dmaengine: bcm2835: Avoid accessing memory when copying zeroes
[linux-2.6-block.git] / drivers / spi / spi-bcm2835.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
f8043872
CB
2/*
3 * Driver for Broadcom BCM2835 SPI Controllers
4 *
5 * Copyright (C) 2012 Chris Boot
6 * Copyright (C) 2013 Stephen Warren
e34ff011 7 * Copyright (C) 2015 Martin Sperl
f8043872
CB
8 *
9 * This driver is inspired by:
10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
f8043872
CB
12 */
13
14#include <linux/clk.h>
15#include <linux/completion.h>
154f7da5 16#include <linux/debugfs.h>
f8043872 17#include <linux/delay.h>
3ecd37ed
MS
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
f8043872
CB
20#include <linux/err.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
3ecd37ed 26#include <linux/of_address.h>
f8043872 27#include <linux/of_device.h>
3bd158c5
LW
28#include <linux/gpio/consumer.h>
29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
3ecd37ed 31#include <linux/of_irq.h>
f8043872
CB
32#include <linux/spi/spi.h>
33
34/* SPI register offsets */
35#define BCM2835_SPI_CS 0x00
36#define BCM2835_SPI_FIFO 0x04
37#define BCM2835_SPI_CLK 0x08
38#define BCM2835_SPI_DLEN 0x0c
39#define BCM2835_SPI_LTOH 0x10
40#define BCM2835_SPI_DC 0x14
41
42/* Bitfields in CS */
43#define BCM2835_SPI_CS_LEN_LONG 0x02000000
44#define BCM2835_SPI_CS_DMA_LEN 0x01000000
45#define BCM2835_SPI_CS_CSPOL2 0x00800000
46#define BCM2835_SPI_CS_CSPOL1 0x00400000
47#define BCM2835_SPI_CS_CSPOL0 0x00200000
48#define BCM2835_SPI_CS_RXF 0x00100000
49#define BCM2835_SPI_CS_RXR 0x00080000
50#define BCM2835_SPI_CS_TXD 0x00040000
51#define BCM2835_SPI_CS_RXD 0x00020000
52#define BCM2835_SPI_CS_DONE 0x00010000
53#define BCM2835_SPI_CS_LEN 0x00002000
54#define BCM2835_SPI_CS_REN 0x00001000
55#define BCM2835_SPI_CS_ADCS 0x00000800
56#define BCM2835_SPI_CS_INTR 0x00000400
57#define BCM2835_SPI_CS_INTD 0x00000200
58#define BCM2835_SPI_CS_DMAEN 0x00000100
59#define BCM2835_SPI_CS_TA 0x00000080
60#define BCM2835_SPI_CS_CSPOL 0x00000040
61#define BCM2835_SPI_CS_CLEAR_RX 0x00000020
62#define BCM2835_SPI_CS_CLEAR_TX 0x00000010
63#define BCM2835_SPI_CS_CPOL 0x00000008
64#define BCM2835_SPI_CS_CPHA 0x00000004
65#define BCM2835_SPI_CS_CS_10 0x00000002
66#define BCM2835_SPI_CS_CS_01 0x00000001
67
2e0733bc
LW
68#define BCM2835_SPI_FIFO_SIZE 64
69#define BCM2835_SPI_FIFO_SIZE_3_4 48
3ecd37ed 70#define BCM2835_SPI_DMA_MIN_LENGTH 96
571e31fa 71#define BCM2835_SPI_NUM_CS 3 /* raise as necessary */
6935224d
MS
72#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
73 | SPI_NO_CS | SPI_3WIRE)
f8043872
CB
74
75#define DRV_NAME "spi-bcm2835"
76
ff245d90
MS
77/* define polling limits */
78unsigned int polling_limit_us = 30;
79module_param(polling_limit_us, uint, 0664);
80MODULE_PARM_DESC(polling_limit_us,
81 "time in us to run a transfer in polling mode\n");
82
acf0f856
LW
83/**
84 * struct bcm2835_spi - BCM2835 SPI controller
85 * @regs: base address of register map
86 * @clk: core clock, divided to calculate serial clock
87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
3bd7f658 88 * @tfr: SPI transfer currently processed
acf0f856
LW
89 * @tx_buf: pointer whence next transmitted byte is read
90 * @rx_buf: pointer where next received byte is written
91 * @tx_len: remaining bytes to transmit
92 * @rx_len: remaining bytes to receive
3bd7f658
LW
93 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
94 * length is not a multiple of 4 (to overcome hardware limitation)
95 * @rx_prologue: bytes received without DMA if first RX sglist entry's
96 * length is not a multiple of 4 (to overcome hardware limitation)
97 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
571e31fa
LW
98 * @prepare_cs: precalculated CS register value for ->prepare_message()
99 * (uses slave-specific clock polarity and phase settings)
154f7da5
MS
100 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
101 * unloading the module
102 * @count_transfer_polling: count of how often polling mode is used
103 * @count_transfer_irq: count of how often interrupt mode is used
104 * @count_transfer_irq_after_polling: count of how often we fall back to
105 * interrupt mode after starting in polling mode.
106 * These are counted as well in @count_transfer_polling and
107 * @count_transfer_irq
108 * @count_transfer_dma: count how often dma mode is used
acf0f856 109 */
f8043872
CB
110struct bcm2835_spi {
111 void __iomem *regs;
112 struct clk *clk;
113 int irq;
3bd7f658 114 struct spi_transfer *tfr;
f8043872
CB
115 const u8 *tx_buf;
116 u8 *rx_buf;
e34ff011
MS
117 int tx_len;
118 int rx_len;
3bd7f658
LW
119 int tx_prologue;
120 int rx_prologue;
b31a9299 121 unsigned int tx_spillover;
571e31fa 122 u32 prepare_cs[BCM2835_SPI_NUM_CS];
154f7da5
MS
123
124 struct dentry *debugfs_dir;
125 u64 count_transfer_polling;
126 u64 count_transfer_irq;
127 u64 count_transfer_irq_after_polling;
128 u64 count_transfer_dma;
f8043872
CB
129};
130
154f7da5
MS
131#if defined(CONFIG_DEBUG_FS)
132static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
133 const char *dname)
134{
135 char name[64];
136 struct dentry *dir;
137
138 /* get full name */
139 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
140
141 /* the base directory */
142 dir = debugfs_create_dir(name, NULL);
143 bs->debugfs_dir = dir;
144
145 /* the counters */
146 debugfs_create_u64("count_transfer_polling", 0444, dir,
147 &bs->count_transfer_polling);
148 debugfs_create_u64("count_transfer_irq", 0444, dir,
149 &bs->count_transfer_irq);
150 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
151 &bs->count_transfer_irq_after_polling);
152 debugfs_create_u64("count_transfer_dma", 0444, dir,
153 &bs->count_transfer_dma);
154}
155
156static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
157{
158 debugfs_remove_recursive(bs->debugfs_dir);
159 bs->debugfs_dir = NULL;
160}
161#else
162static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
163 const char *dname)
164{
165}
166
167static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
168{
169}
170#endif /* CONFIG_DEBUG_FS */
171
f8043872
CB
172static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
173{
174 return readl(bs->regs + reg);
175}
176
177static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
178{
179 writel(val, bs->regs + reg);
180}
181
4adf3129 182static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
f8043872
CB
183{
184 u8 byte;
185
e34ff011
MS
186 while ((bs->rx_len) &&
187 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
f8043872
CB
188 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
189 if (bs->rx_buf)
190 *bs->rx_buf++ = byte;
e34ff011 191 bs->rx_len--;
f8043872
CB
192 }
193}
194
4adf3129 195static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
f8043872
CB
196{
197 u8 byte;
198
e34ff011 199 while ((bs->tx_len) &&
4adf3129 200 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
f8043872
CB
201 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
202 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
e34ff011 203 bs->tx_len--;
f8043872
CB
204 }
205}
206
3bd7f658
LW
207/**
208 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
209 * @bs: BCM2835 SPI controller
210 * @count: bytes to read from RX FIFO
211 *
212 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
213 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
214 * in the CS register is set (such that a read from the FIFO register receives
b31a9299 215 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
3bd7f658
LW
216 */
217static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
218{
219 u32 val;
b31a9299 220 int len;
3bd7f658
LW
221
222 bs->rx_len -= count;
223
224 while (count > 0) {
225 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
b31a9299
LW
226 len = min(count, 4);
227 memcpy(bs->rx_buf, &val, len);
228 bs->rx_buf += len;
3bd7f658
LW
229 count -= 4;
230 }
231}
232
233/**
234 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
235 * @bs: BCM2835 SPI controller
236 * @count: bytes to write to TX FIFO
237 *
238 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
239 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
240 * in the CS register is set (such that a write to the FIFO register transmits
241 * 32-bit instead of just 8-bit).
242 */
243static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
244{
245 u32 val;
b31a9299 246 int len;
3bd7f658
LW
247
248 bs->tx_len -= count;
249
250 while (count > 0) {
251 if (bs->tx_buf) {
b31a9299 252 len = min(count, 4);
3bd7f658
LW
253 memcpy(&val, bs->tx_buf, len);
254 bs->tx_buf += len;
255 } else {
256 val = 0;
257 }
258 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
259 count -= 4;
260 }
261}
262
263/**
264 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
265 * @bs: BCM2835 SPI controller
b31a9299
LW
266 *
267 * The caller must ensure that the RX FIFO can accommodate as many bytes
268 * as have been written to the TX FIFO: Transmission is halted once the
269 * RX FIFO is full, causing this function to spin forever.
3bd7f658
LW
270 */
271static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
272{
273 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
274 cpu_relax();
275}
276
2e0733bc
LW
277/**
278 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
279 * @bs: BCM2835 SPI controller
280 * @count: bytes available for reading in RX FIFO
281 */
282static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
283{
284 u8 val;
285
286 count = min(count, bs->rx_len);
287 bs->rx_len -= count;
288
289 while (count) {
290 val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
291 if (bs->rx_buf)
292 *bs->rx_buf++ = val;
293 count--;
294 }
295}
296
297/**
298 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
299 * @bs: BCM2835 SPI controller
300 * @count: bytes available for writing in TX FIFO
301 */
302static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
303{
304 u8 val;
305
306 count = min(count, bs->tx_len);
307 bs->tx_len -= count;
308
309 while (count) {
310 val = bs->tx_buf ? *bs->tx_buf++ : 0;
311 bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
312 count--;
313 }
314}
315
5f336ea5 316static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
e34ff011 317{
5f336ea5 318 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
e34ff011
MS
319 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
320
321 /* Disable SPI interrupts and transfer */
322 cs &= ~(BCM2835_SPI_CS_INTR |
323 BCM2835_SPI_CS_INTD |
3ecd37ed 324 BCM2835_SPI_CS_DMAEN |
e34ff011
MS
325 BCM2835_SPI_CS_TA);
326 /* and reset RX/TX FIFOS */
327 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
328
329 /* and reset the SPI_HW */
330 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
3ecd37ed
MS
331 /* as well as DLEN */
332 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
e34ff011
MS
333}
334
f8043872
CB
335static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
336{
5f336ea5
LW
337 struct spi_controller *ctlr = dev_id;
338 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
2e0733bc
LW
339 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
340
341 /*
342 * An interrupt is signaled either if DONE is set (TX FIFO empty)
343 * or if RXR is set (RX FIFO >= ¾ full).
344 */
345 if (cs & BCM2835_SPI_CS_RXF)
346 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
347 else if (cs & BCM2835_SPI_CS_RXR)
348 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
349
350 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
351 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
f8043872 352
4adf3129
MS
353 /* Read as many bytes as possible from FIFO */
354 bcm2835_rd_fifo(bs);
e34ff011
MS
355 /* Write as many bytes as possible to FIFO */
356 bcm2835_wr_fifo(bs);
357
56c17234 358 if (!bs->rx_len) {
e34ff011 359 /* Transfer complete - reset SPI HW */
5f336ea5 360 bcm2835_spi_reset_hw(ctlr);
e34ff011 361 /* wake up the framework */
5f336ea5 362 complete(&ctlr->xfer_completion);
f8043872
CB
363 }
364
4adf3129 365 return IRQ_HANDLED;
f8043872
CB
366}
367
5f336ea5 368static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
704f32d4
MS
369 struct spi_device *spi,
370 struct spi_transfer *tfr,
2e0733bc 371 u32 cs, bool fifo_empty)
704f32d4 372{
5f336ea5 373 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
704f32d4 374
154f7da5
MS
375 /* update usage statistics */
376 bs->count_transfer_irq++;
377
704f32d4 378 /*
5c09e42f
LW
379 * Enable HW block, but with interrupts still disabled.
380 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
704f32d4 381 */
5c09e42f
LW
382 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
383
384 /* fill TX FIFO as much as possible */
2e0733bc
LW
385 if (fifo_empty)
386 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
5c09e42f
LW
387 bcm2835_wr_fifo(bs);
388
389 /* enable interrupts */
704f32d4
MS
390 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
391 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
392
393 /* signal that we need to wait for completion */
394 return 1;
395}
396
3bd7f658
LW
397/**
398 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
5f336ea5 399 * @ctlr: SPI master controller
3bd7f658
LW
400 * @tfr: SPI transfer
401 * @bs: BCM2835 SPI controller
402 * @cs: CS register
403 *
404 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
405 * Only the final write access is permitted to transmit less than 4 bytes, the
406 * SPI controller deduces its intended size from the DLEN register.
407 *
408 * If a TX or RX sglist contains multiple entries, one per page, and the first
409 * entry starts in the middle of a page, that first entry's length may not be
410 * a multiple of 4. Subsequent entries are fine because they span an entire
411 * page, hence do have a length that's a multiple of 4.
412 *
413 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
414 * because they are contiguous in physical memory and therefore not split on
415 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
416 * buffers.
417 *
418 * The DMA engine is incapable of combining sglist entries into a continuous
419 * stream of 4 byte chunks, it treats every entry separately: A TX entry is
420 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
421 * entry is rounded up by throwing away received bytes.
422 *
423 * Overcome this limitation by transferring the first few bytes without DMA:
424 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
425 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
426 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
427 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
428 *
429 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
430 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
431 * Caution, the additional 4 bytes spill over to the second TX sglist entry
432 * if the length of the first is *exactly* 1.
433 *
434 * At most 6 bytes are written and at most 3 bytes read. Do we know the
435 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
436 *
437 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
438 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches
439 * the width but also garbles the FIFO's contents. The prologue must therefore
440 * be transmitted in 32-bit width to ensure that the following DMA transfer can
441 * pick up the residue in the RX FIFO in ungarbled form.
442 */
5f336ea5 443static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
3bd7f658
LW
444 struct spi_transfer *tfr,
445 struct bcm2835_spi *bs,
446 u32 cs)
447{
448 int tx_remaining;
449
450 bs->tfr = tfr;
451 bs->tx_prologue = 0;
452 bs->rx_prologue = 0;
453 bs->tx_spillover = false;
454
455 if (!sg_is_last(&tfr->tx_sg.sgl[0]))
456 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
457
458 if (!sg_is_last(&tfr->rx_sg.sgl[0])) {
459 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
460
461 if (bs->rx_prologue > bs->tx_prologue) {
462 if (sg_is_last(&tfr->tx_sg.sgl[0])) {
463 bs->tx_prologue = bs->rx_prologue;
464 } else {
465 bs->tx_prologue += 4;
466 bs->tx_spillover =
467 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
468 }
469 }
470 }
471
472 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
473 if (!bs->tx_prologue)
474 return;
475
476 /* Write and read RX prologue. Adjust first entry in RX sglist. */
477 if (bs->rx_prologue) {
478 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
479 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
480 | BCM2835_SPI_CS_DMAEN);
481 bcm2835_wr_fifo_count(bs, bs->rx_prologue);
482 bcm2835_wait_tx_fifo_empty(bs);
483 bcm2835_rd_fifo_count(bs, bs->rx_prologue);
5f336ea5 484 bcm2835_spi_reset_hw(ctlr);
3bd7f658 485
5f336ea5 486 dma_sync_single_for_device(ctlr->dma_rx->device->dev,
b31a9299
LW
487 sg_dma_address(&tfr->rx_sg.sgl[0]),
488 bs->rx_prologue, DMA_FROM_DEVICE);
3bd7f658 489
b31a9299
LW
490 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
491 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
3bd7f658
LW
492 }
493
494 /*
495 * Write remaining TX prologue. Adjust first entry in TX sglist.
496 * Also adjust second entry if prologue spills over to it.
497 */
498 tx_remaining = bs->tx_prologue - bs->rx_prologue;
499 if (tx_remaining) {
500 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
501 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
502 | BCM2835_SPI_CS_DMAEN);
503 bcm2835_wr_fifo_count(bs, tx_remaining);
504 bcm2835_wait_tx_fifo_empty(bs);
505 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX);
506 }
507
508 if (likely(!bs->tx_spillover)) {
b31a9299
LW
509 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
510 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
3bd7f658 511 } else {
b31a9299
LW
512 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
513 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
514 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
3bd7f658
LW
515 }
516}
517
518/**
519 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
520 * @bs: BCM2835 SPI controller
521 *
522 * Undo changes which were made to an SPI transfer's sglist when transmitting
523 * the prologue. This is necessary to ensure the same memory ranges are
524 * unmapped that were originally mapped.
525 */
526static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
527{
528 struct spi_transfer *tfr = bs->tfr;
529
530 if (!bs->tx_prologue)
531 return;
532
533 if (bs->rx_prologue) {
b31a9299
LW
534 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
535 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
3bd7f658
LW
536 }
537
538 if (likely(!bs->tx_spillover)) {
b31a9299
LW
539 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
540 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
3bd7f658 541 } else {
b31a9299
LW
542 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
543 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
544 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
3bd7f658 545 }
1513ceee
LW
546
547 bs->tx_prologue = 0;
3bd7f658
LW
548}
549
3ecd37ed
MS
550static void bcm2835_spi_dma_done(void *data)
551{
5f336ea5
LW
552 struct spi_controller *ctlr = data;
553 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
3ecd37ed
MS
554
555 /* reset fifo and HW */
5f336ea5 556 bcm2835_spi_reset_hw(ctlr);
3ecd37ed
MS
557
558 /* and terminate tx-dma as we do not have an irq for it
559 * because when the rx dma will terminate and this callback
560 * is called the tx-dma must have finished - can't get to this
561 * situation otherwise...
562 */
1513ceee
LW
563 dmaengine_terminate_async(ctlr->dma_tx);
564 bcm2835_spi_undo_prologue(bs);
3ecd37ed
MS
565
566 /* and mark as completed */;
5f336ea5 567 complete(&ctlr->xfer_completion);
3ecd37ed
MS
568}
569
5f336ea5 570static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
3ecd37ed
MS
571 struct spi_transfer *tfr,
572 bool is_tx)
573{
574 struct dma_chan *chan;
575 struct scatterlist *sgl;
576 unsigned int nents;
577 enum dma_transfer_direction dir;
578 unsigned long flags;
579
580 struct dma_async_tx_descriptor *desc;
581 dma_cookie_t cookie;
582
583 if (is_tx) {
584 dir = DMA_MEM_TO_DEV;
5f336ea5 585 chan = ctlr->dma_tx;
3ecd37ed
MS
586 nents = tfr->tx_sg.nents;
587 sgl = tfr->tx_sg.sgl;
588 flags = 0 /* no tx interrupt */;
589
590 } else {
591 dir = DMA_DEV_TO_MEM;
5f336ea5 592 chan = ctlr->dma_rx;
3ecd37ed
MS
593 nents = tfr->rx_sg.nents;
594 sgl = tfr->rx_sg.sgl;
595 flags = DMA_PREP_INTERRUPT;
596 }
597 /* prepare the channel */
598 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
599 if (!desc)
600 return -EINVAL;
601
602 /* set callback for rx */
603 if (!is_tx) {
604 desc->callback = bcm2835_spi_dma_done;
5f336ea5 605 desc->callback_param = ctlr;
3ecd37ed
MS
606 }
607
608 /* submit it to DMA-engine */
609 cookie = dmaengine_submit(desc);
610
611 return dma_submit_error(cookie);
612}
613
5f336ea5 614static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
3ecd37ed
MS
615 struct spi_device *spi,
616 struct spi_transfer *tfr,
617 u32 cs)
618{
5f336ea5 619 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
3ecd37ed
MS
620 int ret;
621
154f7da5
MS
622 /* update usage statistics */
623 bs->count_transfer_dma++;
624
3bd7f658
LW
625 /*
626 * Transfer first few bytes without DMA if length of first TX or RX
627 * sglist entry is not a multiple of 4 bytes (hardware limitation).
628 */
5f336ea5 629 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
3ecd37ed
MS
630
631 /* setup tx-DMA */
5f336ea5 632 ret = bcm2835_spi_prepare_sg(ctlr, tfr, true);
3ecd37ed 633 if (ret)
3bd7f658 634 goto err_reset_hw;
3ecd37ed
MS
635
636 /* start TX early */
5f336ea5 637 dma_async_issue_pending(ctlr->dma_tx);
3ecd37ed 638
3ecd37ed 639 /* set the DMA length */
3bd7f658 640 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
3ecd37ed
MS
641
642 /* start the HW */
643 bcm2835_wr(bs, BCM2835_SPI_CS,
644 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
645
646 /* setup rx-DMA late - to run transfers while
647 * mapping of the rx buffers still takes place
648 * this saves 10us or more.
649 */
5f336ea5 650 ret = bcm2835_spi_prepare_sg(ctlr, tfr, false);
3ecd37ed
MS
651 if (ret) {
652 /* need to reset on errors */
5f336ea5 653 dmaengine_terminate_sync(ctlr->dma_tx);
3bd7f658 654 goto err_reset_hw;
3ecd37ed
MS
655 }
656
657 /* start rx dma late */
5f336ea5 658 dma_async_issue_pending(ctlr->dma_rx);
3ecd37ed
MS
659
660 /* wait for wakeup in framework */
661 return 1;
3bd7f658
LW
662
663err_reset_hw:
5f336ea5 664 bcm2835_spi_reset_hw(ctlr);
3bd7f658
LW
665 bcm2835_spi_undo_prologue(bs);
666 return ret;
3ecd37ed
MS
667}
668
5f336ea5 669static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
3ecd37ed
MS
670 struct spi_device *spi,
671 struct spi_transfer *tfr)
672{
3ecd37ed
MS
673 /* we start DMA efforts only on bigger transfers */
674 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
675 return false;
676
3ecd37ed
MS
677 /* return OK */
678 return true;
679}
680
5f336ea5 681static void bcm2835_dma_release(struct spi_controller *ctlr)
3ecd37ed 682{
5f336ea5
LW
683 if (ctlr->dma_tx) {
684 dmaengine_terminate_sync(ctlr->dma_tx);
685 dma_release_channel(ctlr->dma_tx);
686 ctlr->dma_tx = NULL;
3ecd37ed 687 }
5f336ea5
LW
688 if (ctlr->dma_rx) {
689 dmaengine_terminate_sync(ctlr->dma_rx);
690 dma_release_channel(ctlr->dma_rx);
691 ctlr->dma_rx = NULL;
3ecd37ed
MS
692 }
693}
694
5f336ea5 695static void bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev)
3ecd37ed
MS
696{
697 struct dma_slave_config slave_config;
698 const __be32 *addr;
699 dma_addr_t dma_reg_base;
700 int ret;
701
702 /* base address in dma-space */
5f336ea5 703 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
3ecd37ed
MS
704 if (!addr) {
705 dev_err(dev, "could not get DMA-register address - not using dma mode\n");
706 goto err;
707 }
708 dma_reg_base = be32_to_cpup(addr);
709
710 /* get tx/rx dma */
5f336ea5
LW
711 ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
712 if (!ctlr->dma_tx) {
3ecd37ed
MS
713 dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
714 goto err;
715 }
5f336ea5
LW
716 ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
717 if (!ctlr->dma_rx) {
3ecd37ed
MS
718 dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
719 goto err_release;
720 }
721
722 /* configure DMAs */
3ecd37ed
MS
723 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
724 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
725
5f336ea5 726 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
3ecd37ed
MS
727 if (ret)
728 goto err_config;
729
3ecd37ed
MS
730 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
731 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
732
5f336ea5 733 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
3ecd37ed
MS
734 if (ret)
735 goto err_config;
736
737 /* all went well, so set can_dma */
5f336ea5 738 ctlr->can_dma = bcm2835_spi_can_dma;
3ecd37ed 739 /* need to do TX AND RX DMA, so we need dummy buffers */
5f336ea5 740 ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
3ecd37ed
MS
741
742 return;
743
744err_config:
745 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
746 ret);
747err_release:
5f336ea5 748 bcm2835_dma_release(ctlr);
3ecd37ed
MS
749err:
750 return;
751}
752
5f336ea5 753static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
a750b124
MS
754 struct spi_device *spi,
755 struct spi_transfer *tfr,
9ac3f90d 756 u32 cs)
a750b124 757{
5f336ea5 758 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
a750b124
MS
759 unsigned long timeout;
760
154f7da5
MS
761 /* update usage statistics */
762 bs->count_transfer_polling++;
763
a750b124
MS
764 /* enable HW block without interrupts */
765 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
766
767 /* fill in the fifo before timeout calculations
768 * if we are interrupted here, then the data is
769 * getting transferred by the HW while we are interrupted
770 */
2e0733bc 771 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
a750b124 772
ff245d90
MS
773 /* set the timeout to at least 2 jiffies */
774 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
a750b124
MS
775
776 /* loop until finished the transfer */
777 while (bs->rx_len) {
778 /* fill in tx fifo with remaining data */
779 bcm2835_wr_fifo(bs);
780
781 /* read from fifo as much as possible */
782 bcm2835_rd_fifo(bs);
783
784 /* if there is still data pending to read
785 * then check the timeout
786 */
787 if (bs->rx_len && time_after(jiffies, timeout)) {
788 dev_dbg_ratelimited(&spi->dev,
789 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
790 jiffies - timeout,
791 bs->tx_len, bs->rx_len);
792 /* fall back to interrupt mode */
154f7da5
MS
793
794 /* update usage statistics */
795 bs->count_transfer_irq_after_polling++;
796
5f336ea5 797 return bcm2835_spi_transfer_one_irq(ctlr, spi,
2e0733bc 798 tfr, cs, false);
a750b124
MS
799 }
800 }
801
802 /* Transfer complete - reset SPI HW */
5f336ea5 803 bcm2835_spi_reset_hw(ctlr);
a750b124
MS
804 /* and return without waiting for completion */
805 return 0;
806}
807
5f336ea5 808static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
e34ff011
MS
809 struct spi_device *spi,
810 struct spi_transfer *tfr)
f8043872 811{
5f336ea5 812 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
ff245d90
MS
813 unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
814 unsigned long hz_per_byte, byte_limit;
571e31fa 815 u32 cs = bs->prepare_cs[spi->chip_select];
f8043872 816
e34ff011 817 /* set clock */
f8043872
CB
818 spi_hz = tfr->speed_hz;
819 clk_hz = clk_get_rate(bs->clk);
820
821 if (spi_hz >= clk_hz / 2) {
822 cdiv = 2; /* clk_hz/2 is the fastest we can go */
823 } else if (spi_hz) {
210b4923
MS
824 /* CDIV must be a multiple of two */
825 cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
826 cdiv += (cdiv % 2);
f8043872
CB
827
828 if (cdiv >= 65536)
829 cdiv = 0; /* 0 is the slowest we can go */
342f948a 830 } else {
f8043872 831 cdiv = 0; /* 0 is the slowest we can go */
342f948a 832 }
704f32d4 833 spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
e34ff011 834 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
f8043872 835
acace73d 836 /* handle all the 3-wire mode */
8d8bef50
LW
837 if (spi->mode & SPI_3WIRE && tfr->rx_buf &&
838 tfr->rx_buf != ctlr->dummy_rx)
6935224d 839 cs |= BCM2835_SPI_CS_REN;
f8043872 840
e34ff011 841 /* set transmit buffers and length */
f8043872
CB
842 bs->tx_buf = tfr->tx_buf;
843 bs->rx_buf = tfr->rx_buf;
e34ff011
MS
844 bs->tx_len = tfr->len;
845 bs->rx_len = tfr->len;
f8043872 846
7f1922eb
MS
847 /* Calculate the estimated time in us the transfer runs. Note that
848 * there is 1 idle clocks cycles after each byte getting transferred
849 * so we have 9 cycles/byte. This is used to find the number of Hz
850 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us
851 * per 300,000 Hz of bus clock.
852 */
ff245d90
MS
853 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
854 byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
855
7f1922eb 856 /* run in polling mode for short transfers */
ff245d90 857 if (tfr->len < byte_limit)
5f336ea5 858 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
f8043872 859
c41d62b0
MS
860 /* run in dma mode if conditions are right
861 * Note that unlike poll or interrupt mode DMA mode does not have
862 * this 1 idle clock cycle pattern but runs the spi clock without gaps
863 */
5f336ea5
LW
864 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
865 return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
3ecd37ed
MS
866
867 /* run in interrupt-mode */
5f336ea5 868 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
f8043872
CB
869}
870
5f336ea5 871static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
acace73d
MS
872 struct spi_message *msg)
873{
874 struct spi_device *spi = msg->spi;
5f336ea5 875 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
8b7bd10e
MM
876 int ret;
877
5f336ea5 878 if (ctlr->can_dma) {
3393f7d9
NSJ
879 /*
880 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
881 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
882 * aligned) if the limit is exceeded.
883 */
5f336ea5 884 ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
3393f7d9
NSJ
885 GFP_KERNEL | GFP_DMA);
886 if (ret)
887 return ret;
888 }
acace73d 889
571e31fa
LW
890 /*
891 * Set up clock polarity before spi_transfer_one_message() asserts
892 * chip select to avoid a gratuitous clock signal edge.
893 */
894 bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
acace73d
MS
895
896 return 0;
897}
898
5f336ea5 899static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
e34ff011 900 struct spi_message *msg)
f8043872 901{
5f336ea5 902 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
3ecd37ed
MS
903
904 /* if an error occurred and we have an active dma, then terminate */
1513ceee
LW
905 dmaengine_terminate_sync(ctlr->dma_tx);
906 dmaengine_terminate_sync(ctlr->dma_rx);
907 bcm2835_spi_undo_prologue(bs);
908
3ecd37ed 909 /* and reset */
5f336ea5 910 bcm2835_spi_reset_hw(ctlr);
f8043872
CB
911}
912
a30a555d
MS
913static int chip_match_name(struct gpio_chip *chip, void *data)
914{
915 return !strcmp(chip->label, data);
916}
917
e34ff011
MS
918static int bcm2835_spi_setup(struct spi_device *spi)
919{
571e31fa 920 struct bcm2835_spi *bs = spi_controller_get_devdata(spi->controller);
a30a555d 921 struct gpio_chip *chip;
3bd158c5 922 enum gpio_lookup_flags lflags;
571e31fa
LW
923 u32 cs;
924
925 /*
926 * Precalculate SPI slave's CS register value for ->prepare_message():
927 * The driver always uses software-controlled GPIO chip select, hence
928 * set the hardware-controlled native chip select to an invalid value
929 * to prevent it from interfering.
930 */
931 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
932 if (spi->mode & SPI_CPOL)
933 cs |= BCM2835_SPI_CS_CPOL;
934 if (spi->mode & SPI_CPHA)
935 cs |= BCM2835_SPI_CS_CPHA;
936 bs->prepare_cs[spi->chip_select] = cs;
3bd158c5 937
e34ff011
MS
938 /*
939 * sanity checking the native-chipselects
940 */
941 if (spi->mode & SPI_NO_CS)
942 return 0;
3bd158c5
LW
943 /*
944 * The SPI core has successfully requested the CS GPIO line from the
945 * device tree, so we are done.
946 */
947 if (spi->cs_gpiod)
e34ff011 948 return 0;
a30a555d
MS
949 if (spi->chip_select > 1) {
950 /* error in the case of native CS requested with CS > 1
951 * officially there is a CS2, but it is not documented
952 * which GPIO is connected with that...
953 */
954 dev_err(&spi->dev,
955 "setup: only two native chip-selects are supported\n");
956 return -EINVAL;
957 }
3bd158c5
LW
958
959 /*
960 * Translate native CS to GPIO
961 *
962 * FIXME: poking around in the gpiolib internals like this is
963 * not very good practice. Find a way to locate the real problem
964 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
965 * sometimes not assigned correctly? Erroneous device trees?
966 */
a30a555d
MS
967
968 /* get the gpio chip for the base */
969 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
970 if (!chip)
e34ff011
MS
971 return 0;
972
3bd158c5
LW
973 /*
974 * Retrieve the corresponding GPIO line used for CS.
975 * The inversion semantics will be handled by the GPIO core
976 * code, so we pass GPIOS_OUT_LOW for "unasserted" and
977 * the correct flag for inversion semantics. The SPI_CS_HIGH
978 * on spi->mode cannot be checked for polarity in this case
979 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
980 */
981 if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
982 lflags = GPIO_ACTIVE_HIGH;
983 else
984 lflags = GPIO_ACTIVE_LOW;
985 spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
986 DRV_NAME,
987 lflags,
988 GPIOD_OUT_LOW);
989 if (IS_ERR(spi->cs_gpiod))
990 return PTR_ERR(spi->cs_gpiod);
a30a555d
MS
991
992 /* and set up the "mode" and level */
3bd158c5
LW
993 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
994 spi->chip_select);
a30a555d
MS
995
996 return 0;
f8043872
CB
997}
998
999static int bcm2835_spi_probe(struct platform_device *pdev)
1000{
5f336ea5 1001 struct spi_controller *ctlr;
f8043872 1002 struct bcm2835_spi *bs;
f8043872
CB
1003 int err;
1004
5f336ea5
LW
1005 ctlr = spi_alloc_master(&pdev->dev, sizeof(*bs));
1006 if (!ctlr)
f8043872 1007 return -ENOMEM;
f8043872 1008
5f336ea5 1009 platform_set_drvdata(pdev, ctlr);
f8043872 1010
3bd158c5 1011 ctlr->use_gpio_descriptors = true;
5f336ea5
LW
1012 ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1013 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
571e31fa 1014 ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
5f336ea5
LW
1015 ctlr->setup = bcm2835_spi_setup;
1016 ctlr->transfer_one = bcm2835_spi_transfer_one;
1017 ctlr->handle_err = bcm2835_spi_handle_err;
1018 ctlr->prepare_message = bcm2835_spi_prepare_message;
1019 ctlr->dev.of_node = pdev->dev.of_node;
f8043872 1020
5f336ea5 1021 bs = spi_controller_get_devdata(ctlr);
f8043872 1022
6ba794df 1023 bs->regs = devm_platform_ioremap_resource(pdev, 0);
2d6e75e8
LN
1024 if (IS_ERR(bs->regs)) {
1025 err = PTR_ERR(bs->regs);
5f336ea5 1026 goto out_controller_put;
f8043872
CB
1027 }
1028
1029 bs->clk = devm_clk_get(&pdev->dev, NULL);
1030 if (IS_ERR(bs->clk)) {
1031 err = PTR_ERR(bs->clk);
1032 dev_err(&pdev->dev, "could not get clk: %d\n", err);
5f336ea5 1033 goto out_controller_put;
f8043872
CB
1034 }
1035
ddf0e1c2 1036 bs->irq = platform_get_irq(pdev, 0);
f8043872 1037 if (bs->irq <= 0) {
f8043872 1038 err = bs->irq ? bs->irq : -ENODEV;
5f336ea5 1039 goto out_controller_put;
f8043872
CB
1040 }
1041
1042 clk_prepare_enable(bs->clk);
1043
5f336ea5 1044 bcm2835_dma_init(ctlr, &pdev->dev);
ddf0e1c2
MS
1045
1046 /* initialise the hardware with the default polarities */
1047 bcm2835_wr(bs, BCM2835_SPI_CS,
1048 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1049
08bc0544 1050 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
5f336ea5 1051 dev_name(&pdev->dev), ctlr);
f8043872
CB
1052 if (err) {
1053 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1054 goto out_clk_disable;
1055 }
1056
5f336ea5 1057 err = devm_spi_register_controller(&pdev->dev, ctlr);
f8043872 1058 if (err) {
5f336ea5
LW
1059 dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1060 err);
08bc0544 1061 goto out_clk_disable;
f8043872
CB
1062 }
1063
154f7da5
MS
1064 bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1065
f8043872
CB
1066 return 0;
1067
f8043872
CB
1068out_clk_disable:
1069 clk_disable_unprepare(bs->clk);
5f336ea5
LW
1070out_controller_put:
1071 spi_controller_put(ctlr);
f8043872
CB
1072 return err;
1073}
1074
1075static int bcm2835_spi_remove(struct platform_device *pdev)
1076{
5f336ea5
LW
1077 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1078 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
f8043872 1079
154f7da5
MS
1080 bcm2835_debugfs_remove(bs);
1081
f8043872
CB
1082 /* Clear FIFOs, and disable the HW block */
1083 bcm2835_wr(bs, BCM2835_SPI_CS,
1084 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1085
1086 clk_disable_unprepare(bs->clk);
f8043872 1087
5f336ea5 1088 bcm2835_dma_release(ctlr);
3ecd37ed 1089
f8043872
CB
1090 return 0;
1091}
1092
1093static const struct of_device_id bcm2835_spi_match[] = {
1094 { .compatible = "brcm,bcm2835-spi", },
1095 {}
1096};
1097MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1098
1099static struct platform_driver bcm2835_spi_driver = {
1100 .driver = {
1101 .name = DRV_NAME,
f8043872
CB
1102 .of_match_table = bcm2835_spi_match,
1103 },
1104 .probe = bcm2835_spi_probe,
1105 .remove = bcm2835_spi_remove,
1106};
1107module_platform_driver(bcm2835_spi_driver);
1108
1109MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1110MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
22bf6cd2 1111MODULE_LICENSE("GPL");