spi: sh-msiof: Extend support to 3 native chip selects
[linux-block.git] / drivers / spi / spi-sh-msiof.c
CommitLineData
8051effc
MD
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
cf9e4784
HN
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8051effc
MD
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
e2dbf5eb
GL
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
8051effc 17#include <linux/delay.h>
b0d0ce8b
GU
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
e2dbf5eb
GL
20#include <linux/err.h>
21#include <linux/gpio.h>
8051effc 22#include <linux/interrupt.h>
e2dbf5eb
GL
23#include <linux/io.h>
24#include <linux/kernel.h>
d7614de4 25#include <linux/module.h>
cf9c86ef 26#include <linux/of.h>
50a7e23f 27#include <linux/of_device.h>
8051effc 28#include <linux/platform_device.h>
8051effc 29#include <linux/pm_runtime.h>
b0d0ce8b 30#include <linux/sh_dma.h>
8051effc 31
e2dbf5eb 32#include <linux/spi/sh_msiof.h>
8051effc 33#include <linux/spi/spi.h>
8051effc 34
8051effc
MD
35#include <asm/unaligned.h>
36
50a7e23f
GU
37struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
beb74bb0 40 u16 master_flags;
61a8dec5 41 u16 min_div;
50a7e23f
GU
42};
43
8051effc 44struct sh_msiof_spi_priv {
b0d0ce8b 45 struct spi_master *master;
8051effc
MD
46 void __iomem *mapbase;
47 struct clk *clk;
48 struct platform_device *pdev;
49 struct sh_msiof_spi_info *info;
50 struct completion done;
fe78d0b7
KM
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
61a8dec5 53 unsigned int min_div;
b0d0ce8b
GU
54 void *tx_dma_page;
55 void *rx_dma_page;
56 dma_addr_t tx_dma_addr;
57 dma_addr_t rx_dma_addr;
7ff0b53c
GU
58 bool native_cs_inited;
59 bool native_cs_high;
cf9e4784 60 bool slave_aborted;
8051effc
MD
61};
62
9cce882b
GU
63#define MAX_SS 3 /* Maximum number of native chip selects */
64
01cfef57
GU
65#define TMDR1 0x00 /* Transmit Mode Register 1 */
66#define TMDR2 0x04 /* Transmit Mode Register 2 */
67#define TMDR3 0x08 /* Transmit Mode Register 3 */
68#define RMDR1 0x10 /* Receive Mode Register 1 */
69#define RMDR2 0x14 /* Receive Mode Register 2 */
70#define RMDR3 0x18 /* Receive Mode Register 3 */
71#define TSCR 0x20 /* Transmit Clock Select Register */
72#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
73#define CTR 0x28 /* Control Register */
74#define FCTR 0x30 /* FIFO Control Register */
75#define STR 0x40 /* Status Register */
76#define IER 0x44 /* Interrupt Enable Register */
77#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
78#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
79#define TFDR 0x50 /* Transmit FIFO Data Register */
80#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
81#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
82#define RFDR 0x60 /* Receive FIFO Data Register */
83
84/* TMDR1 and RMDR1 */
85#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
86#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
87#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
88#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
89#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
90#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
3110628d
YS
91#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
92#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
6d40530e 93#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
01cfef57
GU
94#define MDR1_FLD_SHIFT 2
95#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
96/* TMDR1 */
97#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
9cce882b
GU
98#define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
99#define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
01cfef57
GU
100
101/* TMDR2 and RMDR2 */
102#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
103#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
104#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
105
106/* TSCR and RSCR */
107#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
108#define SCR_BRPS(i) (((i) - 1) << 8)
109#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
110#define SCR_BRDV_DIV_2 0x0000
111#define SCR_BRDV_DIV_4 0x0001
112#define SCR_BRDV_DIV_8 0x0002
113#define SCR_BRDV_DIV_16 0x0003
114#define SCR_BRDV_DIV_32 0x0004
115#define SCR_BRDV_DIV_1 0x0007
116
117/* CTR */
118#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
119#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
120#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
121#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
122#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
123#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
124#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
125#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
126#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
127#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
128#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
129#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
130#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
131#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
132#define CTR_TXE 0x00000200 /* Transmit Enable */
133#define CTR_RXE 0x00000100 /* Receive Enable */
134
2e2b3687
GU
135/* FCTR */
136#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
137#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
138#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
139#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
140#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
141#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
142#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
143#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
144#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
145#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
146#define FCTR_TFUA_SHIFT 20
147#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
148#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
149#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
150#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
151#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
152#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
153#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
154#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
155#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
156#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
157#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
158#define FCTR_RFUA_SHIFT 4
159#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
160
161/* STR */
162#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
163#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
01cfef57 164#define STR_TEOF 0x00800000 /* Frame Transmission End */
2e2b3687
GU
165#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
166#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
167#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
168#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
169#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
01cfef57 170#define STR_REOF 0x00000080 /* Frame Reception End */
2e2b3687
GU
171#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
172#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
173#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
174
175/* IER */
176#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
177#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
178#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
179#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
180#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
181#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
182#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
183#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
184#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
185#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
186#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
187#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
188#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
189#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
01cfef57 190
8051effc 191
e2dbf5eb 192static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
8051effc
MD
193{
194 switch (reg_offs) {
195 case TSCR:
196 case RSCR:
197 return ioread16(p->mapbase + reg_offs);
198 default:
199 return ioread32(p->mapbase + reg_offs);
200 }
201}
202
203static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
e2dbf5eb 204 u32 value)
8051effc
MD
205{
206 switch (reg_offs) {
207 case TSCR:
208 case RSCR:
209 iowrite16(value, p->mapbase + reg_offs);
210 break;
211 default:
212 iowrite32(value, p->mapbase + reg_offs);
213 break;
214 }
215}
216
217static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
e2dbf5eb 218 u32 clr, u32 set)
8051effc 219{
e2dbf5eb
GL
220 u32 mask = clr | set;
221 u32 data;
8051effc
MD
222 int k;
223
224 data = sh_msiof_read(p, CTR);
225 data &= ~clr;
226 data |= set;
227 sh_msiof_write(p, CTR, data);
228
229 for (k = 100; k > 0; k--) {
230 if ((sh_msiof_read(p, CTR) & mask) == set)
231 break;
232
233 udelay(10);
234 }
235
236 return k > 0 ? 0 : -ETIMEDOUT;
237}
238
239static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
240{
241 struct sh_msiof_spi_priv *p = data;
242
243 /* just disable the interrupt and wake up */
244 sh_msiof_write(p, IER, 0);
245 complete(&p->done);
246
247 return IRQ_HANDLED;
248}
249
250static struct {
251 unsigned short div;
65d5665b
NI
252 unsigned short brdv;
253} const sh_msiof_spi_div_table[] = {
254 { 1, SCR_BRDV_DIV_1 },
255 { 2, SCR_BRDV_DIV_2 },
256 { 4, SCR_BRDV_DIV_4 },
257 { 8, SCR_BRDV_DIV_8 },
258 { 16, SCR_BRDV_DIV_16 },
259 { 32, SCR_BRDV_DIV_32 },
8051effc
MD
260};
261
262static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
6a85fc5a 263 unsigned long parent_rate, u32 spi_hz)
8051effc
MD
264{
265 unsigned long div = 1024;
65d5665b 266 u32 brps, scr;
8051effc
MD
267 size_t k;
268
269 if (!WARN_ON(!spi_hz || !parent_rate))
e4d313ff 270 div = DIV_ROUND_UP(parent_rate, spi_hz);
8051effc 271
61a8dec5
GU
272 div = max_t(unsigned long, div, p->min_div);
273
65d5665b
NI
274 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
275 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
c3ccf357
GU
276 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
277 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
278 continue;
65d5665b 279 if (brps <= 32) /* max of brdv is 32 */
8051effc
MD
280 break;
281 }
282
65d5665b 283 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
8051effc 284
65d5665b
NI
285 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
286 sh_msiof_write(p, TSCR, scr);
a6802cc0 287 if (!(p->master->flags & SPI_MASTER_MUST_TX))
65d5665b 288 sh_msiof_write(p, RSCR, scr);
8051effc
MD
289}
290
3110628d
YS
291static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
292{
293 /*
294 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
295 * b'000 : 0
296 * b'001 : 100
297 * b'010 : 200
298 * b'011 (SYNCDL only) : 300
299 * b'101 : 50
300 * b'110 : 150
301 */
302 if (dtdl_or_syncdl % 100)
303 return dtdl_or_syncdl / 100 + 5;
304 else
305 return dtdl_or_syncdl / 100;
306}
307
308static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
309{
310 u32 val;
311
312 if (!p->info)
313 return 0;
314
315 /* check if DTDL and SYNCDL is allowed value */
316 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
317 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
318 return 0;
319 }
320
321 /* check if the sum of DTDL and SYNCDL becomes an integer value */
322 if ((p->info->dtdl + p->info->syncdl) % 100) {
323 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
324 return 0;
325 }
326
327 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
328 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
329
330 return val;
331}
332
9cce882b 333static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
e2dbf5eb 334 u32 cpol, u32 cpha,
50a77998 335 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
8051effc 336{
e2dbf5eb 337 u32 tmp;
8051effc
MD
338 int edge;
339
340 /*
e8708ef7
MP
341 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
342 * 0 0 10 10 1 1
343 * 0 1 10 10 0 0
344 * 1 0 11 11 0 0
345 * 1 1 11 11 1 1
8051effc 346 */
01cfef57
GU
347 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
348 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
349 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
3110628d 350 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
9cce882b 351 if (spi_controller_is_slave(p->master)) {
cf9e4784 352 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
9cce882b
GU
353 } else {
354 sh_msiof_write(p, TMDR1,
355 tmp | MDR1_TRMD | TMDR1_PCON |
356 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
357 }
a6802cc0 358 if (p->master->flags & SPI_MASTER_MUST_TX) {
beb74bb0
GU
359 /* These bits are reserved if RX needs TX */
360 tmp &= ~0x0000ffff;
361 }
01cfef57 362 sh_msiof_write(p, RMDR1, tmp);
8051effc 363
01cfef57
GU
364 tmp = 0;
365 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
366 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
8051effc 367
e2dbf5eb 368 edge = cpol ^ !cpha;
8051effc 369
01cfef57
GU
370 tmp |= edge << CTR_TEDG_SHIFT;
371 tmp |= edge << CTR_REDG_SHIFT;
372 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
8051effc
MD
373 sh_msiof_write(p, CTR, tmp);
374}
375
376static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
377 const void *tx_buf, void *rx_buf,
e2dbf5eb 378 u32 bits, u32 words)
8051effc 379{
01cfef57 380 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
8051effc 381
a6802cc0 382 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
8051effc
MD
383 sh_msiof_write(p, TMDR2, dr2);
384 else
01cfef57 385 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
8051effc
MD
386
387 if (rx_buf)
388 sh_msiof_write(p, RMDR2, dr2);
8051effc
MD
389}
390
391static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
392{
393 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
394}
395
396static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
397 const void *tx_buf, int words, int fs)
398{
e2dbf5eb 399 const u8 *buf_8 = tx_buf;
8051effc
MD
400 int k;
401
402 for (k = 0; k < words; k++)
403 sh_msiof_write(p, TFDR, buf_8[k] << fs);
404}
405
406static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
407 const void *tx_buf, int words, int fs)
408{
e2dbf5eb 409 const u16 *buf_16 = tx_buf;
8051effc
MD
410 int k;
411
412 for (k = 0; k < words; k++)
413 sh_msiof_write(p, TFDR, buf_16[k] << fs);
414}
415
416static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
417 const void *tx_buf, int words, int fs)
418{
e2dbf5eb 419 const u16 *buf_16 = tx_buf;
8051effc
MD
420 int k;
421
422 for (k = 0; k < words; k++)
423 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
424}
425
426static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
427 const void *tx_buf, int words, int fs)
428{
e2dbf5eb 429 const u32 *buf_32 = tx_buf;
8051effc
MD
430 int k;
431
432 for (k = 0; k < words; k++)
433 sh_msiof_write(p, TFDR, buf_32[k] << fs);
434}
435
436static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
437 const void *tx_buf, int words, int fs)
438{
e2dbf5eb 439 const u32 *buf_32 = tx_buf;
8051effc
MD
440 int k;
441
442 for (k = 0; k < words; k++)
443 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
444}
445
9dabb3f3
GL
446static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
447 const void *tx_buf, int words, int fs)
448{
449 const u32 *buf_32 = tx_buf;
450 int k;
451
452 for (k = 0; k < words; k++)
453 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
454}
455
456static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
457 const void *tx_buf, int words, int fs)
458{
459 const u32 *buf_32 = tx_buf;
460 int k;
461
462 for (k = 0; k < words; k++)
463 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
464}
465
8051effc
MD
466static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
467 void *rx_buf, int words, int fs)
468{
e2dbf5eb 469 u8 *buf_8 = rx_buf;
8051effc
MD
470 int k;
471
472 for (k = 0; k < words; k++)
473 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
474}
475
476static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
477 void *rx_buf, int words, int fs)
478{
e2dbf5eb 479 u16 *buf_16 = rx_buf;
8051effc
MD
480 int k;
481
482 for (k = 0; k < words; k++)
483 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
484}
485
486static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
487 void *rx_buf, int words, int fs)
488{
e2dbf5eb 489 u16 *buf_16 = rx_buf;
8051effc
MD
490 int k;
491
492 for (k = 0; k < words; k++)
493 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
494}
495
496static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
497 void *rx_buf, int words, int fs)
498{
e2dbf5eb 499 u32 *buf_32 = rx_buf;
8051effc
MD
500 int k;
501
502 for (k = 0; k < words; k++)
503 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
504}
505
506static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
507 void *rx_buf, int words, int fs)
508{
e2dbf5eb 509 u32 *buf_32 = rx_buf;
8051effc
MD
510 int k;
511
512 for (k = 0; k < words; k++)
513 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
514}
515
9dabb3f3
GL
516static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
517 void *rx_buf, int words, int fs)
518{
519 u32 *buf_32 = rx_buf;
520 int k;
521
522 for (k = 0; k < words; k++)
523 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
524}
525
526static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
527 void *rx_buf, int words, int fs)
528{
529 u32 *buf_32 = rx_buf;
530 int k;
531
532 for (k = 0; k < words; k++)
533 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
534}
535
8d19534a 536static int sh_msiof_spi_setup(struct spi_device *spi)
8051effc 537{
8d19534a 538 struct device_node *np = spi->master->dev.of_node;
c833ff73 539 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
7ff0b53c 540 u32 clr, set, tmp;
01576056 541
8d19534a
GU
542 if (!np) {
543 /*
544 * Use spi->controller_data for CS (same strategy as spi_gpio),
545 * if any. otherwise let HW control CS
546 */
547 spi->cs_gpio = (uintptr_t)spi->controller_data;
548 }
8051effc 549
7ff0b53c 550 if (spi->cs_gpio >= 0) {
1bd6363b 551 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
7ff0b53c
GU
552 return 0;
553 }
8051effc 554
7ff0b53c
GU
555 if (spi_controller_is_slave(p->master))
556 return 0;
01576056 557
7ff0b53c
GU
558 if (p->native_cs_inited &&
559 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
560 return 0;
01576056 561
7ff0b53c
GU
562 /* Configure native chip select mode/polarity early */
563 clr = MDR1_SYNCMD_MASK;
564 set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
565 if (spi->mode & SPI_CS_HIGH)
566 clr |= BIT(MDR1_SYNCAC_SHIFT);
567 else
568 set |= BIT(MDR1_SYNCAC_SHIFT);
569 pm_runtime_get_sync(&p->pdev->dev);
570 tmp = sh_msiof_read(p, TMDR1) & ~clr;
571 sh_msiof_write(p, TMDR1, tmp | set);
572 pm_runtime_put(&p->pdev->dev);
573 p->native_cs_high = spi->mode & SPI_CS_HIGH;
574 p->native_cs_inited = true;
1bd6363b 575 return 0;
8051effc
MD
576}
577
c833ff73
GU
578static int sh_msiof_prepare_message(struct spi_master *master,
579 struct spi_message *msg)
8051effc 580{
c833ff73
GU
581 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
582 const struct spi_device *spi = msg->spi;
8051effc 583
c833ff73 584 /* Configure pins before asserting CS */
9cce882b
GU
585 sh_msiof_spi_set_pin_regs(p, spi->chip_select,
586 !!(spi->mode & SPI_CPOL),
c833ff73
GU
587 !!(spi->mode & SPI_CPHA),
588 !!(spi->mode & SPI_3WIRE),
589 !!(spi->mode & SPI_LSB_FIRST),
590 !!(spi->mode & SPI_CS_HIGH));
591 return 0;
8051effc
MD
592}
593
76c02e71
GU
594static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
595{
cf9e4784
HN
596 bool slave = spi_controller_is_slave(p->master);
597 int ret = 0;
76c02e71
GU
598
599 /* setup clock and rx/tx signals */
cf9e4784
HN
600 if (!slave)
601 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
76c02e71
GU
602 if (rx_buf && !ret)
603 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
604 if (!ret)
605 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
606
607 /* start by setting frame bit */
cf9e4784 608 if (!ret && !slave)
76c02e71
GU
609 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
610
611 return ret;
612}
613
614static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
615{
cf9e4784
HN
616 bool slave = spi_controller_is_slave(p->master);
617 int ret = 0;
76c02e71
GU
618
619 /* shut down frame, rx/tx and clock signals */
cf9e4784
HN
620 if (!slave)
621 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
76c02e71
GU
622 if (!ret)
623 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
624 if (rx_buf && !ret)
625 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
cf9e4784 626 if (!ret && !slave)
76c02e71
GU
627 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
628
629 return ret;
630}
631
cf9e4784
HN
632static int sh_msiof_slave_abort(struct spi_master *master)
633{
634 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
635
636 p->slave_aborted = true;
637 complete(&p->done);
638 return 0;
639}
640
641static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
642{
643 if (spi_controller_is_slave(p->master)) {
644 if (wait_for_completion_interruptible(&p->done) ||
645 p->slave_aborted) {
646 dev_dbg(&p->pdev->dev, "interrupted\n");
647 return -EINTR;
648 }
649 } else {
650 if (!wait_for_completion_timeout(&p->done, HZ)) {
651 dev_err(&p->pdev->dev, "timeout\n");
652 return -ETIMEDOUT;
653 }
654 }
655
656 return 0;
657}
658
8051effc
MD
659static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
660 void (*tx_fifo)(struct sh_msiof_spi_priv *,
661 const void *, int, int),
662 void (*rx_fifo)(struct sh_msiof_spi_priv *,
663 void *, int, int),
664 const void *tx_buf, void *rx_buf,
665 int words, int bits)
666{
667 int fifo_shift;
668 int ret;
669
670 /* limit maximum word transfer to rx/tx fifo size */
671 if (tx_buf)
672 words = min_t(int, words, p->tx_fifo_size);
673 if (rx_buf)
674 words = min_t(int, words, p->rx_fifo_size);
675
676 /* the fifo contents need shifting */
677 fifo_shift = 32 - bits;
678
b0d0ce8b
GU
679 /* default FIFO watermarks for PIO */
680 sh_msiof_write(p, FCTR, 0);
681
8051effc
MD
682 /* setup msiof transfer mode registers */
683 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
b0d0ce8b 684 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
8051effc
MD
685
686 /* write tx fifo */
687 if (tx_buf)
688 tx_fifo(p, tx_buf, words, fifo_shift);
689
16735d02 690 reinit_completion(&p->done);
cf9e4784 691 p->slave_aborted = false;
76c02e71
GU
692
693 ret = sh_msiof_spi_start(p, rx_buf);
8051effc
MD
694 if (ret) {
695 dev_err(&p->pdev->dev, "failed to start hardware\n");
75b82e23 696 goto stop_ier;
8051effc
MD
697 }
698
699 /* wait for tx fifo to be emptied / rx fifo to be filled */
cf9e4784
HN
700 ret = sh_msiof_wait_for_completion(p);
701 if (ret)
75b82e23 702 goto stop_reset;
8051effc
MD
703
704 /* read rx fifo */
705 if (rx_buf)
706 rx_fifo(p, rx_buf, words, fifo_shift);
707
708 /* clear status bits */
709 sh_msiof_reset_str(p);
710
76c02e71 711 ret = sh_msiof_spi_stop(p, rx_buf);
8051effc
MD
712 if (ret) {
713 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
75b82e23 714 return ret;
8051effc
MD
715 }
716
717 return words;
718
75b82e23
GU
719stop_reset:
720 sh_msiof_reset_str(p);
721 sh_msiof_spi_stop(p, rx_buf);
722stop_ier:
8051effc
MD
723 sh_msiof_write(p, IER, 0);
724 return ret;
725}
726
b0d0ce8b
GU
727static void sh_msiof_dma_complete(void *arg)
728{
729 struct sh_msiof_spi_priv *p = arg;
730
731 sh_msiof_write(p, IER, 0);
732 complete(&p->done);
733}
734
735static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
736 void *rx, unsigned int len)
737{
738 u32 ier_bits = 0;
739 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
740 dma_cookie_t cookie;
741 int ret;
742
3e81b592 743 /* First prepare and submit the DMA request(s), as this may fail */
b0d0ce8b
GU
744 if (rx) {
745 ier_bits |= IER_RDREQE | IER_RDMAE;
746 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
747 p->rx_dma_addr, len, DMA_FROM_DEVICE,
748 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
a5e7c719
GU
749 if (!desc_rx)
750 return -EAGAIN;
b0d0ce8b 751
b0d0ce8b
GU
752 desc_rx->callback = sh_msiof_dma_complete;
753 desc_rx->callback_param = p;
754 cookie = dmaengine_submit(desc_rx);
a5e7c719
GU
755 if (dma_submit_error(cookie))
756 return cookie;
b0d0ce8b
GU
757 }
758
759 if (tx) {
3e81b592
GU
760 ier_bits |= IER_TDREQE | IER_TDMAE;
761 dma_sync_single_for_device(p->master->dma_tx->device->dev,
762 p->tx_dma_addr, len, DMA_TO_DEVICE);
763 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
764 p->tx_dma_addr, len, DMA_TO_DEVICE,
765 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
766 if (!desc_tx) {
767 ret = -EAGAIN;
768 goto no_dma_tx;
769 }
770
b0d0ce8b
GU
771 if (rx) {
772 /* No callback */
773 desc_tx->callback = NULL;
774 } else {
775 desc_tx->callback = sh_msiof_dma_complete;
776 desc_tx->callback_param = p;
777 }
778 cookie = dmaengine_submit(desc_tx);
779 if (dma_submit_error(cookie)) {
780 ret = cookie;
3e81b592 781 goto no_dma_tx;
b0d0ce8b 782 }
b0d0ce8b
GU
783 }
784
3e81b592
GU
785 /* 1 stage FIFO watermarks for DMA */
786 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
787
788 /* setup msiof transfer mode registers (32-bit words) */
789 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
790
791 sh_msiof_write(p, IER, ier_bits);
792
793 reinit_completion(&p->done);
cf9e4784 794 p->slave_aborted = false;
3e81b592
GU
795
796 /* Now start DMA */
3e81b592 797 if (rx)
7a9f957b
GU
798 dma_async_issue_pending(p->master->dma_rx);
799 if (tx)
3e81b592
GU
800 dma_async_issue_pending(p->master->dma_tx);
801
b0d0ce8b
GU
802 ret = sh_msiof_spi_start(p, rx);
803 if (ret) {
804 dev_err(&p->pdev->dev, "failed to start hardware\n");
3e81b592 805 goto stop_dma;
b0d0ce8b
GU
806 }
807
808 /* wait for tx fifo to be emptied / rx fifo to be filled */
cf9e4784
HN
809 ret = sh_msiof_wait_for_completion(p);
810 if (ret)
b0d0ce8b 811 goto stop_reset;
b0d0ce8b
GU
812
813 /* clear status bits */
814 sh_msiof_reset_str(p);
815
816 ret = sh_msiof_spi_stop(p, rx);
817 if (ret) {
818 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
819 return ret;
820 }
821
822 if (rx)
5dabcf2f
GU
823 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
824 p->rx_dma_addr, len,
b0d0ce8b
GU
825 DMA_FROM_DEVICE);
826
827 return 0;
828
829stop_reset:
830 sh_msiof_reset_str(p);
831 sh_msiof_spi_stop(p, rx);
3e81b592 832stop_dma:
b0d0ce8b
GU
833 if (tx)
834 dmaengine_terminate_all(p->master->dma_tx);
3e81b592 835no_dma_tx:
b0d0ce8b
GU
836 if (rx)
837 dmaengine_terminate_all(p->master->dma_rx);
b0d0ce8b
GU
838 sh_msiof_write(p, IER, 0);
839 return ret;
840}
841
842static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
843{
844 /* src or dst can be unaligned, but not both */
845 if ((unsigned long)src & 3) {
846 while (words--) {
847 *dst++ = swab32(get_unaligned(src));
848 src++;
849 }
850 } else if ((unsigned long)dst & 3) {
851 while (words--) {
852 put_unaligned(swab32(*src++), dst);
853 dst++;
854 }
855 } else {
856 while (words--)
857 *dst++ = swab32(*src++);
858 }
859}
860
861static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
862{
863 /* src or dst can be unaligned, but not both */
864 if ((unsigned long)src & 3) {
865 while (words--) {
866 *dst++ = swahw32(get_unaligned(src));
867 src++;
868 }
869 } else if ((unsigned long)dst & 3) {
870 while (words--) {
871 put_unaligned(swahw32(*src++), dst);
872 dst++;
873 }
874 } else {
875 while (words--)
876 *dst++ = swahw32(*src++);
877 }
878}
879
880static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
881{
882 memcpy(dst, src, words * 4);
883}
884
1bd6363b
GU
885static int sh_msiof_transfer_one(struct spi_master *master,
886 struct spi_device *spi,
887 struct spi_transfer *t)
8051effc 888{
1bd6363b 889 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
b0d0ce8b 890 void (*copy32)(u32 *, const u32 *, unsigned int);
8051effc
MD
891 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
892 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0312d591
GU
893 const void *tx_buf = t->tx_buf;
894 void *rx_buf = t->rx_buf;
895 unsigned int len = t->len;
896 unsigned int bits = t->bits_per_word;
897 unsigned int bytes_per_word;
898 unsigned int words;
8051effc 899 int n;
9dabb3f3 900 bool swab;
b0d0ce8b
GU
901 int ret;
902
903 /* setup clocks (clock already enabled in chipselect()) */
cf9e4784
HN
904 if (!spi_controller_is_slave(p->master))
905 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
b0d0ce8b
GU
906
907 while (master->dma_tx && len > 15) {
908 /*
909 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
910 * words, with byte resp. word swapping.
911 */
fe78d0b7
KM
912 unsigned int l = 0;
913
914 if (tx_buf)
915 l = min(len, p->tx_fifo_size * 4);
916 if (rx_buf)
917 l = min(len, p->rx_fifo_size * 4);
b0d0ce8b
GU
918
919 if (bits <= 8) {
920 if (l & 3)
921 break;
922 copy32 = copy_bswap32;
923 } else if (bits <= 16) {
36735783 924 if (l & 3)
b0d0ce8b
GU
925 break;
926 copy32 = copy_wswap32;
927 } else {
928 copy32 = copy_plain32;
929 }
930
931 if (tx_buf)
932 copy32(p->tx_dma_page, tx_buf, l / 4);
8051effc 933
b0d0ce8b 934 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
279d2378 935 if (ret == -EAGAIN) {
5d8e614f
GU
936 dev_warn_once(&p->pdev->dev,
937 "DMA not available, falling back to PIO\n");
279d2378
GU
938 break;
939 }
b0d0ce8b
GU
940 if (ret)
941 return ret;
942
943 if (rx_buf) {
944 copy32(rx_buf, p->rx_dma_page, l / 4);
945 rx_buf += l;
946 }
947 if (tx_buf)
948 tx_buf += l;
949
950 len -= l;
951 if (!len)
952 return 0;
953 }
8051effc 954
0312d591 955 if (bits <= 8 && len > 15 && !(len & 3)) {
9dabb3f3
GL
956 bits = 32;
957 swab = true;
958 } else {
959 swab = false;
960 }
961
8051effc
MD
962 /* setup bytes per word and fifo read/write functions */
963 if (bits <= 8) {
964 bytes_per_word = 1;
965 tx_fifo = sh_msiof_spi_write_fifo_8;
966 rx_fifo = sh_msiof_spi_read_fifo_8;
967 } else if (bits <= 16) {
968 bytes_per_word = 2;
0312d591 969 if ((unsigned long)tx_buf & 0x01)
8051effc
MD
970 tx_fifo = sh_msiof_spi_write_fifo_16u;
971 else
972 tx_fifo = sh_msiof_spi_write_fifo_16;
973
0312d591 974 if ((unsigned long)rx_buf & 0x01)
8051effc
MD
975 rx_fifo = sh_msiof_spi_read_fifo_16u;
976 else
977 rx_fifo = sh_msiof_spi_read_fifo_16;
9dabb3f3
GL
978 } else if (swab) {
979 bytes_per_word = 4;
0312d591 980 if ((unsigned long)tx_buf & 0x03)
9dabb3f3
GL
981 tx_fifo = sh_msiof_spi_write_fifo_s32u;
982 else
983 tx_fifo = sh_msiof_spi_write_fifo_s32;
984
0312d591 985 if ((unsigned long)rx_buf & 0x03)
9dabb3f3
GL
986 rx_fifo = sh_msiof_spi_read_fifo_s32u;
987 else
988 rx_fifo = sh_msiof_spi_read_fifo_s32;
8051effc
MD
989 } else {
990 bytes_per_word = 4;
0312d591 991 if ((unsigned long)tx_buf & 0x03)
8051effc
MD
992 tx_fifo = sh_msiof_spi_write_fifo_32u;
993 else
994 tx_fifo = sh_msiof_spi_write_fifo_32;
995
0312d591 996 if ((unsigned long)rx_buf & 0x03)
8051effc
MD
997 rx_fifo = sh_msiof_spi_read_fifo_32u;
998 else
999 rx_fifo = sh_msiof_spi_read_fifo_32;
1000 }
1001
8051effc 1002 /* transfer in fifo sized chunks */
0312d591
GU
1003 words = len / bytes_per_word;
1004
1005 while (words > 0) {
1006 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
8051effc
MD
1007 words, bits);
1008 if (n < 0)
75b82e23 1009 return n;
8051effc 1010
0312d591
GU
1011 if (tx_buf)
1012 tx_buf += n * bytes_per_word;
1013 if (rx_buf)
1014 rx_buf += n * bytes_per_word;
8051effc
MD
1015 words -= n;
1016 }
1017
8051effc
MD
1018 return 0;
1019}
1020
50a7e23f
GU
1021static const struct sh_msiof_chipdata sh_data = {
1022 .tx_fifo_size = 64,
1023 .rx_fifo_size = 64,
beb74bb0 1024 .master_flags = 0,
61a8dec5
GU
1025 .min_div = 1,
1026};
1027
1028static const struct sh_msiof_chipdata rcar_gen2_data = {
1029 .tx_fifo_size = 64,
1030 .rx_fifo_size = 64,
1031 .master_flags = SPI_MASTER_MUST_TX,
1032 .min_div = 1,
beb74bb0
GU
1033};
1034
61a8dec5 1035static const struct sh_msiof_chipdata rcar_gen3_data = {
beb74bb0 1036 .tx_fifo_size = 64,
fe78d0b7 1037 .rx_fifo_size = 64,
beb74bb0 1038 .master_flags = SPI_MASTER_MUST_TX,
61a8dec5 1039 .min_div = 2,
50a7e23f
GU
1040};
1041
1042static const struct of_device_id sh_msiof_match[] = {
50a7e23f 1043 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
bdacfc7b
FC
1044 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1045 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
61a8dec5
GU
1046 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1047 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1048 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1049 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1050 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1051 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1052 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1053 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
264c3e8d 1054 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
50a7e23f
GU
1055 {},
1056};
1057MODULE_DEVICE_TABLE(of, sh_msiof_match);
1058
cf9c86ef
BH
1059#ifdef CONFIG_OF
1060static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1061{
1062 struct sh_msiof_spi_info *info;
1063 struct device_node *np = dev->of_node;
32d3b2d1 1064 u32 num_cs = 1;
cf9c86ef
BH
1065
1066 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1e8231b7 1067 if (!info)
cf9c86ef 1068 return NULL;
cf9c86ef 1069
cf9e4784
HN
1070 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1071 : MSIOF_SPI_MASTER;
1072
cf9c86ef 1073 /* Parse the MSIOF properties */
cf9e4784
HN
1074 if (info->mode == MSIOF_SPI_MASTER)
1075 of_property_read_u32(np, "num-cs", &num_cs);
cf9c86ef
BH
1076 of_property_read_u32(np, "renesas,tx-fifo-size",
1077 &info->tx_fifo_override);
1078 of_property_read_u32(np, "renesas,rx-fifo-size",
1079 &info->rx_fifo_override);
3110628d
YS
1080 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1081 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
cf9c86ef
BH
1082
1083 info->num_chipselect = num_cs;
1084
1085 return info;
1086}
1087#else
1088static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1089{
1090 return NULL;
1091}
1092#endif
1093
b0d0ce8b
GU
1094static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1095 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1096{
1097 dma_cap_mask_t mask;
1098 struct dma_chan *chan;
1099 struct dma_slave_config cfg;
1100 int ret;
1101
1102 dma_cap_zero(mask);
1103 dma_cap_set(DMA_SLAVE, mask);
1104
a6be4de6
GU
1105 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1106 (void *)(unsigned long)id, dev,
1107 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
b0d0ce8b 1108 if (!chan) {
a6be4de6 1109 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
b0d0ce8b
GU
1110 return NULL;
1111 }
1112
1113 memset(&cfg, 0, sizeof(cfg));
b0d0ce8b 1114 cfg.direction = dir;
52fba2b8 1115 if (dir == DMA_MEM_TO_DEV) {
b0d0ce8b 1116 cfg.dst_addr = port_addr;
52fba2b8
GU
1117 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1118 } else {
b0d0ce8b 1119 cfg.src_addr = port_addr;
52fba2b8
GU
1120 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1121 }
b0d0ce8b
GU
1122
1123 ret = dmaengine_slave_config(chan, &cfg);
1124 if (ret) {
1125 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1126 dma_release_channel(chan);
1127 return NULL;
1128 }
1129
1130 return chan;
1131}
1132
1133static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1134{
1135 struct platform_device *pdev = p->pdev;
1136 struct device *dev = &pdev->dev;
1137 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
a6be4de6 1138 unsigned int dma_tx_id, dma_rx_id;
b0d0ce8b
GU
1139 const struct resource *res;
1140 struct spi_master *master;
5dabcf2f 1141 struct device *tx_dev, *rx_dev;
b0d0ce8b 1142
a6be4de6
GU
1143 if (dev->of_node) {
1144 /* In the OF case we will get the slave IDs from the DT */
1145 dma_tx_id = 0;
1146 dma_rx_id = 0;
1147 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1148 dma_tx_id = info->dma_tx_id;
1149 dma_rx_id = info->dma_rx_id;
1150 } else {
1151 /* The driver assumes no error */
1152 return 0;
1153 }
b0d0ce8b
GU
1154
1155 /* The DMA engine uses the second register set, if present */
1156 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1157 if (!res)
1158 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1159
1160 master = p->master;
1161 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
a6be4de6 1162 dma_tx_id,
b0d0ce8b
GU
1163 res->start + TFDR);
1164 if (!master->dma_tx)
1165 return -ENODEV;
1166
1167 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
a6be4de6 1168 dma_rx_id,
b0d0ce8b
GU
1169 res->start + RFDR);
1170 if (!master->dma_rx)
1171 goto free_tx_chan;
1172
1173 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1174 if (!p->tx_dma_page)
1175 goto free_rx_chan;
1176
1177 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1178 if (!p->rx_dma_page)
1179 goto free_tx_page;
1180
5dabcf2f
GU
1181 tx_dev = master->dma_tx->device->dev;
1182 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
b0d0ce8b 1183 DMA_TO_DEVICE);
5dabcf2f 1184 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
b0d0ce8b
GU
1185 goto free_rx_page;
1186
5dabcf2f
GU
1187 rx_dev = master->dma_rx->device->dev;
1188 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
b0d0ce8b 1189 DMA_FROM_DEVICE);
5dabcf2f 1190 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
b0d0ce8b
GU
1191 goto unmap_tx_page;
1192
1193 dev_info(dev, "DMA available");
1194 return 0;
1195
1196unmap_tx_page:
5dabcf2f 1197 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1198free_rx_page:
1199 free_page((unsigned long)p->rx_dma_page);
1200free_tx_page:
1201 free_page((unsigned long)p->tx_dma_page);
1202free_rx_chan:
1203 dma_release_channel(master->dma_rx);
1204free_tx_chan:
1205 dma_release_channel(master->dma_tx);
1206 master->dma_tx = NULL;
1207 return -ENODEV;
1208}
1209
1210static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1211{
1212 struct spi_master *master = p->master;
b0d0ce8b
GU
1213
1214 if (!master->dma_tx)
1215 return;
1216
5dabcf2f
GU
1217 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1218 PAGE_SIZE, DMA_FROM_DEVICE);
1219 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1220 PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1221 free_page((unsigned long)p->rx_dma_page);
1222 free_page((unsigned long)p->tx_dma_page);
1223 dma_release_channel(master->dma_rx);
1224 dma_release_channel(master->dma_tx);
1225}
1226
8051effc
MD
1227static int sh_msiof_spi_probe(struct platform_device *pdev)
1228{
1229 struct resource *r;
1230 struct spi_master *master;
a6802cc0 1231 const struct sh_msiof_chipdata *chipdata;
cf9e4784 1232 struct sh_msiof_spi_info *info;
8051effc 1233 struct sh_msiof_spi_priv *p;
8051effc
MD
1234 int i;
1235 int ret;
1236
ecb1596a
GU
1237 chipdata = of_device_get_match_data(&pdev->dev);
1238 if (chipdata) {
cf9e4784 1239 info = sh_msiof_spi_parse_dt(&pdev->dev);
50a7e23f 1240 } else {
a6802cc0 1241 chipdata = (const void *)pdev->id_entry->driver_data;
cf9e4784 1242 info = dev_get_platdata(&pdev->dev);
50a7e23f 1243 }
cf9c86ef 1244
cf9e4784 1245 if (!info) {
cf9c86ef 1246 dev_err(&pdev->dev, "failed to obtain device info\n");
cf9e4784 1247 return -ENXIO;
cf9c86ef
BH
1248 }
1249
cf9e4784
HN
1250 if (info->mode == MSIOF_SPI_SLAVE)
1251 master = spi_alloc_slave(&pdev->dev,
1252 sizeof(struct sh_msiof_spi_priv));
1253 else
1254 master = spi_alloc_master(&pdev->dev,
1255 sizeof(struct sh_msiof_spi_priv));
1256 if (master == NULL)
1257 return -ENOMEM;
1258
1259 p = spi_master_get_devdata(master);
1260
1261 platform_set_drvdata(pdev, p);
1262 p->master = master;
1263 p->info = info;
61a8dec5 1264 p->min_div = chipdata->min_div;
cf9e4784 1265
8051effc
MD
1266 init_completion(&p->done);
1267
b4dd05de 1268 p->clk = devm_clk_get(&pdev->dev, NULL);
8051effc 1269 if (IS_ERR(p->clk)) {
078b6ead 1270 dev_err(&pdev->dev, "cannot get clock\n");
8051effc
MD
1271 ret = PTR_ERR(p->clk);
1272 goto err1;
1273 }
1274
8051effc 1275 i = platform_get_irq(pdev, 0);
b4dd05de
LP
1276 if (i < 0) {
1277 dev_err(&pdev->dev, "cannot get platform IRQ\n");
8051effc 1278 ret = -ENOENT;
b4dd05de 1279 goto err1;
8051effc 1280 }
b4dd05de
LP
1281
1282 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1283 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1284 if (IS_ERR(p->mapbase)) {
1285 ret = PTR_ERR(p->mapbase);
1286 goto err1;
8051effc
MD
1287 }
1288
b4dd05de
LP
1289 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1290 dev_name(&pdev->dev), p);
8051effc
MD
1291 if (ret) {
1292 dev_err(&pdev->dev, "unable to request irq\n");
b4dd05de 1293 goto err1;
8051effc
MD
1294 }
1295
1296 p->pdev = pdev;
1297 pm_runtime_enable(&pdev->dev);
1298
8051effc 1299 /* Platform data may override FIFO sizes */
a6802cc0
GU
1300 p->tx_fifo_size = chipdata->tx_fifo_size;
1301 p->rx_fifo_size = chipdata->rx_fifo_size;
8051effc
MD
1302 if (p->info->tx_fifo_override)
1303 p->tx_fifo_size = p->info->tx_fifo_override;
1304 if (p->info->rx_fifo_override)
1305 p->rx_fifo_size = p->info->rx_fifo_override;
1306
1bd6363b 1307 /* init master code */
8051effc
MD
1308 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1309 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
a6802cc0 1310 master->flags = chipdata->master_flags;
8051effc 1311 master->bus_num = pdev->id;
f7c05e83 1312 master->dev.of_node = pdev->dev.of_node;
8051effc 1313 master->num_chipselect = p->info->num_chipselect;
8d19534a 1314 master->setup = sh_msiof_spi_setup;
c833ff73 1315 master->prepare_message = sh_msiof_prepare_message;
cf9e4784 1316 master->slave_abort = sh_msiof_slave_abort;
2416289c 1317 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
e2a0ba54 1318 master->auto_runtime_pm = true;
1bd6363b 1319 master->transfer_one = sh_msiof_transfer_one;
8051effc 1320
b0d0ce8b
GU
1321 ret = sh_msiof_request_dma(p);
1322 if (ret < 0)
1323 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1324
1bd6363b
GU
1325 ret = devm_spi_register_master(&pdev->dev, master);
1326 if (ret < 0) {
1327 dev_err(&pdev->dev, "spi_register_master error.\n");
1328 goto err2;
1329 }
8051effc 1330
1bd6363b 1331 return 0;
8051effc 1332
1bd6363b 1333 err2:
b0d0ce8b 1334 sh_msiof_release_dma(p);
8051effc 1335 pm_runtime_disable(&pdev->dev);
8051effc
MD
1336 err1:
1337 spi_master_put(master);
8051effc
MD
1338 return ret;
1339}
1340
1341static int sh_msiof_spi_remove(struct platform_device *pdev)
1342{
b0d0ce8b
GU
1343 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1344
1345 sh_msiof_release_dma(p);
1bd6363b 1346 pm_runtime_disable(&pdev->dev);
1bd6363b 1347 return 0;
8051effc
MD
1348}
1349
3789c852 1350static const struct platform_device_id spi_driver_ids[] = {
50a7e23f 1351 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
cf9c86ef
BH
1352 {},
1353};
50a7e23f 1354MODULE_DEVICE_TABLE(platform, spi_driver_ids);
cf9c86ef 1355
8051effc
MD
1356static struct platform_driver sh_msiof_spi_drv = {
1357 .probe = sh_msiof_spi_probe,
1358 .remove = sh_msiof_spi_remove,
50a7e23f 1359 .id_table = spi_driver_ids,
8051effc
MD
1360 .driver = {
1361 .name = "spi_sh_msiof",
691ee4ed 1362 .of_match_table = of_match_ptr(sh_msiof_match),
8051effc
MD
1363 },
1364};
940ab889 1365module_platform_driver(sh_msiof_spi_drv);
8051effc
MD
1366
1367MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1368MODULE_AUTHOR("Magnus Damm");
1369MODULE_LICENSE("GPL v2");
1370MODULE_ALIAS("platform:spi_sh_msiof");