPI_CFG_WP_HOLD_MASK 0x00080000
66#define GQSPI_CFG_BAUD_RATE_DIV_MASK 0x00000038
67#define GQSPI_CFG_CLK_PHA_MASK 0x00000004
68#define GQSPI_CFG_CLK_POL_MASK 0x00000002
69#define GQSPI_CFG_START_GEN_FIFO_MASK 0x10000000
70#define GQSPI_GENFIFO_IMM_DATA_MASK 0x000000FF
71#define GQSPI_GENFIFO_DATA_XFER 0x00000100
72#define GQSPI_GENFIFO_EXP 0x00000200
73#define GQSPI_GENFIFO_MODE_SPI 0x00000400
74#define GQSPI_GENFIFO_MODE_DUALSPI 0x00000800
75#define GQSPI_GENFIFO_MODE_QUADSPI 0x00000C00
76#define GQSPI_GENFIFO_MODE_MASK 0x00000C00
77#define GQSPI_GENFIFO_CS_LOWER 0x00001000
78#define GQSPI_GENFIFO_CS_UPPER 0x00002000
79#define GQSPI_GENFIFO_BUS_LOWER 0x00004000
80#define GQSPI_GENFIFO_BUS_UPPER 0x00008000
81#define GQSPI_GENFIFO_BUS_BOTH 0x0000C000
82#define GQSPI_GENFIFO_BUS_MASK 0x0000C000
83#define GQSPI_GENFIFO_TX 0x00010000
84#define GQSPI_GENFIFO_RX 0x00020000
85#define GQSPI_GENFIFO_STRIPE 0x00040000
86#define GQSPI_GENFIFO_POLL 0x00080000
87#define GQSPI_GENFIFO_EXP_START 0x00000100
88#define GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK 0x00000004
89#define GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK 0x00000002
90#define GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK 0x00000001
91#define GQSPI_ISR_RXEMPTY_MASK 0x00000800
92#define GQSPI_ISR_GENFIFOFULL_MASK 0x00000400
93#define GQSPI_ISR_GENFIFONOT_FULL_MASK 0x00000200
94#define GQSPI_ISR_TXEMPTY_MASK 0x00000100
95#define GQSPI_ISR_GENFIFOEMPTY_MASK 0x00000080
96#define GQSPI_ISR_RXFULL_MASK 0x00000020
97#define GQSPI_ISR_RXNEMPTY_MASK 0x00000010
98#define GQSPI_ISR_TXFULL_MASK 0x00000008
99#define GQSPI_ISR_TXNOT_FULL_MASK 0x00000004
100#define GQSPI_ISR_POLL_TIME_EXPIRE_MASK 0x00000002
101#define GQSPI_IER_TXNOT_FULL_MASK 0x00000004
102#define GQSPI_IER_RXEMPTY_MASK 0x00000800
103#define GQSPI_IER_POLL_TIME_EXPIRE_MASK 0x00000002
104#define GQSPI_IER_RXNEMPTY_MASK 0x00000010
105#define GQSPI_IER_GENFIFOEMPTY_MASK 0x00000080
106#define GQSPI_IER_TXEMPTY_MASK 0x00000100
107#define GQSPI_QSPIDMA_DST_INTR_ALL_MASK 0x000000FE
108#define GQSPI_QSPIDMA_DST_STS_WTC 0x0000E000
109#define GQSPI_CFG_MODE_EN_DMA_MASK 0x80000000
110#define GQSPI_ISR_IDR_MASK 0x00000994
111#define GQSPI_QSPIDMA_DST_I_EN_DONE_MASK 0x00000002
112#define GQSPI_QSPIDMA_DST_I_STS_DONE_MASK 0x00000002
113#define GQSPI_IRQ_MASK 0x00000980
114
115#define GQSPI_CFG_BAUD_RATE_DIV_SHIFT 3
116#define GQSPI_GENFIFO_CS_SETUP 0x4
117#define GQSPI_GENFIFO_CS_HOLD 0x3
118#define GQSPI_TXD_DEPTH 64
119#define GQSPI_RX_FIFO_THRESHOLD 32
120#define GQSPI_RX_FIFO_FILL (GQSPI_RX_FIFO_THRESHOLD * 4)
121#define GQSPI_TX_FIFO_THRESHOLD_RESET_VAL 32
122#define GQSPI_TX_FIFO_FILL (GQSPI_TXD_DEPTH -\
123 GQSPI_TX_FIFO_THRESHOLD_RESET_VAL)
124#define GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL 0X10
125#define GQSPI_QSPIDMA_DST_CTRL_RESET_VAL 0x803FFA00
126#define GQSPI_SELECT_FLASH_CS_LOWER 0x1
127#define GQSPI_SELECT_FLASH_CS_UPPER 0x2
128#define GQSPI_SELECT_FLASH_CS_BOTH 0x3
129#define GQSPI_SELECT_FLASH_BUS_LOWER 0x1
130#define GQSPI_SELECT_FLASH_BUS_UPPER 0x2
131#define GQSPI_SELECT_FLASH_BUS_BOTH 0x3
132#define GQSPI_BAUD_DIV_MAX 7 /* Baud rate divisor maximum */
133#define GQSPI_BAUD_DIV_SHIFT 2 /* Baud rate divisor shift */
134#define GQSPI_SELECT_MODE_SPI 0x1
135#define GQSPI_SELECT_MODE_DUALSPI 0x2
136#define GQSPI_SELECT_MODE_QUADSPI 0x4
137#define GQSPI_DMA_UNALIGN 0x3
138#define GQSPI_DEFAULT_NUM_CS 1 /* Default number of chip selects */
139
dd9c232d
AKM
140#define GQSPI_MAX_NUM_CS 2 /* Maximum number of chip selects */
141
fae7b3c3
NSR
142#define GQSPI_USE_DATA_DLY 0x1
143#define GQSPI_USE_DATA_DLY_SHIFT 31
144#define GQSPI_DATA_DLY_ADJ_VALUE 0x2
145#define GQSPI_DATA_DLY_ADJ_SHIFT 28
29f4d95b
AKM
146#define GQSPI_LPBK_DLY_ADJ_DLY_1 0x1
147#define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 0x3
148#define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1
149#define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 0x2
150
151/* set to differentiate versal from zynqmp, 1=versal, 0=zynqmp */
152#define QSPI_QUIRK_HAS_TAPDELAY BIT(0)
fae7b3c3
NSR
153
154#define GQSPI_FREQ_37_5MHZ 37500000
155#define GQSPI_FREQ_40MHZ 40000000
156#define GQSPI_FREQ_100MHZ 100000000
157#define GQSPI_FREQ_150MHZ 150000000
158
9e3a0003 159#define SPI_AUTOSUSPEND_TIMEOUT 3000
dfe11a11
RW
160enum mode_type {GQSPI_MODE_IO, GQSPI_MODE_DMA};
161
29f4d95b
AKM
162/**
163 * struct qspi_platform_data - zynqmp qspi platform data structure
164 * @quirks: Flags is used to identify the platform
165 */
166struct qspi_platform_data {
167 u32 quirks;
168};
169
dfe11a11
RW
170/**
171 * struct zynqmp_qspi - Defines qspi driver instance
b3b95308 172 * @ctlr: Pointer to the spi controller information
dfe11a11
RW
173 * @regs: Virtual address of the QSPI controller registers
174 * @refclk: Pointer to the peripheral clock
175 * @pclk: Pointer to the APB clock
176 * @irq: IRQ number
177 * @dev: Pointer to struct device
178 * @txbuf: Pointer to the TX buffer
179 * @rxbuf: Pointer to the RX buffer
180 * @bytes_to_transfer: Number of bytes left to transfer
181 * @bytes_to_receive: Number of bytes left to receive
182 * @genfifocs: Used for chip select
183 * @genfifobus: Used to select the upper or lower bus
184 * @dma_rx_bytes: Remaining bytes to receive by DMA mode
185 * @dma_addr: DMA address after mapping the kernel buffer
186 * @genfifoentry: Used for storing the genfifoentry instruction.
187 * @mode: Defines the mode in which QSPI is operating
1c26372e 188 * @data_completion: completion structure
b3b95308 189 * @op_lock: Operational lock
21764a49 190 * @speed_hz: Current SPI bus clock speed in hz
29f4d95b 191 * @has_tapdelay: Used for tapdelay register available in qspi
dfe11a11
RW
192 */
193struct zynqmp_qspi {
799f923f 194 struct spi_controller *ctlr;
dfe11a11
RW
195 void __iomem *regs;
196 struct clk *refclk;
197 struct clk *pclk;
198 int irq;
199 struct device *dev;
200 const void *txbuf;
201 void *rxbuf;
202 int bytes_to_transfer;
203 int bytes_to_receive;
204 u32 genfifocs;
205 u32 genfifobus;
206 u32 dma_rx_bytes;
207 dma_addr_t dma_addr;
208 u32 genfifoentry;
209 enum mode_type mode;
1c26372e 210 struct completion data_completion;
a0f65be6 211 struct mutex op_lock;
21764a49 212 u32 speed_hz;
29f4d95b 213 bool has_tapdelay;
dfe11a11
RW
214};
215
216/**
91af6eb0 217 * zynqmp_gqspi_read - For GQSPI controller read operation
dfe11a11
RW
218 * @xqspi: Pointer to the zynqmp_qspi structure
219 * @offset: Offset from where to read
91af6eb0 220 * Return: Value at the offset
dfe11a11
RW
221 */
222static u32 zynqmp_gqspi_read(struct zynqmp_qspi *xqspi, u32 offset)
223{
224 return readl_relaxed(xqspi->regs + offset);
225}
226
227/**
91af6eb0 228 * zynqmp_gqspi_write - For GQSPI controller write operation
dfe11a11
RW
229 * @xqspi: Pointer to the zynqmp_qspi structure
230 * @offset: Offset where to write
231 * @val: Value to be written
232 */
233static inline void zynqmp_gqspi_write(struct zynqmp_qspi *xqspi, u32 offset,
234 u32 val)
235{
236 writel_relaxed(val, (xqspi->regs + offset));
237}
238
239/**
91af6eb0 240 * zynqmp_gqspi_selectslave - For selection of slave device
dfe11a11 241 * @instanceptr: Pointer to the zynqmp_qspi structure
4b42b0b4
LJ
242 * @slavecs: For chip select
243 * @slavebus: To check which bus is selected- upper or lower
dfe11a11
RW
244 */
245static void zynqmp_gqspi_selectslave(struct zynqmp_qspi *instanceptr,
246 u8 slavecs, u8 slavebus)
247{
248 /*
249 * Bus and CS lines selected here will be updated in the instance and
250 * used for subsequent GENFIFO entries during transfer.
251 */
252
253 /* Choose slave select line */
254 switch (slavecs) {
255 case GQSPI_SELECT_FLASH_CS_BOTH:
256 instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER |
257 GQSPI_GENFIFO_CS_UPPER;
861a481c 258 break;
dfe11a11
RW
259 case GQSPI_SELECT_FLASH_CS_UPPER:
260 instanceptr->genfifocs = GQSPI_GENFIFO_CS_UPPER;
261 break;
262 case GQSPI_SELECT_FLASH_CS_LOWER:
263 instanceptr->genfifocs = GQSPI_GENFIFO_CS_LOWER;
264 break;
265 default:
266 dev_warn(instanceptr->dev, "Invalid slave select\n");
267 }
268
269 /* Choose the bus */
270 switch (slavebus) {
271 case GQSPI_SELECT_FLASH_BUS_BOTH:
272 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER |
273 GQSPI_GENFIFO_BUS_UPPER;
274 break;
275 case GQSPI_SELECT_FLASH_BUS_UPPER:
276 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
277 break;
278 case GQSPI_SELECT_FLASH_BUS_LOWER:
279 instanceptr->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
280 break;
281 default:
282 dev_warn(instanceptr->dev, "Invalid slave bus\n");
283 }
284}
285
fae7b3c3
NSR
286/**
287 * zynqmp_qspi_set_tapdelay: To configure qspi tap delays
288 * @xqspi: Pointer to the zynqmp_qspi structure
289 * @baudrateval: Buadrate to configure
290 */
291static void zynqmp_qspi_set_tapdelay(struct zynqmp_qspi *xqspi, u32 baudrateval)
292{
29f4d95b 293 u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate;
fae7b3c3
NSR
294 u32 reqhz = 0;
295
296 clk_rate = clk_get_rate(xqspi->refclk);
297 reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval));
298
29f4d95b
AKM
299 if (!xqspi->has_tapdelay) {
300 if (reqhz <= GQSPI_FREQ_40MHZ) {
301 zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
302 PM_TAPDELAY_BYPASS_ENABLE);
303 } else if (reqhz <= GQSPI_FREQ_100MHZ) {
304 zynqmp_pm_set_tapdelay_bypass(PM_TAPDELAY_QSPI,
305 PM_TAPDELAY_BYPASS_ENABLE);
306 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
307 datadlyadj |= ((GQSPI_USE_DATA_DLY <<
308 GQSPI_USE_DATA_DLY_SHIFT)
309 | (GQSPI_DATA_DLY_ADJ_VALUE <<
310 GQSPI_DATA_DLY_ADJ_SHIFT));
311 } else if (reqhz <= GQSPI_FREQ_150MHZ) {
312 lpbkdlyadj |= GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK;
313 }
314 } else {
315 if (reqhz <= GQSPI_FREQ_37_5MHZ) {
316 tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
317 TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
318 } else if (reqhz <= GQSPI_FREQ_100MHZ) {
319 tapdlybypass |= (TAP_DLY_BYPASS_LQSPI_RX_VALUE <<
320 TAP_DLY_BYPASS_LQSPI_RX_SHIFT);
321 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK);
322 datadlyadj |= (GQSPI_USE_DATA_DLY <<
323 GQSPI_USE_DATA_DLY_SHIFT);
324 } else if (reqhz <= GQSPI_FREQ_150MHZ) {
325 lpbkdlyadj |= (GQSPI_LPBK_DLY_ADJ_USE_LPBK_MASK
326 | (GQSPI_LPBK_DLY_ADJ_DLY_1 <<
327 GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT));
328 }
329 zynqmp_gqspi_write(xqspi,
330 IOU_TAPDLY_BYPASS_OFST, tapdlybypass);
fae7b3c3
NSR
331 }
332 zynqmp_gqspi_write(xqspi, GQSPI_LPBK_DLY_ADJ_OFST, lpbkdlyadj);
333 zynqmp_gqspi_write(xqspi, GQSPI_DATA_DLY_ADJ_OFST, datadlyadj);
334}
335
dfe11a11 336/**
91af6eb0 337 * zynqmp_qspi_init_hw - Initialize the hardware
dfe11a11
RW
338 * @xqspi: Pointer to the zynqmp_qspi structure
339 *
340 * The default settings of the QSPI controller's configurable parameters on
341 * reset are
342 * - Master mode
343 * - TX threshold set to 1
344 * - RX threshold set to 1
345 * - Flash memory interface mode enabled
346 * This function performs the following actions
347 * - Disable and clear all the interrupts
348 * - Enable manual slave select
349 * - Enable manual start
350 * - Deselect all the chip select lines
22742b8b
AKM
351 * - Set the little endian mode of TX FIFO
352 * - Set clock phase
353 * - Set clock polarity and
dfe11a11
RW
354 * - Enable the QSPI controller
355 */
356static void zynqmp_qspi_init_hw(struct zynqmp_qspi *xqspi)
357{
21764a49
AKM
358 u32 config_reg, baud_rate_val = 0;
359 ulong clk_rate;
dfe11a11
RW
360
361 /* Select the GQSPI mode */
362 zynqmp_gqspi_write(xqspi, GQSPI_SEL_OFST, GQSPI_SEL_MASK);
363 /* Clear and disable interrupts */
364 zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST,
365 zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST) |
366 GQSPI_ISR_WR_TO_CLR_MASK);
367 /* Clear the DMA STS */
368 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
369 zynqmp_gqspi_read(xqspi,
370 GQSPI_QSPIDMA_DST_I_STS_OFST));
371 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_STS_OFST,
372 zynqmp_gqspi_read(xqspi,
373 GQSPI_QSPIDMA_DST_STS_OFST) |
374 GQSPI_QSPIDMA_DST_STS_WTC);
375 zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_IDR_ALL_MASK);
376 zynqmp_gqspi_write(xqspi,
377 GQSPI_QSPIDMA_DST_I_DIS_OFST,
378 GQSPI_QSPIDMA_DST_INTR_ALL_MASK);
379 /* Disable the GQSPI */
380 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
381 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
382 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
383 /* Manual start */
384 config_reg |= GQSPI_CFG_GEN_FIFO_START_MODE_MASK;
385 /* Little endian by default */
386 config_reg &= ~GQSPI_CFG_ENDIAN_MASK;
387 /* Disable poll time out */
388 config_reg &= ~GQSPI_CFG_EN_POLL_TO_MASK;
389 /* Set hold bit */
390 config_reg |= GQSPI_CFG_WP_HOLD_MASK;
391 /* Clear pre-scalar by default */
392 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
22742b8b
AKM
393 /* Set CPHA */
394 if (xqspi->ctlr->mode_bits & SPI_CPHA)
395 config_reg |= GQSPI_CFG_CLK_PHA_MASK;
396 else
397 config_reg &= ~GQSPI_CFG_CLK_PHA_MASK;
398 /* Set CPOL */
399 if (xqspi->ctlr->mode_bits & SPI_CPOL)
400 config_reg |= GQSPI_CFG_CLK_POL_MASK;
401 else
402 config_reg &= ~GQSPI_CFG_CLK_POL_MASK;
403
21764a49
AKM
404 /* Set the clock frequency */
405 clk_rate = clk_get_rate(xqspi->refclk);
406 while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
407 (clk_rate /
408 (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) > xqspi->speed_hz)
409 baud_rate_val++;
410
411 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
412 config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
413
dfe11a11
RW
414 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
415
fae7b3c3
NSR
416 /* Set the tapdelay for clock frequency */
417 zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
418
dfe11a11
RW
419 /* Clear the TX and RX FIFO */
420 zynqmp_gqspi_write(xqspi, GQSPI_FIFO_CTRL_OFST,
421 GQSPI_FIFO_CTRL_RST_RX_FIFO_MASK |
422 GQSPI_FIFO_CTRL_RST_TX_FIFO_MASK |
423 GQSPI_FIFO_CTRL_RST_GEN_FIFO_MASK);
dfe11a11
RW
424 /* Reset thresholds */
425 zynqmp_gqspi_write(xqspi, GQSPI_TX_THRESHOLD_OFST,
426 GQSPI_TX_FIFO_THRESHOLD_RESET_VAL);
427 zynqmp_gqspi_write(xqspi, GQSPI_RX_THRESHOLD_OFST,
428 GQSPI_RX_FIFO_THRESHOLD);
429 zynqmp_gqspi_write(xqspi, GQSPI_GF_THRESHOLD_OFST,
430 GQSPI_GEN_FIFO_THRESHOLD_RESET_VAL);
431 zynqmp_gqspi_selectslave(xqspi,
432 GQSPI_SELECT_FLASH_CS_LOWER,
433 GQSPI_SELECT_FLASH_BUS_LOWER);
434 /* Initialize DMA */
435 zynqmp_gqspi_write(xqspi,
f09a433b
AKM
436 GQSPI_QSPIDMA_DST_CTRL_OFST,
437 GQSPI_QSPIDMA_DST_CTRL_RESET_VAL);
dfe11a11
RW
438
439 /* Enable the GQSPI */
440 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
441}
442
443/**
91af6eb0 444 * zynqmp_qspi_copy_read_data - Copy data to RX buffer
dfe11a11
RW
445 * @xqspi: Pointer to the zynqmp_qspi structure
446 * @data: The variable where data is stored
447 * @size: Number of bytes to be copied from data to RX buffer
448 */
449static void zynqmp_qspi_copy_read_data(struct zynqmp_qspi *xqspi,
450 ulong data, u8 size)
451{
452 memcpy(xqspi->rxbuf, &data, size);
453 xqspi->rxbuf += size;
454 xqspi->bytes_to_receive -= size;
455}
456
dfe11a11 457/**
91af6eb0 458 * zynqmp_qspi_chipselect - Select or deselect the chip select line
dfe11a11
RW
459 * @qspi: Pointer to the spi_device structure
460 * @is_high: Select(0) or deselect (1) the chip select line
461 */
462static void zynqmp_qspi_chipselect(struct spi_device *qspi, bool is_high)
463{
464 struct zynqmp_qspi *xqspi = spi_master_get_devdata(qspi->master);
465 ulong timeout;
1c26372e 466 u32 genfifoentry = 0, statusreg;
dfe11a11
RW
467
468 genfifoentry |= GQSPI_GENFIFO_MODE_SPI;
dfe11a11
RW
469
470 if (!is_high) {
dd9c232d
AKM
471 if (!qspi->chip_select) {
472 xqspi->genfifobus = GQSPI_GENFIFO_BUS_LOWER;
473 xqspi->genfifocs = GQSPI_GENFIFO_CS_LOWER;
474 } else {
475 xqspi->genfifobus = GQSPI_GENFIFO_BUS_UPPER;
476 xqspi->genfifocs = GQSPI_GENFIFO_CS_UPPER;
477 }
1c26372e 478 genfifoentry |= xqspi->genfifobus;
dfe11a11
RW
479 genfifoentry |= xqspi->genfifocs;
480 genfifoentry |= GQSPI_GENFIFO_CS_SETUP;
481 } else {
482 genfifoentry |= GQSPI_GENFIFO_CS_HOLD;
483 }
484
485 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
486
dfe11a11
RW
487 /* Manually start the generic FIFO command */
488 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
f09a433b
AKM
489 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
490 GQSPI_CFG_START_GEN_FIFO_MASK);
dfe11a11
RW
491
492 timeout = jiffies + msecs_to_jiffies(1000);
493
494 /* Wait until the generic FIFO command is empty */
495 do {
496 statusreg = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
497
498 if ((statusreg & GQSPI_ISR_GENFIFOEMPTY_MASK) &&
f09a433b 499 (statusreg & GQSPI_ISR_TXEMPTY_MASK))
dfe11a11 500 break;
f09a433b 501 cpu_relax();
dfe11a11
RW
502 } while (!time_after_eq(jiffies, timeout));
503
504 if (time_after_eq(jiffies, timeout))
505 dev_err(xqspi->dev, "Chip select timed out\n");
506}
507
508/**
1c26372e
AKM
509 * zynqmp_qspi_selectspimode - Selects SPI mode - x1 or x2 or x4.
510 * @xqspi: xqspi is a pointer to the GQSPI instance
511 * @spimode: spimode - SPI or DUAL or QUAD.
512 * Return: Mask to set desired SPI mode in GENFIFO entry.
513 */
514static inline u32 zynqmp_qspi_selectspimode(struct zynqmp_qspi *xqspi,
515 u8 spimode)
516{
517 u32 mask = 0;
518
519 switch (spimode) {
520 case GQSPI_SELECT_MODE_DUALSPI:
521 mask = GQSPI_GENFIFO_MODE_DUALSPI;
522 break;
523 case GQSPI_SELECT_MODE_QUADSPI:
524 mask = GQSPI_GENFIFO_MODE_QUADSPI;
525 break;
526 case GQSPI_SELECT_MODE_SPI:
527 mask = GQSPI_GENFIFO_MODE_SPI;
528 break;
529 default:
530 dev_warn(xqspi->dev, "Invalid SPI mode\n");
531 }
532
533 return mask;
534}
535
536/**
537 * zynqmp_qspi_config_op - Configure QSPI controller for specified
dfe11a11 538 * transfer
1c26372e 539 * @xqspi: Pointer to the zynqmp_qspi structure
dfe11a11 540 * @qspi: Pointer to the spi_device structure
dfe11a11
RW
541 *
542 * Sets the operational mode of QSPI controller for the next QSPI transfer and
543 * sets the requested clock frequency.
544 *
545 * Return: Always 0
546 *
547 * Note:
548 * If the requested frequency is not an exact match with what can be
549 * obtained using the pre-scalar value, the driver sets the clock
550 * frequency which is lower than the requested frequency (maximum lower)
551 * for the transfer.
552 *
553 * If the requested frequency is higher or lower than that is supported
554 * by the QSPI controller the driver will set the highest or lowest
555 * frequency supported by controller.
556 */
1c26372e
AKM
557static int zynqmp_qspi_config_op(struct zynqmp_qspi *xqspi,
558 struct spi_device *qspi)
dfe11a11 559{
dfe11a11 560 ulong clk_rate;
21764a49 561 u32 config_reg, req_speed_hz, baud_rate_val = 0;
dfe11a11 562
21764a49 563 req_speed_hz = qspi->max_speed_hz;
dfe11a11 564
21764a49
AKM
565 if (xqspi->speed_hz != req_speed_hz) {
566 xqspi->speed_hz = req_speed_hz;
dfe11a11 567
21764a49
AKM
568 /* Set the clock frequency */
569 /* If req_speed_hz == 0, default to lowest speed */
570 clk_rate = clk_get_rate(xqspi->refclk);
dfe11a11 571
21764a49
AKM
572 while ((baud_rate_val < GQSPI_BAUD_DIV_MAX) &&
573 (clk_rate /
574 (GQSPI_BAUD_DIV_SHIFT << baud_rate_val)) >
575 req_speed_hz)
576 baud_rate_val++;
577
578 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
579
580 config_reg &= ~GQSPI_CFG_BAUD_RATE_DIV_MASK;
581 config_reg |= (baud_rate_val << GQSPI_CFG_BAUD_RATE_DIV_SHIFT);
582 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
fae7b3c3 583 zynqmp_qspi_set_tapdelay(xqspi, baud_rate_val);
21764a49 584 }
dfe11a11
RW
585 return 0;
586}
587
588/**
1c26372e 589 * zynqmp_qspi_setup_op - Configure the QSPI controller
dfe11a11
RW
590 * @qspi: Pointer to the spi_device structure
591 *
592 * Sets the operational mode of QSPI controller for the next QSPI transfer,
593 * baud rate and divisor value to setup the requested qspi clock.
594 *
595 * Return: 0 on success; error value otherwise.
596 */
1c26372e 597static int zynqmp_qspi_setup_op(struct spi_device *qspi)
dfe11a11 598{
1c26372e
AKM
599 struct spi_controller *ctlr = qspi->master;
600 struct zynqmp_qspi *xqspi = spi_controller_get_devdata(ctlr);
1c26372e
AKM
601
602 if (ctlr->busy)
dfe11a11 603 return -EBUSY;
1c26372e 604
1c26372e
AKM
605 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
606
dfe11a11
RW
607 return 0;
608}
609
610/**
91af6eb0 611 * zynqmp_qspi_filltxfifo - Fills the TX FIFO as long as there is room in
dfe11a11
RW
612 * the FIFO or the bytes required to be
613 * transmitted.
614 * @xqspi: Pointer to the zynqmp_qspi structure
615 * @size: Number of bytes to be copied from TX buffer to TX FIFO
616 */
617static void zynqmp_qspi_filltxfifo(struct zynqmp_qspi *xqspi, int size)
618{
619 u32 count = 0, intermediate;
620
8ad07d79 621 while ((xqspi->bytes_to_transfer > 0) && (count < size) && (xqspi->txbuf)) {
dfe11a11 622 if (xqspi->bytes_to_transfer >= 4) {
2530b3df 623 memcpy(&intermediate, xqspi->txbuf, 4);
dfe11a11
RW
624 xqspi->txbuf += 4;
625 xqspi->bytes_to_transfer -= 4;
2530b3df 626 count += 4;
dfe11a11 627 } else {
2530b3df
AKM
628 memcpy(&intermediate, xqspi->txbuf,
629 xqspi->bytes_to_transfer);
dfe11a11
RW
630 xqspi->txbuf += xqspi->bytes_to_transfer;
631 xqspi->bytes_to_transfer = 0;
2530b3df 632 count += xqspi->bytes_to_transfer;
dfe11a11 633 }
2530b3df 634 zynqmp_gqspi_write(xqspi, GQSPI_TXD_OFST, intermediate);
dfe11a11
RW
635 }
636}
637
638/**
91af6eb0 639 * zynqmp_qspi_readrxfifo - Fills the RX FIFO as long as there is room in
dfe11a11
RW
640 * the FIFO.
641 * @xqspi: Pointer to the zynqmp_qspi structure
642 * @size: Number of bytes to be copied from RX buffer to RX FIFO
643 */
644static void zynqmp_qspi_readrxfifo(struct zynqmp_qspi *xqspi, u32 size)
645{
646 ulong data;
647 int count = 0;
648
649 while ((count < size) && (xqspi->bytes_to_receive > 0)) {
650 if (xqspi->bytes_to_receive >= 4) {
f09a433b 651 (*(u32 *)xqspi->rxbuf) =
dfe11a11
RW
652 zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
653 xqspi->rxbuf += 4;
654 xqspi->bytes_to_receive -= 4;
655 count += 4;
656 } else {
657 data = zynqmp_gqspi_read(xqspi, GQSPI_RXD_OFST);
658 count += xqspi->bytes_to_receive;
659 zynqmp_qspi_copy_read_data(xqspi, data,
660 xqspi->bytes_to_receive);
661 xqspi->bytes_to_receive = 0;
662 }
663 }
664}
665
1c26372e
AKM
666/**
667 * zynqmp_qspi_fillgenfifo - Fills the GENFIFO.
668 * @xqspi: Pointer to the zynqmp_qspi structure
669 * @nbits: Transfer/Receive buswidth.
670 * @genfifoentry: Variable in which GENFIFO mask is saved
671 */
672static void zynqmp_qspi_fillgenfifo(struct zynqmp_qspi *xqspi, u8 nbits,
673 u32 genfifoentry)
674{
675 u32 transfer_len = 0;
676
677 if (xqspi->txbuf) {
678 genfifoentry &= ~GQSPI_GENFIFO_RX;
679 genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
680 genfifoentry |= GQSPI_GENFIFO_TX;
681 transfer_len = xqspi->bytes_to_transfer;
8ad07d79 682 } else if (xqspi->rxbuf) {
1c26372e
AKM
683 genfifoentry &= ~GQSPI_GENFIFO_TX;
684 genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
685 genfifoentry |= GQSPI_GENFIFO_RX;
686 if (xqspi->mode == GQSPI_MODE_DMA)
687 transfer_len = xqspi->dma_rx_bytes;
688 else
689 transfer_len = xqspi->bytes_to_receive;
8ad07d79
QW
690 } else {
691 /* Sending dummy circles here */
692 genfifoentry &= ~(GQSPI_GENFIFO_TX | GQSPI_GENFIFO_RX);
693 genfifoentry |= GQSPI_GENFIFO_DATA_XFER;
694 transfer_len = xqspi->bytes_to_transfer;
1c26372e
AKM
695 }
696 genfifoentry |= zynqmp_qspi_selectspimode(xqspi, nbits);
697 xqspi->genfifoentry = genfifoentry;
698
699 if ((transfer_len) < GQSPI_GENFIFO_IMM_DATA_MASK) {
700 genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
701 genfifoentry |= transfer_len;
702 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
703 } else {
704 int tempcount = transfer_len;
705 u32 exponent = 8; /* 2^8 = 256 */
706 u8 imm_data = tempcount & 0xFF;
707
708 tempcount &= ~(tempcount & 0xFF);
709 /* Immediate entry */
710 if (tempcount != 0) {
711 /* Exponent entries */
712 genfifoentry |= GQSPI_GENFIFO_EXP;
713 while (tempcount != 0) {
714 if (tempcount & GQSPI_GENFIFO_EXP_START) {
715 genfifoentry &=
716 ~GQSPI_GENFIFO_IMM_DATA_MASK;
717 genfifoentry |= exponent;
718 zynqmp_gqspi_write(xqspi,
719 GQSPI_GEN_FIFO_OFST,
720 genfifoentry);
721 }
722 tempcount = tempcount >> 1;
723 exponent++;
724 }
725 }
726 if (imm_data != 0) {
727 genfifoentry &= ~GQSPI_GENFIFO_EXP;
728 genfifoentry &= ~GQSPI_GENFIFO_IMM_DATA_MASK;
729 genfifoentry |= (u8)(imm_data & 0xFF);
730 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST,
731 genfifoentry);
732 }
733 }
734 if (xqspi->mode == GQSPI_MODE_IO && xqspi->rxbuf) {
735 /* Dummy generic FIFO entry */
736 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
737 }
738}
739
dfe11a11 740/**
91af6eb0 741 * zynqmp_process_dma_irq - Handler for DMA done interrupt of QSPI
dfe11a11
RW
742 * controller
743 * @xqspi: zynqmp_qspi instance pointer
744 *
745 * This function handles DMA interrupt only.
746 */
747static void zynqmp_process_dma_irq(struct zynqmp_qspi *xqspi)
748{
749 u32 config_reg, genfifoentry;
750
751 dma_unmap_single(xqspi->dev, xqspi->dma_addr,
f09a433b 752 xqspi->dma_rx_bytes, DMA_FROM_DEVICE);
dfe11a11
RW
753 xqspi->rxbuf += xqspi->dma_rx_bytes;
754 xqspi->bytes_to_receive -= xqspi->dma_rx_bytes;
755 xqspi->dma_rx_bytes = 0;
756
757 /* Disabling the DMA interrupts */
758 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_DIS_OFST,
f09a433b 759 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
dfe11a11
RW
760
761 if (xqspi->bytes_to_receive > 0) {
762 /* Switch to IO mode,for remaining bytes to receive */
763 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
764 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
765 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
766
767 /* Initiate the transfer of remaining bytes */
768 genfifoentry = xqspi->genfifoentry;
769 genfifoentry |= xqspi->bytes_to_receive;
770 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, genfifoentry);
771
772 /* Dummy generic FIFO entry */
773 zynqmp_gqspi_write(xqspi, GQSPI_GEN_FIFO_OFST, 0x0);
774
775 /* Manual start */
776 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
f09a433b
AKM
777 (zynqmp_gqspi_read(xqspi,
778 GQSPI_CONFIG_OFST) |
779 GQSPI_CFG_START_GEN_FIFO_MASK));
dfe11a11
RW
780
781 /* Enable the RX interrupts for IO mode */
782 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
f09a433b
AKM
783 GQSPI_IER_GENFIFOEMPTY_MASK |
784 GQSPI_IER_RXNEMPTY_MASK |
785 GQSPI_IER_RXEMPTY_MASK);
dfe11a11
RW
786 }
787}
788
789/**
91af6eb0 790 * zynqmp_qspi_irq - Interrupt service routine of the QSPI controller
dfe11a11
RW
791 * @irq: IRQ number
792 * @dev_id: Pointer to the xqspi structure
793 *
794 * This function handles TX empty only.
795 * On TX empty interrupt this function reads the received data from RX FIFO
796 * and fills the TX FIFO if there is any data remaining to be transferred.
797 *
798 * Return: IRQ_HANDLED when interrupt is handled
799 * IRQ_NONE otherwise.
800 */
801static irqreturn_t zynqmp_qspi_irq(int irq, void *dev_id)
802{
1c26372e
AKM
803 struct zynqmp_qspi *xqspi = (struct zynqmp_qspi *)dev_id;
804 irqreturn_t ret = IRQ_NONE;
dfe11a11
RW
805 u32 status, mask, dma_status = 0;
806
807 status = zynqmp_gqspi_read(xqspi, GQSPI_ISR_OFST);
808 zynqmp_gqspi_write(xqspi, GQSPI_ISR_OFST, status);
809 mask = (status & ~(zynqmp_gqspi_read(xqspi, GQSPI_IMASK_OFST)));
810
811 /* Read and clear DMA status */
812 if (xqspi->mode == GQSPI_MODE_DMA) {
813 dma_status =
814 zynqmp_gqspi_read(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST);
815 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_I_STS_OFST,
f09a433b 816 dma_status);
dfe11a11
RW
817 }
818
819 if (mask & GQSPI_ISR_TXNOT_FULL_MASK) {
820 zynqmp_qspi_filltxfifo(xqspi, GQSPI_TX_FIFO_FILL);
821 ret = IRQ_HANDLED;
822 }
823
824 if (dma_status & GQSPI_QSPIDMA_DST_I_STS_DONE_MASK) {
825 zynqmp_process_dma_irq(xqspi);
826 ret = IRQ_HANDLED;
827 } else if (!(mask & GQSPI_IER_RXEMPTY_MASK) &&
828 (mask & GQSPI_IER_GENFIFOEMPTY_MASK)) {
829 zynqmp_qspi_readrxfifo(xqspi, GQSPI_RX_FIFO_FILL);
830 ret = IRQ_HANDLED;
831 }
832
f09a433b
AKM
833 if (xqspi->bytes_to_receive == 0 && xqspi->bytes_to_transfer == 0 &&
834 ((status & GQSPI_IRQ_MASK) == GQSPI_IRQ_MASK)) {
dfe11a11 835 zynqmp_gqspi_write(xqspi, GQSPI_IDR_OFST, GQSPI_ISR_IDR_MASK);
1c26372e 836 complete(&xqspi->data_completion);
dfe11a11
RW
837 ret = IRQ_HANDLED;
838 }
839 return ret;
840}
841
842/**
1c26372e 843 * zynqmp_qspi_setuprxdma - This function sets up the RX DMA operation
dfe11a11 844 * @xqspi: xqspi is a pointer to the GQSPI instance.
b3b95308
AKM
845 *
846 * Return: 0 on success; error value otherwise.
dfe11a11 847 */
126bdb60 848static int zynqmp_qspi_setuprxdma(struct zynqmp_qspi *xqspi)
dfe11a11
RW
849{
850 u32 rx_bytes, rx_rem, config_reg;
851 dma_addr_t addr;
852 u64 dma_align = (u64)(uintptr_t)xqspi->rxbuf;
853
f09a433b
AKM
854 if (xqspi->bytes_to_receive < 8 ||
855 ((dma_align & GQSPI_DMA_UNALIGN) != 0x0)) {
dfe11a11
RW
856 /* Setting to IO mode */
857 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
858 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
859 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
860 xqspi->mode = GQSPI_MODE_IO;
861 xqspi->dma_rx_bytes = 0;
126bdb60 862 return 0;
dfe11a11
RW
863 }
864
865 rx_rem = xqspi->bytes_to_receive % 4;
866 rx_bytes = (xqspi->bytes_to_receive - rx_rem);
867
868 addr = dma_map_single(xqspi->dev, (void *)xqspi->rxbuf,
f09a433b 869 rx_bytes, DMA_FROM_DEVICE);
126bdb60 870 if (dma_mapping_error(xqspi->dev, addr)) {
dfe11a11 871 dev_err(xqspi->dev, "ERR:rxdma:memory not mapped\n");
126bdb60
QW
872 return -ENOMEM;
873 }
dfe11a11
RW
874
875 xqspi->dma_rx_bytes = rx_bytes;
876 xqspi->dma_addr = addr;
877 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_OFST,
f09a433b 878 (u32)(addr & 0xffffffff));
dfe11a11
RW
879 addr = ((addr >> 16) >> 16);
880 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_ADDR_MSB_OFST,
f09a433b 881 ((u32)addr) & 0xfff);
dfe11a11
RW
882
883 /* Enabling the DMA mode */
884 config_reg = zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST);
885 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
886 config_reg |= GQSPI_CFG_MODE_EN_DMA_MASK;
887 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST, config_reg);
888
889 /* Switch to DMA mode */
890 xqspi->mode = GQSPI_MODE_DMA;
891
892 /* Write the number of bytes to transfer */
893 zynqmp_gqspi_write(xqspi, GQSPI_QSPIDMA_DST_SIZE_OFST, rx_bytes);
126bdb60
QW
894
895 return 0;
dfe11a11
RW
896}
897
898/**
1c26372e
AKM
899 * zynqmp_qspi_write_op - This function sets up the GENFIFO entries,
900 * TX FIFO, and fills the TX FIFO with as many
901 * bytes as possible.
902 * @xqspi: Pointer to the GQSPI instance.
903 * @tx_nbits: Transfer buswidth.
904 * @genfifoentry: Variable in which GENFIFO mask is returned
905 * to calling function
dfe11a11 906 */
1c26372e
AKM
907static void zynqmp_qspi_write_op(struct zynqmp_qspi *xqspi, u8 tx_nbits,
908 u32 genfifoentry)
dfe11a11
RW
909{
910 u32 config_reg;
911
1c26372e
AKM
912 zynqmp_qspi_fillgenfifo(xqspi, tx_nbits, genfifoentry);
913 zynqmp_qspi_filltxfifo(xqspi, GQSPI_TXD_DEPTH);
914 if (xqspi->mode == GQSPI_MODE_DMA) {
915 config_reg = zynqmp_gqspi_read(xqspi,
916 GQSPI_CONFIG_OFST);
917 config_reg &= ~GQSPI_CFG_MODE_EN_MASK;
918 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
919 config_reg);
920 xqspi->mode = GQSPI_MODE_IO;
dfe11a11
RW
921 }
922}
923
924/**
1c26372e
AKM
925 * zynqmp_qspi_read_op - This function sets up the GENFIFO entries and
926 * RX DMA operation.
927 * @xqspi: xqspi is a pointer to the GQSPI instance.
928 * @rx_nbits: Receive buswidth.
929 * @genfifoentry: genfifoentry is pointer to the variable in which
930 * GENFIFO mask is returned to calling function
b3b95308
AKM
931 *
932 * Return: 0 on success; error value otherwise.
dfe11a11 933 */
126bdb60 934static int zynqmp_qspi_read_op(struct zynqmp_qspi *xqspi, u8 rx_nbits,
1c26372e 935 u32 genfifoentry)
dfe11a11 936{
126bdb60
QW
937 int ret;
938
939 ret = zynqmp_qspi_setuprxdma(xqspi);
940 if (ret)
941 return ret;
41d31093 942 zynqmp_qspi_fillgenfifo(xqspi, rx_nbits, genfifoentry);
126bdb60
QW
943
944 return 0;
dfe11a11
RW
945}
946
947/**
91af6eb0 948 * zynqmp_qspi_suspend - Suspend method for the QSPI driver
4b42b0b4 949 * @dev: Address of the platform_device structure
dfe11a11
RW
950 *
951 * This function stops the QSPI driver queue and disables the QSPI controller
952 *
953 * Return: Always 0
954 */
955static int __maybe_unused zynqmp_qspi_suspend(struct device *dev)
956{
799f923f
QW
957 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
958 struct spi_controller *ctlr = xqspi->ctlr;
959 int ret;
dfe11a11 960
799f923f
QW
961 ret = spi_controller_suspend(ctlr);
962 if (ret)
963 return ret;
dfe11a11 964
1c26372e 965 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
dfe11a11
RW
966
967 return 0;
968}
969
970/**
91af6eb0 971 * zynqmp_qspi_resume - Resume method for the QSPI driver
dfe11a11
RW
972 * @dev: Address of the platform_device structure
973 *
974 * The function starts the QSPI driver queue and initializes the QSPI
975 * controller
976 *
977 * Return: 0 on success; error value otherwise
978 */
979static int __maybe_unused zynqmp_qspi_resume(struct device *dev)
980{
799f923f
QW
981 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
982 struct spi_controller *ctlr = xqspi->ctlr;
983
984 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, GQSPI_EN_MASK);
dfe11a11 985
1c26372e 986 spi_controller_resume(ctlr);
dfe11a11
RW
987
988 return 0;
989}
990
9e3a0003
NSR
991/**
992 * zynqmp_runtime_suspend - Runtime suspend method for the SPI driver
993 * @dev: Address of the platform_device structure
994 *
995 * This function disables the clocks
996 *
997 * Return: Always 0
998 */
999static int __maybe_unused zynqmp_runtime_suspend(struct device *dev)
1000{
799f923f 1001 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
9e3a0003 1002
c6bdae08
QW
1003 clk_disable_unprepare(xqspi->refclk);
1004 clk_disable_unprepare(xqspi->pclk);
9e3a0003
NSR
1005
1006 return 0;
1007}
1008
1009/**
1010 * zynqmp_runtime_resume - Runtime resume method for the SPI driver
1011 * @dev: Address of the platform_device structure
1012 *
1013 * This function enables the clocks
1014 *
1015 * Return: 0 on success and error value on error
1016 */
1017static int __maybe_unused zynqmp_runtime_resume(struct device *dev)
1018{
799f923f 1019 struct zynqmp_qspi *xqspi = dev_get_drvdata(dev);
9e3a0003
NSR
1020 int ret;
1021
c6bdae08 1022 ret = clk_prepare_enable(xqspi->pclk);
9e3a0003
NSR
1023 if (ret) {
1024 dev_err(dev, "Cannot enable APB clock.\n");
1025 return ret;
1026 }
1027
c6bdae08 1028 ret = clk_prepare_enable(xqspi->refclk);
9e3a0003
NSR
1029 if (ret) {
1030 dev_err(dev, "Cannot enable device clock.\n");
c6bdae08 1031 clk_disable_unprepare(xqspi->pclk);
9e3a0003
NSR
1032 return ret;
1033 }
1034
1035 return 0;
1036}
1037
1c26372e
AKM
1038/**
1039 * zynqmp_qspi_exec_op() - Initiates the QSPI transfer
1040 * @mem: The SPI memory
1041 * @op: The memory operation to execute
1042 *
1043 * Executes a memory operation.
1044 *
1045 * This function first selects the chip and starts the memory operation.
1046 *
1047 * Return: 0 in case of success, a negative error code otherwise.
1048 */
1049static int zynqmp_qspi_exec_op(struct spi_mem *mem,
1050 const struct spi_mem_op *op)
1051{
1052 struct zynqmp_qspi *xqspi = spi_controller_get_devdata
1053 (mem->spi->master);
1054 int err = 0, i;
1c26372e 1055 u32 genfifoentry = 0;
a2c5bedb
QW
1056 u16 opcode = op->cmd.opcode;
1057 u64 opaddr;
1c26372e
AKM
1058
1059 dev_dbg(xqspi->dev, "cmd:%#x mode:%d.%d.%d.%d\n",
1060 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
1061 op->dummy.buswidth, op->data.buswidth);
1062
a0f65be6 1063 mutex_lock(&xqspi->op_lock);
1c26372e
AKM
1064 zynqmp_qspi_config_op(xqspi, mem->spi);
1065 zynqmp_qspi_chipselect(mem->spi, false);
1066 genfifoentry |= xqspi->genfifocs;
1067 genfifoentry |= xqspi->genfifobus;
1068
1069 if (op->cmd.opcode) {
1c26372e 1070 reinit_completion(&xqspi->data_completion);
a2c5bedb 1071 xqspi->txbuf = &opcode;
1c26372e
AKM
1072 xqspi->rxbuf = NULL;
1073 xqspi->bytes_to_transfer = op->cmd.nbytes;
1074 xqspi->bytes_to_receive = 0;
1075 zynqmp_qspi_write_op(xqspi, op->cmd.buswidth, genfifoentry);
1076 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1077 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1078 GQSPI_CFG_START_GEN_FIFO_MASK);
1079 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1080 GQSPI_IER_GENFIFOEMPTY_MASK |
1081 GQSPI_IER_TXNOT_FULL_MASK);
a16bff68 1082 if (!wait_for_completion_timeout
1c26372e
AKM
1083 (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1084 err = -ETIMEDOUT;
1c26372e
AKM
1085 goto return_err;
1086 }
1c26372e
AKM
1087 }
1088
1089 if (op->addr.nbytes) {
a2c5bedb 1090 xqspi->txbuf = &opaddr;
1c26372e
AKM
1091 for (i = 0; i < op->addr.nbytes; i++) {
1092 *(((u8 *)xqspi->txbuf) + i) = op->addr.val >>
1093 (8 * (op->addr.nbytes - i - 1));
1094 }
1095
1096 reinit_completion(&xqspi->data_completion);
1097 xqspi->rxbuf = NULL;
1098 xqspi->bytes_to_transfer = op->addr.nbytes;
1099 xqspi->bytes_to_receive = 0;
1100 zynqmp_qspi_write_op(xqspi, op->addr.buswidth, genfifoentry);
1101 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1102 zynqmp_gqspi_read(xqspi,
1103 GQSPI_CONFIG_OFST) |
1104 GQSPI_CFG_START_GEN_FIFO_MASK);
1105 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1106 GQSPI_IER_TXEMPTY_MASK |
1107 GQSPI_IER_GENFIFOEMPTY_MASK |
1108 GQSPI_IER_TXNOT_FULL_MASK);
a16bff68 1109 if (!wait_for_completion_timeout
1c26372e
AKM
1110 (&xqspi->data_completion, msecs_to_jiffies(1000))) {
1111 err = -ETIMEDOUT;
1112 goto return_err;
1113 }
1114 }
1115
1116 if (op->dummy.nbytes) {
8ad07d79 1117 xqspi->txbuf = NULL;
1c26372e 1118 xqspi->rxbuf = NULL;
8ad07d79
QW
1119 /*
1120 * xqspi->bytes_to_transfer here represents the dummy circles
1121 * which need to be sent.
1122 */
1123 xqspi->bytes_to_transfer = op->dummy.nbytes * 8 / op->dummy.buswidth;
1c26372e 1124 xqspi->bytes_to_receive = 0;
8ad07d79
QW
1125 /*
1126 * Using op->data.buswidth instead of op->dummy.buswidth here because
1127 * we need to use it to configure the correct SPI mode.
1128 */
1129 zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1c26372e
AKM
1130 genfifoentry);
1131 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1132 zynqmp_gqspi_read(xqspi, GQSPI_CONFIG_OFST) |
1133 GQSPI_CFG_START_GEN_FIFO_MASK);
1c26372e
AKM
1134 }
1135
1136 if (op->data.nbytes) {
1137 reinit_completion(&xqspi->data_completion);
1138 if (op->data.dir == SPI_MEM_DATA_OUT) {
1139 xqspi->txbuf = (u8 *)op->data.buf.out;
1140 xqspi->rxbuf = NULL;
1141 xqspi->bytes_to_transfer = op->data.nbytes;
1142 xqspi->bytes_to_receive = 0;
1143 zynqmp_qspi_write_op(xqspi, op->data.buswidth,
1144 genfifoentry);
1145 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1146 zynqmp_gqspi_read
1147 (xqspi, GQSPI_CONFIG_OFST) |
1148 GQSPI_CFG_START_GEN_FIFO_MASK);
1149 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1150 GQSPI_IER_TXEMPTY_MASK |
1151 GQSPI_IER_GENFIFOEMPTY_MASK |
1152 GQSPI_IER_TXNOT_FULL_MASK);
1153 } else {
1154 xqspi->txbuf = NULL;
1155 xqspi->rxbuf = (u8 *)op->data.buf.in;
1156 xqspi->bytes_to_receive = op->data.nbytes;
1157 xqspi->bytes_to_transfer = 0;
126bdb60 1158 err = zynqmp_qspi_read_op(xqspi, op->data.buswidth,
1c26372e 1159 genfifoentry);
126bdb60
QW
1160 if (err)
1161 goto return_err;
1162
1c26372e
AKM
1163 zynqmp_gqspi_write(xqspi, GQSPI_CONFIG_OFST,
1164 zynqmp_gqspi_read
1165 (xqspi, GQSPI_CONFIG_OFST) |
1166 GQSPI_CFG_START_GEN_FIFO_MASK);
1167 if (xqspi->mode == GQSPI_MODE_DMA) {
1168 zynqmp_gqspi_write
1169 (xqspi, GQSPI_QSPIDMA_DST_I_EN_OFST,
1170 GQSPI_QSPIDMA_DST_I_EN_DONE_MASK);
1171 } else {
1172 zynqmp_gqspi_write(xqspi, GQSPI_IER_OFST,
1173 GQSPI_IER_GENFIFOEMPTY_MASK |
1174 GQSPI_IER_RXNEMPTY_MASK |
1175 GQSPI_IER_RXEMPTY_MASK);
1176 }
1177 }
a16bff68 1178 if (!wait_for_completion_timeout
1c26372e
AKM
1179 (&xqspi->data_completion, msecs_to_jiffies(1000)))
1180 err = -ETIMEDOUT;
1181 }
1182
1183return_err:
1184
1185 zynqmp_qspi_chipselect(mem->spi, true);
a0f65be6 1186 mutex_unlock(&xqspi->op_lock);
1c26372e
AKM
1187
1188 return err;
1189}
1190
9e3a0003
NSR
1191static const struct dev_pm_ops zynqmp_qspi_dev_pm_ops = {
1192 SET_RUNTIME_PM_OPS(zynqmp_runtime_suspend,
1193 zynqmp_runtime_resume, NULL)
1194 SET_SYSTEM_SLEEP_PM_OPS(zynqmp_qspi_suspend, zynqmp_qspi_resume)
1195};
dfe11a11 1196
29f4d95b
AKM
1197static const struct qspi_platform_data versal_qspi_def = {
1198 .quirks = QSPI_QUIRK_HAS_TAPDELAY,
1199};
1200
1201static const struct of_device_id zynqmp_qspi_of_match[] = {
1202 { .compatible = "xlnx,zynqmp-qspi-1.0"},
1203 { .compatible = "xlnx,versal-qspi-1.0", .data = &versal_qspi_def },
1204 { /* End of table */ }
1205};
1206
1c26372e
AKM
1207static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = {
1208 .exec_op = zynqmp_qspi_exec_op,
1209};
1210
dfe11a11 1211/**
91af6eb0 1212 * zynqmp_qspi_probe - Probe method for the QSPI driver
dfe11a11
RW
1213 * @pdev: Pointer to the platform_device structure
1214 *
1215 * This function initializes the driver data structures and the hardware.
1216 *
1217 * Return: 0 on success; error value otherwise
1218 */
1219static int zynqmp_qspi_probe(struct platform_device *pdev)
1220{
1221 int ret = 0;
1c26372e 1222 struct spi_controller *ctlr;
dfe11a11 1223 struct zynqmp_qspi *xqspi;
dfe11a11 1224 struct device *dev = &pdev->dev;
1c26372e 1225 struct device_node *np = dev->of_node;
dd9c232d 1226 u32 num_cs;
29f4d95b 1227 const struct qspi_platform_data *p_data;
dfe11a11 1228
1c26372e
AKM
1229 ctlr = spi_alloc_master(&pdev->dev, sizeof(*xqspi));
1230 if (!ctlr)
dfe11a11
RW
1231 return -ENOMEM;
1232
1c26372e
AKM
1233 xqspi = spi_controller_get_devdata(ctlr);
1234 xqspi->dev = dev;
799f923f 1235 xqspi->ctlr = ctlr;
1c26372e 1236 platform_set_drvdata(pdev, xqspi);
dfe11a11 1237
29f4d95b
AKM
1238 p_data = of_device_get_match_data(&pdev->dev);
1239 if (p_data && (p_data->quirks & QSPI_QUIRK_HAS_TAPDELAY))
1240 xqspi->has_tapdelay = true;
1241
214d1edb 1242 xqspi->regs = devm_platform_ioremap_resource(pdev, 0);
dfe11a11
RW
1243 if (IS_ERR(xqspi->regs)) {
1244 ret = PTR_ERR(xqspi->regs);
1245 goto remove_master;
1246 }
1247
dfe11a11
RW
1248 xqspi->pclk = devm_clk_get(&pdev->dev, "pclk");
1249 if (IS_ERR(xqspi->pclk)) {
1250 dev_err(dev, "pclk clock not found.\n");
1251 ret = PTR_ERR(xqspi->pclk);
1252 goto remove_master;
1253 }
1254
dfe11a11
RW
1255 xqspi->refclk = devm_clk_get(&pdev->dev, "ref_clk");
1256 if (IS_ERR(xqspi->refclk)) {
1257 dev_err(dev, "ref_clk clock not found.\n");
1258 ret = PTR_ERR(xqspi->refclk);
c6bdae08 1259 goto remove_master;
dfe11a11
RW
1260 }
1261
1c26372e
AKM
1262 ret = clk_prepare_enable(xqspi->pclk);
1263 if (ret) {
1264 dev_err(dev, "Unable to enable APB clock.\n");
1265 goto remove_master;
1266 }
1267
dfe11a11
RW
1268 ret = clk_prepare_enable(xqspi->refclk);
1269 if (ret) {
1270 dev_err(dev, "Unable to enable device clock.\n");
1271 goto clk_dis_pclk;
1272 }
1273
c6bdae08
QW
1274 init_completion(&xqspi->data_completion);
1275
a0f65be6
QW
1276 mutex_init(&xqspi->op_lock);
1277
9e3a0003
NSR
1278 pm_runtime_use_autosuspend(&pdev->dev);
1279 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1280 pm_runtime_set_active(&pdev->dev);
1281 pm_runtime_enable(&pdev->dev);
58eaa7b2
DL
1282
1283 ret = pm_runtime_get_sync(&pdev->dev);
1284 if (ret < 0) {
1285 dev_err(&pdev->dev, "Failed to pm_runtime_get_sync: %d\n", ret);
1286 goto clk_dis_all;
1287 }
1288
22742b8b
AKM
1289 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD |
1290 SPI_TX_DUAL | SPI_TX_QUAD;
21764a49
AKM
1291 ctlr->max_speed_hz = clk_get_rate(xqspi->refclk) / 2;
1292 xqspi->speed_hz = ctlr->max_speed_hz;
22742b8b 1293
dfe11a11
RW
1294 /* QSPI controller initializations */
1295 zynqmp_qspi_init_hw(xqspi);
1296
1297 xqspi->irq = platform_get_irq(pdev, 0);
1298 if (xqspi->irq <= 0) {
1299 ret = -ENXIO;
dfe11a11
RW
1300 goto clk_dis_all;
1301 }
1302 ret = devm_request_irq(&pdev->dev, xqspi->irq, zynqmp_qspi_irq,
1c26372e 1303 0, pdev->name, xqspi);
dfe11a11
RW
1304 if (ret != 0) {
1305 ret = -ENXIO;
1306 dev_err(dev, "request_irq failed\n");
1307 goto clk_dis_all;
1308 }
1309
13262fc2
JJ
1310 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
1311 if (ret)
1312 goto clk_dis_all;
1313
dd9c232d
AKM
1314 ret = of_property_read_u32(np, "num-cs", &num_cs);
1315 if (ret < 0) {
1316 ctlr->num_chipselect = GQSPI_DEFAULT_NUM_CS;
1317 } else if (num_cs > GQSPI_MAX_NUM_CS) {
1318 ret = -EINVAL;
1319 dev_err(&pdev->dev, "only %d chip selects are available\n",
1320 GQSPI_MAX_NUM_CS);
1321 goto clk_dis_all;
1322 } else {
1323 ctlr->num_chipselect = num_cs;
1324 }
1325
1c26372e 1326 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1c26372e
AKM
1327 ctlr->mem_ops = &zynqmp_qspi_mem_ops;
1328 ctlr->setup = zynqmp_qspi_setup_op;
1c26372e 1329 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1c26372e 1330 ctlr->dev.of_node = np;
58eaa7b2 1331 ctlr->auto_runtime_pm = true;
dfe11a11 1332
1c26372e
AKM
1333 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1334 if (ret) {
1335 dev_err(&pdev->dev, "spi_register_controller failed\n");
dfe11a11 1336 goto clk_dis_all;
1c26372e 1337 }
dfe11a11 1338
58eaa7b2
DL
1339 pm_runtime_mark_last_busy(&pdev->dev);
1340 pm_runtime_put_autosuspend(&pdev->dev);
1341
dfe11a11
RW
1342 return 0;
1343
1344clk_dis_all:
58eaa7b2 1345 pm_runtime_put_sync(&pdev->dev);
9e3a0003
NSR
1346 pm_runtime_set_suspended(&pdev->dev);
1347 pm_runtime_disable(&pdev->dev);
dfe11a11
RW
1348 clk_disable_unprepare(xqspi->refclk);
1349clk_dis_pclk:
1350 clk_disable_unprepare(xqspi->pclk);
1351remove_master:
1c26372e 1352 spi_controller_put(ctlr);
dfe11a11
RW
1353
1354 return ret;
1355}
1356
1357/**
91af6eb0 1358 * zynqmp_qspi_remove - Remove method for the QSPI driver
dfe11a11
RW
1359 * @pdev: Pointer to the platform_device structure
1360 *
1361 * This function is called if a device is physically removed from the system or
1362 * if the driver module is being unloaded. It frees all resources allocated to
1363 * the device.
1364 *
1365 * Return: 0 Always
1366 */
1367static int zynqmp_qspi_remove(struct platform_device *pdev)
1368{
1c26372e 1369 struct zynqmp_qspi *xqspi = platform_get_drvdata(pdev);
dfe11a11
RW
1370
1371 zynqmp_gqspi_write(xqspi, GQSPI_EN_OFST, 0x0);
1372 clk_disable_unprepare(xqspi->refclk);
1373 clk_disable_unprepare(xqspi->pclk);
9e3a0003
NSR
1374 pm_runtime_set_suspended(&pdev->dev);
1375 pm_runtime_disable(&pdev->dev);
dfe11a11 1376
dfe11a11
RW
1377 return 0;
1378}
1379
dfe11a11
RW
1380MODULE_DEVICE_TABLE(of, zynqmp_qspi_of_match);
1381
1382static struct platform_driver zynqmp_qspi_driver = {
1383 .probe = zynqmp_qspi_probe,
1384 .remove = zynqmp_qspi_remove,
1385 .driver = {
1386 .name = "zynqmp-qspi",
1387 .of_match_table = zynqmp_qspi_of_match,
1388 .pm = &zynqmp_qspi_dev_pm_ops,
1389 },
1390};
1391
1392module_platform_driver(zynqmp_qspi_driver);
1393
1394MODULE_AUTHOR("Xilinx, Inc.");
1395MODULE_DESCRIPTION("Xilinx Zynqmp QSPI driver");
1396MODULE_LICENSE("GPL");