spi: bcm2835: Allow arbitrary number of slaves
[linux-2.6-block.git] / drivers / spi / spi-bcm2835.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
f8043872
CB
2/*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
e34ff011 7 * Copyright (C) 2015 Martin Sperl
f8043872
CB
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
f8043872
CB
12 */
13
14#include <linux/clk.h>
15#include <linux/completion.h>
154f7da5 16#include <linux/debugfs.h>
f8043872 17#include <linux/delay.h>
3ecd37ed
MS
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
f8043872
CB
20#include <linux/err.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
3ecd37ed 26#include <linux/of_address.h>
f8043872 27#include <linux/of_device.h>
3bd158c5
LW
28#include <linux/gpio/consumer.h>
29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
3ecd37ed 31#include <linux/of_irq.h>
f8043872
CB
32#include <linux/spi/spi.h>
33
34/* SPI register offsets */
35#define BCM2835_SPI_CS 0x00
36#define BCM2835_SPI_FIFO 0x04
37#define BCM2835_SPI_CLK 0x08
38#define BCM2835_SPI_DLEN 0x0c
39#define BCM2835_SPI_LTOH 0x10
40#define BCM2835_SPI_DC 0x14
41
42/* Bitfields in CS */
43#define BCM2835_SPI_CS_LEN_LONG 0x02000000
44#define BCM2835_SPI_CS_DMA_LEN 0x01000000
45#define BCM2835_SPI_CS_CSPOL2 0x00800000
46#define BCM2835_SPI_CS_CSPOL1 0x00400000
47#define BCM2835_SPI_CS_CSPOL0 0x00200000
48#define BCM2835_SPI_CS_RXF 0x00100000
49#define BCM2835_SPI_CS_RXR 0x00080000
50#define BCM2835_SPI_CS_TXD 0x00040000
51#define BCM2835_SPI_CS_RXD 0x00020000
52#define BCM2835_SPI_CS_DONE 0x00010000
53#define BCM2835_SPI_CS_LEN 0x00002000
54#define BCM2835_SPI_CS_REN 0x00001000
55#define BCM2835_SPI_CS_ADCS 0x00000800
56#define BCM2835_SPI_CS_INTR 0x00000400
57#define BCM2835_SPI_CS_INTD 0x00000200
58#define BCM2835_SPI_CS_DMAEN 0x00000100
59#define BCM2835_SPI_CS_TA 0x00000080
60#define BCM2835_SPI_CS_CSPOL 0x00000040
61#define BCM2835_SPI_CS_CLEAR_RX 0x00000020
62#define BCM2835_SPI_CS_CLEAR_TX 0x00000010
63#define BCM2835_SPI_CS_CPOL 0x00000008
64#define BCM2835_SPI_CS_CPHA 0x00000004
65#define BCM2835_SPI_CS_CS_10 0x00000002
66#define BCM2835_SPI_CS_CS_01 0x00000001
67
2e0733bc
LW
68#define BCM2835_SPI_FIFO_SIZE 64
69#define BCM2835_SPI_FIFO_SIZE_3_4 48
3ecd37ed 70#define BCM2835_SPI_DMA_MIN_LENGTH 96
6935224d
MS
71#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
72 | SPI_NO_CS | SPI_3WIRE)
f8043872
CB
73
74#define DRV_NAME "spi-bcm2835"
75
ff245d90 76/* define polling limits */
cbd632ea 77static unsigned int polling_limit_us = 30;
ff245d90
MS
78module_param(polling_limit_us, uint, 0664);
79MODULE_PARM_DESC(polling_limit_us,
80 "time in us to run a transfer in polling mode\n");
81
acf0f856
LW
82/**
83 * struct bcm2835_spi - BCM2835 SPI controller
84 * @regs: base address of register map
85 * @clk: core clock, divided to calculate serial clock
86 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
3bd7f658 87 * @tfr: SPI transfer currently processed
afe7e363 88 * @ctlr: SPI controller reverse lookup
acf0f856
LW
89 * @tx_buf: pointer whence next transmitted byte is read
90 * @rx_buf: pointer where next received byte is written
91 * @tx_len: remaining bytes to transmit
92 * @rx_len: remaining bytes to receive
3bd7f658
LW
93 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
94 * length is not a multiple of 4 (to overcome hardware limitation)
95 * @rx_prologue: bytes received without DMA if first RX sglist entry's
96 * length is not a multiple of 4 (to overcome hardware limitation)
97 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
154f7da5
MS
98 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
99 * unloading the module
100 * @count_transfer_polling: count of how often polling mode is used
101 * @count_transfer_irq: count of how often interrupt mode is used
102 * @count_transfer_irq_after_polling: count of how often we fall back to
103 * interrupt mode after starting in polling mode.
104 * These are counted as well in @count_transfer_polling and
105 * @count_transfer_irq
106 * @count_transfer_dma: count how often dma mode is used
ec679bda 107 * @slv: SPI slave currently selected
8259bf66
LW
108 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
109 * @tx_dma_active: whether a TX DMA descriptor is in progress
110 * @rx_dma_active: whether a RX DMA descriptor is in progress
111 * (used by bcm2835_spi_dma_tx_done() to handle a race)
2b8279ae
LW
112 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
113 * (cyclically copies from zero page to TX FIFO)
114 * @fill_tx_addr: bus address of zero page
acf0f856 115 */
f8043872
CB
116struct bcm2835_spi {
117 void __iomem *regs;
118 struct clk *clk;
119 int irq;
3bd7f658 120 struct spi_transfer *tfr;
afe7e363 121 struct spi_controller *ctlr;
f8043872
CB
122 const u8 *tx_buf;
123 u8 *rx_buf;
e34ff011
MS
124 int tx_len;
125 int rx_len;
3bd7f658
LW
126 int tx_prologue;
127 int rx_prologue;
b31a9299 128 unsigned int tx_spillover;
154f7da5
MS
129
130 struct dentry *debugfs_dir;
131 u64 count_transfer_polling;
132 u64 count_transfer_irq;
133 u64 count_transfer_irq_after_polling;
134 u64 count_transfer_dma;
8259bf66 135
ec679bda 136 struct bcm2835_spidev *slv;
8259bf66
LW
137 unsigned int tx_dma_active;
138 unsigned int rx_dma_active;
2b8279ae
LW
139 struct dma_async_tx_descriptor *fill_tx_desc;
140 dma_addr_t fill_tx_addr;
ec679bda
LW
141};
142
143/**
144 * struct bcm2835_spidev - BCM2835 SPI slave
145 * @prepare_cs: precalculated CS register value for ->prepare_message()
146 * (uses slave-specific clock polarity and phase settings)
147 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
148 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
149 * @clear_rx_addr: bus address of @clear_rx_cs
150 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
151 * (uses slave-specific clock polarity and phase settings)
152 */
153struct bcm2835_spidev {
154 u32 prepare_cs;
155 struct dma_async_tx_descriptor *clear_rx_desc;
8259bf66 156 dma_addr_t clear_rx_addr;
ec679bda 157 u32 clear_rx_cs ____cacheline_aligned;
f8043872
CB
158};
159
154f7da5
MS
160#if defined(CONFIG_DEBUG_FS)
161static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
162 const char *dname)
163{
164 char name[64];
165 struct dentry *dir;
166
167 /* get full name */
168 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
169
170 /* the base directory */
171 dir = debugfs_create_dir(name, NULL);
172 bs->debugfs_dir = dir;
173
174 /* the counters */
175 debugfs_create_u64("count_transfer_polling", 0444, dir,
176 &bs->count_transfer_polling);
177 debugfs_create_u64("count_transfer_irq", 0444, dir,
178 &bs->count_transfer_irq);
179 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
180 &bs->count_transfer_irq_after_polling);
181 debugfs_create_u64("count_transfer_dma", 0444, dir,
182 &bs->count_transfer_dma);
183}
184
185static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
186{
187 debugfs_remove_recursive(bs->debugfs_dir);
188 bs->debugfs_dir = NULL;
189}
190#else
191static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
192 const char *dname)
193{
194}
195
196static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
197{
198}
199#endif /* CONFIG_DEBUG_FS */
200
e37687c9 201static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
f8043872
CB
202{
203 return readl(bs->regs + reg);
204}
205
e37687c9 206static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
f8043872
CB
207{
208 writel(val, bs->regs + reg);
209}
210
4adf3129 211static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
f8043872
CB
212{
213 u8 byte;
214
e34ff011
MS
215 while ((bs->rx_len) &&
216 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
f8043872
CB
217 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
218 if (bs->rx_buf)
219 *bs->rx_buf++ = byte;
e34ff011 220 bs->rx_len--;
f8043872
CB
221 }
222}
223
4adf3129 224static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
f8043872
CB
225{
226 u8 byte;
227
e34ff011 228 while ((bs->tx_len) &&
4adf3129 229 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
f8043872
CB
230 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
231 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
e34ff011 232 bs->tx_len--;
f8043872
CB
233 }
234}
235
3bd7f658
LW
236/**
237 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
238 * @bs: BCM2835 SPI controller
239 * @count: bytes to read from RX FIFO
240 *
241 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
242 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
243 * in the CS register is set (such that a read from the FIFO register receives
b31a9299 244 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
3bd7f658
LW
245 */
246static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
247{
248 u32 val;
b31a9299 249 int len;
3bd7f658
LW
250
251 bs->rx_len -= count;
252
26751de2 253 do {
3bd7f658 254 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
b31a9299
LW
255 len = min(count, 4);
256 memcpy(bs->rx_buf, &val, len);
257 bs->rx_buf += len;
3bd7f658 258 count -= 4;
26751de2 259 } while (count > 0);
3bd7f658
LW
260}
261
262/**
263 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
264 * @bs: BCM2835 SPI controller
265 * @count: bytes to write to TX FIFO
266 *
267 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
268 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
269 * in the CS register is set (such that a write to the FIFO register transmits
270 * 32-bit instead of just 8-bit).
271 */
272static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
273{
274 u32 val;
b31a9299 275 int len;
3bd7f658
LW
276
277 bs->tx_len -= count;
278
26751de2 279 do {
3bd7f658 280 if (bs->tx_buf) {
b31a9299 281 len = min(count, 4);
3bd7f658
LW
282 memcpy(&val, bs->tx_buf, len);
283 bs->tx_buf += len;
284 } else {
285 val = 0;
286 }
287 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
288 count -= 4;
26751de2 289 } while (count > 0);
3bd7f658
LW
290}
291
292/**
293 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
294 * @bs: BCM2835 SPI controller
b31a9299
LW
295 *
296 * The caller must ensure that the RX FIFO can accommodate as many bytes
297 * as have been written to the TX FIFO: Transmission is halted once the
298 * RX FIFO is full, causing this function to spin forever.
3bd7f658
LW
299 */
300static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
301{
302 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
303 cpu_relax();
304}
305
2e0733bc
LW
306/**
307 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
308 * @bs: BCM2835 SPI controller
309 * @count: bytes available for reading in RX FIFO
310 */
311static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
312{
313 u8 val;
314
315 count = min(count, bs->rx_len);
316 bs->rx_len -= count;
317
26751de2 318 do {
2e0733bc
LW
319 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
320 if (bs->rx_buf)
321 *bs->rx_buf++ = val;
26751de2 322 } while (--count);
2e0733bc
LW
323}
324
325/**
326 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
327 * @bs: BCM2835 SPI controller
328 * @count: bytes available for writing in TX FIFO
329 */
330static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
331{
332 u8 val;
333
334 count = min(count, bs->tx_len);
335 bs->tx_len -= count;
336
26751de2 337 do {
2e0733bc
LW
338 val = bs->tx_buf ? *bs->tx_buf++ : 0;
339 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
26751de2 340 } while (--count);
2e0733bc
LW
341}
342
ac4648b5 343static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
e34ff011 344{
e34ff011
MS
345 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
346
347 /* Disable SPI interrupts and transfer */
348 cs &= ~(BCM2835_SPI_CS_INTR |
349 BCM2835_SPI_CS_INTD |
3ecd37ed 350 BCM2835_SPI_CS_DMAEN |
e34ff011 351 BCM2835_SPI_CS_TA);
4c524191
LW
352 /*
353 * Transmission sometimes breaks unless the DONE bit is written at the
354 * end of every transfer. The spec says it's a RO bit. Either the
355 * spec is wrong and the bit is actually of type RW1C, or it's a
356 * hardware erratum.
357 */
358 cs |= BCM2835_SPI_CS_DONE;
e34ff011
MS
359 /* and reset RX/TX FIFOS */
360 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
361
362 /* and reset the SPI_HW */
363 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
3ecd37ed
MS
364 /* as well as DLEN */
365 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
e34ff011
MS
366}
367
f8043872
CB
368static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
369{
afe7e363 370 struct bcm2835_spi *bs = dev_id;
2e0733bc
LW
371 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
372
373 /*
374 * An interrupt is signaled either if DONE is set (TX FIFO empty)
375 * or if RXR is set (RX FIFO >= ¾ full).
376 */
377 if (cs & BCM2835_SPI_CS_RXF)
378 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
379 else if (cs & BCM2835_SPI_CS_RXR)
380 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
381
382 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
383 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
f8043872 384
4adf3129
MS
385 /* Read as many bytes as possible from FIFO */
386 bcm2835_rd_fifo(bs);
e34ff011
MS
387 /* Write as many bytes as possible to FIFO */
388 bcm2835_wr_fifo(bs);
389
56c17234 390 if (!bs->rx_len) {
e34ff011 391 /* Transfer complete - reset SPI HW */
ac4648b5 392 bcm2835_spi_reset_hw(bs);
e34ff011 393 /* wake up the framework */
ccae0b40 394 spi_finalize_current_transfer(bs->ctlr);
f8043872
CB
395 }
396
4adf3129 397 return IRQ_HANDLED;
f8043872
CB
398}
399
5f336ea5 400static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
704f32d4
MS
401 struct spi_device *spi,
402 struct spi_transfer *tfr,
2e0733bc 403 u32 cs, bool fifo_empty)
704f32d4 404{
5f336ea5 405 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
704f32d4 406
154f7da5
MS
407 /* update usage statistics */
408 bs->count_transfer_irq++;
409
704f32d4 410 /*
5c09e42f
LW
411 * Enable HW block, but with interrupts still disabled.
412 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
704f32d4 413 */
5c09e42f
LW
414 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
415
416 /* fill TX FIFO as much as possible */
2e0733bc
LW
417 if (fifo_empty)
418 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
5c09e42f
LW
419 bcm2835_wr_fifo(bs);
420
421 /* enable interrupts */
704f32d4
MS
422 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
423 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
424
425 /* signal that we need to wait for completion */
426 return 1;
427}
428
3bd7f658
LW
429/**
430 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
5f336ea5 431 * @ctlr: SPI master controller
3bd7f658
LW
432 * @tfr: SPI transfer
433 * @bs: BCM2835 SPI controller
434 * @cs: CS register
435 *
436 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
437 * Only the final write access is permitted to transmit less than 4 bytes, the
438 * SPI controller deduces its intended size from the DLEN register.
439 *
440 * If a TX or RX sglist contains multiple entries, one per page, and the first
441 * entry starts in the middle of a page, that first entry's length may not be
442 * a multiple of 4. Subsequent entries are fine because they span an entire
443 * page, hence do have a length that's a multiple of 4.
444 *
445 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
446 * because they are contiguous in physical memory and therefore not split on
447 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
448 * buffers.
449 *
450 * The DMA engine is incapable of combining sglist entries into a continuous
451 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
452 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
453 * entry is rounded up by throwing away received bytes.
454 *
455 * Overcome this limitation by transferring the first few bytes without DMA:
456 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
457 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
458 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
459 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
460 *
461 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
462 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
463 * Caution, the additional 4 bytes spill over to the second TX sglist entry
464 * if the length of the first is *exactly* 1.
465 *
466 * At most 6 bytes are written and at most 3 bytes read. Do we know the
467 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
468 *
469 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
470 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
471 * the width but also garbles the FIFO's contents. The prologue must therefore
472 * be transmitted in 32-bit width to ensure that the following DMA transfer can
473 * pick up the residue in the RX FIFO in ungarbled form.
474 */
5f336ea5 475static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
3bd7f658
LW
476 struct spi_transfer *tfr,
477 struct bcm2835_spi *bs,
478 u32 cs)
479{
480 int tx_remaining;
481
482 bs->tfr = tfr;
483 bs->tx_prologue = 0;
484 bs->rx_prologue = 0;
485 bs->tx_spillover = false;
486
2b8279ae 487 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
3bd7f658
LW
488 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
489
8259bf66 490 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
3bd7f658
LW
491 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
492
493 if (bs->rx_prologue > bs->tx_prologue) {
2b8279ae 494 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
3bd7f658
LW
495 bs->tx_prologue = bs->rx_prologue;
496 } else {
497 bs->tx_prologue += 4;
498 bs->tx_spillover =
499 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
500 }
501 }
502 }
503
504 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
505 if (!bs->tx_prologue)
506 return;
507
508 /* Write and read RX prologue. Adjust first entry in RX sglist. */
509 if (bs->rx_prologue) {
510 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
511 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
512 | BCM2835_SPI_CS_DMAEN);
513 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
514 bcm2835_wait_tx_fifo_empty(bs);
515 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
4c524191
LW
516 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
517 | BCM2835_SPI_CS_CLEAR_TX
518 | BCM2835_SPI_CS_DONE);
3bd7f658 519
5f336ea5 520 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
b31a9299
LW
521 sg_dma_address(&tfr->rx_sg.sgl[0]),
522 bs->rx_prologue, DMA_FROM_DEVICE);
3bd7f658 523
b31a9299
LW
524 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
525 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
3bd7f658
LW
526 }
527
2b8279ae
LW
528 if (!bs->tx_buf)
529 return;
530
3bd7f658
LW
531 /*
532 * Write remaining TX prologue. Adjust first entry in TX sglist.
533 * Also adjust second entry if prologue spills over to it.
534 */
535 tx_remaining = bs->tx_prologue - bs->rx_prologue;
536 if (tx_remaining) {
537 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
538 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
539 | BCM2835_SPI_CS_DMAEN);
540 bcm2835_wr_fifo_count(bs, tx_remaining);
541 bcm2835_wait_tx_fifo_empty(bs);
4c524191
LW
542 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
543 | BCM2835_SPI_CS_DONE);
3bd7f658
LW
544 }
545
546 if (likely(!bs->tx_spillover)) {
b31a9299
LW
547 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
548 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
3bd7f658 549 } else {
b31a9299
LW
550 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
551 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
552 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
3bd7f658
LW
553 }
554}
555
556/**
557 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
558 * @bs: BCM2835 SPI controller
559 *
560 * Undo changes which were made to an SPI transfer's sglist when transmitting
561 * the prologue. This is necessary to ensure the same memory ranges are
562 * unmapped that were originally mapped.
563 */
564static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
565{
566 struct spi_transfer *tfr = bs->tfr;
567
568 if (!bs->tx_prologue)
569 return;
570
571 if (bs->rx_prologue) {
b31a9299
LW
572 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
573 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
3bd7f658
LW
574 }
575
2b8279ae
LW
576 if (!bs->tx_buf)
577 goto out;
578
3bd7f658 579 if (likely(!bs->tx_spillover)) {
b31a9299
LW
580 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
581 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
3bd7f658 582 } else {
b31a9299
LW
583 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
584 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
585 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
3bd7f658 586 }
2b8279ae 587out:
1513ceee 588 bs->tx_prologue = 0;
3bd7f658
LW
589}
590
8259bf66
LW
591/**
592 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
593 * @data: SPI master controller
594 *
595 * Used for bidirectional and RX-only transfers.
596 */
597static void bcm2835_spi_dma_rx_done(void *data)
3ecd37ed 598{
5f336ea5
LW
599 struct spi_controller *ctlr = data;
600 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
3ecd37ed 601
2b8279ae 602 /* terminate tx-dma as we do not have an irq for it
3ecd37ed
MS
603 * because when the rx dma will terminate and this callback
604 * is called the tx-dma must have finished - can't get to this
605 * situation otherwise...
606 */
1513ceee 607 dmaengine_terminate_async(ctlr->dma_tx);
8259bf66
LW
608 bs->tx_dma_active = false;
609 bs->rx_dma_active = false;
1513ceee 610 bcm2835_spi_undo_prologue(bs);
3ecd37ed 611
2b8279ae 612 /* reset fifo and HW */
ac4648b5 613 bcm2835_spi_reset_hw(bs);
3ecd37ed
MS
614
615 /* and mark as completed */;
ccae0b40 616 spi_finalize_current_transfer(ctlr);
3ecd37ed
MS
617}
618
8259bf66
LW
619/**
620 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
621 * @data: SPI master controller
622 *
623 * Used for TX-only transfers.
624 */
625static void bcm2835_spi_dma_tx_done(void *data)
626{
627 struct spi_controller *ctlr = data;
628 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
629
630 /* busy-wait for TX FIFO to empty */
631 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
ec679bda 632 bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs);
8259bf66
LW
633
634 bs->tx_dma_active = false;
635 smp_wmb();
636
637 /*
638 * In case of a very short transfer, RX DMA may not have been
639 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
640 * to terminate it immediately after issuing.
641 */
642 if (cmpxchg(&bs->rx_dma_active, true, false))
643 dmaengine_terminate_async(ctlr->dma_rx);
644
645 bcm2835_spi_undo_prologue(bs);
ac4648b5 646 bcm2835_spi_reset_hw(bs);
ccae0b40 647 spi_finalize_current_transfer(ctlr);
8259bf66
LW
648}
649
650/**
651 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
652 * @ctlr: SPI master controller
8259bf66
LW
653 * @tfr: SPI transfer
654 * @bs: BCM2835 SPI controller
ec679bda 655 * @slv: BCM2835 SPI slave
8259bf66
LW
656 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
657 *
658 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
659 * Return 0 on success or a negative error number.
660 */
5f336ea5 661static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
3ecd37ed 662 struct spi_transfer *tfr,
8259bf66 663 struct bcm2835_spi *bs,
ec679bda 664 struct bcm2835_spidev *slv,
3ecd37ed
MS
665 bool is_tx)
666{
667 struct dma_chan *chan;
668 struct scatterlist *sgl;
669 unsigned int nents;
670 enum dma_transfer_direction dir;
671 unsigned long flags;
672
673 struct dma_async_tx_descriptor *desc;
674 dma_cookie_t cookie;
675
676 if (is_tx) {
677 dir = DMA_MEM_TO_DEV;
5f336ea5 678 chan = ctlr->dma_tx;
3ecd37ed
MS
679 nents = tfr->tx_sg.nents;
680 sgl = tfr->tx_sg.sgl;
8259bf66 681 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
3ecd37ed
MS
682 } else {
683 dir = DMA_DEV_TO_MEM;
5f336ea5 684 chan = ctlr->dma_rx;
3ecd37ed
MS
685 nents = tfr->rx_sg.nents;
686 sgl = tfr->rx_sg.sgl;
687 flags = DMA_PREP_INTERRUPT;
688 }
689 /* prepare the channel */
690 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
691 if (!desc)
692 return -EINVAL;
693
8259bf66
LW
694 /*
695 * Completion is signaled by the RX channel for bidirectional and
696 * RX-only transfers; else by the TX channel for TX-only transfers.
697 */
3ecd37ed 698 if (!is_tx) {
8259bf66 699 desc->callback = bcm2835_spi_dma_rx_done;
5f336ea5 700 desc->callback_param = ctlr;
8259bf66
LW
701 } else if (!tfr->rx_buf) {
702 desc->callback = bcm2835_spi_dma_tx_done;
5f336ea5 703 desc->callback_param = ctlr;
ec679bda 704 bs->slv = slv;
3ecd37ed
MS
705 }
706
707 /* submit it to DMA-engine */
708 cookie = dmaengine_submit(desc);
709
710 return dma_submit_error(cookie);
711}
712
8259bf66
LW
713/**
714 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
715 * @ctlr: SPI master controller
8259bf66 716 * @tfr: SPI transfer
ec679bda 717 * @slv: BCM2835 SPI slave
8259bf66
LW
718 * @cs: CS register
719 *
720 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
721 * the TX and RX DMA channel to copy between memory and FIFO register.
722 *
723 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
724 * memory is pointless. However not reading the RX FIFO isn't an option either
725 * because transmission is halted once it's full. As a workaround, cyclically
726 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
727 *
728 * The CS register value is precalculated in bcm2835_spi_setup(). Normally
729 * this is called only once, on slave registration. A DMA descriptor to write
730 * this value is preallocated in bcm2835_dma_init(). All that's left to do
731 * when performing a TX-only transfer is to submit this descriptor to the RX
732 * DMA channel. Latency is thereby minimized. The descriptor does not
733 * generate any interrupts while running. It must be terminated once the
734 * TX DMA channel is done.
735 *
736 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
737 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
738 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
739 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold
740 * reduction in bus traffic and thus energy consumption is achieved.
2b8279ae
LW
741 *
742 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
743 * copying from the zero page. The DMA descriptor to do this is preallocated
744 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
745 * done and can then be reused.
746 *
747 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
748 * page and utilizes the DMA controller's ability to synthesize zeroes instead
749 * of copying them from memory. This reduces traffic on the memory bus. The
750 * feature is not available on so-called "lite" channels, but normally TX DMA
751 * is backed by a full-featured channel.
752 *
753 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
754 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
755 * has been counted down to zero (hardware erratum). Thus, when the transfer
756 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
757 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
758 * performed at the end of an RX-only transfer.
8259bf66 759 */
5f336ea5 760static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
3ecd37ed 761 struct spi_transfer *tfr,
ec679bda 762 struct bcm2835_spidev *slv,
3ecd37ed
MS
763 u32 cs)
764{
5f336ea5 765 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
8259bf66 766 dma_cookie_t cookie;
3ecd37ed
MS
767 int ret;
768
154f7da5
MS
769 /* update usage statistics */
770 bs->count_transfer_dma++;
771
3bd7f658
LW
772 /*
773 * Transfer first few bytes without DMA if length of first TX or RX
774 * sglist entry is not a multiple of 4 bytes (hardware limitation).
775 */
5f336ea5 776 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
3ecd37ed
MS
777
778 /* setup tx-DMA */
2b8279ae 779 if (bs->tx_buf) {
ec679bda 780 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true);
2b8279ae
LW
781 } else {
782 cookie = dmaengine_submit(bs->fill_tx_desc);
783 ret = dma_submit_error(cookie);
784 }
3ecd37ed 785 if (ret)
3bd7f658 786 goto err_reset_hw;
3ecd37ed 787
3ecd37ed 788 /* set the DMA length */
3bd7f658 789 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
3ecd37ed
MS
790
791 /* start the HW */
792 bcm2835_wr(bs, BCM2835_SPI_CS,
793 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
794
8259bf66
LW
795 bs->tx_dma_active = true;
796 smp_wmb();
797
798 /* start TX early */
799 dma_async_issue_pending(ctlr->dma_tx);
800
3ecd37ed
MS
801 /* setup rx-DMA late - to run transfers while
802 * mapping of the rx buffers still takes place
803 * this saves 10us or more.
804 */
8259bf66 805 if (bs->rx_buf) {
ec679bda 806 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false);
8259bf66 807 } else {
ec679bda 808 cookie = dmaengine_submit(slv->clear_rx_desc);
8259bf66
LW
809 ret = dma_submit_error(cookie);
810 }
3ecd37ed
MS
811 if (ret) {
812 /* need to reset on errors */
5f336ea5 813 dmaengine_terminate_sync(ctlr->dma_tx);
8259bf66 814 bs->tx_dma_active = false;
3bd7f658 815 goto err_reset_hw;
3ecd37ed
MS
816 }
817
818 /* start rx dma late */
5f336ea5 819 dma_async_issue_pending(ctlr->dma_rx);
8259bf66
LW
820 bs->rx_dma_active = true;
821 smp_mb();
822
823 /*
824 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
825 * may run before RX DMA is issued. Terminate RX DMA if so.
826 */
827 if (!bs->rx_buf && !bs->tx_dma_active &&
828 cmpxchg(&bs->rx_dma_active, true, false)) {
829 dmaengine_terminate_async(ctlr->dma_rx);
ac4648b5 830 bcm2835_spi_reset_hw(bs);
8259bf66 831 }
3ecd37ed
MS
832
833 /* wait for wakeup in framework */
834 return 1;
3bd7f658
LW
835
836err_reset_hw:
ac4648b5 837 bcm2835_spi_reset_hw(bs);
3bd7f658
LW
838 bcm2835_spi_undo_prologue(bs);
839 return ret;
3ecd37ed
MS
840}
841
5f336ea5 842static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
3ecd37ed
MS
843 struct spi_device *spi,
844 struct spi_transfer *tfr)
845{
3ecd37ed
MS
846 /* we start DMA efforts only on bigger transfers */
847 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
848 return false;
849
3ecd37ed
MS
850 /* return OK */
851 return true;
852}
853
8259bf66
LW
854static void bcm2835_dma_release(struct spi_controller *ctlr,
855 struct bcm2835_spi *bs)
3ecd37ed 856{
5f336ea5
LW
857 if (ctlr->dma_tx) {
858 dmaengine_terminate_sync(ctlr->dma_tx);
2b8279ae
LW
859
860 if (bs->fill_tx_desc)
861 dmaengine_desc_free(bs->fill_tx_desc);
862
863 if (bs->fill_tx_addr)
864 dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
865 bs->fill_tx_addr, sizeof(u32),
866 DMA_TO_DEVICE,
867 DMA_ATTR_SKIP_CPU_SYNC);
868
5f336ea5
LW
869 dma_release_channel(ctlr->dma_tx);
870 ctlr->dma_tx = NULL;
3ecd37ed 871 }
8259bf66 872
5f336ea5
LW
873 if (ctlr->dma_rx) {
874 dmaengine_terminate_sync(ctlr->dma_rx);
875 dma_release_channel(ctlr->dma_rx);
876 ctlr->dma_rx = NULL;
3ecd37ed
MS
877 }
878}
879
6133fed0
PU
880static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
881 struct bcm2835_spi *bs)
3ecd37ed
MS
882{
883 struct dma_slave_config slave_config;
884 const __be32 *addr;
885 dma_addr_t dma_reg_base;
ec679bda 886 int ret;
3ecd37ed
MS
887
888 /* base address in dma-space */
5f336ea5 889 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
3ecd37ed
MS
890 if (!addr) {
891 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
6133fed0
PU
892 /* Fall back to interrupt mode */
893 return 0;
3ecd37ed
MS
894 }
895 dma_reg_base = be32_to_cpup(addr);
896
897 /* get tx/rx dma */
6133fed0
PU
898 ctlr->dma_tx = dma_request_chan(dev, "tx");
899 if (IS_ERR(ctlr->dma_tx)) {
3ecd37ed 900 dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
6133fed0
PU
901 ret = PTR_ERR(ctlr->dma_tx);
902 ctlr->dma_tx = NULL;
3ecd37ed
MS
903 goto err;
904 }
6133fed0
PU
905 ctlr->dma_rx = dma_request_chan(dev, "rx");
906 if (IS_ERR(ctlr->dma_rx)) {
3ecd37ed 907 dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
6133fed0
PU
908 ret = PTR_ERR(ctlr->dma_rx);
909 ctlr->dma_rx = NULL;
3ecd37ed
MS
910 goto err_release;
911 }
912
2b8279ae
LW
913 /*
914 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
915 * or, in case of an RX-only transfer, cyclically copies from the zero
916 * page to the FIFO using a preallocated, reusable descriptor.
917 */
3ecd37ed
MS
918 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
919 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
920
5f336ea5 921 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
3ecd37ed
MS
922 if (ret)
923 goto err_config;
924
2b8279ae
LW
925 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
926 ZERO_PAGE(0), 0, sizeof(u32),
927 DMA_TO_DEVICE,
928 DMA_ATTR_SKIP_CPU_SYNC);
929 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
930 dev_err(dev, "cannot map zero page - not using DMA mode\n");
931 bs->fill_tx_addr = 0;
dd4441ab 932 ret = -ENOMEM;
2b8279ae
LW
933 goto err_release;
934 }
935
936 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
937 bs->fill_tx_addr,
938 sizeof(u32), 0,
939 DMA_MEM_TO_DEV, 0);
940 if (!bs->fill_tx_desc) {
941 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
dd4441ab 942 ret = -ENOMEM;
2b8279ae
LW
943 goto err_release;
944 }
945
946 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
947 if (ret) {
948 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
949 goto err_release;
950 }
951
8259bf66
LW
952 /*
953 * The RX DMA channel is used bidirectionally: It either reads the
954 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
955 * precalculated value to the CS register to clear the RX FIFO.
956 */
3ecd37ed
MS
957 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
958 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
8259bf66
LW
959 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
960 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
3ecd37ed 961
5f336ea5 962 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
3ecd37ed
MS
963 if (ret)
964 goto err_config;
965
966 /* all went well, so set can_dma */
5f336ea5 967 ctlr->can_dma = bcm2835_spi_can_dma;
3ecd37ed 968
6133fed0 969 return 0;
3ecd37ed
MS
970
971err_config:
972 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
973 ret);
974err_release:
8259bf66 975 bcm2835_dma_release(ctlr, bs);
3ecd37ed 976err:
6133fed0
PU
977 /*
978 * Only report error for deferred probing, otherwise fall back to
979 * interrupt mode
980 */
981 if (ret != -EPROBE_DEFER)
982 ret = 0;
983
984 return ret;
3ecd37ed
MS
985}
986
5f336ea5 987static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
a750b124
MS
988 struct spi_device *spi,
989 struct spi_transfer *tfr,
9ac3f90d 990 u32 cs)
a750b124 991{
5f336ea5 992 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
a750b124
MS
993 unsigned long timeout;
994
154f7da5
MS
995 /* update usage statistics */
996 bs->count_transfer_polling++;
997
a750b124
MS
998 /* enable HW block without interrupts */
999 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1000
1001 /* fill in the fifo before timeout calculations
1002 * if we are interrupted here, then the data is
1003 * getting transferred by the HW while we are interrupted
1004 */
2e0733bc 1005 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
a750b124 1006
ff245d90
MS
1007 /* set the timeout to at least 2 jiffies */
1008 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
a750b124
MS
1009
1010 /* loop until finished the transfer */
1011 while (bs->rx_len) {
1012 /* fill in tx fifo with remaining data */
1013 bcm2835_wr_fifo(bs);
1014
1015 /* read from fifo as much as possible */
1016 bcm2835_rd_fifo(bs);
1017
1018 /* if there is still data pending to read
1019 * then check the timeout
1020 */
1021 if (bs->rx_len && time_after(jiffies, timeout)) {
1022 dev_dbg_ratelimited(&spi->dev,
1023 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1024 jiffies - timeout,
1025 bs->tx_len, bs->rx_len);
1026 /* fall back to interrupt mode */
154f7da5
MS
1027
1028 /* update usage statistics */
1029 bs->count_transfer_irq_after_polling++;
1030
5f336ea5 1031 return bcm2835_spi_transfer_one_irq(ctlr, spi,
2e0733bc 1032 tfr, cs, false);
a750b124
MS
1033 }
1034 }
1035
1036 /* Transfer complete - reset SPI HW */
ac4648b5 1037 bcm2835_spi_reset_hw(bs);
a750b124
MS
1038 /* and return without waiting for completion */
1039 return 0;
1040}
1041
5f336ea5 1042static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
e34ff011
MS
1043 struct spi_device *spi,
1044 struct spi_transfer *tfr)
f8043872 1045{
5f336ea5 1046 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
ec679bda 1047 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
9df2003d 1048 unsigned long spi_hz, clk_hz, cdiv;
ff245d90 1049 unsigned long hz_per_byte, byte_limit;
ec679bda 1050 u32 cs = slv->prepare_cs;
f8043872 1051
e34ff011 1052 /* set clock */
f8043872
CB
1053 spi_hz = tfr->speed_hz;
1054 clk_hz = clk_get_rate(bs->clk);
1055
1056 if (spi_hz >= clk_hz / 2) {
1057 cdiv = 2; /* clk_hz/2 is the fastest we can go */
1058 } else if (spi_hz) {
210b4923
MS
1059 /* CDIV must be a multiple of two */
1060 cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1061 cdiv += (cdiv % 2);
f8043872
CB
1062
1063 if (cdiv >= 65536)
1064 cdiv = 0; /* 0 is the slowest we can go */
342f948a 1065 } else {
f8043872 1066 cdiv = 0; /* 0 is the slowest we can go */
342f948a 1067 }
9df2003d 1068 tfr->effective_speed_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
e34ff011 1069 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
f8043872 1070
acace73d 1071 /* handle all the 3-wire mode */
8259bf66 1072 if (spi->mode & SPI_3WIRE && tfr->rx_buf)
6935224d 1073 cs |= BCM2835_SPI_CS_REN;
f8043872 1074
e34ff011 1075 /* set transmit buffers and length */
f8043872
CB
1076 bs->tx_buf = tfr->tx_buf;
1077 bs->rx_buf = tfr->rx_buf;
e34ff011
MS
1078 bs->tx_len = tfr->len;
1079 bs->rx_len = tfr->len;
f8043872 1080
7f1922eb
MS
1081 /* Calculate the estimated time in us the transfer runs. Note that
1082 * there is 1 idle clocks cycles after each byte getting transferred
1083 * so we have 9 cycles/byte. This is used to find the number of Hz
1084 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
1085 * per 300,000 Hz of bus clock.
1086 */
ff245d90 1087 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
9df2003d 1088 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
ff245d90 1089
7f1922eb 1090 /* run in polling mode for short transfers */
ff245d90 1091 if (tfr->len < byte_limit)
5f336ea5 1092 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
f8043872 1093
c41d62b0
MS
1094 /* run in dma mode if conditions are right
1095 * Note that unlike poll or interrupt mode DMA mode does not have
1096 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1097 */
5f336ea5 1098 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
ec679bda 1099 return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs);
3ecd37ed
MS
1100
1101 /* run in interrupt-mode */
5f336ea5 1102 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
f8043872
CB
1103}
1104
5f336ea5 1105static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
acace73d
MS
1106 struct spi_message *msg)
1107{
1108 struct spi_device *spi = msg->spi;
5f336ea5 1109 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
ec679bda 1110 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
8b7bd10e
MM
1111 int ret;
1112
5f336ea5 1113 if (ctlr->can_dma) {
3393f7d9
NSJ
1114 /*
1115 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1116 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1117 * aligned) if the limit is exceeded.
1118 */
5f336ea5 1119 ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
3393f7d9
NSJ
1120 GFP_KERNEL | GFP_DMA);
1121 if (ret)
1122 return ret;
1123 }
acace73d 1124
571e31fa
LW
1125 /*
1126 * Set up clock polarity before spi_transfer_one_message() asserts
1127 * chip select to avoid a gratuitous clock signal edge.
1128 */
ec679bda 1129 bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs);
acace73d
MS
1130
1131 return 0;
1132}
1133
5f336ea5 1134static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
e34ff011 1135 struct spi_message *msg)
f8043872 1136{
5f336ea5 1137 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
3ecd37ed
MS
1138
1139 /* if an error occurred and we have an active dma, then terminate */
1513ceee 1140 dmaengine_terminate_sync(ctlr->dma_tx);
8259bf66 1141 bs->tx_dma_active = false;
1513ceee 1142 dmaengine_terminate_sync(ctlr->dma_rx);
8259bf66 1143 bs->rx_dma_active = false;
1513ceee
LW
1144 bcm2835_spi_undo_prologue(bs);
1145
3ecd37ed 1146 /* and reset */
ac4648b5 1147 bcm2835_spi_reset_hw(bs);
f8043872
CB
1148}
1149
a30a555d
MS
1150static int chip_match_name(struct gpio_chip *chip, void *data)
1151{
1152 return !strcmp(chip->label, data);
1153}
1154
ec679bda
LW
1155static void bcm2835_spi_cleanup(struct spi_device *spi)
1156{
1157 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1158 struct spi_controller *ctlr = spi->controller;
1159
1160 if (slv->clear_rx_desc)
1161 dmaengine_desc_free(slv->clear_rx_desc);
1162
1163 if (slv->clear_rx_addr)
1164 dma_unmap_single(ctlr->dma_rx->device->dev,
1165 slv->clear_rx_addr,
1166 sizeof(u32),
1167 DMA_TO_DEVICE);
1168
1169 kfree(slv);
1170}
1171
1172static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1173 struct spi_device *spi,
1174 struct bcm2835_spi *bs,
1175 struct bcm2835_spidev *slv)
1176{
1177 int ret;
1178
1179 if (!ctlr->dma_rx)
1180 return 0;
1181
1182 slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1183 &slv->clear_rx_cs,
1184 sizeof(u32),
1185 DMA_TO_DEVICE);
1186 if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) {
1187 dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1188 slv->clear_rx_addr = 0;
1189 return -ENOMEM;
1190 }
1191
1192 slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1193 slv->clear_rx_addr,
1194 sizeof(u32), 0,
1195 DMA_MEM_TO_DEV, 0);
1196 if (!slv->clear_rx_desc) {
1197 dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1198 return -ENOMEM;
1199 }
1200
1201 ret = dmaengine_desc_set_reuse(slv->clear_rx_desc);
1202 if (ret) {
1203 dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1204 return ret;
1205 }
1206
1207 return 0;
1208}
1209
e34ff011
MS
1210static int bcm2835_spi_setup(struct spi_device *spi)
1211{
8259bf66
LW
1212 struct spi_controller *ctlr = spi->controller;
1213 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
ec679bda 1214 struct bcm2835_spidev *slv = spi_get_ctldata(spi);
a30a555d 1215 struct gpio_chip *chip;
ec679bda 1216 int ret;
571e31fa
LW
1217 u32 cs;
1218
ec679bda
LW
1219 if (!slv) {
1220 slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()),
1221 GFP_KERNEL);
1222 if (!slv)
1223 return -ENOMEM;
1224
1225 spi_set_ctldata(spi, slv);
1226
1227 ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv);
1228 if (ret)
1229 goto err_cleanup;
13817d46
LW
1230 }
1231
571e31fa
LW
1232 /*
1233 * Precalculate SPI slave's CS register value for ->prepare_message():
1234 * The driver always uses software-controlled GPIO chip select, hence
1235 * set the hardware-controlled native chip select to an invalid value
1236 * to prevent it from interfering.
1237 */
1238 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1239 if (spi->mode & SPI_CPOL)
1240 cs |= BCM2835_SPI_CS_CPOL;
1241 if (spi->mode & SPI_CPHA)
1242 cs |= BCM2835_SPI_CS_CPHA;
ec679bda 1243 slv->prepare_cs = cs;
3bd158c5 1244
8259bf66
LW
1245 /*
1246 * Precalculate SPI slave's CS register value to clear RX FIFO
1247 * in case of a TX-only DMA transfer.
1248 */
1249 if (ctlr->dma_rx) {
ec679bda
LW
1250 slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1251 BCM2835_SPI_CS_DMAEN |
1252 BCM2835_SPI_CS_CLEAR_RX;
8259bf66 1253 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
ec679bda
LW
1254 slv->clear_rx_addr,
1255 sizeof(u32),
8259bf66
LW
1256 DMA_TO_DEVICE);
1257 }
1258
e34ff011
MS
1259 /*
1260 * sanity checking the native-chipselects
1261 */
1262 if (spi->mode & SPI_NO_CS)
1263 return 0;
3bd158c5
LW
1264 /*
1265 * The SPI core has successfully requested the CS GPIO line from the
1266 * device tree, so we are done.
1267 */
1268 if (spi->cs_gpiod)
e34ff011 1269 return 0;
a30a555d
MS
1270 if (spi->chip_select > 1) {
1271 /* error in the case of native CS requested with CS > 1
1272 * officially there is a CS2, but it is not documented
1273 * which GPIO is connected with that...
1274 */
1275 dev_err(&spi->dev,
1276 "setup: only two native chip-selects are supported\n");
ec679bda
LW
1277 ret = -EINVAL;
1278 goto err_cleanup;
a30a555d 1279 }
3bd158c5
LW
1280
1281 /*
1282 * Translate native CS to GPIO
1283 *
1284 * FIXME: poking around in the gpiolib internals like this is
1285 * not very good practice. Find a way to locate the real problem
1286 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1287 * sometimes not assigned correctly? Erroneous device trees?
1288 */
a30a555d
MS
1289
1290 /* get the gpio chip for the base */
1291 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1292 if (!chip)
e34ff011
MS
1293 return 0;
1294
3bd158c5
LW
1295 spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1296 DRV_NAME,
bc7f2cd7 1297 GPIO_LOOKUP_FLAGS_DEFAULT,
3bd158c5 1298 GPIOD_OUT_LOW);
ec679bda
LW
1299 if (IS_ERR(spi->cs_gpiod)) {
1300 ret = PTR_ERR(spi->cs_gpiod);
1301 goto err_cleanup;
1302 }
a30a555d
MS
1303
1304 /* and set up the "mode" and level */
3bd158c5
LW
1305 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1306 spi->chip_select);
a30a555d
MS
1307
1308 return 0;
ec679bda
LW
1309
1310err_cleanup:
1311 bcm2835_spi_cleanup(spi);
1312 return ret;
f8043872
CB
1313}
1314
1315static int bcm2835_spi_probe(struct platform_device *pdev)
1316{
5f336ea5 1317 struct spi_controller *ctlr;
f8043872 1318 struct bcm2835_spi *bs;
f8043872
CB
1319 int err;
1320
ec679bda 1321 ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
5f336ea5 1322 if (!ctlr)
f8043872 1323 return -ENOMEM;
f8043872 1324
5f336ea5 1325 platform_set_drvdata(pdev, ctlr);
f8043872 1326
3bd158c5 1327 ctlr->use_gpio_descriptors = true;
5f336ea5
LW
1328 ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1329 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
13817d46 1330 ctlr->num_chipselect = 3;
5f336ea5 1331 ctlr->setup = bcm2835_spi_setup;
ec679bda 1332 ctlr->cleanup = bcm2835_spi_cleanup;
5f336ea5
LW
1333 ctlr->transfer_one = bcm2835_spi_transfer_one;
1334 ctlr->handle_err = bcm2835_spi_handle_err;
1335 ctlr->prepare_message = bcm2835_spi_prepare_message;
1336 ctlr->dev.of_node = pdev->dev.of_node;
f8043872 1337
5f336ea5 1338 bs = spi_controller_get_devdata(ctlr);
afe7e363 1339 bs->ctlr = ctlr;
f8043872 1340
6ba794df 1341 bs->regs = devm_platform_ioremap_resource(pdev, 0);
e1483ac0
LW
1342 if (IS_ERR(bs->regs))
1343 return PTR_ERR(bs->regs);
f8043872
CB
1344
1345 bs->clk = devm_clk_get(&pdev->dev, NULL);
e1483ac0
LW
1346 if (IS_ERR(bs->clk))
1347 return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1348 "could not get clk\n");
f8043872 1349
c6892892
RF
1350 ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1351
ddf0e1c2 1352 bs->irq = platform_get_irq(pdev, 0);
e1483ac0
LW
1353 if (bs->irq <= 0)
1354 return bs->irq ? bs->irq : -ENODEV;
f8043872
CB
1355
1356 clk_prepare_enable(bs->clk);
1357
6133fed0
PU
1358 err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1359 if (err)
1360 goto out_clk_disable;
ddf0e1c2
MS
1361
1362 /* initialise the hardware with the default polarities */
1363 bcm2835_wr(bs, BCM2835_SPI_CS,
1364 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1365
d62069c2 1366 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
afe7e363 1367 dev_name(&pdev->dev), bs);
f8043872
CB
1368 if (err) {
1369 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
666224b4 1370 goto out_dma_release;
f8043872
CB
1371 }
1372
9dd277ff 1373 err = spi_register_controller(ctlr);
f8043872 1374 if (err) {
5f336ea5
LW
1375 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1376 err);
666224b4 1377 goto out_dma_release;
f8043872
CB
1378 }
1379
154f7da5
MS
1380 bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1381
f8043872
CB
1382 return 0;
1383
666224b4
PU
1384out_dma_release:
1385 bcm2835_dma_release(ctlr, bs);
f8043872
CB
1386out_clk_disable:
1387 clk_disable_unprepare(bs->clk);
f8043872
CB
1388 return err;
1389}
1390
1391static int bcm2835_spi_remove(struct platform_device *pdev)
1392{
5f336ea5
LW
1393 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1394 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
f8043872 1395
154f7da5
MS
1396 bcm2835_debugfs_remove(bs);
1397
9dd277ff
LW
1398 spi_unregister_controller(ctlr);
1399
05897c71
LW
1400 bcm2835_dma_release(ctlr, bs);
1401
f8043872
CB
1402 /* Clear FIFOs, and disable the HW block */
1403 bcm2835_wr(bs, BCM2835_SPI_CS,
1404 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1405
1406 clk_disable_unprepare(bs->clk);
f8043872
CB
1407
1408 return 0;
1409}
1410
118eb0e5
FF
1411static void bcm2835_spi_shutdown(struct platform_device *pdev)
1412{
1413 int ret;
1414
1415 ret = bcm2835_spi_remove(pdev);
1416 if (ret)
1417 dev_err(&pdev->dev, "failed to shutdown\n");
1418}
1419
f8043872
CB
1420static const struct of_device_id bcm2835_spi_match[] = {
1421 { .compatible = "brcm,bcm2835-spi", },
1422 {}
1423};
1424MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1425
1426static struct platform_driver bcm2835_spi_driver = {
1427 .driver = {
1428 .name = DRV_NAME,
f8043872
CB
1429 .of_match_table = bcm2835_spi_match,
1430 },
1431 .probe = bcm2835_spi_probe,
1432 .remove = bcm2835_spi_remove,
118eb0e5 1433 .shutdown = bcm2835_spi_shutdown,
f8043872
CB
1434};
1435module_platform_driver(bcm2835_spi_driver);
1436
1437MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1438MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
22bf6cd2 1439MODULE_LICENSE("GPL");