spi: rspi: Increase bit rate range for QSPI
[linux-2.6-block.git] / drivers / spi / spi-rspi.c
CommitLineData
9135bac3 1// SPDX-License-Identifier: GPL-2.0
0b2182dd
SY
2/*
3 * SH RSPI driver
4 *
93722206 5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
880c6d11 6 * Copyright (C) 2014 Glider bvba
0b2182dd
SY
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
0b2182dd
SY
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/errno.h>
0b2182dd
SY
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/clk.h>
a3633fe7
SY
20#include <linux/dmaengine.h>
21#include <linux/dma-mapping.h>
426ef76d 22#include <linux/of_device.h>
490c9774 23#include <linux/pm_runtime.h>
a3633fe7 24#include <linux/sh_dma.h>
0b2182dd 25#include <linux/spi/spi.h>
a3633fe7 26#include <linux/spi/rspi.h>
f3a14a3a 27#include <linux/spinlock.h>
0b2182dd 28
6ab4865b
GU
29#define RSPI_SPCR 0x00 /* Control Register */
30#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31#define RSPI_SPPCR 0x02 /* Pin Control Register */
32#define RSPI_SPSR 0x03 /* Status Register */
33#define RSPI_SPDR 0x04 /* Data Register */
34#define RSPI_SPSCR 0x08 /* Sequence Control Register */
35#define RSPI_SPSSR 0x09 /* Sequence Status Register */
36#define RSPI_SPBR 0x0a /* Bit Rate Register */
37#define RSPI_SPDCR 0x0b /* Data Control Register */
38#define RSPI_SPCKD 0x0c /* Clock Delay Register */
39#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40#define RSPI_SPND 0x0e /* Next-Access Delay Register */
862d357f 41#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
6ab4865b
GU
42#define RSPI_SPCMD0 0x10 /* Command Register 0 */
43#define RSPI_SPCMD1 0x12 /* Command Register 1 */
44#define RSPI_SPCMD2 0x14 /* Command Register 2 */
45#define RSPI_SPCMD3 0x16 /* Command Register 3 */
46#define RSPI_SPCMD4 0x18 /* Command Register 4 */
47#define RSPI_SPCMD5 0x1a /* Command Register 5 */
48#define RSPI_SPCMD6 0x1c /* Command Register 6 */
49#define RSPI_SPCMD7 0x1e /* Command Register 7 */
880c6d11
GU
50#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51#define RSPI_NUM_SPCMD 8
52#define RSPI_RZ_NUM_SPCMD 4
53#define QSPI_NUM_SPCMD 4
862d357f
GU
54
55/* RSPI on RZ only */
6ab4865b
GU
56#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
0b2182dd 58
862d357f 59/* QSPI only */
fbe5072b
GU
60#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
880c6d11 66#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
5ce0ba88 67
6ab4865b
GU
68/* SPCR - Control Register */
69#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70#define SPCR_SPE 0x40 /* Function Enable */
71#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75/* RSPI on SH only */
76#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
6089af77 78/* QSPI on R-Car Gen2 only */
fbe5072b
GU
79#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
6ab4865b
GU
81
82/* SSLP - Slave Select Polarity Register */
f3a14a3a 83#define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
6ab4865b
GU
84
85/* SPPCR - Pin Control Register */
86#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
0b2182dd 88#define SPPCR_SPOM 0x04
6ab4865b
GU
89#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
91
fbe5072b
GU
92#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
6ab4865b
GU
95/* SPSR - Status Register */
96#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97#define SPSR_TEND 0x40 /* Transmit End */
98#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99#define SPSR_PERF 0x08 /* Parity Error Flag */
100#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
862d357f 102#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
6ab4865b
GU
103
104/* SPSCR - Sequence Control Register */
105#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
106
107/* SPSSR - Sequence Status Register */
108#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
110
111/* SPDCR - Data Control Register */
112#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116#define SPDCR_SPLWORD SPDCR_SPLW1
117#define SPDCR_SPLBYTE SPDCR_SPLW0
118#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
862d357f 119#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
0b2182dd
SY
120#define SPDCR_SLSEL1 0x08
121#define SPDCR_SLSEL0 0x04
862d357f 122#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
0b2182dd
SY
123#define SPDCR_SPFC1 0x02
124#define SPDCR_SPFC0 0x01
862d357f 125#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
0b2182dd 126
6ab4865b
GU
127/* SPCKD - Clock Delay Register */
128#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
0b2182dd 129
6ab4865b
GU
130/* SSLND - Slave Select Negation Delay Register */
131#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
0b2182dd 132
6ab4865b
GU
133/* SPND - Next-Access Delay Register */
134#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
0b2182dd 135
6ab4865b
GU
136/* SPCR2 - Control Register 2 */
137#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140#define SPCR2_SPPE 0x01 /* Parity Enable */
0b2182dd 141
6ab4865b
GU
142/* SPCMDn - Command Registers */
143#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146#define SPCMD_LSBF 0x1000 /* LSB First */
147#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
0b2182dd 148#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
880c6d11 149#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
5ce0ba88 150#define SPCMD_SPB_16BIT 0x0100
0b2182dd
SY
151#define SPCMD_SPB_20BIT 0x0000
152#define SPCMD_SPB_24BIT 0x0100
153#define SPCMD_SPB_32BIT 0x0200
6ab4865b 154#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
fbe5072b
GU
155#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156#define SPCMD_SPIMOD1 0x0040
157#define SPCMD_SPIMOD0 0x0020
158#define SPCMD_SPIMOD_SINGLE 0
159#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
9815ed87 162#define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
6ab4865b 163#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
8dd71698 164#define SPCMD_BRDV(brdv) ((brdv) << 2)
6ab4865b
GU
165#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
166#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
167
168/* SPBFCR - Buffer Control Register */
862d357f
GU
169#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
170#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
6ab4865b
GU
171#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
172#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
4b6fe3ed
HCM
173/* QSPI on R-Car Gen2 */
174#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
175#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
176#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
177#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
178
179#define QSPI_BUFFER_SIZE 32u
5ce0ba88 180
0b2182dd
SY
181struct rspi_data {
182 void __iomem *addr;
e0fe7005 183 u32 speed_hz;
9428a073 184 struct spi_controller *ctlr;
f3a14a3a 185 struct platform_device *pdev;
0b2182dd 186 wait_queue_head_t wait;
f3a14a3a 187 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
0b2182dd 188 struct clk *clk;
348e5153 189 u16 spcmd;
06a7a3cf
GU
190 u8 spsr;
191 u8 sppcr;
93722206 192 int rx_irq, tx_irq;
5ce0ba88 193 const struct spi_ops *ops;
a3633fe7 194
a3633fe7 195 unsigned dma_callbacked:1;
74da7686 196 unsigned byte_access:1;
0b2182dd
SY
197};
198
baf588f4 199static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
0b2182dd
SY
200{
201 iowrite8(data, rspi->addr + offset);
202}
203
baf588f4 204static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
0b2182dd
SY
205{
206 iowrite16(data, rspi->addr + offset);
207}
208
baf588f4 209static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
5ce0ba88
HCM
210{
211 iowrite32(data, rspi->addr + offset);
212}
213
baf588f4 214static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
0b2182dd
SY
215{
216 return ioread8(rspi->addr + offset);
217}
218
baf588f4 219static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
0b2182dd
SY
220{
221 return ioread16(rspi->addr + offset);
222}
223
74da7686
GU
224static void rspi_write_data(const struct rspi_data *rspi, u16 data)
225{
226 if (rspi->byte_access)
227 rspi_write8(rspi, data, RSPI_SPDR);
228 else /* 16 bit */
229 rspi_write16(rspi, data, RSPI_SPDR);
230}
231
232static u16 rspi_read_data(const struct rspi_data *rspi)
233{
234 if (rspi->byte_access)
235 return rspi_read8(rspi, RSPI_SPDR);
236 else /* 16 bit */
237 return rspi_read16(rspi, RSPI_SPDR);
238}
239
5ce0ba88
HCM
240/* optional functions */
241struct spi_ops {
74da7686 242 int (*set_config_register)(struct rspi_data *rspi, int access_size);
9428a073
GU
243 int (*transfer_one)(struct spi_controller *ctlr,
244 struct spi_device *spi, struct spi_transfer *xfer);
cd982e6c 245 u16 extra_mode_bits;
b42e0359 246 u16 flags;
2f777ec9 247 u16 fifo_size;
144d8f97 248 u8 num_hw_ss;
5ce0ba88
HCM
249};
250
4e71d926
GU
251static void rspi_set_rate(struct rspi_data *rspi)
252{
253 unsigned long clksrc;
254 int brdv = 0, spbr;
255
256 clksrc = clk_get_rate(rspi->clk);
257 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
258 while (spbr > 255 && brdv < 3) {
259 brdv++;
260 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
261 }
262
263 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
264 rspi->spcmd |= SPCMD_BRDV(brdv);
265}
266
5ce0ba88 267/*
862d357f 268 * functions for RSPI on legacy SH
5ce0ba88 269 */
74da7686 270static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
0b2182dd 271{
06a7a3cf
GU
272 /* Sets output mode, MOSI signal, and (optionally) loopback */
273 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
0b2182dd 274
5ce0ba88 275 /* Sets transfer bit rate */
4e71d926 276 rspi_set_rate(rspi);
5ce0ba88 277
74da7686
GU
278 /* Disable dummy transmission, set 16-bit word access, 1 frame */
279 rspi_write8(rspi, 0, RSPI_SPDCR);
280 rspi->byte_access = 0;
0b2182dd 281
5ce0ba88
HCM
282 /* Sets RSPCK, SSL, next-access delay value */
283 rspi_write8(rspi, 0x00, RSPI_SPCKD);
284 rspi_write8(rspi, 0x00, RSPI_SSLND);
285 rspi_write8(rspi, 0x00, RSPI_SPND);
286
287 /* Sets parity, interrupt mask */
288 rspi_write8(rspi, 0x00, RSPI_SPCR2);
289
26843bb1
GU
290 /* Resets sequencer */
291 rspi_write8(rspi, 0, RSPI_SPSCR);
880c6d11
GU
292 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
293 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
5ce0ba88
HCM
294
295 /* Sets RSPI mode */
296 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
297
298 return 0;
0b2182dd
SY
299}
300
862d357f
GU
301/*
302 * functions for RSPI on RZ
303 */
304static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
305{
06a7a3cf
GU
306 /* Sets output mode, MOSI signal, and (optionally) loopback */
307 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
862d357f
GU
308
309 /* Sets transfer bit rate */
4e71d926 310 rspi_set_rate(rspi);
862d357f
GU
311
312 /* Disable dummy transmission, set byte access */
313 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
314 rspi->byte_access = 1;
315
316 /* Sets RSPCK, SSL, next-access delay value */
317 rspi_write8(rspi, 0x00, RSPI_SPCKD);
318 rspi_write8(rspi, 0x00, RSPI_SSLND);
319 rspi_write8(rspi, 0x00, RSPI_SPND);
320
26843bb1
GU
321 /* Resets sequencer */
322 rspi_write8(rspi, 0, RSPI_SPSCR);
862d357f
GU
323 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
324 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
325
326 /* Sets RSPI mode */
327 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
328
329 return 0;
330}
331
5ce0ba88
HCM
332/*
333 * functions for QSPI
334 */
74da7686 335static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
5ce0ba88 336{
6a195f24
GU
337 unsigned long clksrc;
338 int brdv = 0, spbr;
5ce0ba88 339
06a7a3cf
GU
340 /* Sets output mode, MOSI signal, and (optionally) loopback */
341 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
5ce0ba88
HCM
342
343 /* Sets transfer bit rate */
6a195f24
GU
344 clksrc = clk_get_rate(rspi->clk);
345 if (rspi->speed_hz >= clksrc) {
346 spbr = 0;
347 } else {
348 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
349 while (spbr > 255 && brdv < 3) {
350 brdv++;
351 spbr = DIV_ROUND_UP(spbr, 2);
352 }
353 spbr = clamp(spbr, 0, 255);
354 }
355 rspi_write8(rspi, spbr, RSPI_SPBR);
356 rspi->spcmd |= SPCMD_BRDV(brdv);
5ce0ba88 357
74da7686
GU
358 /* Disable dummy transmission, set byte access */
359 rspi_write8(rspi, 0, RSPI_SPDCR);
360 rspi->byte_access = 1;
5ce0ba88
HCM
361
362 /* Sets RSPCK, SSL, next-access delay value */
363 rspi_write8(rspi, 0x00, RSPI_SPCKD);
364 rspi_write8(rspi, 0x00, RSPI_SSLND);
365 rspi_write8(rspi, 0x00, RSPI_SPND);
366
367 /* Data Length Setting */
368 if (access_size == 8)
880c6d11 369 rspi->spcmd |= SPCMD_SPB_8BIT;
5ce0ba88 370 else if (access_size == 16)
880c6d11 371 rspi->spcmd |= SPCMD_SPB_16BIT;
8e1c8096 372 else
880c6d11 373 rspi->spcmd |= SPCMD_SPB_32BIT;
5ce0ba88 374
880c6d11 375 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
5ce0ba88
HCM
376
377 /* Resets transfer data length */
378 rspi_write32(rspi, 0, QSPI_SPBMUL0);
379
380 /* Resets transmit and receive buffer */
381 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
382 /* Sets buffer to allow normal operation */
383 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
384
26843bb1
GU
385 /* Resets sequencer */
386 rspi_write8(rspi, 0, RSPI_SPSCR);
880c6d11 387 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
5ce0ba88 388
b458a349
GU
389 /* Sets RSPI mode */
390 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
5ce0ba88
HCM
391
392 return 0;
393}
394
4b6fe3ed
HCM
395static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
396{
397 u8 data;
398
399 data = rspi_read8(rspi, reg);
400 data &= ~mask;
401 data |= (val & mask);
402 rspi_write8(rspi, data, reg);
403}
404
cb76b1ca
GU
405static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
406 unsigned int len)
4b6fe3ed
HCM
407{
408 unsigned int n;
409
410 n = min(len, QSPI_BUFFER_SIZE);
411
412 if (len >= QSPI_BUFFER_SIZE) {
413 /* sets triggering number to 32 bytes */
414 qspi_update(rspi, SPBFCR_TXTRG_MASK,
415 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
416 } else {
417 /* sets triggering number to 1 byte */
418 qspi_update(rspi, SPBFCR_TXTRG_MASK,
419 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
420 }
421
422 return n;
423}
424
3be09bec 425static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
4b6fe3ed
HCM
426{
427 unsigned int n;
428
429 n = min(len, QSPI_BUFFER_SIZE);
430
431 if (len >= QSPI_BUFFER_SIZE) {
432 /* sets triggering number to 32 bytes */
433 qspi_update(rspi, SPBFCR_RXTRG_MASK,
434 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
435 } else {
436 /* sets triggering number to 1 byte */
437 qspi_update(rspi, SPBFCR_RXTRG_MASK,
438 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
439 }
3be09bec 440 return n;
4b6fe3ed
HCM
441}
442
baf588f4 443static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
0b2182dd
SY
444{
445 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
446}
447
baf588f4 448static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
0b2182dd
SY
449{
450 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
451}
452
453static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
454 u8 enable_bit)
455{
456 int ret;
457
458 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
5dd1ad23
GU
459 if (rspi->spsr & wait_mask)
460 return 0;
461
0b2182dd
SY
462 rspi_enable_irq(rspi, enable_bit);
463 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
464 if (ret == 0 && !(rspi->spsr & wait_mask))
465 return -ETIMEDOUT;
466
467 return 0;
468}
469
5f684c34
GU
470static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
471{
472 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
473}
474
475static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
476{
477 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
478}
479
35301c99
GU
480static int rspi_data_out(struct rspi_data *rspi, u8 data)
481{
5f684c34
GU
482 int error = rspi_wait_for_tx_empty(rspi);
483 if (error < 0) {
9428a073 484 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
5f684c34 485 return error;
35301c99
GU
486 }
487 rspi_write_data(rspi, data);
488 return 0;
489}
490
491static int rspi_data_in(struct rspi_data *rspi)
492{
5f684c34 493 int error;
35301c99
GU
494 u8 data;
495
5f684c34
GU
496 error = rspi_wait_for_rx_full(rspi);
497 if (error < 0) {
9428a073 498 dev_err(&rspi->ctlr->dev, "receive timeout\n");
5f684c34 499 return error;
35301c99
GU
500 }
501 data = rspi_read_data(rspi);
502 return data;
503}
504
6837b8e9
GU
505static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
506 unsigned int n)
35301c99 507{
6837b8e9
GU
508 while (n-- > 0) {
509 if (tx) {
510 int ret = rspi_data_out(rspi, *tx++);
511 if (ret < 0)
512 return ret;
513 }
514 if (rx) {
515 int ret = rspi_data_in(rspi);
516 if (ret < 0)
517 return ret;
518 *rx++ = ret;
519 }
520 }
35301c99 521
6837b8e9 522 return 0;
35301c99
GU
523}
524
a3633fe7
SY
525static void rspi_dma_complete(void *arg)
526{
527 struct rspi_data *rspi = arg;
528
529 rspi->dma_callbacked = 1;
530 wake_up_interruptible(&rspi->wait);
531}
532
c52fb6d6
GU
533static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
534 struct sg_table *rx)
a3633fe7 535{
c52fb6d6
GU
536 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
537 u8 irq_mask = 0;
538 unsigned int other_irq = 0;
539 dma_cookie_t cookie;
2f777ec9 540 int ret;
a3633fe7 541
3819bc87 542 /* First prepare and submit the DMA request(s), as this may fail */
c52fb6d6 543 if (rx) {
9428a073
GU
544 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
545 rx->nents, DMA_DEV_TO_MEM,
c52fb6d6 546 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
3819bc87
GU
547 if (!desc_rx) {
548 ret = -EAGAIN;
549 goto no_dma_rx;
550 }
551
552 desc_rx->callback = rspi_dma_complete;
553 desc_rx->callback_param = rspi;
554 cookie = dmaengine_submit(desc_rx);
555 if (dma_submit_error(cookie)) {
556 ret = cookie;
557 goto no_dma_rx;
558 }
c52fb6d6
GU
559
560 irq_mask |= SPCR_SPRIE;
561 }
a3633fe7 562
3819bc87 563 if (tx) {
9428a073
GU
564 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
565 tx->nents, DMA_MEM_TO_DEV,
3819bc87
GU
566 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
567 if (!desc_tx) {
568 ret = -EAGAIN;
569 goto no_dma_tx;
570 }
571
572 if (rx) {
573 /* No callback */
574 desc_tx->callback = NULL;
575 } else {
576 desc_tx->callback = rspi_dma_complete;
577 desc_tx->callback_param = rspi;
578 }
579 cookie = dmaengine_submit(desc_tx);
580 if (dma_submit_error(cookie)) {
581 ret = cookie;
582 goto no_dma_tx;
583 }
584
585 irq_mask |= SPCR_SPTIE;
586 }
587
a3633fe7 588 /*
c52fb6d6 589 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
a3633fe7
SY
590 * called. So, this driver disables the IRQ while DMA transfer.
591 */
c52fb6d6
GU
592 if (tx)
593 disable_irq(other_irq = rspi->tx_irq);
594 if (rx && rspi->rx_irq != other_irq)
595 disable_irq(rspi->rx_irq);
a3633fe7 596
c52fb6d6 597 rspi_enable_irq(rspi, irq_mask);
a3633fe7
SY
598 rspi->dma_callbacked = 0;
599
3819bc87
GU
600 /* Now start DMA */
601 if (rx)
9428a073 602 dma_async_issue_pending(rspi->ctlr->dma_rx);
3819bc87 603 if (tx)
9428a073 604 dma_async_issue_pending(rspi->ctlr->dma_tx);
a3633fe7
SY
605
606 ret = wait_event_interruptible_timeout(rspi->wait,
607 rspi->dma_callbacked, HZ);
8dbbaa47 608 if (ret > 0 && rspi->dma_callbacked) {
a3633fe7 609 ret = 0;
8dbbaa47
GU
610 } else {
611 if (!ret) {
9428a073 612 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
8dbbaa47
GU
613 ret = -ETIMEDOUT;
614 }
3819bc87 615 if (tx)
9428a073 616 dmaengine_terminate_all(rspi->ctlr->dma_tx);
3819bc87 617 if (rx)
9428a073 618 dmaengine_terminate_all(rspi->ctlr->dma_rx);
3819bc87 619 }
a3633fe7 620
c52fb6d6
GU
621 rspi_disable_irq(rspi, irq_mask);
622
623 if (tx)
624 enable_irq(rspi->tx_irq);
625 if (rx && rspi->rx_irq != other_irq)
626 enable_irq(rspi->rx_irq);
627
a3633fe7 628 return ret;
85912a88 629
3819bc87
GU
630no_dma_tx:
631 if (rx)
9428a073 632 dmaengine_terminate_all(rspi->ctlr->dma_rx);
3819bc87
GU
633no_dma_rx:
634 if (ret == -EAGAIN) {
1bec84dd
GU
635 dev_warn_once(&rspi->ctlr->dev,
636 "DMA not available, falling back to PIO\n");
3819bc87
GU
637 }
638 return ret;
a3633fe7
SY
639}
640
baf588f4 641static void rspi_receive_init(const struct rspi_data *rspi)
0b2182dd 642{
97b95c11 643 u8 spsr;
0b2182dd
SY
644
645 spsr = rspi_read8(rspi, RSPI_SPSR);
646 if (spsr & SPSR_SPRF)
74da7686 647 rspi_read_data(rspi); /* dummy read */
0b2182dd
SY
648 if (spsr & SPSR_OVRF)
649 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
df900e67 650 RSPI_SPSR);
a3633fe7
SY
651}
652
862d357f
GU
653static void rspi_rz_receive_init(const struct rspi_data *rspi)
654{
655 rspi_receive_init(rspi);
656 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
657 rspi_write8(rspi, 0, RSPI_SPBFCR);
658}
659
baf588f4 660static void qspi_receive_init(const struct rspi_data *rspi)
cb52c673 661{
97b95c11 662 u8 spsr;
cb52c673
HCM
663
664 spsr = rspi_read8(rspi, RSPI_SPSR);
665 if (spsr & SPSR_SPRF)
74da7686 666 rspi_read_data(rspi); /* dummy read */
cb52c673 667 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
340a15e6 668 rspi_write8(rspi, 0, QSPI_SPBFCR);
cb52c673
HCM
669}
670
2f777ec9
GU
671static bool __rspi_can_dma(const struct rspi_data *rspi,
672 const struct spi_transfer *xfer)
a3633fe7 673{
2f777ec9
GU
674 return xfer->len > rspi->ops->fifo_size;
675}
a3633fe7 676
9428a073 677static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
2f777ec9
GU
678 struct spi_transfer *xfer)
679{
9428a073 680 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
2f777ec9
GU
681
682 return __rspi_can_dma(rspi, xfer);
a3633fe7
SY
683}
684
4b6fe3ed
HCM
685static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
686 struct spi_transfer *xfer)
8b983e90 687{
9428a073 688 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
6310372d 689 return -EAGAIN;
8b983e90 690
6310372d
HCM
691 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
692 return rspi_dma_transfer(rspi, &xfer->tx_sg,
693 xfer->rx_buf ? &xfer->rx_sg : NULL);
4b6fe3ed
HCM
694}
695
696static int rspi_common_transfer(struct rspi_data *rspi,
697 struct spi_transfer *xfer)
698{
699 int ret;
700
701 ret = rspi_dma_check_then_transfer(rspi, xfer);
702 if (ret != -EAGAIN)
703 return ret;
704
8b983e90
GU
705 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
706 if (ret < 0)
707 return ret;
708
709 /* Wait for the last transmission */
710 rspi_wait_for_tx_empty(rspi);
711
712 return 0;
713}
714
9428a073
GU
715static int rspi_transfer_one(struct spi_controller *ctlr,
716 struct spi_device *spi, struct spi_transfer *xfer)
8449fd76 717{
9428a073 718 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
b42e0359 719 u8 spcr;
8449fd76 720
8449fd76 721 spcr = rspi_read8(rspi, RSPI_SPCR);
6837b8e9 722 if (xfer->rx_buf) {
32c64261 723 rspi_receive_init(rspi);
8449fd76 724 spcr &= ~SPCR_TXMD;
32c64261 725 } else {
8449fd76 726 spcr |= SPCR_TXMD;
32c64261 727 }
8449fd76
GU
728 rspi_write8(rspi, spcr, RSPI_SPCR);
729
8b983e90 730 return rspi_common_transfer(rspi, xfer);
8449fd76
GU
731}
732
9428a073 733static int rspi_rz_transfer_one(struct spi_controller *ctlr,
03e627c5
GU
734 struct spi_device *spi,
735 struct spi_transfer *xfer)
862d357f 736{
9428a073 737 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
862d357f
GU
738
739 rspi_rz_receive_init(rspi);
740
8b983e90 741 return rspi_common_transfer(rspi, xfer);
862d357f
GU
742}
743
a91bbe7d 744static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
4b6fe3ed
HCM
745 u8 *rx, unsigned int len)
746{
cb76b1ca
GU
747 unsigned int i, n;
748 int ret;
4b6fe3ed
HCM
749
750 while (len > 0) {
751 n = qspi_set_send_trigger(rspi, len);
752 qspi_set_receive_trigger(rspi, len);
7e95b166
HNA
753 ret = rspi_wait_for_tx_empty(rspi);
754 if (ret < 0) {
755 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
756 return ret;
757 }
758 for (i = 0; i < n; i++)
759 rspi_write_data(rspi, *tx++);
4b6fe3ed 760
7e95b166
HNA
761 ret = rspi_wait_for_rx_full(rspi);
762 if (ret < 0) {
763 dev_err(&rspi->ctlr->dev, "receive timeout\n");
764 return ret;
4b6fe3ed 765 }
7e95b166
HNA
766 for (i = 0; i < n; i++)
767 *rx++ = rspi_read_data(rspi);
768
4b6fe3ed
HCM
769 len -= n;
770 }
771
772 return 0;
773}
774
340a15e6
GU
775static int qspi_transfer_out_in(struct rspi_data *rspi,
776 struct spi_transfer *xfer)
eb557f75 777{
4b6fe3ed
HCM
778 int ret;
779
340a15e6
GU
780 qspi_receive_init(rspi);
781
4b6fe3ed
HCM
782 ret = rspi_dma_check_then_transfer(rspi, xfer);
783 if (ret != -EAGAIN)
784 return ret;
785
cc2e9328 786 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
4b6fe3ed 787 xfer->rx_buf, xfer->len);
340a15e6
GU
788}
789
880c6d11
GU
790static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
791{
db300838
AB
792 const u8 *tx = xfer->tx_buf;
793 unsigned int n = xfer->len;
794 unsigned int i, len;
880c6d11
GU
795 int ret;
796
9428a073 797 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
85912a88
GU
798 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
799 if (ret != -EAGAIN)
800 return ret;
801 }
4f12b5e5 802
db300838
AB
803 while (n > 0) {
804 len = qspi_set_send_trigger(rspi, n);
7e95b166
HNA
805 ret = rspi_wait_for_tx_empty(rspi);
806 if (ret < 0) {
807 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
808 return ret;
db300838 809 }
7e95b166
HNA
810 for (i = 0; i < len; i++)
811 rspi_write_data(rspi, *tx++);
812
db300838
AB
813 n -= len;
814 }
880c6d11
GU
815
816 /* Wait for the last transmission */
5f684c34 817 rspi_wait_for_tx_empty(rspi);
880c6d11
GU
818
819 return 0;
820}
821
822static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
823{
db300838
AB
824 u8 *rx = xfer->rx_buf;
825 unsigned int n = xfer->len;
826 unsigned int i, len;
827 int ret;
828
9428a073 829 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
85912a88
GU
830 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
831 if (ret != -EAGAIN)
832 return ret;
833 }
4f12b5e5 834
db300838
AB
835 while (n > 0) {
836 len = qspi_set_receive_trigger(rspi, n);
7e95b166
HNA
837 ret = rspi_wait_for_rx_full(rspi);
838 if (ret < 0) {
839 dev_err(&rspi->ctlr->dev, "receive timeout\n");
840 return ret;
db300838 841 }
7e95b166
HNA
842 for (i = 0; i < len; i++)
843 *rx++ = rspi_read_data(rspi);
844
db300838
AB
845 n -= len;
846 }
847
848 return 0;
880c6d11
GU
849}
850
9428a073
GU
851static int qspi_transfer_one(struct spi_controller *ctlr,
852 struct spi_device *spi, struct spi_transfer *xfer)
340a15e6 853{
9428a073 854 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
340a15e6 855
ba824d49
GU
856 if (spi->mode & SPI_LOOP) {
857 return qspi_transfer_out_in(rspi, xfer);
b42e0359 858 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
880c6d11
GU
859 /* Quad or Dual SPI Write */
860 return qspi_transfer_out(rspi, xfer);
b42e0359 861 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
880c6d11
GU
862 /* Quad or Dual SPI Read */
863 return qspi_transfer_in(rspi, xfer);
864 } else {
865 /* Single SPI Transfer */
866 return qspi_transfer_out_in(rspi, xfer);
867 }
0b2182dd
SY
868}
869
880c6d11
GU
870static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
871{
872 if (xfer->tx_buf)
873 switch (xfer->tx_nbits) {
874 case SPI_NBITS_QUAD:
875 return SPCMD_SPIMOD_QUAD;
876 case SPI_NBITS_DUAL:
877 return SPCMD_SPIMOD_DUAL;
878 default:
879 return 0;
880 }
881 if (xfer->rx_buf)
882 switch (xfer->rx_nbits) {
883 case SPI_NBITS_QUAD:
884 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
885 case SPI_NBITS_DUAL:
886 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
887 default:
888 return 0;
889 }
890
891 return 0;
892}
893
894static int qspi_setup_sequencer(struct rspi_data *rspi,
895 const struct spi_message *msg)
896{
897 const struct spi_transfer *xfer;
898 unsigned int i = 0, len = 0;
899 u16 current_mode = 0xffff, mode;
900
901 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
902 mode = qspi_transfer_mode(xfer);
903 if (mode == current_mode) {
904 len += xfer->len;
905 continue;
906 }
907
908 /* Transfer mode change */
909 if (i) {
910 /* Set transfer data length of previous transfer */
911 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
912 }
913
914 if (i >= QSPI_NUM_SPCMD) {
915 dev_err(&msg->spi->dev,
916 "Too many different transfer modes");
917 return -EINVAL;
918 }
919
920 /* Program transfer mode for this transfer */
921 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
922 current_mode = mode;
923 len = xfer->len;
924 i++;
925 }
926 if (i) {
927 /* Set final transfer data length and sequence length */
928 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
929 rspi_write8(rspi, i - 1, RSPI_SPSCR);
930 }
931
932 return 0;
933}
934
f3a14a3a
GU
935static int rspi_setup(struct spi_device *spi)
936{
937 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
938 u8 sslp;
939
940 if (spi->cs_gpiod)
941 return 0;
942
943 pm_runtime_get_sync(&rspi->pdev->dev);
944 spin_lock_irq(&rspi->lock);
945
946 sslp = rspi_read8(rspi, RSPI_SSLP);
947 if (spi->mode & SPI_CS_HIGH)
948 sslp |= SSLP_SSLP(spi->chip_select);
949 else
950 sslp &= ~SSLP_SSLP(spi->chip_select);
951 rspi_write8(rspi, sslp, RSPI_SSLP);
952
953 spin_unlock_irq(&rspi->lock);
954 pm_runtime_put(&rspi->pdev->dev);
955 return 0;
956}
957
9428a073 958static int rspi_prepare_message(struct spi_controller *ctlr,
880c6d11 959 struct spi_message *msg)
79d23495 960{
9428a073 961 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
42bdaaec 962 struct spi_device *spi = msg->spi;
e0fe7005 963 const struct spi_transfer *xfer;
880c6d11 964 int ret;
0b2182dd 965
e0fe7005
GU
966 /*
967 * As the Bit Rate Register must not be changed while the device is
968 * active, all transfers in a message must use the same bit rate.
969 * In theory, the sequencer could be enabled, and each Command Register
970 * could divide the base bit rate by a different value.
971 * However, most RSPI variants do not have Transfer Data Length
972 * Multiplier Setting Registers, so each sequence step would be limited
973 * to a single word, making this feature unsuitable for large
974 * transfers, which would gain most from it.
975 */
976 rspi->speed_hz = spi->max_speed_hz;
977 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
978 if (xfer->speed_hz < rspi->speed_hz)
979 rspi->speed_hz = xfer->speed_hz;
980 }
42bdaaec
GU
981
982 rspi->spcmd = SPCMD_SSLKP;
983 if (spi->mode & SPI_CPOL)
984 rspi->spcmd |= SPCMD_CPOL;
985 if (spi->mode & SPI_CPHA)
986 rspi->spcmd |= SPCMD_CPHA;
c046f8fd
GU
987 if (spi->mode & SPI_LSB_FIRST)
988 rspi->spcmd |= SPCMD_LSBF;
42bdaaec 989
9815ed87 990 /* Configure slave signal to assert */
144d8f97
GU
991 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
992 : spi->chip_select);
9815ed87 993
42bdaaec
GU
994 /* CMOS output mode and MOSI signal from previous transfer */
995 rspi->sppcr = 0;
996 if (spi->mode & SPI_LOOP)
997 rspi->sppcr |= SPPCR_SPLP;
998
8f2344fa 999 rspi->ops->set_config_register(rspi, 8);
42bdaaec 1000
880c6d11
GU
1001 if (msg->spi->mode &
1002 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1003 /* Setup sequencer for messages with multiple transfer modes */
1004 ret = qspi_setup_sequencer(rspi, msg);
1005 if (ret < 0)
1006 return ret;
1007 }
1008
1009 /* Enable SPI function in master mode */
79d23495 1010 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
0b2182dd
SY
1011 return 0;
1012}
1013
9428a073 1014static int rspi_unprepare_message(struct spi_controller *ctlr,
880c6d11 1015 struct spi_message *msg)
0b2182dd 1016{
9428a073 1017 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
79d23495 1018
880c6d11 1019 /* Disable SPI function */
79d23495 1020 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
880c6d11
GU
1021
1022 /* Reset sequencer for Single SPI Transfers */
1023 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1024 rspi_write8(rspi, 0, RSPI_SPSCR);
79d23495 1025 return 0;
0b2182dd
SY
1026}
1027
93722206 1028static irqreturn_t rspi_irq_mux(int irq, void *_sr)
0b2182dd 1029{
c132f094 1030 struct rspi_data *rspi = _sr;
97b95c11 1031 u8 spsr;
0b2182dd 1032 irqreturn_t ret = IRQ_NONE;
97b95c11 1033 u8 disable_irq = 0;
0b2182dd
SY
1034
1035 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1036 if (spsr & SPSR_SPRF)
1037 disable_irq |= SPCR_SPRIE;
1038 if (spsr & SPSR_SPTEF)
1039 disable_irq |= SPCR_SPTIE;
1040
1041 if (disable_irq) {
1042 ret = IRQ_HANDLED;
1043 rspi_disable_irq(rspi, disable_irq);
1044 wake_up(&rspi->wait);
1045 }
1046
1047 return ret;
1048}
1049
93722206
GU
1050static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1051{
1052 struct rspi_data *rspi = _sr;
1053 u8 spsr;
1054
1055 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1056 if (spsr & SPSR_SPRF) {
1057 rspi_disable_irq(rspi, SPCR_SPRIE);
1058 wake_up(&rspi->wait);
1059 return IRQ_HANDLED;
1060 }
1061
1062 return 0;
1063}
1064
1065static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1066{
1067 struct rspi_data *rspi = _sr;
1068 u8 spsr;
1069
1070 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1071 if (spsr & SPSR_SPTEF) {
1072 rspi_disable_irq(rspi, SPCR_SPTIE);
1073 wake_up(&rspi->wait);
1074 return IRQ_HANDLED;
1075 }
1076
1077 return 0;
1078}
1079
65bf2205
GU
1080static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1081 enum dma_transfer_direction dir,
1082 unsigned int id,
1083 dma_addr_t port_addr)
a3633fe7 1084{
a3633fe7 1085 dma_cap_mask_t mask;
65bf2205 1086 struct dma_chan *chan;
0243c536
SY
1087 struct dma_slave_config cfg;
1088 int ret;
a3633fe7 1089
65bf2205
GU
1090 dma_cap_zero(mask);
1091 dma_cap_set(DMA_SLAVE, mask);
1092
e825b8dd
GU
1093 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1094 (void *)(unsigned long)id, dev,
1095 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
65bf2205 1096 if (!chan) {
e825b8dd 1097 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
65bf2205
GU
1098 return NULL;
1099 }
1100
1101 memset(&cfg, 0, sizeof(cfg));
65bf2205 1102 cfg.direction = dir;
a30b95a7 1103 if (dir == DMA_MEM_TO_DEV) {
65bf2205 1104 cfg.dst_addr = port_addr;
a30b95a7
GU
1105 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1106 } else {
65bf2205 1107 cfg.src_addr = port_addr;
a30b95a7
GU
1108 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1109 }
65bf2205
GU
1110
1111 ret = dmaengine_slave_config(chan, &cfg);
1112 if (ret) {
1113 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1114 dma_release_channel(chan);
1115 return NULL;
1116 }
1117
1118 return chan;
1119}
1120
9428a073 1121static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
fcdc49ae 1122 const struct resource *res)
65bf2205 1123{
fcdc49ae 1124 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
e825b8dd
GU
1125 unsigned int dma_tx_id, dma_rx_id;
1126
1127 if (dev->of_node) {
1128 /* In the OF case we will get the slave IDs from the DT */
1129 dma_tx_id = 0;
1130 dma_rx_id = 0;
1131 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1132 dma_tx_id = rspi_pd->dma_tx_id;
1133 dma_rx_id = rspi_pd->dma_rx_id;
1134 } else {
1135 /* The driver assumes no error. */
1136 return 0;
1137 }
65bf2205 1138
9428a073
GU
1139 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1140 res->start + RSPI_SPDR);
1141 if (!ctlr->dma_tx)
5f338d0c
GU
1142 return -ENODEV;
1143
9428a073
GU
1144 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1145 res->start + RSPI_SPDR);
1146 if (!ctlr->dma_rx) {
1147 dma_release_channel(ctlr->dma_tx);
1148 ctlr->dma_tx = NULL;
5f338d0c 1149 return -ENODEV;
a3633fe7 1150 }
0243c536 1151
9428a073 1152 ctlr->can_dma = rspi_can_dma;
5f338d0c 1153 dev_info(dev, "DMA available");
0243c536 1154 return 0;
a3633fe7
SY
1155}
1156
9428a073 1157static void rspi_release_dma(struct spi_controller *ctlr)
a3633fe7 1158{
9428a073
GU
1159 if (ctlr->dma_tx)
1160 dma_release_channel(ctlr->dma_tx);
1161 if (ctlr->dma_rx)
1162 dma_release_channel(ctlr->dma_rx);
a3633fe7
SY
1163}
1164
fd4a319b 1165static int rspi_remove(struct platform_device *pdev)
0b2182dd 1166{
5ffbe2d9 1167 struct rspi_data *rspi = platform_get_drvdata(pdev);
0b2182dd 1168
9428a073 1169 rspi_release_dma(rspi->ctlr);
490c9774 1170 pm_runtime_disable(&pdev->dev);
0b2182dd
SY
1171
1172 return 0;
1173}
1174
426ef76d 1175static const struct spi_ops rspi_ops = {
b42e0359
GU
1176 .set_config_register = rspi_set_config_register,
1177 .transfer_one = rspi_transfer_one,
9428a073 1178 .flags = SPI_CONTROLLER_MUST_TX,
2f777ec9 1179 .fifo_size = 8,
144d8f97 1180 .num_hw_ss = 2,
426ef76d
GU
1181};
1182
1183static const struct spi_ops rspi_rz_ops = {
b42e0359
GU
1184 .set_config_register = rspi_rz_set_config_register,
1185 .transfer_one = rspi_rz_transfer_one,
9428a073 1186 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
2f777ec9 1187 .fifo_size = 8, /* 8 for TX, 32 for RX */
144d8f97 1188 .num_hw_ss = 1,
426ef76d
GU
1189};
1190
1191static const struct spi_ops qspi_ops = {
b42e0359
GU
1192 .set_config_register = qspi_set_config_register,
1193 .transfer_one = qspi_transfer_one,
cd982e6c 1194 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
b42e0359 1195 SPI_RX_DUAL | SPI_RX_QUAD,
9428a073 1196 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
2f777ec9 1197 .fifo_size = 32,
144d8f97 1198 .num_hw_ss = 1,
426ef76d
GU
1199};
1200
1201#ifdef CONFIG_OF
1202static const struct of_device_id rspi_of_match[] = {
1203 /* RSPI on legacy SH */
1204 { .compatible = "renesas,rspi", .data = &rspi_ops },
1205 /* RSPI on RZ/A1H */
1206 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1207 /* QSPI on R-Car Gen2 */
1208 { .compatible = "renesas,qspi", .data = &qspi_ops },
1209 { /* sentinel */ }
1210};
1211
1212MODULE_DEVICE_TABLE(of, rspi_of_match);
1213
9428a073 1214static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
426ef76d
GU
1215{
1216 u32 num_cs;
1217 int error;
1218
1219 /* Parse DT properties */
1220 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1221 if (error) {
1222 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1223 return error;
1224 }
1225
9428a073 1226 ctlr->num_chipselect = num_cs;
426ef76d
GU
1227 return 0;
1228}
1229#else
64b67def 1230#define rspi_of_match NULL
9428a073 1231static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
426ef76d
GU
1232{
1233 return -EINVAL;
1234}
1235#endif /* CONFIG_OF */
1236
93722206
GU
1237static int rspi_request_irq(struct device *dev, unsigned int irq,
1238 irq_handler_t handler, const char *suffix,
1239 void *dev_id)
1240{
43937455
GU
1241 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1242 dev_name(dev), suffix);
93722206
GU
1243 if (!name)
1244 return -ENOMEM;
43937455 1245
93722206
GU
1246 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1247}
1248
fd4a319b 1249static int rspi_probe(struct platform_device *pdev)
0b2182dd
SY
1250{
1251 struct resource *res;
9428a073 1252 struct spi_controller *ctlr;
0b2182dd 1253 struct rspi_data *rspi;
93722206 1254 int ret;
426ef76d 1255 const struct rspi_plat_data *rspi_pd;
5ce0ba88 1256 const struct spi_ops *ops;
0b2182dd 1257
9428a073
GU
1258 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1259 if (ctlr == NULL)
0b2182dd 1260 return -ENOMEM;
0b2182dd 1261
219a7bc5
GU
1262 ops = of_device_get_match_data(&pdev->dev);
1263 if (ops) {
9428a073 1264 ret = rspi_parse_dt(&pdev->dev, ctlr);
426ef76d
GU
1265 if (ret)
1266 goto error1;
1267 } else {
1268 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1269 rspi_pd = dev_get_platdata(&pdev->dev);
1270 if (rspi_pd && rspi_pd->num_chipselect)
9428a073 1271 ctlr->num_chipselect = rspi_pd->num_chipselect;
426ef76d 1272 else
9428a073 1273 ctlr->num_chipselect = 2; /* default */
d64b4726 1274 }
426ef76d 1275
9428a073 1276 rspi = spi_controller_get_devdata(ctlr);
24b5a82c 1277 platform_set_drvdata(pdev, rspi);
5ce0ba88 1278 rspi->ops = ops;
9428a073 1279 rspi->ctlr = ctlr;
5d79e9ac
LP
1280
1281 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1282 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1283 if (IS_ERR(rspi->addr)) {
1284 ret = PTR_ERR(rspi->addr);
0b2182dd
SY
1285 goto error1;
1286 }
1287
29f397b7 1288 rspi->clk = devm_clk_get(&pdev->dev, NULL);
0b2182dd
SY
1289 if (IS_ERR(rspi->clk)) {
1290 dev_err(&pdev->dev, "cannot get clock\n");
1291 ret = PTR_ERR(rspi->clk);
5d79e9ac 1292 goto error1;
0b2182dd 1293 }
17fe0d9a 1294
f3a14a3a 1295 rspi->pdev = pdev;
490c9774 1296 pm_runtime_enable(&pdev->dev);
0b2182dd 1297
0b2182dd 1298 init_waitqueue_head(&rspi->wait);
f3a14a3a 1299 spin_lock_init(&rspi->lock);
0b2182dd 1300
9428a073 1301 ctlr->bus_num = pdev->id;
f3a14a3a 1302 ctlr->setup = rspi_setup;
9428a073
GU
1303 ctlr->auto_runtime_pm = true;
1304 ctlr->transfer_one = ops->transfer_one;
1305 ctlr->prepare_message = rspi_prepare_message;
1306 ctlr->unprepare_message = rspi_unprepare_message;
f3a14a3a
GU
1307 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1308 SPI_LOOP | ops->extra_mode_bits;
9428a073
GU
1309 ctlr->flags = ops->flags;
1310 ctlr->dev.of_node = pdev->dev.of_node;
144d8f97
GU
1311 ctlr->use_gpio_descriptors = true;
1312 ctlr->max_native_cs = rspi->ops->num_hw_ss;
0b2182dd 1313
2de860b4 1314 ret = platform_get_irq_byname_optional(pdev, "rx");
93722206 1315 if (ret < 0) {
2de860b4 1316 ret = platform_get_irq_byname_optional(pdev, "mux");
93722206
GU
1317 if (ret < 0)
1318 ret = platform_get_irq(pdev, 0);
1319 if (ret >= 0)
1320 rspi->rx_irq = rspi->tx_irq = ret;
1321 } else {
1322 rspi->rx_irq = ret;
1323 ret = platform_get_irq_byname(pdev, "tx");
1324 if (ret >= 0)
1325 rspi->tx_irq = ret;
1326 }
93722206
GU
1327
1328 if (rspi->rx_irq == rspi->tx_irq) {
1329 /* Single multiplexed interrupt */
1330 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1331 "mux", rspi);
1332 } else {
1333 /* Multi-interrupt mode, only SPRI and SPTI are used */
1334 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1335 "rx", rspi);
1336 if (!ret)
1337 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1338 rspi_irq_tx, "tx", rspi);
1339 }
0b2182dd
SY
1340 if (ret < 0) {
1341 dev_err(&pdev->dev, "request_irq error\n");
fcb4ed74 1342 goto error2;
0b2182dd
SY
1343 }
1344
9428a073 1345 ret = rspi_request_dma(&pdev->dev, ctlr, res);
27e105a6
GU
1346 if (ret < 0)
1347 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
a3633fe7 1348
9428a073 1349 ret = devm_spi_register_controller(&pdev->dev, ctlr);
0b2182dd 1350 if (ret < 0) {
9428a073 1351 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
fcb4ed74 1352 goto error3;
0b2182dd
SY
1353 }
1354
1355 dev_info(&pdev->dev, "probed\n");
1356
1357 return 0;
1358
fcb4ed74 1359error3:
9428a073 1360 rspi_release_dma(ctlr);
fcb4ed74 1361error2:
490c9774 1362 pm_runtime_disable(&pdev->dev);
0b2182dd 1363error1:
9428a073 1364 spi_controller_put(ctlr);
0b2182dd
SY
1365
1366 return ret;
1367}
1368
8634dafa 1369static const struct platform_device_id spi_driver_ids[] = {
5ce0ba88 1370 { "rspi", (kernel_ulong_t)&rspi_ops },
5ce0ba88
HCM
1371 {},
1372};
1373
1374MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1375
c1ca59c2
GU
1376#ifdef CONFIG_PM_SLEEP
1377static int rspi_suspend(struct device *dev)
1378{
be0bf62e 1379 struct rspi_data *rspi = dev_get_drvdata(dev);
c1ca59c2 1380
9428a073 1381 return spi_controller_suspend(rspi->ctlr);
c1ca59c2
GU
1382}
1383
1384static int rspi_resume(struct device *dev)
1385{
be0bf62e 1386 struct rspi_data *rspi = dev_get_drvdata(dev);
c1ca59c2 1387
9428a073 1388 return spi_controller_resume(rspi->ctlr);
c1ca59c2
GU
1389}
1390
1391static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1392#define DEV_PM_OPS &rspi_pm_ops
1393#else
1394#define DEV_PM_OPS NULL
1395#endif /* CONFIG_PM_SLEEP */
1396
0b2182dd
SY
1397static struct platform_driver rspi_driver = {
1398 .probe = rspi_probe,
fd4a319b 1399 .remove = rspi_remove,
5ce0ba88 1400 .id_table = spi_driver_ids,
0b2182dd 1401 .driver = {
5ce0ba88 1402 .name = "renesas_spi",
c1ca59c2 1403 .pm = DEV_PM_OPS,
426ef76d 1404 .of_match_table = of_match_ptr(rspi_of_match),
0b2182dd
SY
1405 },
1406};
1407module_platform_driver(rspi_driver);
1408
1409MODULE_DESCRIPTION("Renesas RSPI bus driver");
1410MODULE_LICENSE("GPL v2");
1411MODULE_AUTHOR("Yoshihiro Shimoda");
1412MODULE_ALIAS("platform:rspi");