Linux 4.19-rc1
[linux-block.git] / drivers / spi / spi-sh-msiof.c
CommitLineData
8051effc
MD
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
cf9e4784
HN
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
8051effc
MD
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
e2dbf5eb
GL
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
8051effc 17#include <linux/delay.h>
b0d0ce8b
GU
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
e2dbf5eb
GL
20#include <linux/err.h>
21#include <linux/gpio.h>
b8761434 22#include <linux/gpio/consumer.h>
8051effc 23#include <linux/interrupt.h>
e2dbf5eb
GL
24#include <linux/io.h>
25#include <linux/kernel.h>
d7614de4 26#include <linux/module.h>
cf9c86ef 27#include <linux/of.h>
50a7e23f 28#include <linux/of_device.h>
8051effc 29#include <linux/platform_device.h>
8051effc 30#include <linux/pm_runtime.h>
b0d0ce8b 31#include <linux/sh_dma.h>
8051effc 32
e2dbf5eb 33#include <linux/spi/sh_msiof.h>
8051effc 34#include <linux/spi/spi.h>
8051effc 35
8051effc
MD
36#include <asm/unaligned.h>
37
50a7e23f
GU
38struct sh_msiof_chipdata {
39 u16 tx_fifo_size;
40 u16 rx_fifo_size;
beb74bb0 41 u16 master_flags;
51093cba 42 u16 min_div_pow;
50a7e23f
GU
43};
44
8051effc 45struct sh_msiof_spi_priv {
b0d0ce8b 46 struct spi_master *master;
8051effc
MD
47 void __iomem *mapbase;
48 struct clk *clk;
49 struct platform_device *pdev;
50 struct sh_msiof_spi_info *info;
51 struct completion done;
08ba7ae3 52 struct completion done_txdma;
fe78d0b7
KM
53 unsigned int tx_fifo_size;
54 unsigned int rx_fifo_size;
51093cba 55 unsigned int min_div_pow;
b0d0ce8b
GU
56 void *tx_dma_page;
57 void *rx_dma_page;
58 dma_addr_t tx_dma_addr;
59 dma_addr_t rx_dma_addr;
b8761434 60 unsigned short unused_ss;
7ff0b53c
GU
61 bool native_cs_inited;
62 bool native_cs_high;
cf9e4784 63 bool slave_aborted;
8051effc
MD
64};
65
9cce882b
GU
66#define MAX_SS 3 /* Maximum number of native chip selects */
67
01cfef57
GU
68#define TMDR1 0x00 /* Transmit Mode Register 1 */
69#define TMDR2 0x04 /* Transmit Mode Register 2 */
70#define TMDR3 0x08 /* Transmit Mode Register 3 */
71#define RMDR1 0x10 /* Receive Mode Register 1 */
72#define RMDR2 0x14 /* Receive Mode Register 2 */
73#define RMDR3 0x18 /* Receive Mode Register 3 */
74#define TSCR 0x20 /* Transmit Clock Select Register */
75#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
76#define CTR 0x28 /* Control Register */
77#define FCTR 0x30 /* FIFO Control Register */
78#define STR 0x40 /* Status Register */
79#define IER 0x44 /* Interrupt Enable Register */
80#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
81#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
82#define TFDR 0x50 /* Transmit FIFO Data Register */
83#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
84#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
85#define RFDR 0x60 /* Receive FIFO Data Register */
86
87/* TMDR1 and RMDR1 */
88#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
89#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
90#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
91#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
92#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
93#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
3110628d
YS
94#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
95#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
6d40530e 96#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
01cfef57
GU
97#define MDR1_FLD_SHIFT 2
98#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
99/* TMDR1 */
100#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
9cce882b
GU
101#define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
102#define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
01cfef57
GU
103
104/* TMDR2 and RMDR2 */
105#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
106#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
107#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
108
109/* TSCR and RSCR */
110#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
111#define SCR_BRPS(i) (((i) - 1) << 8)
112#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
113#define SCR_BRDV_DIV_2 0x0000
114#define SCR_BRDV_DIV_4 0x0001
115#define SCR_BRDV_DIV_8 0x0002
116#define SCR_BRDV_DIV_16 0x0003
117#define SCR_BRDV_DIV_32 0x0004
118#define SCR_BRDV_DIV_1 0x0007
119
120/* CTR */
121#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
122#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
123#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
124#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
125#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
126#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
127#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
128#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
129#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
130#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
131#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
132#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
133#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
134#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
135#define CTR_TXE 0x00000200 /* Transmit Enable */
136#define CTR_RXE 0x00000100 /* Receive Enable */
137
2e2b3687
GU
138/* FCTR */
139#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
140#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
141#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
142#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
143#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
144#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
145#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
146#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
147#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
148#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
149#define FCTR_TFUA_SHIFT 20
150#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
151#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
152#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
153#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
154#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
155#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
156#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
157#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
158#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
159#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
160#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
161#define FCTR_RFUA_SHIFT 4
162#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
163
164/* STR */
165#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
166#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
01cfef57 167#define STR_TEOF 0x00800000 /* Frame Transmission End */
2e2b3687
GU
168#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
169#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
170#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
171#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
172#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
01cfef57 173#define STR_REOF 0x00000080 /* Frame Reception End */
2e2b3687
GU
174#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
175#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
176#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
177
178/* IER */
179#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
180#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
181#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
182#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
183#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
184#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
185#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
186#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
187#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
188#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
189#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
190#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
191#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
192#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
01cfef57 193
8051effc 194
e2dbf5eb 195static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
8051effc
MD
196{
197 switch (reg_offs) {
198 case TSCR:
199 case RSCR:
200 return ioread16(p->mapbase + reg_offs);
201 default:
202 return ioread32(p->mapbase + reg_offs);
203 }
204}
205
206static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
e2dbf5eb 207 u32 value)
8051effc
MD
208{
209 switch (reg_offs) {
210 case TSCR:
211 case RSCR:
212 iowrite16(value, p->mapbase + reg_offs);
213 break;
214 default:
215 iowrite32(value, p->mapbase + reg_offs);
216 break;
217 }
218}
219
220static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
e2dbf5eb 221 u32 clr, u32 set)
8051effc 222{
e2dbf5eb
GL
223 u32 mask = clr | set;
224 u32 data;
8051effc
MD
225 int k;
226
227 data = sh_msiof_read(p, CTR);
228 data &= ~clr;
229 data |= set;
230 sh_msiof_write(p, CTR, data);
231
232 for (k = 100; k > 0; k--) {
233 if ((sh_msiof_read(p, CTR) & mask) == set)
234 break;
235
236 udelay(10);
237 }
238
239 return k > 0 ? 0 : -ETIMEDOUT;
240}
241
242static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
243{
244 struct sh_msiof_spi_priv *p = data;
245
246 /* just disable the interrupt and wake up */
247 sh_msiof_write(p, IER, 0);
248 complete(&p->done);
249
250 return IRQ_HANDLED;
251}
252
51093cba
VZ
253static const u32 sh_msiof_spi_div_array[] = {
254 SCR_BRDV_DIV_1, SCR_BRDV_DIV_2, SCR_BRDV_DIV_4,
255 SCR_BRDV_DIV_8, SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
8051effc
MD
256};
257
258static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
6a85fc5a 259 unsigned long parent_rate, u32 spi_hz)
8051effc 260{
51093cba 261 unsigned long div;
65d5665b 262 u32 brps, scr;
51093cba 263 unsigned int div_pow = p->min_div_pow;
8051effc 264
51093cba
VZ
265 if (!spi_hz || !parent_rate) {
266 WARN(1, "Invalid clock rate parameters %lu and %u\n",
267 parent_rate, spi_hz);
268 return;
269 }
61a8dec5 270
51093cba
VZ
271 div = DIV_ROUND_UP(parent_rate, spi_hz);
272 if (div <= 1024) {
c3ccf357 273 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
51093cba
VZ
274 if (!div_pow && div <= 32 && div > 2)
275 div_pow = 1;
276
277 if (div_pow)
278 brps = (div + 1) >> div_pow;
279 else
280 brps = div;
8051effc 281
51093cba
VZ
282 for (; brps > 32; div_pow++)
283 brps = (brps + 1) >> 1;
284 } else {
285 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
286 dev_err(&p->pdev->dev,
287 "Requested SPI transfer rate %d is too low\n", spi_hz);
288 div_pow = 5;
289 brps = 32;
290 }
8051effc 291
51093cba 292 scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
65d5665b 293 sh_msiof_write(p, TSCR, scr);
a6802cc0 294 if (!(p->master->flags & SPI_MASTER_MUST_TX))
65d5665b 295 sh_msiof_write(p, RSCR, scr);
8051effc
MD
296}
297
3110628d
YS
298static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
299{
300 /*
301 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
302 * b'000 : 0
303 * b'001 : 100
304 * b'010 : 200
305 * b'011 (SYNCDL only) : 300
306 * b'101 : 50
307 * b'110 : 150
308 */
309 if (dtdl_or_syncdl % 100)
310 return dtdl_or_syncdl / 100 + 5;
311 else
312 return dtdl_or_syncdl / 100;
313}
314
315static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
316{
317 u32 val;
318
319 if (!p->info)
320 return 0;
321
322 /* check if DTDL and SYNCDL is allowed value */
323 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
324 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
325 return 0;
326 }
327
328 /* check if the sum of DTDL and SYNCDL becomes an integer value */
329 if ((p->info->dtdl + p->info->syncdl) % 100) {
330 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
331 return 0;
332 }
333
334 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
335 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
336
337 return val;
338}
339
9cce882b 340static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
e2dbf5eb 341 u32 cpol, u32 cpha,
50a77998 342 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
8051effc 343{
e2dbf5eb 344 u32 tmp;
8051effc
MD
345 int edge;
346
347 /*
e8708ef7
MP
348 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
349 * 0 0 10 10 1 1
350 * 0 1 10 10 0 0
351 * 1 0 11 11 0 0
352 * 1 1 11 11 1 1
8051effc 353 */
01cfef57
GU
354 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
355 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
356 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
3110628d 357 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
9cce882b 358 if (spi_controller_is_slave(p->master)) {
cf9e4784 359 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
9cce882b
GU
360 } else {
361 sh_msiof_write(p, TMDR1,
362 tmp | MDR1_TRMD | TMDR1_PCON |
363 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
364 }
a6802cc0 365 if (p->master->flags & SPI_MASTER_MUST_TX) {
beb74bb0
GU
366 /* These bits are reserved if RX needs TX */
367 tmp &= ~0x0000ffff;
368 }
01cfef57 369 sh_msiof_write(p, RMDR1, tmp);
8051effc 370
01cfef57
GU
371 tmp = 0;
372 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
373 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
8051effc 374
e2dbf5eb 375 edge = cpol ^ !cpha;
8051effc 376
01cfef57
GU
377 tmp |= edge << CTR_TEDG_SHIFT;
378 tmp |= edge << CTR_REDG_SHIFT;
379 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
8051effc
MD
380 sh_msiof_write(p, CTR, tmp);
381}
382
383static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
384 const void *tx_buf, void *rx_buf,
e2dbf5eb 385 u32 bits, u32 words)
8051effc 386{
01cfef57 387 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
8051effc 388
a6802cc0 389 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
8051effc
MD
390 sh_msiof_write(p, TMDR2, dr2);
391 else
01cfef57 392 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
8051effc
MD
393
394 if (rx_buf)
395 sh_msiof_write(p, RMDR2, dr2);
8051effc
MD
396}
397
398static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
399{
400 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
401}
402
403static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
404 const void *tx_buf, int words, int fs)
405{
e2dbf5eb 406 const u8 *buf_8 = tx_buf;
8051effc
MD
407 int k;
408
409 for (k = 0; k < words; k++)
410 sh_msiof_write(p, TFDR, buf_8[k] << fs);
411}
412
413static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
414 const void *tx_buf, int words, int fs)
415{
e2dbf5eb 416 const u16 *buf_16 = tx_buf;
8051effc
MD
417 int k;
418
419 for (k = 0; k < words; k++)
420 sh_msiof_write(p, TFDR, buf_16[k] << fs);
421}
422
423static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
424 const void *tx_buf, int words, int fs)
425{
e2dbf5eb 426 const u16 *buf_16 = tx_buf;
8051effc
MD
427 int k;
428
429 for (k = 0; k < words; k++)
430 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
431}
432
433static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
434 const void *tx_buf, int words, int fs)
435{
e2dbf5eb 436 const u32 *buf_32 = tx_buf;
8051effc
MD
437 int k;
438
439 for (k = 0; k < words; k++)
440 sh_msiof_write(p, TFDR, buf_32[k] << fs);
441}
442
443static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
444 const void *tx_buf, int words, int fs)
445{
e2dbf5eb 446 const u32 *buf_32 = tx_buf;
8051effc
MD
447 int k;
448
449 for (k = 0; k < words; k++)
450 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
451}
452
9dabb3f3
GL
453static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
454 const void *tx_buf, int words, int fs)
455{
456 const u32 *buf_32 = tx_buf;
457 int k;
458
459 for (k = 0; k < words; k++)
460 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
461}
462
463static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
464 const void *tx_buf, int words, int fs)
465{
466 const u32 *buf_32 = tx_buf;
467 int k;
468
469 for (k = 0; k < words; k++)
470 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
471}
472
8051effc
MD
473static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
474 void *rx_buf, int words, int fs)
475{
e2dbf5eb 476 u8 *buf_8 = rx_buf;
8051effc
MD
477 int k;
478
479 for (k = 0; k < words; k++)
480 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
481}
482
483static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
484 void *rx_buf, int words, int fs)
485{
e2dbf5eb 486 u16 *buf_16 = rx_buf;
8051effc
MD
487 int k;
488
489 for (k = 0; k < words; k++)
490 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
491}
492
493static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
494 void *rx_buf, int words, int fs)
495{
e2dbf5eb 496 u16 *buf_16 = rx_buf;
8051effc
MD
497 int k;
498
499 for (k = 0; k < words; k++)
500 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
501}
502
503static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
504 void *rx_buf, int words, int fs)
505{
e2dbf5eb 506 u32 *buf_32 = rx_buf;
8051effc
MD
507 int k;
508
509 for (k = 0; k < words; k++)
510 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
511}
512
513static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
514 void *rx_buf, int words, int fs)
515{
e2dbf5eb 516 u32 *buf_32 = rx_buf;
8051effc
MD
517 int k;
518
519 for (k = 0; k < words; k++)
520 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
521}
522
9dabb3f3
GL
523static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
524 void *rx_buf, int words, int fs)
525{
526 u32 *buf_32 = rx_buf;
527 int k;
528
529 for (k = 0; k < words; k++)
530 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
531}
532
533static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
534 void *rx_buf, int words, int fs)
535{
536 u32 *buf_32 = rx_buf;
537 int k;
538
539 for (k = 0; k < words; k++)
540 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
541}
542
8d19534a 543static int sh_msiof_spi_setup(struct spi_device *spi)
8051effc 544{
8d19534a 545 struct device_node *np = spi->master->dev.of_node;
c833ff73 546 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
7ff0b53c 547 u32 clr, set, tmp;
01576056 548
8d19534a
GU
549 if (!np) {
550 /*
551 * Use spi->controller_data for CS (same strategy as spi_gpio),
552 * if any. otherwise let HW control CS
553 */
554 spi->cs_gpio = (uintptr_t)spi->controller_data;
555 }
8051effc 556
b8761434
GU
557 if (gpio_is_valid(spi->cs_gpio)) {
558 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
7ff0b53c
GU
559 return 0;
560 }
8051effc 561
7ff0b53c
GU
562 if (spi_controller_is_slave(p->master))
563 return 0;
8051effc 564
7ff0b53c
GU
565 if (p->native_cs_inited &&
566 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
567 return 0;
01576056 568
7ff0b53c
GU
569 /* Configure native chip select mode/polarity early */
570 clr = MDR1_SYNCMD_MASK;
0921e11e 571 set = MDR1_SYNCMD_SPI;
7ff0b53c
GU
572 if (spi->mode & SPI_CS_HIGH)
573 clr |= BIT(MDR1_SYNCAC_SHIFT);
574 else
575 set |= BIT(MDR1_SYNCAC_SHIFT);
576 pm_runtime_get_sync(&p->pdev->dev);
577 tmp = sh_msiof_read(p, TMDR1) & ~clr;
0921e11e
GU
578 sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
579 tmp = sh_msiof_read(p, RMDR1) & ~clr;
580 sh_msiof_write(p, RMDR1, tmp | set);
c8935ef0 581 pm_runtime_put(&p->pdev->dev);
7ff0b53c
GU
582 p->native_cs_high = spi->mode & SPI_CS_HIGH;
583 p->native_cs_inited = true;
1bd6363b 584 return 0;
8051effc
MD
585}
586
c833ff73
GU
587static int sh_msiof_prepare_message(struct spi_master *master,
588 struct spi_message *msg)
8051effc 589{
c833ff73
GU
590 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
591 const struct spi_device *spi = msg->spi;
b8761434 592 u32 ss, cs_high;
8051effc 593
c833ff73 594 /* Configure pins before asserting CS */
b8761434
GU
595 if (gpio_is_valid(spi->cs_gpio)) {
596 ss = p->unused_ss;
597 cs_high = p->native_cs_high;
598 } else {
599 ss = spi->chip_select;
600 cs_high = !!(spi->mode & SPI_CS_HIGH);
601 }
602 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
c833ff73
GU
603 !!(spi->mode & SPI_CPHA),
604 !!(spi->mode & SPI_3WIRE),
b8761434 605 !!(spi->mode & SPI_LSB_FIRST), cs_high);
c833ff73 606 return 0;
8051effc
MD
607}
608
76c02e71
GU
609static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
610{
cf9e4784
HN
611 bool slave = spi_controller_is_slave(p->master);
612 int ret = 0;
76c02e71
GU
613
614 /* setup clock and rx/tx signals */
cf9e4784
HN
615 if (!slave)
616 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
76c02e71
GU
617 if (rx_buf && !ret)
618 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
619 if (!ret)
620 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
621
622 /* start by setting frame bit */
cf9e4784 623 if (!ret && !slave)
76c02e71
GU
624 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
625
626 return ret;
627}
628
629static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
630{
cf9e4784
HN
631 bool slave = spi_controller_is_slave(p->master);
632 int ret = 0;
76c02e71
GU
633
634 /* shut down frame, rx/tx and clock signals */
cf9e4784
HN
635 if (!slave)
636 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
76c02e71
GU
637 if (!ret)
638 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
639 if (rx_buf && !ret)
640 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
cf9e4784 641 if (!ret && !slave)
76c02e71
GU
642 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
643
644 return ret;
645}
646
cf9e4784
HN
647static int sh_msiof_slave_abort(struct spi_master *master)
648{
649 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
650
651 p->slave_aborted = true;
652 complete(&p->done);
08ba7ae3 653 complete(&p->done_txdma);
cf9e4784
HN
654 return 0;
655}
656
08ba7ae3
GU
657static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
658 struct completion *x)
cf9e4784
HN
659{
660 if (spi_controller_is_slave(p->master)) {
08ba7ae3 661 if (wait_for_completion_interruptible(x) ||
cf9e4784
HN
662 p->slave_aborted) {
663 dev_dbg(&p->pdev->dev, "interrupted\n");
664 return -EINTR;
665 }
666 } else {
08ba7ae3 667 if (!wait_for_completion_timeout(x, HZ)) {
cf9e4784
HN
668 dev_err(&p->pdev->dev, "timeout\n");
669 return -ETIMEDOUT;
670 }
671 }
672
673 return 0;
674}
675
8051effc
MD
676static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
677 void (*tx_fifo)(struct sh_msiof_spi_priv *,
678 const void *, int, int),
679 void (*rx_fifo)(struct sh_msiof_spi_priv *,
680 void *, int, int),
681 const void *tx_buf, void *rx_buf,
682 int words, int bits)
683{
684 int fifo_shift;
685 int ret;
686
687 /* limit maximum word transfer to rx/tx fifo size */
688 if (tx_buf)
689 words = min_t(int, words, p->tx_fifo_size);
690 if (rx_buf)
691 words = min_t(int, words, p->rx_fifo_size);
692
693 /* the fifo contents need shifting */
694 fifo_shift = 32 - bits;
695
b0d0ce8b
GU
696 /* default FIFO watermarks for PIO */
697 sh_msiof_write(p, FCTR, 0);
698
8051effc
MD
699 /* setup msiof transfer mode registers */
700 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
b0d0ce8b 701 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
8051effc
MD
702
703 /* write tx fifo */
704 if (tx_buf)
705 tx_fifo(p, tx_buf, words, fifo_shift);
706
16735d02 707 reinit_completion(&p->done);
cf9e4784 708 p->slave_aborted = false;
76c02e71
GU
709
710 ret = sh_msiof_spi_start(p, rx_buf);
8051effc
MD
711 if (ret) {
712 dev_err(&p->pdev->dev, "failed to start hardware\n");
75b82e23 713 goto stop_ier;
8051effc
MD
714 }
715
716 /* wait for tx fifo to be emptied / rx fifo to be filled */
08ba7ae3 717 ret = sh_msiof_wait_for_completion(p, &p->done);
cf9e4784 718 if (ret)
75b82e23 719 goto stop_reset;
8051effc
MD
720
721 /* read rx fifo */
722 if (rx_buf)
723 rx_fifo(p, rx_buf, words, fifo_shift);
724
725 /* clear status bits */
726 sh_msiof_reset_str(p);
727
76c02e71 728 ret = sh_msiof_spi_stop(p, rx_buf);
8051effc
MD
729 if (ret) {
730 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
75b82e23 731 return ret;
8051effc
MD
732 }
733
734 return words;
735
75b82e23
GU
736stop_reset:
737 sh_msiof_reset_str(p);
738 sh_msiof_spi_stop(p, rx_buf);
739stop_ier:
8051effc
MD
740 sh_msiof_write(p, IER, 0);
741 return ret;
742}
743
b0d0ce8b
GU
744static void sh_msiof_dma_complete(void *arg)
745{
08ba7ae3 746 complete(arg);
b0d0ce8b
GU
747}
748
749static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
750 void *rx, unsigned int len)
751{
752 u32 ier_bits = 0;
753 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
754 dma_cookie_t cookie;
755 int ret;
756
3e81b592 757 /* First prepare and submit the DMA request(s), as this may fail */
b0d0ce8b
GU
758 if (rx) {
759 ier_bits |= IER_RDREQE | IER_RDMAE;
760 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
da779513 761 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
b0d0ce8b 762 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
a5e7c719
GU
763 if (!desc_rx)
764 return -EAGAIN;
b0d0ce8b 765
b0d0ce8b 766 desc_rx->callback = sh_msiof_dma_complete;
08ba7ae3 767 desc_rx->callback_param = &p->done;
b0d0ce8b 768 cookie = dmaengine_submit(desc_rx);
a5e7c719
GU
769 if (dma_submit_error(cookie))
770 return cookie;
b0d0ce8b
GU
771 }
772
773 if (tx) {
3e81b592
GU
774 ier_bits |= IER_TDREQE | IER_TDMAE;
775 dma_sync_single_for_device(p->master->dma_tx->device->dev,
776 p->tx_dma_addr, len, DMA_TO_DEVICE);
777 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
da779513 778 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
3e81b592
GU
779 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
780 if (!desc_tx) {
781 ret = -EAGAIN;
782 goto no_dma_tx;
783 }
784
08ba7ae3
GU
785 desc_tx->callback = sh_msiof_dma_complete;
786 desc_tx->callback_param = &p->done_txdma;
b0d0ce8b
GU
787 cookie = dmaengine_submit(desc_tx);
788 if (dma_submit_error(cookie)) {
789 ret = cookie;
3e81b592 790 goto no_dma_tx;
b0d0ce8b 791 }
b0d0ce8b
GU
792 }
793
3e81b592
GU
794 /* 1 stage FIFO watermarks for DMA */
795 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
796
797 /* setup msiof transfer mode registers (32-bit words) */
798 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
799
800 sh_msiof_write(p, IER, ier_bits);
801
802 reinit_completion(&p->done);
08ba7ae3
GU
803 if (tx)
804 reinit_completion(&p->done_txdma);
cf9e4784 805 p->slave_aborted = false;
3e81b592
GU
806
807 /* Now start DMA */
3e81b592 808 if (rx)
7a9f957b
GU
809 dma_async_issue_pending(p->master->dma_rx);
810 if (tx)
3e81b592
GU
811 dma_async_issue_pending(p->master->dma_tx);
812
b0d0ce8b
GU
813 ret = sh_msiof_spi_start(p, rx);
814 if (ret) {
815 dev_err(&p->pdev->dev, "failed to start hardware\n");
3e81b592 816 goto stop_dma;
b0d0ce8b
GU
817 }
818
08ba7ae3
GU
819 if (tx) {
820 /* wait for tx DMA completion */
821 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
822 if (ret)
823 goto stop_reset;
824 }
b0d0ce8b 825
08ba7ae3
GU
826 if (rx) {
827 /* wait for rx DMA completion */
828 ret = sh_msiof_wait_for_completion(p, &p->done);
829 if (ret)
830 goto stop_reset;
89434c3c 831
08ba7ae3
GU
832 sh_msiof_write(p, IER, 0);
833 } else {
89434c3c 834 /* wait for tx fifo to be emptied */
08ba7ae3
GU
835 sh_msiof_write(p, IER, IER_TEOFE);
836 ret = sh_msiof_wait_for_completion(p, &p->done);
89434c3c
GU
837 if (ret)
838 goto stop_reset;
839 }
840
b0d0ce8b
GU
841 /* clear status bits */
842 sh_msiof_reset_str(p);
843
844 ret = sh_msiof_spi_stop(p, rx);
845 if (ret) {
846 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
847 return ret;
848 }
849
850 if (rx)
5dabcf2f
GU
851 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
852 p->rx_dma_addr, len,
b0d0ce8b
GU
853 DMA_FROM_DEVICE);
854
855 return 0;
856
857stop_reset:
858 sh_msiof_reset_str(p);
859 sh_msiof_spi_stop(p, rx);
3e81b592 860stop_dma:
b0d0ce8b
GU
861 if (tx)
862 dmaengine_terminate_all(p->master->dma_tx);
3e81b592 863no_dma_tx:
b0d0ce8b
GU
864 if (rx)
865 dmaengine_terminate_all(p->master->dma_rx);
b0d0ce8b
GU
866 sh_msiof_write(p, IER, 0);
867 return ret;
868}
869
870static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
871{
872 /* src or dst can be unaligned, but not both */
873 if ((unsigned long)src & 3) {
874 while (words--) {
875 *dst++ = swab32(get_unaligned(src));
876 src++;
877 }
878 } else if ((unsigned long)dst & 3) {
879 while (words--) {
880 put_unaligned(swab32(*src++), dst);
881 dst++;
882 }
883 } else {
884 while (words--)
885 *dst++ = swab32(*src++);
886 }
887}
888
889static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
890{
891 /* src or dst can be unaligned, but not both */
892 if ((unsigned long)src & 3) {
893 while (words--) {
894 *dst++ = swahw32(get_unaligned(src));
895 src++;
896 }
897 } else if ((unsigned long)dst & 3) {
898 while (words--) {
899 put_unaligned(swahw32(*src++), dst);
900 dst++;
901 }
902 } else {
903 while (words--)
904 *dst++ = swahw32(*src++);
905 }
906}
907
908static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
909{
910 memcpy(dst, src, words * 4);
911}
912
1bd6363b
GU
913static int sh_msiof_transfer_one(struct spi_master *master,
914 struct spi_device *spi,
915 struct spi_transfer *t)
8051effc 916{
1bd6363b 917 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
b0d0ce8b 918 void (*copy32)(u32 *, const u32 *, unsigned int);
8051effc
MD
919 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
920 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0312d591
GU
921 const void *tx_buf = t->tx_buf;
922 void *rx_buf = t->rx_buf;
923 unsigned int len = t->len;
924 unsigned int bits = t->bits_per_word;
925 unsigned int bytes_per_word;
926 unsigned int words;
8051effc 927 int n;
9dabb3f3 928 bool swab;
b0d0ce8b
GU
929 int ret;
930
931 /* setup clocks (clock already enabled in chipselect()) */
cf9e4784
HN
932 if (!spi_controller_is_slave(p->master))
933 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
b0d0ce8b
GU
934
935 while (master->dma_tx && len > 15) {
936 /*
937 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
938 * words, with byte resp. word swapping.
939 */
fe78d0b7
KM
940 unsigned int l = 0;
941
942 if (tx_buf)
943 l = min(len, p->tx_fifo_size * 4);
944 if (rx_buf)
945 l = min(len, p->rx_fifo_size * 4);
b0d0ce8b
GU
946
947 if (bits <= 8) {
948 if (l & 3)
949 break;
950 copy32 = copy_bswap32;
951 } else if (bits <= 16) {
36735783 952 if (l & 3)
b0d0ce8b
GU
953 break;
954 copy32 = copy_wswap32;
955 } else {
956 copy32 = copy_plain32;
957 }
958
959 if (tx_buf)
960 copy32(p->tx_dma_page, tx_buf, l / 4);
8051effc 961
b0d0ce8b 962 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
279d2378 963 if (ret == -EAGAIN) {
5d8e614f
GU
964 dev_warn_once(&p->pdev->dev,
965 "DMA not available, falling back to PIO\n");
279d2378
GU
966 break;
967 }
b0d0ce8b
GU
968 if (ret)
969 return ret;
970
971 if (rx_buf) {
972 copy32(rx_buf, p->rx_dma_page, l / 4);
973 rx_buf += l;
974 }
975 if (tx_buf)
976 tx_buf += l;
977
978 len -= l;
979 if (!len)
980 return 0;
981 }
8051effc 982
0312d591 983 if (bits <= 8 && len > 15 && !(len & 3)) {
9dabb3f3
GL
984 bits = 32;
985 swab = true;
986 } else {
987 swab = false;
988 }
989
8051effc
MD
990 /* setup bytes per word and fifo read/write functions */
991 if (bits <= 8) {
992 bytes_per_word = 1;
993 tx_fifo = sh_msiof_spi_write_fifo_8;
994 rx_fifo = sh_msiof_spi_read_fifo_8;
995 } else if (bits <= 16) {
996 bytes_per_word = 2;
0312d591 997 if ((unsigned long)tx_buf & 0x01)
8051effc
MD
998 tx_fifo = sh_msiof_spi_write_fifo_16u;
999 else
1000 tx_fifo = sh_msiof_spi_write_fifo_16;
1001
0312d591 1002 if ((unsigned long)rx_buf & 0x01)
8051effc
MD
1003 rx_fifo = sh_msiof_spi_read_fifo_16u;
1004 else
1005 rx_fifo = sh_msiof_spi_read_fifo_16;
9dabb3f3
GL
1006 } else if (swab) {
1007 bytes_per_word = 4;
0312d591 1008 if ((unsigned long)tx_buf & 0x03)
9dabb3f3
GL
1009 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1010 else
1011 tx_fifo = sh_msiof_spi_write_fifo_s32;
1012
0312d591 1013 if ((unsigned long)rx_buf & 0x03)
9dabb3f3
GL
1014 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1015 else
1016 rx_fifo = sh_msiof_spi_read_fifo_s32;
8051effc
MD
1017 } else {
1018 bytes_per_word = 4;
0312d591 1019 if ((unsigned long)tx_buf & 0x03)
8051effc
MD
1020 tx_fifo = sh_msiof_spi_write_fifo_32u;
1021 else
1022 tx_fifo = sh_msiof_spi_write_fifo_32;
1023
0312d591 1024 if ((unsigned long)rx_buf & 0x03)
8051effc
MD
1025 rx_fifo = sh_msiof_spi_read_fifo_32u;
1026 else
1027 rx_fifo = sh_msiof_spi_read_fifo_32;
1028 }
1029
8051effc 1030 /* transfer in fifo sized chunks */
0312d591
GU
1031 words = len / bytes_per_word;
1032
1033 while (words > 0) {
1034 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
8051effc
MD
1035 words, bits);
1036 if (n < 0)
75b82e23 1037 return n;
8051effc 1038
0312d591
GU
1039 if (tx_buf)
1040 tx_buf += n * bytes_per_word;
1041 if (rx_buf)
1042 rx_buf += n * bytes_per_word;
8051effc
MD
1043 words -= n;
1044 }
1045
8051effc
MD
1046 return 0;
1047}
1048
50a7e23f
GU
1049static const struct sh_msiof_chipdata sh_data = {
1050 .tx_fifo_size = 64,
1051 .rx_fifo_size = 64,
beb74bb0 1052 .master_flags = 0,
51093cba 1053 .min_div_pow = 0,
61a8dec5
GU
1054};
1055
1056static const struct sh_msiof_chipdata rcar_gen2_data = {
1057 .tx_fifo_size = 64,
1058 .rx_fifo_size = 64,
1059 .master_flags = SPI_MASTER_MUST_TX,
51093cba 1060 .min_div_pow = 0,
beb74bb0
GU
1061};
1062
61a8dec5 1063static const struct sh_msiof_chipdata rcar_gen3_data = {
beb74bb0 1064 .tx_fifo_size = 64,
fe78d0b7 1065 .rx_fifo_size = 64,
beb74bb0 1066 .master_flags = SPI_MASTER_MUST_TX,
51093cba 1067 .min_div_pow = 1,
50a7e23f
GU
1068};
1069
1070static const struct of_device_id sh_msiof_match[] = {
50a7e23f 1071 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
bdacfc7b
FC
1072 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1073 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
61a8dec5
GU
1074 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1075 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1076 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1077 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1078 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1079 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1080 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1081 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
264c3e8d 1082 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
50a7e23f
GU
1083 {},
1084};
1085MODULE_DEVICE_TABLE(of, sh_msiof_match);
1086
cf9c86ef
BH
1087#ifdef CONFIG_OF
1088static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1089{
1090 struct sh_msiof_spi_info *info;
1091 struct device_node *np = dev->of_node;
32d3b2d1 1092 u32 num_cs = 1;
cf9c86ef
BH
1093
1094 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1e8231b7 1095 if (!info)
cf9c86ef 1096 return NULL;
cf9c86ef 1097
cf9e4784
HN
1098 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1099 : MSIOF_SPI_MASTER;
1100
cf9c86ef 1101 /* Parse the MSIOF properties */
cf9e4784
HN
1102 if (info->mode == MSIOF_SPI_MASTER)
1103 of_property_read_u32(np, "num-cs", &num_cs);
cf9c86ef
BH
1104 of_property_read_u32(np, "renesas,tx-fifo-size",
1105 &info->tx_fifo_override);
1106 of_property_read_u32(np, "renesas,rx-fifo-size",
1107 &info->rx_fifo_override);
3110628d
YS
1108 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1109 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
cf9c86ef
BH
1110
1111 info->num_chipselect = num_cs;
1112
1113 return info;
1114}
1115#else
1116static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1117{
1118 return NULL;
1119}
1120#endif
1121
b8761434
GU
1122static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1123{
1124 struct device *dev = &p->pdev->dev;
1125 unsigned int used_ss_mask = 0;
1126 unsigned int cs_gpios = 0;
1127 unsigned int num_cs, i;
1128 int ret;
1129
1130 ret = gpiod_count(dev, "cs");
1131 if (ret <= 0)
1132 return 0;
1133
1134 num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1135 for (i = 0; i < num_cs; i++) {
1136 struct gpio_desc *gpiod;
1137
1138 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1139 if (!IS_ERR(gpiod)) {
1140 cs_gpios++;
1141 continue;
1142 }
1143
1144 if (PTR_ERR(gpiod) != -ENOENT)
1145 return PTR_ERR(gpiod);
1146
1147 if (i >= MAX_SS) {
1148 dev_err(dev, "Invalid native chip select %d\n", i);
1149 return -EINVAL;
1150 }
1151 used_ss_mask |= BIT(i);
1152 }
1153 p->unused_ss = ffz(used_ss_mask);
1154 if (cs_gpios && p->unused_ss >= MAX_SS) {
1155 dev_err(dev, "No unused native chip select available\n");
1156 return -EINVAL;
1157 }
1158 return 0;
1159}
1160
b0d0ce8b
GU
1161static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1162 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1163{
1164 dma_cap_mask_t mask;
1165 struct dma_chan *chan;
1166 struct dma_slave_config cfg;
1167 int ret;
1168
1169 dma_cap_zero(mask);
1170 dma_cap_set(DMA_SLAVE, mask);
1171
a6be4de6
GU
1172 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1173 (void *)(unsigned long)id, dev,
1174 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
b0d0ce8b 1175 if (!chan) {
a6be4de6 1176 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
b0d0ce8b
GU
1177 return NULL;
1178 }
1179
1180 memset(&cfg, 0, sizeof(cfg));
b0d0ce8b 1181 cfg.direction = dir;
52fba2b8 1182 if (dir == DMA_MEM_TO_DEV) {
b0d0ce8b 1183 cfg.dst_addr = port_addr;
52fba2b8
GU
1184 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1185 } else {
b0d0ce8b 1186 cfg.src_addr = port_addr;
52fba2b8
GU
1187 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1188 }
b0d0ce8b
GU
1189
1190 ret = dmaengine_slave_config(chan, &cfg);
1191 if (ret) {
1192 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1193 dma_release_channel(chan);
1194 return NULL;
1195 }
1196
1197 return chan;
1198}
1199
1200static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1201{
1202 struct platform_device *pdev = p->pdev;
1203 struct device *dev = &pdev->dev;
1204 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
a6be4de6 1205 unsigned int dma_tx_id, dma_rx_id;
b0d0ce8b
GU
1206 const struct resource *res;
1207 struct spi_master *master;
5dabcf2f 1208 struct device *tx_dev, *rx_dev;
b0d0ce8b 1209
a6be4de6
GU
1210 if (dev->of_node) {
1211 /* In the OF case we will get the slave IDs from the DT */
1212 dma_tx_id = 0;
1213 dma_rx_id = 0;
1214 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1215 dma_tx_id = info->dma_tx_id;
1216 dma_rx_id = info->dma_rx_id;
1217 } else {
1218 /* The driver assumes no error */
1219 return 0;
1220 }
b0d0ce8b
GU
1221
1222 /* The DMA engine uses the second register set, if present */
1223 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1224 if (!res)
1225 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1226
1227 master = p->master;
1228 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
a6be4de6 1229 dma_tx_id,
b0d0ce8b
GU
1230 res->start + TFDR);
1231 if (!master->dma_tx)
1232 return -ENODEV;
1233
1234 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
a6be4de6 1235 dma_rx_id,
b0d0ce8b
GU
1236 res->start + RFDR);
1237 if (!master->dma_rx)
1238 goto free_tx_chan;
1239
1240 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1241 if (!p->tx_dma_page)
1242 goto free_rx_chan;
1243
1244 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1245 if (!p->rx_dma_page)
1246 goto free_tx_page;
1247
5dabcf2f
GU
1248 tx_dev = master->dma_tx->device->dev;
1249 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
b0d0ce8b 1250 DMA_TO_DEVICE);
5dabcf2f 1251 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
b0d0ce8b
GU
1252 goto free_rx_page;
1253
5dabcf2f
GU
1254 rx_dev = master->dma_rx->device->dev;
1255 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
b0d0ce8b 1256 DMA_FROM_DEVICE);
5dabcf2f 1257 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
b0d0ce8b
GU
1258 goto unmap_tx_page;
1259
1260 dev_info(dev, "DMA available");
1261 return 0;
1262
1263unmap_tx_page:
5dabcf2f 1264 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1265free_rx_page:
1266 free_page((unsigned long)p->rx_dma_page);
1267free_tx_page:
1268 free_page((unsigned long)p->tx_dma_page);
1269free_rx_chan:
1270 dma_release_channel(master->dma_rx);
1271free_tx_chan:
1272 dma_release_channel(master->dma_tx);
1273 master->dma_tx = NULL;
1274 return -ENODEV;
1275}
1276
1277static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1278{
1279 struct spi_master *master = p->master;
b0d0ce8b
GU
1280
1281 if (!master->dma_tx)
1282 return;
1283
5dabcf2f
GU
1284 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1285 PAGE_SIZE, DMA_FROM_DEVICE);
1286 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1287 PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1288 free_page((unsigned long)p->rx_dma_page);
1289 free_page((unsigned long)p->tx_dma_page);
1290 dma_release_channel(master->dma_rx);
1291 dma_release_channel(master->dma_tx);
1292}
1293
8051effc
MD
1294static int sh_msiof_spi_probe(struct platform_device *pdev)
1295{
1296 struct resource *r;
1297 struct spi_master *master;
a6802cc0 1298 const struct sh_msiof_chipdata *chipdata;
cf9e4784 1299 struct sh_msiof_spi_info *info;
8051effc 1300 struct sh_msiof_spi_priv *p;
8051effc
MD
1301 int i;
1302 int ret;
1303
ecb1596a
GU
1304 chipdata = of_device_get_match_data(&pdev->dev);
1305 if (chipdata) {
cf9e4784 1306 info = sh_msiof_spi_parse_dt(&pdev->dev);
50a7e23f 1307 } else {
a6802cc0 1308 chipdata = (const void *)pdev->id_entry->driver_data;
cf9e4784 1309 info = dev_get_platdata(&pdev->dev);
50a7e23f 1310 }
cf9c86ef 1311
cf9e4784 1312 if (!info) {
cf9c86ef 1313 dev_err(&pdev->dev, "failed to obtain device info\n");
cf9e4784 1314 return -ENXIO;
cf9c86ef
BH
1315 }
1316
cf9e4784
HN
1317 if (info->mode == MSIOF_SPI_SLAVE)
1318 master = spi_alloc_slave(&pdev->dev,
1319 sizeof(struct sh_msiof_spi_priv));
1320 else
1321 master = spi_alloc_master(&pdev->dev,
1322 sizeof(struct sh_msiof_spi_priv));
1323 if (master == NULL)
1324 return -ENOMEM;
1325
1326 p = spi_master_get_devdata(master);
1327
1328 platform_set_drvdata(pdev, p);
1329 p->master = master;
1330 p->info = info;
51093cba 1331 p->min_div_pow = chipdata->min_div_pow;
cf9e4784 1332
8051effc 1333 init_completion(&p->done);
08ba7ae3 1334 init_completion(&p->done_txdma);
8051effc 1335
b4dd05de 1336 p->clk = devm_clk_get(&pdev->dev, NULL);
8051effc 1337 if (IS_ERR(p->clk)) {
078b6ead 1338 dev_err(&pdev->dev, "cannot get clock\n");
8051effc
MD
1339 ret = PTR_ERR(p->clk);
1340 goto err1;
1341 }
1342
8051effc 1343 i = platform_get_irq(pdev, 0);
b4dd05de
LP
1344 if (i < 0) {
1345 dev_err(&pdev->dev, "cannot get platform IRQ\n");
8051effc 1346 ret = -ENOENT;
b4dd05de 1347 goto err1;
8051effc 1348 }
b4dd05de
LP
1349
1350 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1351 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1352 if (IS_ERR(p->mapbase)) {
1353 ret = PTR_ERR(p->mapbase);
1354 goto err1;
8051effc
MD
1355 }
1356
b4dd05de
LP
1357 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1358 dev_name(&pdev->dev), p);
8051effc
MD
1359 if (ret) {
1360 dev_err(&pdev->dev, "unable to request irq\n");
b4dd05de 1361 goto err1;
8051effc
MD
1362 }
1363
1364 p->pdev = pdev;
1365 pm_runtime_enable(&pdev->dev);
1366
8051effc 1367 /* Platform data may override FIFO sizes */
a6802cc0
GU
1368 p->tx_fifo_size = chipdata->tx_fifo_size;
1369 p->rx_fifo_size = chipdata->rx_fifo_size;
8051effc
MD
1370 if (p->info->tx_fifo_override)
1371 p->tx_fifo_size = p->info->tx_fifo_override;
1372 if (p->info->rx_fifo_override)
1373 p->rx_fifo_size = p->info->rx_fifo_override;
1374
b8761434
GU
1375 /* Setup GPIO chip selects */
1376 master->num_chipselect = p->info->num_chipselect;
1377 ret = sh_msiof_get_cs_gpios(p);
1378 if (ret)
1379 goto err1;
1380
1bd6363b 1381 /* init master code */
8051effc
MD
1382 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1383 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
a6802cc0 1384 master->flags = chipdata->master_flags;
8051effc 1385 master->bus_num = pdev->id;
f7c05e83 1386 master->dev.of_node = pdev->dev.of_node;
8d19534a 1387 master->setup = sh_msiof_spi_setup;
c833ff73 1388 master->prepare_message = sh_msiof_prepare_message;
cf9e4784 1389 master->slave_abort = sh_msiof_slave_abort;
2416289c 1390 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
e2a0ba54 1391 master->auto_runtime_pm = true;
1bd6363b 1392 master->transfer_one = sh_msiof_transfer_one;
8051effc 1393
b0d0ce8b
GU
1394 ret = sh_msiof_request_dma(p);
1395 if (ret < 0)
1396 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1397
1bd6363b
GU
1398 ret = devm_spi_register_master(&pdev->dev, master);
1399 if (ret < 0) {
1400 dev_err(&pdev->dev, "spi_register_master error.\n");
1401 goto err2;
1402 }
8051effc 1403
1bd6363b 1404 return 0;
8051effc 1405
1bd6363b 1406 err2:
b0d0ce8b 1407 sh_msiof_release_dma(p);
8051effc 1408 pm_runtime_disable(&pdev->dev);
8051effc
MD
1409 err1:
1410 spi_master_put(master);
8051effc
MD
1411 return ret;
1412}
1413
1414static int sh_msiof_spi_remove(struct platform_device *pdev)
1415{
b0d0ce8b
GU
1416 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1417
1418 sh_msiof_release_dma(p);
1bd6363b 1419 pm_runtime_disable(&pdev->dev);
1bd6363b 1420 return 0;
8051effc
MD
1421}
1422
3789c852 1423static const struct platform_device_id spi_driver_ids[] = {
50a7e23f 1424 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
cf9c86ef
BH
1425 {},
1426};
50a7e23f 1427MODULE_DEVICE_TABLE(platform, spi_driver_ids);
cf9c86ef 1428
8051effc
MD
1429static struct platform_driver sh_msiof_spi_drv = {
1430 .probe = sh_msiof_spi_probe,
1431 .remove = sh_msiof_spi_remove,
50a7e23f 1432 .id_table = spi_driver_ids,
8051effc
MD
1433 .driver = {
1434 .name = "spi_sh_msiof",
691ee4ed 1435 .of_match_table = of_match_ptr(sh_msiof_match),
8051effc
MD
1436 },
1437};
940ab889 1438module_platform_driver(sh_msiof_spi_drv);
8051effc
MD
1439
1440MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1441MODULE_AUTHOR("Magnus Damm");
1442MODULE_LICENSE("GPL v2");
1443MODULE_ALIAS("platform:spi_sh_msiof");