Merge tag 'tomoyo-pr-20230903' of git://git.osdn.net/gitroot/tomoyo/tomoyo-test1
[linux-2.6-block.git] / drivers / spi / spi-sun6i.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
3558fe90
MR
2/*
3 * Copyright (C) 2012 - 2014 Allwinner Tech
4 * Pan Nan <pannan@allwinnertech.com>
5 *
6 * Copyright (C) 2014 Maxime Ripard
7 * Maxime Ripard <maxime.ripard@free-electrons.com>
3558fe90
MR
8 */
9
9a3ef9df 10#include <linux/bitfield.h>
3558fe90
MR
11#include <linux/clk.h>
12#include <linux/delay.h>
13#include <linux/device.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/module.h>
749396cb 17#include <linux/of.h>
3558fe90
MR
18#include <linux/platform_device.h>
19#include <linux/pm_runtime.h>
20#include <linux/reset.h>
345980a3 21#include <linux/dmaengine.h>
3558fe90
MR
22
23#include <linux/spi/spi.h>
24
ae0f18be
AK
25#define SUN6I_AUTOSUSPEND_TIMEOUT 2000
26
3558fe90 27#define SUN6I_FIFO_DEPTH 128
10565dfd 28#define SUN8I_FIFO_DEPTH 64
3558fe90
MR
29
30#define SUN6I_GBL_CTL_REG 0x04
31#define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
32#define SUN6I_GBL_CTL_MASTER BIT(1)
33#define SUN6I_GBL_CTL_TP BIT(7)
34#define SUN6I_GBL_CTL_RST BIT(31)
35
36#define SUN6I_TFR_CTL_REG 0x08
37#define SUN6I_TFR_CTL_CPHA BIT(0)
38#define SUN6I_TFR_CTL_CPOL BIT(1)
39#define SUN6I_TFR_CTL_SPOL BIT(2)
d31ad46f
AL
40#define SUN6I_TFR_CTL_CS_MASK 0x30
41#define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
3558fe90
MR
42#define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
43#define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
44#define SUN6I_TFR_CTL_DHB BIT(8)
8e886ac8 45#define SUN6I_TFR_CTL_SDC BIT(11)
3558fe90 46#define SUN6I_TFR_CTL_FBS BIT(12)
8e886ac8 47#define SUN6I_TFR_CTL_SDM BIT(13)
3558fe90
MR
48#define SUN6I_TFR_CTL_XCH BIT(31)
49
50#define SUN6I_INT_CTL_REG 0x10
913f536c
IZ
51#define SUN6I_INT_CTL_RF_RDY BIT(0)
52#define SUN6I_INT_CTL_TF_ERQ BIT(4)
3558fe90
MR
53#define SUN6I_INT_CTL_RF_OVF BIT(8)
54#define SUN6I_INT_CTL_TC BIT(12)
55
56#define SUN6I_INT_STA_REG 0x14
57
58#define SUN6I_FIFO_CTL_REG 0x18
913f536c 59#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
345980a3 60#define SUN6I_FIFO_CTL_RF_DRQ_EN BIT(8)
913f536c 61#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
3558fe90 62#define SUN6I_FIFO_CTL_RF_RST BIT(15)
913f536c
IZ
63#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
64#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
345980a3 65#define SUN6I_FIFO_CTL_TF_DRQ_EN BIT(24)
3558fe90
MR
66#define SUN6I_FIFO_CTL_TF_RST BIT(31)
67
68#define SUN6I_FIFO_STA_REG 0x1c
5197da03 69#define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0)
9a3ef9df 70#define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16)
3558fe90
MR
71
72#define SUN6I_CLK_CTL_REG 0x24
73#define SUN6I_CLK_CTL_CDR2_MASK 0xff
74#define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
75#define SUN6I_CLK_CTL_CDR1_MASK 0xf
76#define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
77#define SUN6I_CLK_CTL_DRS BIT(12)
78
913f536c
IZ
79#define SUN6I_MAX_XFER_SIZE 0xffffff
80
3558fe90 81#define SUN6I_BURST_CNT_REG 0x30
3558fe90
MR
82
83#define SUN6I_XMIT_CNT_REG 0x34
3558fe90
MR
84
85#define SUN6I_BURST_CTL_CNT_REG 0x38
0605d9fb
MK
86#define SUN6I_BURST_CTL_CNT_STC_MASK GENMASK(23, 0)
87#define SUN6I_BURST_CTL_CNT_DRM BIT(28)
88#define SUN6I_BURST_CTL_CNT_QUAD_EN BIT(29)
3558fe90
MR
89
90#define SUN6I_TXDATA_REG 0x200
91#define SUN6I_RXDATA_REG 0x300
92
b00c0d89
IZ
93struct sun6i_spi_cfg {
94 unsigned long fifo_depth;
8e886ac8 95 bool has_clk_ctl;
0605d9fb 96 u32 mode_bits;
b00c0d89
IZ
97};
98
3558fe90
MR
99struct sun6i_spi {
100 struct spi_master *master;
101 void __iomem *base_addr;
345980a3
AK
102 dma_addr_t dma_addr_rx;
103 dma_addr_t dma_addr_tx;
3558fe90
MR
104 struct clk *hclk;
105 struct clk *mclk;
106 struct reset_control *rstc;
107
108 struct completion done;
109
110 const u8 *tx_buf;
111 u8 *rx_buf;
112 int len;
b00c0d89 113 const struct sun6i_spi_cfg *cfg;
3558fe90
MR
114};
115
116static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
117{
118 return readl(sspi->base_addr + reg);
119}
120
121static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
122{
123 writel(value, sspi->base_addr + reg);
124}
125
5197da03
MKB
126static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
127{
128 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
129
130 return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
131}
132
913f536c
IZ
133static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
134{
135 u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
136
9a3ef9df 137 return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
913f536c
IZ
138}
139
913f536c
IZ
140static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
141{
142 u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
143
144 reg &= ~mask;
145 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
146}
147
92a52ee8 148static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
3558fe90 149{
92a52ee8 150 u32 len;
3558fe90
MR
151 u8 byte;
152
153 /* See how much data is available */
92a52ee8 154 len = sun6i_spi_get_rx_fifo_count(sspi);
3558fe90
MR
155
156 while (len--) {
157 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
158 if (sspi->rx_buf)
159 *sspi->rx_buf++ = byte;
160 }
161}
162
e4e8ca3f 163static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
3558fe90 164{
913f536c 165 u32 cnt;
e4e8ca3f 166 int len;
3558fe90
MR
167 u8 byte;
168
913f536c 169 /* See how much data we can fit */
b00c0d89 170 cnt = sspi->cfg->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
913f536c 171
e4e8ca3f 172 len = min((int)cnt, sspi->len);
3558fe90
MR
173
174 while (len--) {
175 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
176 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
177 sspi->len--;
178 }
179}
180
181static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
182{
183 struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
184 u32 reg;
185
186 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
187 reg &= ~SUN6I_TFR_CTL_CS_MASK;
9e264f3f 188 reg |= SUN6I_TFR_CTL_CS(spi_get_chipselect(spi, 0));
3558fe90
MR
189
190 if (enable)
191 reg |= SUN6I_TFR_CTL_CS_LEVEL;
192 else
193 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
194
195 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
196}
197
794912cf
MS
198static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
199{
3288d5cb 200 return SUN6I_MAX_XFER_SIZE - 1;
794912cf 201}
3558fe90 202
345980a3
AK
203static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
204 struct spi_transfer *tfr)
205{
206 struct dma_async_tx_descriptor *rxdesc, *txdesc;
207 struct spi_master *master = sspi->master;
208
209 rxdesc = NULL;
210 if (tfr->rx_buf) {
211 struct dma_slave_config rxconf = {
212 .direction = DMA_DEV_TO_MEM,
213 .src_addr = sspi->dma_addr_rx,
214 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
215 .src_maxburst = 8,
216 };
217
218 dmaengine_slave_config(master->dma_rx, &rxconf);
219
220 rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
221 tfr->rx_sg.sgl,
222 tfr->rx_sg.nents,
223 DMA_DEV_TO_MEM,
224 DMA_PREP_INTERRUPT);
225 if (!rxdesc)
226 return -EINVAL;
227 }
228
229 txdesc = NULL;
230 if (tfr->tx_buf) {
231 struct dma_slave_config txconf = {
232 .direction = DMA_MEM_TO_DEV,
233 .dst_addr = sspi->dma_addr_tx,
234 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
235 .dst_maxburst = 8,
236 };
237
238 dmaengine_slave_config(master->dma_tx, &txconf);
239
240 txdesc = dmaengine_prep_slave_sg(master->dma_tx,
241 tfr->tx_sg.sgl,
242 tfr->tx_sg.nents,
243 DMA_MEM_TO_DEV,
244 DMA_PREP_INTERRUPT);
245 if (!txdesc) {
246 if (rxdesc)
247 dmaengine_terminate_sync(master->dma_rx);
248 return -EINVAL;
249 }
250 }
251
252 if (tfr->rx_buf) {
253 dmaengine_submit(rxdesc);
254 dma_async_issue_pending(master->dma_rx);
255 }
256
257 if (tfr->tx_buf) {
258 dmaengine_submit(txdesc);
259 dma_async_issue_pending(master->dma_tx);
260 }
261
262 return 0;
263}
264
3558fe90
MR
265static int sun6i_spi_transfer_one(struct spi_master *master,
266 struct spi_device *spi,
267 struct spi_transfer *tfr)
268{
269 struct sun6i_spi *sspi = spi_master_get_devdata(master);
8e886ac8 270 unsigned int div, div_cdr1, div_cdr2, timeout;
719bd654 271 unsigned int start, end, tx_time;
913f536c 272 unsigned int trig_level;
0605d9fb 273 unsigned int tx_len = 0, rx_len = 0, nbits = 0;
345980a3 274 bool use_dma;
3558fe90
MR
275 int ret = 0;
276 u32 reg;
277
913f536c 278 if (tfr->len > SUN6I_MAX_XFER_SIZE)
3558fe90
MR
279 return -EINVAL;
280
281 reinit_completion(&sspi->done);
282 sspi->tx_buf = tfr->tx_buf;
283 sspi->rx_buf = tfr->rx_buf;
284 sspi->len = tfr->len;
345980a3 285 use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
3558fe90
MR
286
287 /* Clear pending interrupts */
288 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
289
290 /* Reset FIFO */
291 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
292 SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
293
345980a3
AK
294 reg = 0;
295
296 if (!use_dma) {
297 /*
298 * Setup FIFO interrupt trigger level
299 * Here we choose 3/4 of the full fifo depth, as it's
300 * the hardcoded value used in old generation of Allwinner
301 * SPI controller. (See spi-sun4i.c)
302 */
b00c0d89 303 trig_level = sspi->cfg->fifo_depth / 4 * 3;
345980a3
AK
304 } else {
305 /*
306 * Setup FIFO DMA request trigger level
307 * We choose 1/2 of the full fifo depth, that value will
308 * be used as DMA burst length.
309 */
b00c0d89 310 trig_level = sspi->cfg->fifo_depth / 2;
345980a3
AK
311
312 if (tfr->tx_buf)
313 reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
314 if (tfr->rx_buf)
315 reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
316 }
317
318 reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
319 (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
320
321 sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
913f536c 322
3558fe90
MR
323 /*
324 * Setup the transfer control register: Chip Select,
325 * polarities, etc.
326 */
327 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
328
329 if (spi->mode & SPI_CPOL)
330 reg |= SUN6I_TFR_CTL_CPOL;
331 else
332 reg &= ~SUN6I_TFR_CTL_CPOL;
333
334 if (spi->mode & SPI_CPHA)
335 reg |= SUN6I_TFR_CTL_CPHA;
336 else
337 reg &= ~SUN6I_TFR_CTL_CPHA;
338
339 if (spi->mode & SPI_LSB_FIRST)
340 reg |= SUN6I_TFR_CTL_FBS;
341 else
342 reg &= ~SUN6I_TFR_CTL_FBS;
343
344 /*
345 * If it's a TX only transfer, we don't want to fill the RX
346 * FIFO with bogus data
347 */
7716fa80 348 if (sspi->rx_buf) {
3558fe90 349 reg &= ~SUN6I_TFR_CTL_DHB;
7716fa80
MKB
350 rx_len = tfr->len;
351 } else {
3558fe90 352 reg |= SUN6I_TFR_CTL_DHB;
7716fa80 353 }
3558fe90
MR
354
355 /* We want to control the chip select manually */
356 reg |= SUN6I_TFR_CTL_CS_MANUAL;
357
358 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
359
8e886ac8
MK
360 if (sspi->cfg->has_clk_ctl) {
361 unsigned int mclk_rate = clk_get_rate(sspi->mclk);
3558fe90 362
8e886ac8
MK
363 /* Ensure that we have a parent clock fast enough */
364 if (mclk_rate < (2 * tfr->speed_hz)) {
365 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
366 mclk_rate = clk_get_rate(sspi->mclk);
367 }
368
369 /*
370 * Setup clock divider.
371 *
372 * We have two choices there. Either we can use the clock
373 * divide rate 1, which is calculated thanks to this formula:
374 * SPI_CLK = MOD_CLK / (2 ^ cdr)
375 * Or we can use CDR2, which is calculated with the formula:
376 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
377 * Wether we use the former or the latter is set through the
378 * DRS bit.
379 *
380 * First try CDR2, and if we can't reach the expected
381 * frequency, fall back to CDR1.
382 */
383 div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
384 div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
385 if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
386 reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
387 tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
388 } else {
389 div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
390 reg = SUN6I_CLK_CTL_CDR1(div);
391 tfr->effective_speed_hz = mclk_rate / (1 << div);
392 }
393
394 sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
3558fe90 395 } else {
8e886ac8
MK
396 clk_set_rate(sspi->mclk, tfr->speed_hz);
397 tfr->effective_speed_hz = clk_get_rate(sspi->mclk);
398
399 /*
400 * Configure work mode.
401 *
402 * There are three work modes depending on the controller clock
403 * frequency:
404 * - normal sample mode : CLK <= 24MHz SDM=1 SDC=0
405 * - delay half-cycle sample mode : CLK <= 40MHz SDM=0 SDC=0
406 * - delay one-cycle sample mode : CLK >= 80MHz SDM=0 SDC=1
407 */
408 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
409 reg &= ~(SUN6I_TFR_CTL_SDM | SUN6I_TFR_CTL_SDC);
410
411 if (tfr->effective_speed_hz <= 24000000)
412 reg |= SUN6I_TFR_CTL_SDM;
413 else if (tfr->effective_speed_hz >= 80000000)
414 reg |= SUN6I_TFR_CTL_SDC;
415
416 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
3558fe90
MR
417 }
418
0d7993b2
MV
419 /* Finally enable the bus - doing so before might raise SCK to HIGH */
420 reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
421 reg |= SUN6I_GBL_CTL_BUS_ENABLE;
422 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
3558fe90
MR
423
424 /* Setup the transfer now... */
0605d9fb 425 if (sspi->tx_buf) {
3558fe90 426 tx_len = tfr->len;
0605d9fb
MK
427 nbits = tfr->tx_nbits;
428 } else if (tfr->rx_buf) {
429 nbits = tfr->rx_nbits;
430 }
431
432 switch (nbits) {
433 case SPI_NBITS_DUAL:
434 reg = SUN6I_BURST_CTL_CNT_DRM;
435 break;
436 case SPI_NBITS_QUAD:
437 reg = SUN6I_BURST_CTL_CNT_QUAD_EN;
438 break;
439 case SPI_NBITS_SINGLE:
440 default:
441 reg = FIELD_PREP(SUN6I_BURST_CTL_CNT_STC_MASK, tx_len);
442 }
3558fe90
MR
443
444 /* Setup the counters */
0605d9fb 445 sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, reg);
2130be57
MKB
446 sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
447 sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
3558fe90 448
345980a3
AK
449 if (!use_dma) {
450 /* Fill the TX FIFO */
451 sun6i_spi_fill_fifo(sspi);
452 } else {
453 ret = sun6i_spi_prepare_dma(sspi, tfr);
454 if (ret) {
455 dev_warn(&master->dev,
456 "%s: prepare DMA failed, ret=%d",
457 dev_name(&spi->dev), ret);
458 return ret;
459 }
460 }
3558fe90
MR
461
462 /* Enable the interrupts */
7716fa80 463 reg = SUN6I_INT_CTL_TC;
4e7390e9 464
345980a3 465 if (!use_dma) {
b00c0d89 466 if (rx_len > sspi->cfg->fifo_depth)
345980a3 467 reg |= SUN6I_INT_CTL_RF_RDY;
b00c0d89 468 if (tx_len > sspi->cfg->fifo_depth)
345980a3
AK
469 reg |= SUN6I_INT_CTL_TF_ERQ;
470 }
4e7390e9
MKB
471
472 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
3558fe90
MR
473
474 /* Start the transfer */
475 reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
476 sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
477
6eef8955 478 tx_time = spi_controller_xfer_timeout(master, tfr);
719bd654 479 start = jiffies;
3558fe90 480 timeout = wait_for_completion_timeout(&sspi->done,
719bd654
MS
481 msecs_to_jiffies(tx_time));
482 end = jiffies;
3558fe90 483 if (!timeout) {
719bd654
MS
484 dev_warn(&master->dev,
485 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
486 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
487 jiffies_to_msecs(end - start), tx_time);
3558fe90 488 ret = -ETIMEDOUT;
3558fe90
MR
489 }
490
3558fe90
MR
491 sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
492
345980a3
AK
493 if (ret && use_dma) {
494 dmaengine_terminate_sync(master->dma_rx);
495 dmaengine_terminate_sync(master->dma_tx);
496 }
497
3558fe90
MR
498 return ret;
499}
500
501static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
502{
503 struct sun6i_spi *sspi = dev_id;
504 u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
505
506 /* Transfer complete */
507 if (status & SUN6I_INT_CTL_TC) {
508 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
92a52ee8 509 sun6i_spi_drain_fifo(sspi);
3558fe90
MR
510 complete(&sspi->done);
511 return IRQ_HANDLED;
512 }
513
913f536c
IZ
514 /* Receive FIFO 3/4 full */
515 if (status & SUN6I_INT_CTL_RF_RDY) {
92a52ee8 516 sun6i_spi_drain_fifo(sspi);
913f536c
IZ
517 /* Only clear the interrupt _after_ draining the FIFO */
518 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
519 return IRQ_HANDLED;
520 }
521
522 /* Transmit FIFO 3/4 empty */
523 if (status & SUN6I_INT_CTL_TF_ERQ) {
e4e8ca3f 524 sun6i_spi_fill_fifo(sspi);
913f536c
IZ
525
526 if (!sspi->len)
527 /* nothing left to transmit */
528 sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
529
530 /* Only clear the interrupt _after_ re-seeding the FIFO */
531 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
532
533 return IRQ_HANDLED;
534 }
535
3558fe90
MR
536 return IRQ_NONE;
537}
538
539static int sun6i_spi_runtime_resume(struct device *dev)
540{
541 struct spi_master *master = dev_get_drvdata(dev);
542 struct sun6i_spi *sspi = spi_master_get_devdata(master);
543 int ret;
544
545 ret = clk_prepare_enable(sspi->hclk);
546 if (ret) {
547 dev_err(dev, "Couldn't enable AHB clock\n");
548 goto out;
549 }
550
551 ret = clk_prepare_enable(sspi->mclk);
552 if (ret) {
553 dev_err(dev, "Couldn't enable module clock\n");
554 goto err;
555 }
556
557 ret = reset_control_deassert(sspi->rstc);
558 if (ret) {
559 dev_err(dev, "Couldn't deassert the device from reset\n");
560 goto err2;
561 }
562
563 sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
0d7993b2 564 SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
3558fe90
MR
565
566 return 0;
567
568err2:
569 clk_disable_unprepare(sspi->mclk);
570err:
571 clk_disable_unprepare(sspi->hclk);
572out:
573 return ret;
574}
575
576static int sun6i_spi_runtime_suspend(struct device *dev)
577{
578 struct spi_master *master = dev_get_drvdata(dev);
579 struct sun6i_spi *sspi = spi_master_get_devdata(master);
580
581 reset_control_assert(sspi->rstc);
582 clk_disable_unprepare(sspi->mclk);
583 clk_disable_unprepare(sspi->hclk);
584
585 return 0;
586}
587
345980a3
AK
588static bool sun6i_spi_can_dma(struct spi_master *master,
589 struct spi_device *spi,
590 struct spi_transfer *xfer)
591{
592 struct sun6i_spi *sspi = spi_master_get_devdata(master);
593
594 /*
595 * If the number of spi words to transfer is less or equal than
596 * the fifo length we can just fill the fifo and wait for a single
597 * irq, so don't bother setting up dma
598 */
b00c0d89 599 return xfer->len > sspi->cfg->fifo_depth;
345980a3
AK
600}
601
3558fe90
MR
602static int sun6i_spi_probe(struct platform_device *pdev)
603{
604 struct spi_master *master;
605 struct sun6i_spi *sspi;
345980a3 606 struct resource *mem;
3558fe90
MR
607 int ret = 0, irq;
608
609 master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
610 if (!master) {
611 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
612 return -ENOMEM;
613 }
614
615 platform_set_drvdata(pdev, master);
616 sspi = spi_master_get_devdata(master);
617
345980a3 618 sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
3558fe90
MR
619 if (IS_ERR(sspi->base_addr)) {
620 ret = PTR_ERR(sspi->base_addr);
621 goto err_free_master;
622 }
623
624 irq = platform_get_irq(pdev, 0);
625 if (irq < 0) {
3558fe90
MR
626 ret = -ENXIO;
627 goto err_free_master;
628 }
629
630 ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
631 0, "sun6i-spi", sspi);
632 if (ret) {
633 dev_err(&pdev->dev, "Cannot request IRQ\n");
634 goto err_free_master;
635 }
636
637 sspi->master = master;
b00c0d89 638 sspi->cfg = of_device_get_match_data(&pdev->dev);
10565dfd 639
0b06d8cf
MS
640 master->max_speed_hz = 100 * 1000 * 1000;
641 master->min_speed_hz = 3 * 1000;
74750e06 642 master->use_gpio_descriptors = true;
3558fe90
MR
643 master->set_cs = sun6i_spi_set_cs;
644 master->transfer_one = sun6i_spi_transfer_one;
645 master->num_chipselect = 4;
0605d9fb
MK
646 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST |
647 sspi->cfg->mode_bits;
743a46b8 648 master->bits_per_word_mask = SPI_BPW_MASK(8);
3558fe90
MR
649 master->dev.of_node = pdev->dev.of_node;
650 master->auto_runtime_pm = true;
794912cf 651 master->max_transfer_size = sun6i_spi_max_transfer_size;
3558fe90
MR
652
653 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
654 if (IS_ERR(sspi->hclk)) {
655 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
656 ret = PTR_ERR(sspi->hclk);
657 goto err_free_master;
658 }
659
660 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
661 if (IS_ERR(sspi->mclk)) {
662 dev_err(&pdev->dev, "Unable to acquire module clock\n");
663 ret = PTR_ERR(sspi->mclk);
664 goto err_free_master;
665 }
666
667 init_completion(&sspi->done);
668
36bc7491 669 sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
3558fe90
MR
670 if (IS_ERR(sspi->rstc)) {
671 dev_err(&pdev->dev, "Couldn't get reset controller\n");
672 ret = PTR_ERR(sspi->rstc);
673 goto err_free_master;
674 }
675
345980a3
AK
676 master->dma_tx = dma_request_chan(&pdev->dev, "tx");
677 if (IS_ERR(master->dma_tx)) {
678 /* Check tx to see if we need defer probing driver */
679 if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
680 ret = -EPROBE_DEFER;
681 goto err_free_master;
682 }
683 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
684 master->dma_tx = NULL;
685 }
686
687 master->dma_rx = dma_request_chan(&pdev->dev, "rx");
688 if (IS_ERR(master->dma_rx)) {
689 if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
690 ret = -EPROBE_DEFER;
691 goto err_free_dma_tx;
692 }
693 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
694 master->dma_rx = NULL;
695 }
696
697 if (master->dma_tx && master->dma_rx) {
698 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
699 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
700 master->can_dma = sun6i_spi_can_dma;
701 }
702
3558fe90
MR
703 /*
704 * This wake-up/shutdown pattern is to be able to have the
705 * device woken up, even if runtime_pm is disabled
706 */
707 ret = sun6i_spi_runtime_resume(&pdev->dev);
708 if (ret) {
709 dev_err(&pdev->dev, "Couldn't resume the device\n");
345980a3 710 goto err_free_dma_rx;
3558fe90
MR
711 }
712
ae0f18be
AK
713 pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
714 pm_runtime_use_autosuspend(&pdev->dev);
3558fe90
MR
715 pm_runtime_set_active(&pdev->dev);
716 pm_runtime_enable(&pdev->dev);
3558fe90
MR
717
718 ret = devm_spi_register_master(&pdev->dev, master);
719 if (ret) {
720 dev_err(&pdev->dev, "cannot register SPI master\n");
721 goto err_pm_disable;
722 }
723
724 return 0;
725
726err_pm_disable:
727 pm_runtime_disable(&pdev->dev);
728 sun6i_spi_runtime_suspend(&pdev->dev);
345980a3
AK
729err_free_dma_rx:
730 if (master->dma_rx)
731 dma_release_channel(master->dma_rx);
732err_free_dma_tx:
733 if (master->dma_tx)
734 dma_release_channel(master->dma_tx);
3558fe90
MR
735err_free_master:
736 spi_master_put(master);
737 return ret;
738}
739
edf69ab9 740static void sun6i_spi_remove(struct platform_device *pdev)
3558fe90 741{
345980a3
AK
742 struct spi_master *master = platform_get_drvdata(pdev);
743
2d9bbd02 744 pm_runtime_force_suspend(&pdev->dev);
3558fe90 745
345980a3
AK
746 if (master->dma_tx)
747 dma_release_channel(master->dma_tx);
748 if (master->dma_rx)
749 dma_release_channel(master->dma_rx);
3558fe90
MR
750}
751
b00c0d89
IZ
752static const struct sun6i_spi_cfg sun6i_a31_spi_cfg = {
753 .fifo_depth = SUN6I_FIFO_DEPTH,
8e886ac8 754 .has_clk_ctl = true,
b00c0d89
IZ
755};
756
757static const struct sun6i_spi_cfg sun8i_h3_spi_cfg = {
758 .fifo_depth = SUN8I_FIFO_DEPTH,
8e886ac8 759 .has_clk_ctl = true,
b00c0d89
IZ
760};
761
046484cb
MK
762static const struct sun6i_spi_cfg sun50i_r329_spi_cfg = {
763 .fifo_depth = SUN8I_FIFO_DEPTH,
25453d79 764 .mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | SPI_RX_QUAD | SPI_TX_QUAD,
046484cb
MK
765};
766
3558fe90 767static const struct of_device_id sun6i_spi_match[] = {
b00c0d89
IZ
768 { .compatible = "allwinner,sun6i-a31-spi", .data = &sun6i_a31_spi_cfg },
769 { .compatible = "allwinner,sun8i-h3-spi", .data = &sun8i_h3_spi_cfg },
046484cb
MK
770 {
771 .compatible = "allwinner,sun50i-r329-spi",
772 .data = &sun50i_r329_spi_cfg
773 },
3558fe90
MR
774 {}
775};
776MODULE_DEVICE_TABLE(of, sun6i_spi_match);
777
778static const struct dev_pm_ops sun6i_spi_pm_ops = {
779 .runtime_resume = sun6i_spi_runtime_resume,
780 .runtime_suspend = sun6i_spi_runtime_suspend,
781};
782
783static struct platform_driver sun6i_spi_driver = {
784 .probe = sun6i_spi_probe,
edf69ab9 785 .remove_new = sun6i_spi_remove,
3558fe90
MR
786 .driver = {
787 .name = "sun6i-spi",
3558fe90
MR
788 .of_match_table = sun6i_spi_match,
789 .pm = &sun6i_spi_pm_ops,
790 },
791};
792module_platform_driver(sun6i_spi_driver);
793
794MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
795MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
796MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
797MODULE_LICENSE("GPL");