spi: intel: Remove DANGEROUS tag from pci driver
[linux-2.6-block.git] / drivers / spi / spi-mtk-snfi.c
CommitLineData
764f1b74
CG
1// SPDX-License-Identifier: GPL-2.0
2//
3// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4//
5// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6//
7// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8//
9// Copyright (C) 2020 MediaTek Inc.
10// Author: Weijie Gao <weijie.gao@mediatek.com>
11//
12// This controller organize the page data as several interleaved sectors
13// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14// +---------+------+------+---------+------+------+-----+
15// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16// +---------+------+------+---------+------+------+-----+
17// With auto-format turned on, DMA only returns this part:
18// +---------+---------+-----+
19// | Sector1 | Sector2 | ... |
20// +---------+---------+-----+
21// The FDM data will be filled to the registers, and ECC parity data isn't
22// accessible.
23// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24// in it's original order shown in the first table. ECC can't be turned on when
25// auto-format is off.
26//
27// However, Linux SPI-NAND driver expects the data returned as:
28// +------+-----+
29// | Page | OOB |
30// +------+-----+
31// where the page data is continuously stored instead of interleaved.
32// So we assume all instructions matching the page_op template between ECC
33// prepare_io_req and finish_io_req are for page cache r/w.
34// Here's how this spi-mem driver operates when reading:
35// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36// 2. Perform page ops and let the controller fill the DMA bounce buffer with
37// de-interleaved sector data and set FDM registers.
38// 3. Return the data as:
39// +---------+---------+-----+------+------+-----+
40// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41// +---------+---------+-----+------+------+-----+
42// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43// read the data with auto-format off into the bounce buffer and copy
44// needed data to the buffer specified in the request.
45//
46// Write requests operates in a similar manner.
47// As a limitation of this strategy, we won't be able to access any ECC parity
48// data at all in Linux.
49//
50// Here's the bad block mark situation on MTK chips:
51// In older chips like mt7622, MTK uses the first FDM byte in the first sector
52// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53// in the returned data, which is the BBM position expected by kernel. However,
54// the conventional bad block mark is the first byte of the OOB, which is part
55// of the last sector data in the interleaved layout. Instead of fixing their
56// hardware, MTK decided to address this inconsistency in software. On these
57// later chips, the BootROM expects the following:
58// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60// 2. The original byte stored at that position in the DMA buffer will be stored
61// as the first byte of the FDM section in the last sector.
62// We can't disagree with the BootROM, so after de-interleaving, we need to
63// perform the following swaps in read:
64// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65// which is the expected BBM position by kernel.
66// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67// [page_size - (nsectors - 1) * spare_size]
68// Similarly, when writing, we need to perform swaps in the other direction.
69
70#include <linux/kernel.h>
71#include <linux/module.h>
72#include <linux/init.h>
73#include <linux/device.h>
74#include <linux/mutex.h>
75#include <linux/clk.h>
76#include <linux/interrupt.h>
77#include <linux/dma-mapping.h>
78#include <linux/iopoll.h>
79#include <linux/of_platform.h>
80#include <linux/mtd/nand-ecc-mtk.h>
81#include <linux/spi/spi.h>
82#include <linux/spi/spi-mem.h>
83#include <linux/mtd/nand.h>
84
85// NFI registers
86#define NFI_CNFG 0x000
87#define CNFG_OP_MODE_S 12
88#define CNFG_OP_MODE_CUST 6
89#define CNFG_OP_MODE_PROGRAM 3
90#define CNFG_AUTO_FMT_EN BIT(9)
91#define CNFG_HW_ECC_EN BIT(8)
92#define CNFG_DMA_BURST_EN BIT(2)
93#define CNFG_READ_MODE BIT(1)
94#define CNFG_DMA_MODE BIT(0)
95
96#define NFI_PAGEFMT 0x0004
97#define NFI_SPARE_SIZE_LS_S 16
98#define NFI_FDM_ECC_NUM_S 12
99#define NFI_FDM_NUM_S 8
100#define NFI_SPARE_SIZE_S 4
101#define NFI_SEC_SEL_512 BIT(2)
102#define NFI_PAGE_SIZE_S 0
103#define NFI_PAGE_SIZE_512_2K 0
104#define NFI_PAGE_SIZE_2K_4K 1
105#define NFI_PAGE_SIZE_4K_8K 2
106#define NFI_PAGE_SIZE_8K_16K 3
107
108#define NFI_CON 0x008
109#define CON_SEC_NUM_S 12
110#define CON_BWR BIT(9)
111#define CON_BRD BIT(8)
112#define CON_NFI_RST BIT(1)
113#define CON_FIFO_FLUSH BIT(0)
114
115#define NFI_INTR_EN 0x010
116#define NFI_INTR_STA 0x014
117#define NFI_IRQ_INTR_EN BIT(31)
118#define NFI_IRQ_CUS_READ BIT(8)
119#define NFI_IRQ_CUS_PG BIT(7)
120
121#define NFI_CMD 0x020
122#define NFI_CMD_DUMMY_READ 0x00
123#define NFI_CMD_DUMMY_WRITE 0x80
124
125#define NFI_STRDATA 0x040
126#define STR_DATA BIT(0)
127
128#define NFI_STA 0x060
7073888c
XH
129#define NFI_NAND_FSM_7622 GENMASK(28, 24)
130#define NFI_NAND_FSM_7986 GENMASK(29, 23)
764f1b74
CG
131#define NFI_FSM GENMASK(19, 16)
132#define READ_EMPTY BIT(12)
133
134#define NFI_FIFOSTA 0x064
135#define FIFO_WR_REMAIN_S 8
136#define FIFO_RD_REMAIN_S 0
137
138#define NFI_ADDRCNTR 0x070
139#define SEC_CNTR GENMASK(16, 12)
140#define SEC_CNTR_S 12
141#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
142
143#define NFI_STRADDR 0x080
144
145#define NFI_BYTELEN 0x084
146#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
147
148#define NFI_FDM0L 0x0a0
149#define NFI_FDM0M 0x0a4
150#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
151#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
152
153#define NFI_DEBUG_CON1 0x220
154#define WBUF_EN BIT(2)
155
156#define NFI_MASTERSTA 0x224
157#define MAS_ADDR GENMASK(11, 9)
158#define MAS_RD GENMASK(8, 6)
159#define MAS_WR GENMASK(5, 3)
160#define MAS_RDDLY GENMASK(2, 0)
161#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
7073888c 162#define NFI_MASTERSTA_MASK_7986 3
764f1b74
CG
163
164// SNFI registers
165#define SNF_MAC_CTL 0x500
166#define MAC_XIO_SEL BIT(4)
167#define SF_MAC_EN BIT(3)
168#define SF_TRIG BIT(2)
169#define WIP_READY BIT(1)
170#define WIP BIT(0)
171
172#define SNF_MAC_OUTL 0x504
173#define SNF_MAC_INL 0x508
174
175#define SNF_RD_CTL2 0x510
176#define DATA_READ_DUMMY_S 8
177#define DATA_READ_MAX_DUMMY 0xf
178#define DATA_READ_CMD_S 0
179
180#define SNF_RD_CTL3 0x514
181
182#define SNF_PG_CTL1 0x524
183#define PG_LOAD_CMD_S 8
184
185#define SNF_PG_CTL2 0x528
186
187#define SNF_MISC_CTL 0x538
188#define SW_RST BIT(28)
189#define FIFO_RD_LTC_S 25
190#define PG_LOAD_X4_EN BIT(20)
191#define DATA_READ_MODE_S 16
192#define DATA_READ_MODE GENMASK(18, 16)
193#define DATA_READ_MODE_X1 0
194#define DATA_READ_MODE_X2 1
195#define DATA_READ_MODE_X4 2
196#define DATA_READ_MODE_DUAL 5
197#define DATA_READ_MODE_QUAD 6
198#define PG_LOAD_CUSTOM_EN BIT(7)
199#define DATARD_CUSTOM_EN BIT(6)
200#define CS_DESELECT_CYC_S 0
201
202#define SNF_MISC_CTL2 0x53c
203#define PROGRAM_LOAD_BYTE_NUM_S 16
204#define READ_DATA_BYTE_NUM_S 11
205
206#define SNF_DLY_CTL3 0x548
207#define SFCK_SAM_DLY_S 0
208
209#define SNF_STA_CTL1 0x550
210#define CUS_PG_DONE BIT(28)
211#define CUS_READ_DONE BIT(27)
212#define SPI_STATE_S 0
213#define SPI_STATE GENMASK(3, 0)
214
215#define SNF_CFG 0x55c
216#define SPI_MODE BIT(0)
217
218#define SNF_GPRAM 0x800
219#define SNF_GPRAM_SIZE 0xa0
220
221#define SNFI_POLL_INTERVAL 1000000
222
223static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
224
7073888c
XH
225static const u8 mt7986_spare_sizes[] = {
226 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
227 74
228};
229
764f1b74
CG
230struct mtk_snand_caps {
231 u16 sector_size;
232 u16 max_sectors;
233 u16 fdm_size;
234 u16 fdm_ecc_size;
235 u16 fifo_size;
236
237 bool bbm_swap;
238 bool empty_page_check;
239 u32 mastersta_mask;
7073888c 240 u32 nandfsm_mask;
764f1b74
CG
241
242 const u8 *spare_sizes;
243 u32 num_spare_size;
244};
245
246static const struct mtk_snand_caps mt7622_snand_caps = {
247 .sector_size = 512,
248 .max_sectors = 8,
249 .fdm_size = 8,
250 .fdm_ecc_size = 1,
251 .fifo_size = 32,
252 .bbm_swap = false,
253 .empty_page_check = false,
254 .mastersta_mask = NFI_MASTERSTA_MASK_7622,
7073888c 255 .nandfsm_mask = NFI_NAND_FSM_7622,
764f1b74
CG
256 .spare_sizes = mt7622_spare_sizes,
257 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
258};
259
260static const struct mtk_snand_caps mt7629_snand_caps = {
261 .sector_size = 512,
262 .max_sectors = 8,
263 .fdm_size = 8,
264 .fdm_ecc_size = 1,
265 .fifo_size = 32,
266 .bbm_swap = true,
267 .empty_page_check = false,
268 .mastersta_mask = NFI_MASTERSTA_MASK_7622,
7073888c 269 .nandfsm_mask = NFI_NAND_FSM_7622,
764f1b74
CG
270 .spare_sizes = mt7622_spare_sizes,
271 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
272};
273
7073888c
XH
274static const struct mtk_snand_caps mt7986_snand_caps = {
275 .sector_size = 1024,
276 .max_sectors = 8,
277 .fdm_size = 8,
278 .fdm_ecc_size = 1,
279 .fifo_size = 64,
280 .bbm_swap = true,
281 .empty_page_check = true,
282 .mastersta_mask = NFI_MASTERSTA_MASK_7986,
283 .nandfsm_mask = NFI_NAND_FSM_7986,
284 .spare_sizes = mt7986_spare_sizes,
285 .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
286};
287
764f1b74
CG
288struct mtk_snand_conf {
289 size_t page_size;
290 size_t oob_size;
291 u8 nsectors;
292 u8 spare_size;
293};
294
295struct mtk_snand {
296 struct spi_controller *ctlr;
297 struct device *dev;
298 struct clk *nfi_clk;
299 struct clk *pad_clk;
300 void __iomem *nfi_base;
301 int irq;
302 struct completion op_done;
303 const struct mtk_snand_caps *caps;
304 struct mtk_ecc_config *ecc_cfg;
305 struct mtk_ecc *ecc;
306 struct mtk_snand_conf nfi_cfg;
307 struct mtk_ecc_stats ecc_stats;
308 struct nand_ecc_engine ecc_eng;
309 bool autofmt;
310 u8 *buf;
311 size_t buf_len;
312};
313
314static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
315{
316 struct nand_ecc_engine *eng = nand->ecc.engine;
317
318 return container_of(eng, struct mtk_snand, ecc_eng);
319}
320
321static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
322{
323 if (snf->buf_len >= size)
324 return 0;
325 kfree(snf->buf);
326 snf->buf = kmalloc(size, GFP_KERNEL);
327 if (!snf->buf)
328 return -ENOMEM;
329 snf->buf_len = size;
330 memset(snf->buf, 0xff, snf->buf_len);
331 return 0;
332}
333
334static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
335{
336 return readl(snf->nfi_base + reg);
337}
338
339static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
340{
341 writel(val, snf->nfi_base + reg);
342}
343
344static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
345{
346 writew(val, snf->nfi_base + reg);
347}
348
349static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
350{
351 u32 val;
352
353 val = readl(snf->nfi_base + reg);
354 val &= ~clr;
355 val |= set;
356 writel(val, snf->nfi_base + reg);
357}
358
359static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
360{
361 u32 i, val = 0, es = sizeof(u32);
362
363 for (i = reg; i < reg + len; i++) {
364 if (i == reg || i % es == 0)
365 val = nfi_read32(snf, i & ~(es - 1));
366
367 *data++ = (u8)(val >> (8 * (i % es)));
368 }
369}
370
371static int mtk_nfi_reset(struct mtk_snand *snf)
372{
373 u32 val, fifo_mask;
374 int ret;
375
376 nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
377
378 ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
379 !(val & snf->caps->mastersta_mask), 0,
380 SNFI_POLL_INTERVAL);
381 if (ret) {
382 dev_err(snf->dev, "NFI master is still busy after reset\n");
383 return ret;
384 }
385
386 ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
7073888c 387 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
764f1b74
CG
388 SNFI_POLL_INTERVAL);
389 if (ret) {
390 dev_err(snf->dev, "Failed to reset NFI\n");
391 return ret;
392 }
393
394 fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
395 ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
396 ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
397 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
398 if (ret) {
399 dev_err(snf->dev, "NFI FIFOs are not empty\n");
400 return ret;
401 }
402
403 return 0;
404}
405
406static int mtk_snand_mac_reset(struct mtk_snand *snf)
407{
408 int ret;
409 u32 val;
410
411 nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
412
413 ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
414 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
415 if (ret)
416 dev_err(snf->dev, "Failed to reset SNFI MAC\n");
417
418 nfi_write32(snf, SNF_MISC_CTL,
419 (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
420
421 return ret;
422}
423
424static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
425{
426 int ret;
427 u32 val;
428
429 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
430 nfi_write32(snf, SNF_MAC_OUTL, outlen);
431 nfi_write32(snf, SNF_MAC_INL, inlen);
432
433 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
434
435 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
436 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
437 if (ret) {
438 dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
439 goto cleanup;
440 }
441
442 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
443 0, SNFI_POLL_INTERVAL);
444 if (ret)
445 dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
446
447cleanup:
448 nfi_write32(snf, SNF_MAC_CTL, 0);
449
450 return ret;
451}
452
453static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
454{
455 u32 rx_len = 0;
456 u32 reg_offs = 0;
457 u32 val = 0;
458 const u8 *tx_buf = NULL;
459 u8 *rx_buf = NULL;
460 int i, ret;
461 u8 b;
462
463 if (op->data.dir == SPI_MEM_DATA_IN) {
464 rx_len = op->data.nbytes;
465 rx_buf = op->data.buf.in;
466 } else {
467 tx_buf = op->data.buf.out;
468 }
469
470 mtk_snand_mac_reset(snf);
471
472 for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
473 b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
474 val |= b << (8 * (reg_offs % 4));
475 if (reg_offs % 4 == 3) {
476 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
477 val = 0;
478 }
479 }
480
481 for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
482 b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
483 val |= b << (8 * (reg_offs % 4));
484 if (reg_offs % 4 == 3) {
485 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
486 val = 0;
487 }
488 }
489
490 for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
491 if (reg_offs % 4 == 3) {
492 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
493 val = 0;
494 }
495 }
496
497 if (op->data.dir == SPI_MEM_DATA_OUT) {
498 for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
499 val |= tx_buf[i] << (8 * (reg_offs % 4));
500 if (reg_offs % 4 == 3) {
501 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
502 val = 0;
503 }
504 }
505 }
506
507 if (reg_offs % 4)
508 nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
509
510 for (i = 0; i < reg_offs; i += 4)
511 dev_dbg(snf->dev, "%d: %08X", i,
512 nfi_read32(snf, SNF_GPRAM + i));
513
514 dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
515
516 ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
517 if (ret)
518 return ret;
519
520 if (!rx_len)
521 return 0;
522
523 nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
524 return 0;
525}
526
527static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
528 u32 oob_size)
529{
530 int spare_idx = -1;
531 u32 spare_size, spare_size_shift, pagesize_idx;
532 u32 sector_size_512;
533 u8 nsectors;
534 int i;
535
536 // skip if it's already configured as required.
537 if (snf->nfi_cfg.page_size == page_size &&
538 snf->nfi_cfg.oob_size == oob_size)
539 return 0;
540
541 nsectors = page_size / snf->caps->sector_size;
542 if (nsectors > snf->caps->max_sectors) {
543 dev_err(snf->dev, "too many sectors required.\n");
544 goto err;
545 }
546
547 if (snf->caps->sector_size == 512) {
548 sector_size_512 = NFI_SEC_SEL_512;
549 spare_size_shift = NFI_SPARE_SIZE_S;
550 } else {
551 sector_size_512 = 0;
552 spare_size_shift = NFI_SPARE_SIZE_LS_S;
553 }
554
555 switch (page_size) {
556 case SZ_512:
557 pagesize_idx = NFI_PAGE_SIZE_512_2K;
558 break;
559 case SZ_2K:
560 if (snf->caps->sector_size == 512)
561 pagesize_idx = NFI_PAGE_SIZE_2K_4K;
562 else
563 pagesize_idx = NFI_PAGE_SIZE_512_2K;
564 break;
565 case SZ_4K:
566 if (snf->caps->sector_size == 512)
567 pagesize_idx = NFI_PAGE_SIZE_4K_8K;
568 else
569 pagesize_idx = NFI_PAGE_SIZE_2K_4K;
570 break;
571 case SZ_8K:
572 if (snf->caps->sector_size == 512)
573 pagesize_idx = NFI_PAGE_SIZE_8K_16K;
574 else
575 pagesize_idx = NFI_PAGE_SIZE_4K_8K;
576 break;
577 case SZ_16K:
578 pagesize_idx = NFI_PAGE_SIZE_8K_16K;
579 break;
580 default:
581 dev_err(snf->dev, "unsupported page size.\n");
582 goto err;
583 }
584
585 spare_size = oob_size / nsectors;
586 // If we're using the 1KB sector size, HW will automatically double the
587 // spare size. We should only use half of the value in this case.
588 if (snf->caps->sector_size == 1024)
589 spare_size /= 2;
590
591 for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
592 if (snf->caps->spare_sizes[i] <= spare_size) {
593 spare_size = snf->caps->spare_sizes[i];
594 if (snf->caps->sector_size == 1024)
595 spare_size *= 2;
596 spare_idx = i;
597 break;
598 }
599 }
600
601 if (spare_idx < 0) {
602 dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
603 goto err;
604 }
605
606 nfi_write32(snf, NFI_PAGEFMT,
607 (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
608 (snf->caps->fdm_size << NFI_FDM_NUM_S) |
609 (spare_idx << spare_size_shift) |
610 (pagesize_idx << NFI_PAGE_SIZE_S) |
611 sector_size_512);
612
613 snf->nfi_cfg.page_size = page_size;
614 snf->nfi_cfg.oob_size = oob_size;
615 snf->nfi_cfg.nsectors = nsectors;
616 snf->nfi_cfg.spare_size = spare_size;
617
618 dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
619 snf->caps->sector_size, spare_size, nsectors);
620 return snand_prepare_bouncebuf(snf, page_size + oob_size);
621err:
622 dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
623 oob_size);
624 return -EOPNOTSUPP;
625}
626
627static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
628 struct mtd_oob_region *oobecc)
629{
630 // ECC area is not accessible
631 return -ERANGE;
632}
633
634static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
635 struct mtd_oob_region *oobfree)
636{
637 struct nand_device *nand = mtd_to_nanddev(mtd);
638 struct mtk_snand *ms = nand_to_mtk_snand(nand);
639
640 if (section >= ms->nfi_cfg.nsectors)
641 return -ERANGE;
642
643 oobfree->length = ms->caps->fdm_size - 1;
644 oobfree->offset = section * ms->caps->fdm_size + 1;
645 return 0;
646}
647
648static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
649 .ecc = mtk_snand_ooblayout_ecc,
650 .free = mtk_snand_ooblayout_free,
651};
652
653static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
654{
655 struct mtk_snand *snf = nand_to_mtk_snand(nand);
656 struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
657 struct nand_ecc_props *reqs = &nand->ecc.requirements;
658 struct nand_ecc_props *user = &nand->ecc.user_conf;
659 struct mtd_info *mtd = nanddev_to_mtd(nand);
660 int step_size = 0, strength = 0, desired_correction = 0, steps;
661 bool ecc_user = false;
662 int ret;
663 u32 parity_bits, max_ecc_bytes;
664 struct mtk_ecc_config *ecc_cfg;
665
666 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
667 nand->memorg.oobsize);
668 if (ret)
669 return ret;
670
671 ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
672 if (!ecc_cfg)
673 return -ENOMEM;
674
675 nand->ecc.ctx.priv = ecc_cfg;
676
677 if (user->step_size && user->strength) {
678 step_size = user->step_size;
679 strength = user->strength;
680 ecc_user = true;
681 } else if (reqs->step_size && reqs->strength) {
682 step_size = reqs->step_size;
683 strength = reqs->strength;
684 }
685
686 if (step_size && strength) {
687 steps = mtd->writesize / step_size;
688 desired_correction = steps * strength;
689 strength = desired_correction / snf->nfi_cfg.nsectors;
690 }
691
692 ecc_cfg->mode = ECC_NFI_MODE;
693 ecc_cfg->sectors = snf->nfi_cfg.nsectors;
694 ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
695
696 // calculate the max possible strength under current page format
697 parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
698 max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
699 ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
700 mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
701
702 // if there's a user requested strength, find the minimum strength that
703 // meets the requirement. Otherwise use the maximum strength which is
704 // expected by BootROM.
705 if (ecc_user && strength) {
706 u32 s_next = ecc_cfg->strength - 1;
707
708 while (1) {
709 mtk_ecc_adjust_strength(snf->ecc, &s_next);
710 if (s_next >= ecc_cfg->strength)
711 break;
712 if (s_next < strength)
713 break;
714 s_next = ecc_cfg->strength - 1;
715 }
716 }
717
718 mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
719
720 conf->step_size = snf->caps->sector_size;
721 conf->strength = ecc_cfg->strength;
722
723 if (ecc_cfg->strength < strength)
724 dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
725 strength);
726 dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
727 ecc_cfg->strength, snf->caps->sector_size);
728
729 return 0;
730}
731
732static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
733{
734 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
735
736 kfree(ecc_cfg);
737}
738
739static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
740 struct nand_page_io_req *req)
741{
742 struct mtk_snand *snf = nand_to_mtk_snand(nand);
743 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
744 int ret;
745
746 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
747 nand->memorg.oobsize);
748 if (ret)
749 return ret;
750 snf->autofmt = true;
751 snf->ecc_cfg = ecc_cfg;
752 return 0;
753}
754
755static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
756 struct nand_page_io_req *req)
757{
758 struct mtk_snand *snf = nand_to_mtk_snand(nand);
759 struct mtd_info *mtd = nanddev_to_mtd(nand);
760
761 snf->ecc_cfg = NULL;
762 snf->autofmt = false;
763 if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
764 return 0;
765
766 if (snf->ecc_stats.failed)
767 mtd->ecc_stats.failed += snf->ecc_stats.failed;
768 mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
769 return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
770}
771
772static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
773 .init_ctx = mtk_snand_ecc_init_ctx,
774 .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
775 .prepare_io_req = mtk_snand_ecc_prepare_io_req,
776 .finish_io_req = mtk_snand_ecc_finish_io_req,
777};
778
779static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
780{
781 u32 vall, valm;
782 u8 *oobptr = buf;
783 int i, j;
784
785 for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
786 vall = nfi_read32(snf, NFI_FDML(i));
787 valm = nfi_read32(snf, NFI_FDMM(i));
788
789 for (j = 0; j < snf->caps->fdm_size; j++)
790 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
791
792 oobptr += snf->caps->fdm_size;
793 }
794}
795
796static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
797{
798 u32 fdm_size = snf->caps->fdm_size;
799 const u8 *oobptr = buf;
800 u32 vall, valm;
801 int i, j;
802
803 for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
804 vall = 0;
805 valm = 0;
806
807 for (j = 0; j < 8; j++) {
808 if (j < 4)
809 vall |= (j < fdm_size ? oobptr[j] : 0xff)
810 << (j * 8);
811 else
812 valm |= (j < fdm_size ? oobptr[j] : 0xff)
813 << ((j - 4) * 8);
814 }
815
816 nfi_write32(snf, NFI_FDML(i), vall);
817 nfi_write32(snf, NFI_FDMM(i), valm);
818
819 oobptr += fdm_size;
820 }
821}
822
823static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
824{
825 u32 buf_bbm_pos, fdm_bbm_pos;
826
827 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
828 return;
829
830 // swap [pagesize] byte on nand with the first fdm byte
831 // in the last sector.
832 buf_bbm_pos = snf->nfi_cfg.page_size -
833 (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
834 fdm_bbm_pos = snf->nfi_cfg.page_size +
835 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
836
837 swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
838}
839
840static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
841{
842 u32 fdm_bbm_pos1, fdm_bbm_pos2;
843
844 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
845 return;
846
847 // swap the first fdm byte in the first and the last sector.
848 fdm_bbm_pos1 = snf->nfi_cfg.page_size;
849 fdm_bbm_pos2 = snf->nfi_cfg.page_size +
850 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
851 swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
852}
853
854static int mtk_snand_read_page_cache(struct mtk_snand *snf,
855 const struct spi_mem_op *op)
856{
857 u8 *buf = snf->buf;
858 u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
859 // the address part to be sent by the controller
860 u32 op_addr = op->addr.val;
861 // where to start copying data from bounce buffer
862 u32 rd_offset = 0;
863 u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
864 u32 op_mode = 0;
865 u32 dma_len = snf->buf_len;
866 int ret = 0;
867 u32 rd_mode, rd_bytes, val;
868 dma_addr_t buf_dma;
869
870 if (snf->autofmt) {
871 u32 last_bit;
872 u32 mask;
873
874 dma_len = snf->nfi_cfg.page_size;
875 op_mode = CNFG_AUTO_FMT_EN;
876 if (op->data.ecc)
877 op_mode |= CNFG_HW_ECC_EN;
878 // extract the plane bit:
879 // Find the highest bit set in (pagesize+oobsize).
880 // Bits higher than that in op->addr are kept and sent over SPI
881 // Lower bits are used as an offset for copying data from DMA
882 // bounce buffer.
883 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
884 mask = (1 << last_bit) - 1;
885 rd_offset = op_addr & mask;
886 op_addr &= ~mask;
887
888 // check if we can dma to the caller memory
889 if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
890 buf = op->data.buf.in;
891 }
892 mtk_snand_mac_reset(snf);
893 mtk_nfi_reset(snf);
894
895 // command and dummy cycles
896 nfi_write32(snf, SNF_RD_CTL2,
897 (dummy_clk << DATA_READ_DUMMY_S) |
898 (op->cmd.opcode << DATA_READ_CMD_S));
899
900 // read address
901 nfi_write32(snf, SNF_RD_CTL3, op_addr);
902
903 // Set read op_mode
904 if (op->data.buswidth == 4)
905 rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
906 DATA_READ_MODE_X4;
907 else if (op->data.buswidth == 2)
908 rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
909 DATA_READ_MODE_X2;
910 else
911 rd_mode = DATA_READ_MODE_X1;
912 rd_mode <<= DATA_READ_MODE_S;
913 nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
914 rd_mode | DATARD_CUSTOM_EN);
915
916 // Set bytes to read
917 rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
918 snf->nfi_cfg.nsectors;
919 nfi_write32(snf, SNF_MISC_CTL2,
920 (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
921
922 // NFI read prepare
923 nfi_write16(snf, NFI_CNFG,
924 (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
925 CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
926
927 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
928
929 buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
73c1a515
DC
930 ret = dma_mapping_error(snf->dev, buf_dma);
931 if (ret) {
764f1b74
CG
932 dev_err(snf->dev, "DMA mapping failed.\n");
933 goto cleanup;
934 }
935 nfi_write32(snf, NFI_STRADDR, buf_dma);
936 if (op->data.ecc) {
937 snf->ecc_cfg->op = ECC_DECODE;
938 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
939 if (ret)
940 goto cleanup_dma;
941 }
942 // Prepare for custom read interrupt
943 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
944 reinit_completion(&snf->op_done);
945
946 // Trigger NFI into custom mode
947 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
948
949 // Start DMA read
950 nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
951 nfi_write16(snf, NFI_STRDATA, STR_DATA);
952
953 if (!wait_for_completion_timeout(
954 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
955 dev_err(snf->dev, "DMA timed out for reading from cache.\n");
956 ret = -ETIMEDOUT;
957 goto cleanup;
958 }
959
960 // Wait for BUS_SEC_CNTR returning expected value
961 ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
962 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
963 SNFI_POLL_INTERVAL);
964 if (ret) {
965 dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
966 goto cleanup2;
967 }
968
969 // Wait for bus becoming idle
970 ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
971 !(val & snf->caps->mastersta_mask), 0,
972 SNFI_POLL_INTERVAL);
973 if (ret) {
974 dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
975 goto cleanup2;
976 }
977
978 if (op->data.ecc) {
979 ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
980 if (ret) {
981 dev_err(snf->dev, "wait ecc done timeout\n");
982 goto cleanup2;
983 }
984 // save status before disabling ecc
985 mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
986 snf->nfi_cfg.nsectors);
987 }
988
989 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
990
991 if (snf->autofmt) {
992 mtk_snand_read_fdm(snf, buf_fdm);
993 if (snf->caps->bbm_swap) {
994 mtk_snand_bm_swap(snf, buf);
995 mtk_snand_fdm_bm_swap(snf);
996 }
997 }
998
999 // copy data back
1000 if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1001 memset(op->data.buf.in, 0xff, op->data.nbytes);
1002 snf->ecc_stats.bitflips = 0;
1003 snf->ecc_stats.failed = 0;
1004 snf->ecc_stats.corrected = 0;
1005 } else {
1006 if (buf == op->data.buf.in) {
1007 u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1008 u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1009
1010 if (req_left)
1011 memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1012 buf_fdm,
1013 cap_len < req_left ? cap_len : req_left);
1014 } else if (rd_offset < snf->buf_len) {
1015 u32 cap_len = snf->buf_len - rd_offset;
1016
1017 if (op->data.nbytes < cap_len)
1018 cap_len = op->data.nbytes;
1019 memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1020 }
1021 }
1022cleanup2:
1023 if (op->data.ecc)
1024 mtk_ecc_disable(snf->ecc);
1025cleanup_dma:
1026 // unmap dma only if any error happens. (otherwise it's done before
1027 // data copying)
1028 if (ret)
1029 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1030cleanup:
1031 // Stop read
1032 nfi_write32(snf, NFI_CON, 0);
1033 nfi_write16(snf, NFI_CNFG, 0);
1034
1035 // Clear SNF done flag
1036 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1037 nfi_write32(snf, SNF_STA_CTL1, 0);
1038
1039 // Disable interrupt
1040 nfi_read32(snf, NFI_INTR_STA);
1041 nfi_write32(snf, NFI_INTR_EN, 0);
1042
1043 nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1044 return ret;
1045}
1046
1047static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1048 const struct spi_mem_op *op)
1049{
1050 // the address part to be sent by the controller
1051 u32 op_addr = op->addr.val;
1052 // where to start copying data from bounce buffer
1053 u32 wr_offset = 0;
1054 u32 op_mode = 0;
1055 int ret = 0;
1056 u32 wr_mode = 0;
1057 u32 dma_len = snf->buf_len;
1058 u32 wr_bytes, val;
1059 size_t cap_len;
1060 dma_addr_t buf_dma;
1061
1062 if (snf->autofmt) {
1063 u32 last_bit;
1064 u32 mask;
1065
1066 dma_len = snf->nfi_cfg.page_size;
1067 op_mode = CNFG_AUTO_FMT_EN;
1068 if (op->data.ecc)
1069 op_mode |= CNFG_HW_ECC_EN;
1070
1071 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1072 mask = (1 << last_bit) - 1;
1073 wr_offset = op_addr & mask;
1074 op_addr &= ~mask;
1075 }
1076 mtk_snand_mac_reset(snf);
1077 mtk_nfi_reset(snf);
1078
1079 if (wr_offset)
1080 memset(snf->buf, 0xff, wr_offset);
1081
1082 cap_len = snf->buf_len - wr_offset;
1083 if (op->data.nbytes < cap_len)
1084 cap_len = op->data.nbytes;
1085 memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1086 if (snf->autofmt) {
1087 if (snf->caps->bbm_swap) {
1088 mtk_snand_fdm_bm_swap(snf);
1089 mtk_snand_bm_swap(snf, snf->buf);
1090 }
1091 mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1092 }
1093
1094 // Command
1095 nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1096
1097 // write address
1098 nfi_write32(snf, SNF_PG_CTL2, op_addr);
1099
1100 // Set read op_mode
1101 if (op->data.buswidth == 4)
1102 wr_mode = PG_LOAD_X4_EN;
1103
1104 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1105 wr_mode | PG_LOAD_CUSTOM_EN);
1106
1107 // Set bytes to write
1108 wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1109 snf->nfi_cfg.nsectors;
1110 nfi_write32(snf, SNF_MISC_CTL2,
1111 (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1112
1113 // NFI write prepare
1114 nfi_write16(snf, NFI_CNFG,
1115 (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1116 CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1117
1118 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1119 buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
73c1a515
DC
1120 ret = dma_mapping_error(snf->dev, buf_dma);
1121 if (ret) {
764f1b74
CG
1122 dev_err(snf->dev, "DMA mapping failed.\n");
1123 goto cleanup;
1124 }
1125 nfi_write32(snf, NFI_STRADDR, buf_dma);
1126 if (op->data.ecc) {
1127 snf->ecc_cfg->op = ECC_ENCODE;
1128 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1129 if (ret)
1130 goto cleanup_dma;
1131 }
1132 // Prepare for custom write interrupt
1133 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1134 reinit_completion(&snf->op_done);
1135 ;
1136
1137 // Trigger NFI into custom mode
1138 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1139
1140 // Start DMA write
1141 nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1142 nfi_write16(snf, NFI_STRDATA, STR_DATA);
1143
1144 if (!wait_for_completion_timeout(
1145 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1146 dev_err(snf->dev, "DMA timed out for program load.\n");
1147 ret = -ETIMEDOUT;
1148 goto cleanup_ecc;
1149 }
1150
1151 // Wait for NFI_SEC_CNTR returning expected value
1152 ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1153 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1154 SNFI_POLL_INTERVAL);
1155 if (ret)
1156 dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1157
1158cleanup_ecc:
1159 if (op->data.ecc)
1160 mtk_ecc_disable(snf->ecc);
1161cleanup_dma:
1162 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1163cleanup:
1164 // Stop write
1165 nfi_write32(snf, NFI_CON, 0);
1166 nfi_write16(snf, NFI_CNFG, 0);
1167
1168 // Clear SNF done flag
1169 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1170 nfi_write32(snf, SNF_STA_CTL1, 0);
1171
1172 // Disable interrupt
1173 nfi_read32(snf, NFI_INTR_STA);
1174 nfi_write32(snf, NFI_INTR_EN, 0);
1175
1176 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1177
1178 return ret;
1179}
1180
1181/**
1182 * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1183 * @op spi-mem op to check
1184 *
1185 * Check whether op can be executed with read_from_cache or program_load
1186 * mode in the controller.
1187 * This controller can execute typical Read From Cache and Program Load
1188 * instructions found on SPI-NAND with 2-byte address.
1189 * DTR and cmd buswidth & nbytes should be checked before calling this.
1190 *
1191 * Return: true if the op matches the instruction template
1192 */
1193static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1194{
1195 if (op->addr.nbytes != 2)
1196 return false;
1197
1198 if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1199 op->addr.buswidth != 4)
1200 return false;
1201
1202 // match read from page instructions
1203 if (op->data.dir == SPI_MEM_DATA_IN) {
1204 // check dummy cycle first
1205 if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1206 DATA_READ_MAX_DUMMY)
1207 return false;
1208 // quad io / quad out
1209 if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1210 op->data.buswidth == 4)
1211 return true;
1212
1213 // dual io / dual out
1214 if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1215 op->data.buswidth == 2)
1216 return true;
1217
1218 // standard spi
1219 if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1220 return true;
1221 } else if (op->data.dir == SPI_MEM_DATA_OUT) {
1222 // check dummy cycle first
1223 if (op->dummy.nbytes)
1224 return false;
1225 // program load quad out
1226 if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1227 return true;
1228 // standard spi
1229 if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1230 return true;
1231 }
1232 return false;
1233}
1234
1235static bool mtk_snand_supports_op(struct spi_mem *mem,
1236 const struct spi_mem_op *op)
1237{
1238 if (!spi_mem_default_supports_op(mem, op))
1239 return false;
1240 if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1241 return false;
1242 if (mtk_snand_is_page_ops(op))
1243 return true;
1244 return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1245 (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1246 (op->data.nbytes == 0 || op->data.buswidth == 1));
1247}
1248
1249static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1250{
1251 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1252 // page ops transfer size must be exactly ((sector_size + spare_size) *
1253 // nsectors). Limit the op size if the caller requests more than that.
1254 // exec_op will read more than needed and discard the leftover if the
1255 // caller requests less data.
1256 if (mtk_snand_is_page_ops(op)) {
1257 size_t l;
1258 // skip adjust_op_size for page ops
1259 if (ms->autofmt)
1260 return 0;
1261 l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1262 l *= ms->nfi_cfg.nsectors;
1263 if (op->data.nbytes > l)
1264 op->data.nbytes = l;
1265 } else {
1266 size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1267
1268 if (hl >= SNF_GPRAM_SIZE)
1269 return -EOPNOTSUPP;
1270 if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1271 op->data.nbytes = SNF_GPRAM_SIZE - hl;
1272 }
1273 return 0;
1274}
1275
1276static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1277{
1278 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1279
1280 dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1281 op->addr.val, op->addr.buswidth, op->addr.nbytes,
1282 op->data.buswidth, op->data.nbytes);
1283 if (mtk_snand_is_page_ops(op)) {
1284 if (op->data.dir == SPI_MEM_DATA_IN)
1285 return mtk_snand_read_page_cache(ms, op);
1286 else
1287 return mtk_snand_write_page_cache(ms, op);
1288 } else {
1289 return mtk_snand_mac_io(ms, op);
1290 }
1291}
1292
1293static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1294 .adjust_op_size = mtk_snand_adjust_op_size,
1295 .supports_op = mtk_snand_supports_op,
1296 .exec_op = mtk_snand_exec_op,
1297};
1298
1299static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1300 .ecc = true,
1301};
1302
1303static irqreturn_t mtk_snand_irq(int irq, void *id)
1304{
1305 struct mtk_snand *snf = id;
1306 u32 sta, ien;
1307
1308 sta = nfi_read32(snf, NFI_INTR_STA);
1309 ien = nfi_read32(snf, NFI_INTR_EN);
1310
1311 if (!(sta & ien))
1312 return IRQ_NONE;
1313
1314 nfi_write32(snf, NFI_INTR_EN, 0);
1315 complete(&snf->op_done);
1316 return IRQ_HANDLED;
1317}
1318
1319static const struct of_device_id mtk_snand_ids[] = {
1320 { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1321 { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
7073888c 1322 { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
764f1b74
CG
1323 {},
1324};
1325
1326MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1327
1328static int mtk_snand_enable_clk(struct mtk_snand *ms)
1329{
1330 int ret;
1331
1332 ret = clk_prepare_enable(ms->nfi_clk);
1333 if (ret) {
1334 dev_err(ms->dev, "unable to enable nfi clk\n");
1335 return ret;
1336 }
1337 ret = clk_prepare_enable(ms->pad_clk);
1338 if (ret) {
1339 dev_err(ms->dev, "unable to enable pad clk\n");
1340 goto err1;
1341 }
1342 return 0;
1343err1:
1344 clk_disable_unprepare(ms->nfi_clk);
1345 return ret;
1346}
1347
1348static void mtk_snand_disable_clk(struct mtk_snand *ms)
1349{
1350 clk_disable_unprepare(ms->pad_clk);
1351 clk_disable_unprepare(ms->nfi_clk);
1352}
1353
1354static int mtk_snand_probe(struct platform_device *pdev)
1355{
1356 struct device_node *np = pdev->dev.of_node;
1357 const struct of_device_id *dev_id;
1358 struct spi_controller *ctlr;
1359 struct mtk_snand *ms;
1360 int ret;
1361
1362 dev_id = of_match_node(mtk_snand_ids, np);
1363 if (!dev_id)
1364 return -EINVAL;
1365
1366 ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
1367 if (!ctlr)
1368 return -ENOMEM;
1369 platform_set_drvdata(pdev, ctlr);
1370
1371 ms = spi_controller_get_devdata(ctlr);
1372
1373 ms->ctlr = ctlr;
1374 ms->caps = dev_id->data;
1375
1376 ms->ecc = of_mtk_ecc_get(np);
1377 if (IS_ERR(ms->ecc))
1378 return PTR_ERR(ms->ecc);
1379 else if (!ms->ecc)
1380 return -ENODEV;
1381
1382 ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1383 if (IS_ERR(ms->nfi_base)) {
1384 ret = PTR_ERR(ms->nfi_base);
1385 goto release_ecc;
1386 }
1387
1388 ms->dev = &pdev->dev;
1389
1390 ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
1391 if (IS_ERR(ms->nfi_clk)) {
1392 ret = PTR_ERR(ms->nfi_clk);
1393 dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1394 goto release_ecc;
1395 }
1396
1397 ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
1398 if (IS_ERR(ms->pad_clk)) {
1399 ret = PTR_ERR(ms->pad_clk);
1400 dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1401 goto release_ecc;
1402 }
1403
1404 ret = mtk_snand_enable_clk(ms);
1405 if (ret)
1406 goto release_ecc;
1407
1408 init_completion(&ms->op_done);
1409
1410 ms->irq = platform_get_irq(pdev, 0);
1411 if (ms->irq < 0) {
1412 ret = ms->irq;
1413 goto disable_clk;
1414 }
1415 ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1416 "mtk-snand", ms);
1417 if (ret) {
1418 dev_err(ms->dev, "failed to request snfi irq\n");
1419 goto disable_clk;
1420 }
1421
1422 ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1423 if (ret) {
1424 dev_err(ms->dev, "failed to set dma mask\n");
1425 goto disable_clk;
1426 }
1427
1428 // switch to SNFI mode
1429 nfi_write32(ms, SNF_CFG, SPI_MODE);
1430
1431 // setup an initial page format for ops matching page_cache_op template
1432 // before ECC is called.
1433 ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
1434 ms->caps->spare_sizes[0]);
1435 if (ret) {
1436 dev_err(ms->dev, "failed to set initial page format\n");
1437 goto disable_clk;
1438 }
1439
1440 // setup ECC engine
1441 ms->ecc_eng.dev = &pdev->dev;
1442 ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1443 ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1444 ms->ecc_eng.priv = ms;
1445
1446 ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1447 if (ret) {
1448 dev_err(&pdev->dev, "failed to register ecc engine.\n");
1449 goto disable_clk;
1450 }
1451
1452 ctlr->num_chipselect = 1;
1453 ctlr->mem_ops = &mtk_snand_mem_ops;
1454 ctlr->mem_caps = &mtk_snand_mem_caps;
1455 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1456 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1457 ctlr->dev.of_node = pdev->dev.of_node;
1458 ret = spi_register_controller(ctlr);
1459 if (ret) {
1460 dev_err(&pdev->dev, "spi_register_controller failed.\n");
1461 goto disable_clk;
1462 }
1463
1464 return 0;
1465disable_clk:
1466 mtk_snand_disable_clk(ms);
1467release_ecc:
1468 mtk_ecc_release(ms->ecc);
1469 return ret;
1470}
1471
1472static int mtk_snand_remove(struct platform_device *pdev)
1473{
1474 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1475 struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1476
1477 spi_unregister_controller(ctlr);
1478 mtk_snand_disable_clk(ms);
1479 mtk_ecc_release(ms->ecc);
1480 kfree(ms->buf);
1481 return 0;
1482}
1483
1484static struct platform_driver mtk_snand_driver = {
1485 .probe = mtk_snand_probe,
1486 .remove = mtk_snand_remove,
1487 .driver = {
1488 .name = "mtk-snand",
1489 .of_match_table = mtk_snand_ids,
1490 },
1491};
1492
1493module_platform_driver(mtk_snand_driver);
1494
1495MODULE_LICENSE("GPL");
1496MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1497MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");