fbdev: imsttfb: Fix use after free bug in imsttfb_probe
[linux-block.git] / drivers / spi / spi-sh-msiof.c
CommitLineData
9135bac3 1// SPDX-License-Identifier: GPL-2.0
8051effc 2/*
35c35fd9 3 * SuperH MSIOF SPI Controller Interface
8051effc
MD
4 *
5 * Copyright (c) 2009 Magnus Damm
cf9e4784
HN
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8051effc
MD
8 */
9
e2dbf5eb
GL
10#include <linux/bitmap.h>
11#include <linux/clk.h>
12#include <linux/completion.h>
8051effc 13#include <linux/delay.h>
b0d0ce8b
GU
14#include <linux/dma-mapping.h>
15#include <linux/dmaengine.h>
e2dbf5eb 16#include <linux/err.h>
8051effc 17#include <linux/interrupt.h>
e2dbf5eb 18#include <linux/io.h>
9115b4d8 19#include <linux/iopoll.h>
e2dbf5eb 20#include <linux/kernel.h>
d7614de4 21#include <linux/module.h>
cf9c86ef 22#include <linux/of.h>
50a7e23f 23#include <linux/of_device.h>
8051effc 24#include <linux/platform_device.h>
8051effc 25#include <linux/pm_runtime.h>
b0d0ce8b 26#include <linux/sh_dma.h>
8051effc 27
e2dbf5eb 28#include <linux/spi/sh_msiof.h>
8051effc 29#include <linux/spi/spi.h>
8051effc 30
8051effc
MD
31#include <asm/unaligned.h>
32
50a7e23f 33struct sh_msiof_chipdata {
0e836c3b 34 u32 bits_per_word_mask;
50a7e23f
GU
35 u16 tx_fifo_size;
36 u16 rx_fifo_size;
35c35fd9 37 u16 ctlr_flags;
51093cba 38 u16 min_div_pow;
50a7e23f
GU
39};
40
8051effc 41struct sh_msiof_spi_priv {
35c35fd9 42 struct spi_controller *ctlr;
8051effc
MD
43 void __iomem *mapbase;
44 struct clk *clk;
45 struct platform_device *pdev;
46 struct sh_msiof_spi_info *info;
47 struct completion done;
08ba7ae3 48 struct completion done_txdma;
fe78d0b7
KM
49 unsigned int tx_fifo_size;
50 unsigned int rx_fifo_size;
51093cba 51 unsigned int min_div_pow;
b0d0ce8b
GU
52 void *tx_dma_page;
53 void *rx_dma_page;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
7ff0b53c
GU
56 bool native_cs_inited;
57 bool native_cs_high;
cf9e4784 58 bool slave_aborted;
8051effc
MD
59};
60
9cce882b
GU
61#define MAX_SS 3 /* Maximum number of native chip selects */
62
8ae7d442
KK
63#define SITMDR1 0x00 /* Transmit Mode Register 1 */
64#define SITMDR2 0x04 /* Transmit Mode Register 2 */
65#define SITMDR3 0x08 /* Transmit Mode Register 3 */
66#define SIRMDR1 0x10 /* Receive Mode Register 1 */
67#define SIRMDR2 0x14 /* Receive Mode Register 2 */
68#define SIRMDR3 0x18 /* Receive Mode Register 3 */
69#define SITSCR 0x20 /* Transmit Clock Select Register */
70#define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
71#define SICTR 0x28 /* Control Register */
72#define SIFCTR 0x30 /* FIFO Control Register */
73#define SISTR 0x40 /* Status Register */
74#define SIIER 0x44 /* Interrupt Enable Register */
75#define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
76#define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
77#define SITFDR 0x50 /* Transmit FIFO Data Register */
78#define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
79#define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
80#define SIRFDR 0x60 /* Receive FIFO Data Register */
81
82/* SITMDR1 and SIRMDR1 */
83#define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
84#define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
85#define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
86#define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
87#define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
88#define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
89#define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
90#define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
91#define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
92#define SIMDR1_FLD_SHIFT 2
93#define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
94/* SITMDR1 */
95#define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
96#define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
97#define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
98
99/* SITMDR2 and SIRMDR2 */
100#define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
101#define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
102#define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
103
104/* SITSCR and SIRSCR */
105#define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
106#define SISCR_BRPS(i) (((i) - 1) << 8)
107#define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
108#define SISCR_BRDV_DIV_2 0
109#define SISCR_BRDV_DIV_4 1
110#define SISCR_BRDV_DIV_8 2
111#define SISCR_BRDV_DIV_16 3
112#define SISCR_BRDV_DIV_32 4
113#define SISCR_BRDV_DIV_1 7
114
115/* SICTR */
116#define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
117#define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
118#define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
119#define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
120#define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
121#define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
122#define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
123#define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
124#define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
125#define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
126#define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
127#define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
128#define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
129#define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
130#define SICTR_TXE BIT(9) /* Transmit Enable */
131#define SICTR_RXE BIT(8) /* Receive Enable */
132#define SICTR_TXRST BIT(1) /* Transmit Reset */
133#define SICTR_RXRST BIT(0) /* Receive Reset */
134
135/* SIFCTR */
136#define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
137#define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
138#define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
139#define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
140#define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
141#define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
142#define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
143#define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
144#define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
145#define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
146#define SIFCTR_TFUA_SHIFT 20
147#define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
148#define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
149#define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
150#define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
151#define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
152#define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
153#define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
154#define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
155#define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
156#define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
157#define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
158#define SIFCTR_RFUA_SHIFT 4
159#define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
160
161/* SISTR */
162#define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
163#define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
164#define SISTR_TEOF BIT(23) /* Frame Transmission End */
165#define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
166#define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
167#define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
168#define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
169#define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
170#define SISTR_REOF BIT(7) /* Frame Reception End */
171#define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
172#define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
173#define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
174
175/* SIIER */
176#define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
177#define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
178#define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
179#define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
180#define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
181#define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
182#define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
183#define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
184#define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
185#define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
186#define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
187#define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
188#define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
189#define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
01cfef57 190
8051effc 191
e2dbf5eb 192static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
8051effc
MD
193{
194 switch (reg_offs) {
8ae7d442
KK
195 case SITSCR:
196 case SIRSCR:
8051effc
MD
197 return ioread16(p->mapbase + reg_offs);
198 default:
199 return ioread32(p->mapbase + reg_offs);
200 }
201}
202
203static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
e2dbf5eb 204 u32 value)
8051effc
MD
205{
206 switch (reg_offs) {
8ae7d442
KK
207 case SITSCR:
208 case SIRSCR:
8051effc
MD
209 iowrite16(value, p->mapbase + reg_offs);
210 break;
211 default:
212 iowrite32(value, p->mapbase + reg_offs);
213 break;
214 }
215}
216
217static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
e2dbf5eb 218 u32 clr, u32 set)
8051effc 219{
e2dbf5eb
GL
220 u32 mask = clr | set;
221 u32 data;
8051effc 222
8ae7d442 223 data = sh_msiof_read(p, SICTR);
8051effc
MD
224 data &= ~clr;
225 data |= set;
8ae7d442 226 sh_msiof_write(p, SICTR, data);
8051effc 227
8ae7d442 228 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
635bdb7a 229 (data & mask) == set, 1, 100);
8051effc
MD
230}
231
232static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
233{
234 struct sh_msiof_spi_priv *p = data;
235
236 /* just disable the interrupt and wake up */
8ae7d442 237 sh_msiof_write(p, SIIER, 0);
8051effc
MD
238 complete(&p->done);
239
240 return IRQ_HANDLED;
241}
242
fedd6940
GU
243static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
244{
8ae7d442 245 u32 mask = SICTR_TXRST | SICTR_RXRST;
fedd6940
GU
246 u32 data;
247
8ae7d442 248 data = sh_msiof_read(p, SICTR);
fedd6940 249 data |= mask;
8ae7d442 250 sh_msiof_write(p, SICTR, data);
fedd6940 251
8ae7d442 252 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
fedd6940
GU
253 100);
254}
255
51093cba 256static const u32 sh_msiof_spi_div_array[] = {
8ae7d442
KK
257 SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
258 SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
8051effc
MD
259};
260
261static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
9a133f7b 262 struct spi_transfer *t)
8051effc 263{
9a133f7b
GU
264 unsigned long parent_rate = clk_get_rate(p->clk);
265 unsigned int div_pow = p->min_div_pow;
266 u32 spi_hz = t->speed_hz;
51093cba 267 unsigned long div;
65d5665b 268 u32 brps, scr;
8051effc 269
51093cba
VZ
270 if (!spi_hz || !parent_rate) {
271 WARN(1, "Invalid clock rate parameters %lu and %u\n",
272 parent_rate, spi_hz);
273 return;
274 }
61a8dec5 275
51093cba
VZ
276 div = DIV_ROUND_UP(parent_rate, spi_hz);
277 if (div <= 1024) {
8ae7d442 278 /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
51093cba
VZ
279 if (!div_pow && div <= 32 && div > 2)
280 div_pow = 1;
281
282 if (div_pow)
283 brps = (div + 1) >> div_pow;
284 else
285 brps = div;
8051effc 286
51093cba
VZ
287 for (; brps > 32; div_pow++)
288 brps = (brps + 1) >> 1;
289 } else {
290 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
291 dev_err(&p->pdev->dev,
292 "Requested SPI transfer rate %d is too low\n", spi_hz);
293 div_pow = 5;
294 brps = 32;
295 }
8051effc 296
9a133f7b
GU
297 t->effective_speed_hz = parent_rate / (brps << div_pow);
298
8ae7d442
KK
299 scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
300 sh_msiof_write(p, SITSCR, scr);
35c35fd9 301 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
8ae7d442 302 sh_msiof_write(p, SIRSCR, scr);
8051effc
MD
303}
304
3110628d
YS
305static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
306{
307 /*
308 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
309 * b'000 : 0
310 * b'001 : 100
311 * b'010 : 200
312 * b'011 (SYNCDL only) : 300
313 * b'101 : 50
314 * b'110 : 150
315 */
316 if (dtdl_or_syncdl % 100)
317 return dtdl_or_syncdl / 100 + 5;
318 else
319 return dtdl_or_syncdl / 100;
320}
321
322static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
323{
324 u32 val;
325
326 if (!p->info)
327 return 0;
328
329 /* check if DTDL and SYNCDL is allowed value */
330 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
331 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
332 return 0;
333 }
334
335 /* check if the sum of DTDL and SYNCDL becomes an integer value */
336 if ((p->info->dtdl + p->info->syncdl) % 100) {
337 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
338 return 0;
339 }
340
8ae7d442
KK
341 val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
342 val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
3110628d
YS
343
344 return val;
345}
346
9cce882b 347static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
e2dbf5eb 348 u32 cpol, u32 cpha,
50a77998 349 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
8051effc 350{
e2dbf5eb 351 u32 tmp;
8051effc
MD
352 int edge;
353
354 /*
e8708ef7
MP
355 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
356 * 0 0 10 10 1 1
357 * 0 1 10 10 0 0
358 * 1 0 11 11 0 0
359 * 1 1 11 11 1 1
8051effc 360 */
8ae7d442
KK
361 tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
362 tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
363 tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
3110628d 364 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
35c35fd9 365 if (spi_controller_is_slave(p->ctlr)) {
8ae7d442 366 sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
9cce882b 367 } else {
8ae7d442
KK
368 sh_msiof_write(p, SITMDR1,
369 tmp | SIMDR1_TRMD | SITMDR1_PCON |
370 (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
9cce882b 371 }
35c35fd9 372 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
beb74bb0
GU
373 /* These bits are reserved if RX needs TX */
374 tmp &= ~0x0000ffff;
375 }
8ae7d442 376 sh_msiof_write(p, SIRMDR1, tmp);
8051effc 377
01cfef57 378 tmp = 0;
8ae7d442
KK
379 tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
380 tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
8051effc 381
e2dbf5eb 382 edge = cpol ^ !cpha;
8051effc 383
8ae7d442
KK
384 tmp |= edge << SICTR_TEDG_SHIFT;
385 tmp |= edge << SICTR_REDG_SHIFT;
386 tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
387 sh_msiof_write(p, SICTR, tmp);
8051effc
MD
388}
389
390static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
391 const void *tx_buf, void *rx_buf,
e2dbf5eb 392 u32 bits, u32 words)
8051effc 393{
8ae7d442 394 u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
8051effc 395
35c35fd9 396 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
8ae7d442 397 sh_msiof_write(p, SITMDR2, dr2);
8051effc 398 else
8ae7d442 399 sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
8051effc
MD
400
401 if (rx_buf)
8ae7d442 402 sh_msiof_write(p, SIRMDR2, dr2);
8051effc
MD
403}
404
405static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
406{
8ae7d442
KK
407 sh_msiof_write(p, SISTR,
408 sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
8051effc
MD
409}
410
411static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
412 const void *tx_buf, int words, int fs)
413{
e2dbf5eb 414 const u8 *buf_8 = tx_buf;
8051effc
MD
415 int k;
416
417 for (k = 0; k < words; k++)
8ae7d442 418 sh_msiof_write(p, SITFDR, buf_8[k] << fs);
8051effc
MD
419}
420
421static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
422 const void *tx_buf, int words, int fs)
423{
e2dbf5eb 424 const u16 *buf_16 = tx_buf;
8051effc
MD
425 int k;
426
427 for (k = 0; k < words; k++)
8ae7d442 428 sh_msiof_write(p, SITFDR, buf_16[k] << fs);
8051effc
MD
429}
430
431static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
432 const void *tx_buf, int words, int fs)
433{
e2dbf5eb 434 const u16 *buf_16 = tx_buf;
8051effc
MD
435 int k;
436
437 for (k = 0; k < words; k++)
8ae7d442 438 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
8051effc
MD
439}
440
441static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
442 const void *tx_buf, int words, int fs)
443{
e2dbf5eb 444 const u32 *buf_32 = tx_buf;
8051effc
MD
445 int k;
446
447 for (k = 0; k < words; k++)
8ae7d442 448 sh_msiof_write(p, SITFDR, buf_32[k] << fs);
8051effc
MD
449}
450
451static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
452 const void *tx_buf, int words, int fs)
453{
e2dbf5eb 454 const u32 *buf_32 = tx_buf;
8051effc
MD
455 int k;
456
457 for (k = 0; k < words; k++)
8ae7d442 458 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
8051effc
MD
459}
460
9dabb3f3
GL
461static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
462 const void *tx_buf, int words, int fs)
463{
464 const u32 *buf_32 = tx_buf;
465 int k;
466
467 for (k = 0; k < words; k++)
8ae7d442 468 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
9dabb3f3
GL
469}
470
471static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
472 const void *tx_buf, int words, int fs)
473{
474 const u32 *buf_32 = tx_buf;
475 int k;
476
477 for (k = 0; k < words; k++)
8ae7d442 478 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
9dabb3f3
GL
479}
480
8051effc
MD
481static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
482 void *rx_buf, int words, int fs)
483{
e2dbf5eb 484 u8 *buf_8 = rx_buf;
8051effc
MD
485 int k;
486
487 for (k = 0; k < words; k++)
8ae7d442 488 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
8051effc
MD
489}
490
491static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
492 void *rx_buf, int words, int fs)
493{
e2dbf5eb 494 u16 *buf_16 = rx_buf;
8051effc
MD
495 int k;
496
497 for (k = 0; k < words; k++)
8ae7d442 498 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
8051effc
MD
499}
500
501static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
502 void *rx_buf, int words, int fs)
503{
e2dbf5eb 504 u16 *buf_16 = rx_buf;
8051effc
MD
505 int k;
506
507 for (k = 0; k < words; k++)
8ae7d442 508 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
8051effc
MD
509}
510
511static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
512 void *rx_buf, int words, int fs)
513{
e2dbf5eb 514 u32 *buf_32 = rx_buf;
8051effc
MD
515 int k;
516
517 for (k = 0; k < words; k++)
8ae7d442 518 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
8051effc
MD
519}
520
521static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
522 void *rx_buf, int words, int fs)
523{
e2dbf5eb 524 u32 *buf_32 = rx_buf;
8051effc
MD
525 int k;
526
527 for (k = 0; k < words; k++)
8ae7d442 528 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
8051effc
MD
529}
530
9dabb3f3
GL
531static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
532 void *rx_buf, int words, int fs)
533{
534 u32 *buf_32 = rx_buf;
535 int k;
536
537 for (k = 0; k < words; k++)
8ae7d442 538 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
9dabb3f3
GL
539}
540
541static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
542 void *rx_buf, int words, int fs)
543{
544 u32 *buf_32 = rx_buf;
545 int k;
546
547 for (k = 0; k < words; k++)
8ae7d442 548 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
9dabb3f3
GL
549}
550
8d19534a 551static int sh_msiof_spi_setup(struct spi_device *spi)
8051effc 552{
35c35fd9
GU
553 struct sh_msiof_spi_priv *p =
554 spi_controller_get_devdata(spi->controller);
7ff0b53c 555 u32 clr, set, tmp;
01576056 556
9e264f3f 557 if (spi_get_csgpiod(spi, 0) || spi_controller_is_slave(p->ctlr))
7ff0b53c 558 return 0;
8051effc 559
7ff0b53c
GU
560 if (p->native_cs_inited &&
561 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
562 return 0;
01576056 563
7ff0b53c 564 /* Configure native chip select mode/polarity early */
8ae7d442
KK
565 clr = SIMDR1_SYNCMD_MASK;
566 set = SIMDR1_SYNCMD_SPI;
7ff0b53c 567 if (spi->mode & SPI_CS_HIGH)
8ae7d442 568 clr |= BIT(SIMDR1_SYNCAC_SHIFT);
7ff0b53c 569 else
8ae7d442 570 set |= BIT(SIMDR1_SYNCAC_SHIFT);
7ff0b53c 571 pm_runtime_get_sync(&p->pdev->dev);
8ae7d442
KK
572 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
573 sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
574 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
575 sh_msiof_write(p, SIRMDR1, tmp | set);
c8935ef0 576 pm_runtime_put(&p->pdev->dev);
7ff0b53c
GU
577 p->native_cs_high = spi->mode & SPI_CS_HIGH;
578 p->native_cs_inited = true;
1bd6363b 579 return 0;
8051effc
MD
580}
581
35c35fd9 582static int sh_msiof_prepare_message(struct spi_controller *ctlr,
c833ff73 583 struct spi_message *msg)
8051effc 584{
35c35fd9 585 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
c833ff73 586 const struct spi_device *spi = msg->spi;
b8761434 587 u32 ss, cs_high;
8051effc 588
c833ff73 589 /* Configure pins before asserting CS */
7859ad5a 590 if (spi_get_csgpiod(spi, 0)) {
aa32f76e 591 ss = ctlr->unused_native_cs;
b8761434
GU
592 cs_high = p->native_cs_high;
593 } else {
7859ad5a 594 ss = spi_get_chipselect(spi, 0);
b8761434
GU
595 cs_high = !!(spi->mode & SPI_CS_HIGH);
596 }
597 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
c833ff73
GU
598 !!(spi->mode & SPI_CPHA),
599 !!(spi->mode & SPI_3WIRE),
b8761434 600 !!(spi->mode & SPI_LSB_FIRST), cs_high);
c833ff73 601 return 0;
8051effc
MD
602}
603
76c02e71
GU
604static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
605{
35c35fd9 606 bool slave = spi_controller_is_slave(p->ctlr);
cf9e4784 607 int ret = 0;
76c02e71
GU
608
609 /* setup clock and rx/tx signals */
cf9e4784 610 if (!slave)
8ae7d442 611 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
76c02e71 612 if (rx_buf && !ret)
8ae7d442 613 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
76c02e71 614 if (!ret)
8ae7d442 615 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
76c02e71
GU
616
617 /* start by setting frame bit */
cf9e4784 618 if (!ret && !slave)
8ae7d442 619 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
76c02e71
GU
620
621 return ret;
622}
623
624static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
625{
35c35fd9 626 bool slave = spi_controller_is_slave(p->ctlr);
cf9e4784 627 int ret = 0;
76c02e71
GU
628
629 /* shut down frame, rx/tx and clock signals */
cf9e4784 630 if (!slave)
8ae7d442 631 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
76c02e71 632 if (!ret)
8ae7d442 633 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
76c02e71 634 if (rx_buf && !ret)
8ae7d442 635 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
cf9e4784 636 if (!ret && !slave)
8ae7d442 637 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
76c02e71
GU
638
639 return ret;
640}
641
35c35fd9 642static int sh_msiof_slave_abort(struct spi_controller *ctlr)
cf9e4784 643{
35c35fd9 644 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
cf9e4784
HN
645
646 p->slave_aborted = true;
647 complete(&p->done);
08ba7ae3 648 complete(&p->done_txdma);
cf9e4784
HN
649 return 0;
650}
651
08ba7ae3
GU
652static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
653 struct completion *x)
cf9e4784 654{
35c35fd9 655 if (spi_controller_is_slave(p->ctlr)) {
08ba7ae3 656 if (wait_for_completion_interruptible(x) ||
cf9e4784
HN
657 p->slave_aborted) {
658 dev_dbg(&p->pdev->dev, "interrupted\n");
659 return -EINTR;
660 }
661 } else {
08ba7ae3 662 if (!wait_for_completion_timeout(x, HZ)) {
cf9e4784
HN
663 dev_err(&p->pdev->dev, "timeout\n");
664 return -ETIMEDOUT;
665 }
666 }
667
668 return 0;
669}
670
8051effc
MD
671static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
672 void (*tx_fifo)(struct sh_msiof_spi_priv *,
673 const void *, int, int),
674 void (*rx_fifo)(struct sh_msiof_spi_priv *,
675 void *, int, int),
676 const void *tx_buf, void *rx_buf,
677 int words, int bits)
678{
679 int fifo_shift;
680 int ret;
681
682 /* limit maximum word transfer to rx/tx fifo size */
683 if (tx_buf)
684 words = min_t(int, words, p->tx_fifo_size);
685 if (rx_buf)
686 words = min_t(int, words, p->rx_fifo_size);
687
688 /* the fifo contents need shifting */
689 fifo_shift = 32 - bits;
690
b0d0ce8b 691 /* default FIFO watermarks for PIO */
8ae7d442 692 sh_msiof_write(p, SIFCTR, 0);
b0d0ce8b 693
8051effc
MD
694 /* setup msiof transfer mode registers */
695 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
8ae7d442 696 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
8051effc
MD
697
698 /* write tx fifo */
699 if (tx_buf)
700 tx_fifo(p, tx_buf, words, fifo_shift);
701
16735d02 702 reinit_completion(&p->done);
cf9e4784 703 p->slave_aborted = false;
76c02e71
GU
704
705 ret = sh_msiof_spi_start(p, rx_buf);
8051effc
MD
706 if (ret) {
707 dev_err(&p->pdev->dev, "failed to start hardware\n");
75b82e23 708 goto stop_ier;
8051effc
MD
709 }
710
711 /* wait for tx fifo to be emptied / rx fifo to be filled */
08ba7ae3 712 ret = sh_msiof_wait_for_completion(p, &p->done);
cf9e4784 713 if (ret)
75b82e23 714 goto stop_reset;
8051effc
MD
715
716 /* read rx fifo */
717 if (rx_buf)
718 rx_fifo(p, rx_buf, words, fifo_shift);
719
720 /* clear status bits */
721 sh_msiof_reset_str(p);
722
76c02e71 723 ret = sh_msiof_spi_stop(p, rx_buf);
8051effc
MD
724 if (ret) {
725 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
75b82e23 726 return ret;
8051effc
MD
727 }
728
729 return words;
730
75b82e23
GU
731stop_reset:
732 sh_msiof_reset_str(p);
733 sh_msiof_spi_stop(p, rx_buf);
734stop_ier:
8ae7d442 735 sh_msiof_write(p, SIIER, 0);
8051effc
MD
736 return ret;
737}
738
b0d0ce8b
GU
739static void sh_msiof_dma_complete(void *arg)
740{
08ba7ae3 741 complete(arg);
b0d0ce8b
GU
742}
743
744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
745 void *rx, unsigned int len)
746{
747 u32 ier_bits = 0;
748 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
749 dma_cookie_t cookie;
750 int ret;
751
3e81b592 752 /* First prepare and submit the DMA request(s), as this may fail */
b0d0ce8b 753 if (rx) {
8ae7d442 754 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
35c35fd9 755 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
da779513 756 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
b0d0ce8b 757 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
a5e7c719
GU
758 if (!desc_rx)
759 return -EAGAIN;
b0d0ce8b 760
b0d0ce8b 761 desc_rx->callback = sh_msiof_dma_complete;
08ba7ae3 762 desc_rx->callback_param = &p->done;
b0d0ce8b 763 cookie = dmaengine_submit(desc_rx);
a5e7c719
GU
764 if (dma_submit_error(cookie))
765 return cookie;
b0d0ce8b
GU
766 }
767
768 if (tx) {
8ae7d442 769 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
35c35fd9 770 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
3e81b592 771 p->tx_dma_addr, len, DMA_TO_DEVICE);
35c35fd9 772 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
da779513 773 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
3e81b592
GU
774 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
775 if (!desc_tx) {
776 ret = -EAGAIN;
777 goto no_dma_tx;
778 }
779
08ba7ae3
GU
780 desc_tx->callback = sh_msiof_dma_complete;
781 desc_tx->callback_param = &p->done_txdma;
b0d0ce8b
GU
782 cookie = dmaengine_submit(desc_tx);
783 if (dma_submit_error(cookie)) {
784 ret = cookie;
3e81b592 785 goto no_dma_tx;
b0d0ce8b 786 }
b0d0ce8b
GU
787 }
788
3e81b592 789 /* 1 stage FIFO watermarks for DMA */
8ae7d442 790 sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
3e81b592
GU
791
792 /* setup msiof transfer mode registers (32-bit words) */
793 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
794
8ae7d442 795 sh_msiof_write(p, SIIER, ier_bits);
3e81b592
GU
796
797 reinit_completion(&p->done);
08ba7ae3
GU
798 if (tx)
799 reinit_completion(&p->done_txdma);
cf9e4784 800 p->slave_aborted = false;
3e81b592
GU
801
802 /* Now start DMA */
3e81b592 803 if (rx)
35c35fd9 804 dma_async_issue_pending(p->ctlr->dma_rx);
7a9f957b 805 if (tx)
35c35fd9 806 dma_async_issue_pending(p->ctlr->dma_tx);
3e81b592 807
b0d0ce8b
GU
808 ret = sh_msiof_spi_start(p, rx);
809 if (ret) {
810 dev_err(&p->pdev->dev, "failed to start hardware\n");
3e81b592 811 goto stop_dma;
b0d0ce8b
GU
812 }
813
08ba7ae3
GU
814 if (tx) {
815 /* wait for tx DMA completion */
816 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
817 if (ret)
818 goto stop_reset;
819 }
b0d0ce8b 820
08ba7ae3
GU
821 if (rx) {
822 /* wait for rx DMA completion */
823 ret = sh_msiof_wait_for_completion(p, &p->done);
824 if (ret)
825 goto stop_reset;
89434c3c 826
8ae7d442 827 sh_msiof_write(p, SIIER, 0);
08ba7ae3 828 } else {
89434c3c 829 /* wait for tx fifo to be emptied */
8ae7d442 830 sh_msiof_write(p, SIIER, SIIER_TEOFE);
08ba7ae3 831 ret = sh_msiof_wait_for_completion(p, &p->done);
89434c3c
GU
832 if (ret)
833 goto stop_reset;
834 }
835
b0d0ce8b
GU
836 /* clear status bits */
837 sh_msiof_reset_str(p);
838
839 ret = sh_msiof_spi_stop(p, rx);
840 if (ret) {
841 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
842 return ret;
843 }
844
845 if (rx)
35c35fd9
GU
846 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
847 p->rx_dma_addr, len, DMA_FROM_DEVICE);
b0d0ce8b
GU
848
849 return 0;
850
851stop_reset:
852 sh_msiof_reset_str(p);
853 sh_msiof_spi_stop(p, rx);
3e81b592 854stop_dma:
b0d0ce8b 855 if (tx)
a26dee29 856 dmaengine_terminate_sync(p->ctlr->dma_tx);
3e81b592 857no_dma_tx:
b0d0ce8b 858 if (rx)
a26dee29 859 dmaengine_terminate_sync(p->ctlr->dma_rx);
8ae7d442 860 sh_msiof_write(p, SIIER, 0);
b0d0ce8b
GU
861 return ret;
862}
863
864static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
865{
866 /* src or dst can be unaligned, but not both */
867 if ((unsigned long)src & 3) {
868 while (words--) {
869 *dst++ = swab32(get_unaligned(src));
870 src++;
871 }
872 } else if ((unsigned long)dst & 3) {
873 while (words--) {
874 put_unaligned(swab32(*src++), dst);
875 dst++;
876 }
877 } else {
878 while (words--)
879 *dst++ = swab32(*src++);
880 }
881}
882
883static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
884{
885 /* src or dst can be unaligned, but not both */
886 if ((unsigned long)src & 3) {
887 while (words--) {
888 *dst++ = swahw32(get_unaligned(src));
889 src++;
890 }
891 } else if ((unsigned long)dst & 3) {
892 while (words--) {
893 put_unaligned(swahw32(*src++), dst);
894 dst++;
895 }
896 } else {
897 while (words--)
898 *dst++ = swahw32(*src++);
899 }
900}
901
902static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
903{
904 memcpy(dst, src, words * 4);
905}
906
35c35fd9 907static int sh_msiof_transfer_one(struct spi_controller *ctlr,
1bd6363b
GU
908 struct spi_device *spi,
909 struct spi_transfer *t)
8051effc 910{
35c35fd9 911 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
b0d0ce8b 912 void (*copy32)(u32 *, const u32 *, unsigned int);
8051effc
MD
913 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
914 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
0312d591
GU
915 const void *tx_buf = t->tx_buf;
916 void *rx_buf = t->rx_buf;
917 unsigned int len = t->len;
918 unsigned int bits = t->bits_per_word;
919 unsigned int bytes_per_word;
920 unsigned int words;
8051effc 921 int n;
9dabb3f3 922 bool swab;
b0d0ce8b
GU
923 int ret;
924
fedd6940
GU
925 /* reset registers */
926 sh_msiof_spi_reset_regs(p);
927
b0d0ce8b 928 /* setup clocks (clock already enabled in chipselect()) */
35c35fd9 929 if (!spi_controller_is_slave(p->ctlr))
9a133f7b 930 sh_msiof_spi_set_clk_regs(p, t);
b0d0ce8b 931
35c35fd9 932 while (ctlr->dma_tx && len > 15) {
b0d0ce8b
GU
933 /*
934 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
935 * words, with byte resp. word swapping.
936 */
fe78d0b7
KM
937 unsigned int l = 0;
938
939 if (tx_buf)
d05e3ead 940 l = min(round_down(len, 4), p->tx_fifo_size * 4);
fe78d0b7 941 if (rx_buf)
d05e3ead 942 l = min(round_down(len, 4), p->rx_fifo_size * 4);
b0d0ce8b
GU
943
944 if (bits <= 8) {
b0d0ce8b
GU
945 copy32 = copy_bswap32;
946 } else if (bits <= 16) {
b0d0ce8b
GU
947 copy32 = copy_wswap32;
948 } else {
949 copy32 = copy_plain32;
950 }
951
952 if (tx_buf)
953 copy32(p->tx_dma_page, tx_buf, l / 4);
8051effc 954
b0d0ce8b 955 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
279d2378 956 if (ret == -EAGAIN) {
5d8e614f
GU
957 dev_warn_once(&p->pdev->dev,
958 "DMA not available, falling back to PIO\n");
279d2378
GU
959 break;
960 }
b0d0ce8b
GU
961 if (ret)
962 return ret;
963
964 if (rx_buf) {
965 copy32(rx_buf, p->rx_dma_page, l / 4);
966 rx_buf += l;
967 }
968 if (tx_buf)
969 tx_buf += l;
970
971 len -= l;
972 if (!len)
973 return 0;
974 }
8051effc 975
916d9802 976 if (bits <= 8 && len > 15) {
9dabb3f3
GL
977 bits = 32;
978 swab = true;
979 } else {
980 swab = false;
981 }
982
8051effc
MD
983 /* setup bytes per word and fifo read/write functions */
984 if (bits <= 8) {
985 bytes_per_word = 1;
986 tx_fifo = sh_msiof_spi_write_fifo_8;
987 rx_fifo = sh_msiof_spi_read_fifo_8;
988 } else if (bits <= 16) {
989 bytes_per_word = 2;
0312d591 990 if ((unsigned long)tx_buf & 0x01)
8051effc
MD
991 tx_fifo = sh_msiof_spi_write_fifo_16u;
992 else
993 tx_fifo = sh_msiof_spi_write_fifo_16;
994
0312d591 995 if ((unsigned long)rx_buf & 0x01)
8051effc
MD
996 rx_fifo = sh_msiof_spi_read_fifo_16u;
997 else
998 rx_fifo = sh_msiof_spi_read_fifo_16;
9dabb3f3
GL
999 } else if (swab) {
1000 bytes_per_word = 4;
0312d591 1001 if ((unsigned long)tx_buf & 0x03)
9dabb3f3
GL
1002 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1003 else
1004 tx_fifo = sh_msiof_spi_write_fifo_s32;
1005
0312d591 1006 if ((unsigned long)rx_buf & 0x03)
9dabb3f3
GL
1007 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1008 else
1009 rx_fifo = sh_msiof_spi_read_fifo_s32;
8051effc
MD
1010 } else {
1011 bytes_per_word = 4;
0312d591 1012 if ((unsigned long)tx_buf & 0x03)
8051effc
MD
1013 tx_fifo = sh_msiof_spi_write_fifo_32u;
1014 else
1015 tx_fifo = sh_msiof_spi_write_fifo_32;
1016
0312d591 1017 if ((unsigned long)rx_buf & 0x03)
8051effc
MD
1018 rx_fifo = sh_msiof_spi_read_fifo_32u;
1019 else
1020 rx_fifo = sh_msiof_spi_read_fifo_32;
1021 }
1022
8051effc 1023 /* transfer in fifo sized chunks */
0312d591
GU
1024 words = len / bytes_per_word;
1025
1026 while (words > 0) {
1027 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
8051effc
MD
1028 words, bits);
1029 if (n < 0)
75b82e23 1030 return n;
8051effc 1031
0312d591
GU
1032 if (tx_buf)
1033 tx_buf += n * bytes_per_word;
1034 if (rx_buf)
1035 rx_buf += n * bytes_per_word;
8051effc 1036 words -= n;
916d9802
HNA
1037
1038 if (words == 0 && (len % bytes_per_word)) {
1039 words = len % bytes_per_word;
1040 bits = t->bits_per_word;
1041 bytes_per_word = 1;
1042 tx_fifo = sh_msiof_spi_write_fifo_8;
1043 rx_fifo = sh_msiof_spi_read_fifo_8;
1044 }
8051effc
MD
1045 }
1046
8051effc
MD
1047 return 0;
1048}
1049
50a7e23f 1050static const struct sh_msiof_chipdata sh_data = {
0e836c3b 1051 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
50a7e23f
GU
1052 .tx_fifo_size = 64,
1053 .rx_fifo_size = 64,
35c35fd9 1054 .ctlr_flags = 0,
51093cba 1055 .min_div_pow = 0,
61a8dec5
GU
1056};
1057
1058static const struct sh_msiof_chipdata rcar_gen2_data = {
0e836c3b
GU
1059 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1060 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
61a8dec5
GU
1061 .tx_fifo_size = 64,
1062 .rx_fifo_size = 64,
35c35fd9 1063 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
51093cba 1064 .min_div_pow = 0,
beb74bb0
GU
1065};
1066
61a8dec5 1067static const struct sh_msiof_chipdata rcar_gen3_data = {
0e836c3b
GU
1068 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1069 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
beb74bb0 1070 .tx_fifo_size = 64,
fe78d0b7 1071 .rx_fifo_size = 64,
35c35fd9 1072 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
51093cba 1073 .min_div_pow = 1,
50a7e23f
GU
1074};
1075
d946b6b0 1076static const struct of_device_id sh_msiof_match[] __maybe_unused = {
50a7e23f 1077 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
bdacfc7b
FC
1078 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1079 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
61a8dec5
GU
1080 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1081 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1082 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1083 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1084 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1085 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1086 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1087 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
ea9d0015 1088 { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
264c3e8d 1089 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
50a7e23f
GU
1090 {},
1091};
1092MODULE_DEVICE_TABLE(of, sh_msiof_match);
1093
cf9c86ef
BH
1094#ifdef CONFIG_OF
1095static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1096{
1097 struct sh_msiof_spi_info *info;
1098 struct device_node *np = dev->of_node;
32d3b2d1 1099 u32 num_cs = 1;
cf9c86ef
BH
1100
1101 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1e8231b7 1102 if (!info)
cf9c86ef 1103 return NULL;
cf9c86ef 1104
cf9e4784
HN
1105 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1106 : MSIOF_SPI_MASTER;
1107
cf9c86ef 1108 /* Parse the MSIOF properties */
cf9e4784
HN
1109 if (info->mode == MSIOF_SPI_MASTER)
1110 of_property_read_u32(np, "num-cs", &num_cs);
cf9c86ef
BH
1111 of_property_read_u32(np, "renesas,tx-fifo-size",
1112 &info->tx_fifo_override);
1113 of_property_read_u32(np, "renesas,rx-fifo-size",
1114 &info->rx_fifo_override);
3110628d
YS
1115 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1116 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
cf9c86ef
BH
1117
1118 info->num_chipselect = num_cs;
1119
1120 return info;
1121}
1122#else
1123static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1124{
1125 return NULL;
1126}
1127#endif
1128
b0d0ce8b
GU
1129static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1130 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1131{
1132 dma_cap_mask_t mask;
1133 struct dma_chan *chan;
1134 struct dma_slave_config cfg;
1135 int ret;
1136
1137 dma_cap_zero(mask);
1138 dma_cap_set(DMA_SLAVE, mask);
1139
a6be4de6
GU
1140 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1141 (void *)(unsigned long)id, dev,
1142 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
b0d0ce8b 1143 if (!chan) {
a6be4de6 1144 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
b0d0ce8b
GU
1145 return NULL;
1146 }
1147
1148 memset(&cfg, 0, sizeof(cfg));
b0d0ce8b 1149 cfg.direction = dir;
52fba2b8 1150 if (dir == DMA_MEM_TO_DEV) {
b0d0ce8b 1151 cfg.dst_addr = port_addr;
52fba2b8
GU
1152 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1153 } else {
b0d0ce8b 1154 cfg.src_addr = port_addr;
52fba2b8
GU
1155 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1156 }
b0d0ce8b
GU
1157
1158 ret = dmaengine_slave_config(chan, &cfg);
1159 if (ret) {
1160 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1161 dma_release_channel(chan);
1162 return NULL;
1163 }
1164
1165 return chan;
1166}
1167
1168static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1169{
1170 struct platform_device *pdev = p->pdev;
1171 struct device *dev = &pdev->dev;
f70351ae 1172 const struct sh_msiof_spi_info *info = p->info;
a6be4de6 1173 unsigned int dma_tx_id, dma_rx_id;
b0d0ce8b 1174 const struct resource *res;
35c35fd9 1175 struct spi_controller *ctlr;
5dabcf2f 1176 struct device *tx_dev, *rx_dev;
b0d0ce8b 1177
a6be4de6
GU
1178 if (dev->of_node) {
1179 /* In the OF case we will get the slave IDs from the DT */
1180 dma_tx_id = 0;
1181 dma_rx_id = 0;
1182 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1183 dma_tx_id = info->dma_tx_id;
1184 dma_rx_id = info->dma_rx_id;
1185 } else {
1186 /* The driver assumes no error */
1187 return 0;
1188 }
b0d0ce8b
GU
1189
1190 /* The DMA engine uses the second register set, if present */
1191 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1192 if (!res)
1193 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1194
35c35fd9
GU
1195 ctlr = p->ctlr;
1196 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
8ae7d442 1197 dma_tx_id, res->start + SITFDR);
35c35fd9 1198 if (!ctlr->dma_tx)
b0d0ce8b
GU
1199 return -ENODEV;
1200
35c35fd9 1201 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
8ae7d442 1202 dma_rx_id, res->start + SIRFDR);
35c35fd9 1203 if (!ctlr->dma_rx)
b0d0ce8b
GU
1204 goto free_tx_chan;
1205
1206 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1207 if (!p->tx_dma_page)
1208 goto free_rx_chan;
1209
1210 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1211 if (!p->rx_dma_page)
1212 goto free_tx_page;
1213
35c35fd9 1214 tx_dev = ctlr->dma_tx->device->dev;
5dabcf2f 1215 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
b0d0ce8b 1216 DMA_TO_DEVICE);
5dabcf2f 1217 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
b0d0ce8b
GU
1218 goto free_rx_page;
1219
35c35fd9 1220 rx_dev = ctlr->dma_rx->device->dev;
5dabcf2f 1221 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
b0d0ce8b 1222 DMA_FROM_DEVICE);
5dabcf2f 1223 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
b0d0ce8b
GU
1224 goto unmap_tx_page;
1225
1226 dev_info(dev, "DMA available");
1227 return 0;
1228
1229unmap_tx_page:
5dabcf2f 1230 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
b0d0ce8b
GU
1231free_rx_page:
1232 free_page((unsigned long)p->rx_dma_page);
1233free_tx_page:
1234 free_page((unsigned long)p->tx_dma_page);
1235free_rx_chan:
35c35fd9 1236 dma_release_channel(ctlr->dma_rx);
b0d0ce8b 1237free_tx_chan:
35c35fd9
GU
1238 dma_release_channel(ctlr->dma_tx);
1239 ctlr->dma_tx = NULL;
b0d0ce8b
GU
1240 return -ENODEV;
1241}
1242
1243static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1244{
35c35fd9 1245 struct spi_controller *ctlr = p->ctlr;
b0d0ce8b 1246
35c35fd9 1247 if (!ctlr->dma_tx)
b0d0ce8b
GU
1248 return;
1249
35c35fd9
GU
1250 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1251 DMA_FROM_DEVICE);
1252 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1253 DMA_TO_DEVICE);
b0d0ce8b
GU
1254 free_page((unsigned long)p->rx_dma_page);
1255 free_page((unsigned long)p->tx_dma_page);
35c35fd9
GU
1256 dma_release_channel(ctlr->dma_rx);
1257 dma_release_channel(ctlr->dma_tx);
b0d0ce8b
GU
1258}
1259
8051effc
MD
1260static int sh_msiof_spi_probe(struct platform_device *pdev)
1261{
35c35fd9 1262 struct spi_controller *ctlr;
a6802cc0 1263 const struct sh_msiof_chipdata *chipdata;
cf9e4784 1264 struct sh_msiof_spi_info *info;
8051effc 1265 struct sh_msiof_spi_priv *p;
81f68479 1266 unsigned long clksrc;
8051effc
MD
1267 int i;
1268 int ret;
1269
ecb1596a
GU
1270 chipdata = of_device_get_match_data(&pdev->dev);
1271 if (chipdata) {
cf9e4784 1272 info = sh_msiof_spi_parse_dt(&pdev->dev);
50a7e23f 1273 } else {
a6802cc0 1274 chipdata = (const void *)pdev->id_entry->driver_data;
cf9e4784 1275 info = dev_get_platdata(&pdev->dev);
50a7e23f 1276 }
cf9c86ef 1277
cf9e4784 1278 if (!info) {
cf9c86ef 1279 dev_err(&pdev->dev, "failed to obtain device info\n");
cf9e4784 1280 return -ENXIO;
cf9c86ef
BH
1281 }
1282
cf9e4784 1283 if (info->mode == MSIOF_SPI_SLAVE)
35c35fd9
GU
1284 ctlr = spi_alloc_slave(&pdev->dev,
1285 sizeof(struct sh_msiof_spi_priv));
cf9e4784 1286 else
35c35fd9
GU
1287 ctlr = spi_alloc_master(&pdev->dev,
1288 sizeof(struct sh_msiof_spi_priv));
1289 if (ctlr == NULL)
cf9e4784
HN
1290 return -ENOMEM;
1291
35c35fd9 1292 p = spi_controller_get_devdata(ctlr);
cf9e4784
HN
1293
1294 platform_set_drvdata(pdev, p);
35c35fd9 1295 p->ctlr = ctlr;
cf9e4784 1296 p->info = info;
51093cba 1297 p->min_div_pow = chipdata->min_div_pow;
cf9e4784 1298
8051effc 1299 init_completion(&p->done);
08ba7ae3 1300 init_completion(&p->done_txdma);
8051effc 1301
b4dd05de 1302 p->clk = devm_clk_get(&pdev->dev, NULL);
8051effc 1303 if (IS_ERR(p->clk)) {
078b6ead 1304 dev_err(&pdev->dev, "cannot get clock\n");
8051effc
MD
1305 ret = PTR_ERR(p->clk);
1306 goto err1;
1307 }
1308
8051effc 1309 i = platform_get_irq(pdev, 0);
b4dd05de 1310 if (i < 0) {
f34c6e62 1311 ret = i;
b4dd05de 1312 goto err1;
8051effc 1313 }
b4dd05de 1314
920d947a 1315 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
b4dd05de
LP
1316 if (IS_ERR(p->mapbase)) {
1317 ret = PTR_ERR(p->mapbase);
1318 goto err1;
8051effc
MD
1319 }
1320
b4dd05de
LP
1321 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1322 dev_name(&pdev->dev), p);
8051effc
MD
1323 if (ret) {
1324 dev_err(&pdev->dev, "unable to request irq\n");
b4dd05de 1325 goto err1;
8051effc
MD
1326 }
1327
1328 p->pdev = pdev;
1329 pm_runtime_enable(&pdev->dev);
1330
8051effc 1331 /* Platform data may override FIFO sizes */
a6802cc0
GU
1332 p->tx_fifo_size = chipdata->tx_fifo_size;
1333 p->rx_fifo_size = chipdata->rx_fifo_size;
8051effc
MD
1334 if (p->info->tx_fifo_override)
1335 p->tx_fifo_size = p->info->tx_fifo_override;
1336 if (p->info->rx_fifo_override)
1337 p->rx_fifo_size = p->info->rx_fifo_override;
1338
35c35fd9
GU
1339 /* init controller code */
1340 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1341 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
81f68479
GU
1342 clksrc = clk_get_rate(p->clk);
1343 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1344 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
35c35fd9
GU
1345 ctlr->flags = chipdata->ctlr_flags;
1346 ctlr->bus_num = pdev->id;
aa32f76e 1347 ctlr->num_chipselect = p->info->num_chipselect;
35c35fd9
GU
1348 ctlr->dev.of_node = pdev->dev.of_node;
1349 ctlr->setup = sh_msiof_spi_setup;
1350 ctlr->prepare_message = sh_msiof_prepare_message;
1351 ctlr->slave_abort = sh_msiof_slave_abort;
0e836c3b 1352 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
35c35fd9
GU
1353 ctlr->auto_runtime_pm = true;
1354 ctlr->transfer_one = sh_msiof_transfer_one;
9fda6693 1355 ctlr->use_gpio_descriptors = true;
aa32f76e 1356 ctlr->max_native_cs = MAX_SS;
8051effc 1357
b0d0ce8b
GU
1358 ret = sh_msiof_request_dma(p);
1359 if (ret < 0)
1360 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1361
35c35fd9 1362 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1bd6363b 1363 if (ret < 0) {
35c35fd9 1364 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1bd6363b
GU
1365 goto err2;
1366 }
8051effc 1367
1bd6363b 1368 return 0;
8051effc 1369
1bd6363b 1370 err2:
b0d0ce8b 1371 sh_msiof_release_dma(p);
8051effc 1372 pm_runtime_disable(&pdev->dev);
8051effc 1373 err1:
35c35fd9 1374 spi_controller_put(ctlr);
8051effc
MD
1375 return ret;
1376}
1377
74af1328 1378static void sh_msiof_spi_remove(struct platform_device *pdev)
8051effc 1379{
b0d0ce8b
GU
1380 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1381
1382 sh_msiof_release_dma(p);
1bd6363b 1383 pm_runtime_disable(&pdev->dev);
8051effc
MD
1384}
1385
3789c852 1386static const struct platform_device_id spi_driver_ids[] = {
50a7e23f 1387 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
cf9c86ef
BH
1388 {},
1389};
50a7e23f 1390MODULE_DEVICE_TABLE(platform, spi_driver_ids);
cf9c86ef 1391
ffa69d6a
GI
1392#ifdef CONFIG_PM_SLEEP
1393static int sh_msiof_spi_suspend(struct device *dev)
1394{
07c7df3e 1395 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
ffa69d6a 1396
35c35fd9 1397 return spi_controller_suspend(p->ctlr);
ffa69d6a
GI
1398}
1399
1400static int sh_msiof_spi_resume(struct device *dev)
1401{
07c7df3e 1402 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
ffa69d6a 1403
35c35fd9 1404 return spi_controller_resume(p->ctlr);
ffa69d6a
GI
1405}
1406
1407static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1408 sh_msiof_spi_resume);
21fb1f41 1409#define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
ffa69d6a
GI
1410#else
1411#define DEV_PM_OPS NULL
1412#endif /* CONFIG_PM_SLEEP */
1413
8051effc
MD
1414static struct platform_driver sh_msiof_spi_drv = {
1415 .probe = sh_msiof_spi_probe,
74af1328 1416 .remove_new = sh_msiof_spi_remove,
50a7e23f 1417 .id_table = spi_driver_ids,
8051effc
MD
1418 .driver = {
1419 .name = "spi_sh_msiof",
ffa69d6a 1420 .pm = DEV_PM_OPS,
691ee4ed 1421 .of_match_table = of_match_ptr(sh_msiof_match),
8051effc
MD
1422 },
1423};
940ab889 1424module_platform_driver(sh_msiof_spi_drv);
8051effc 1425
35c35fd9 1426MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
8051effc
MD
1427MODULE_AUTHOR("Magnus Damm");
1428MODULE_LICENSE("GPL v2");