Merge tag 'for-linus-4.14b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / spi / spi-bcm-qspi.c
CommitLineData
fa236a7e
KD
1/*
2 * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
3 *
4 * Copyright 2016 Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation (the "GPL").
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 (GPLv2) for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * version 2 (GPLv2) along with this source code.
17 */
18
19#include <linux/clk.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/interrupt.h>
24#include <linux/io.h>
25#include <linux/ioport.h>
26#include <linux/kernel.h>
27#include <linux/module.h>
fa236a7e
KD
28#include <linux/of.h>
29#include <linux/of_irq.h>
30#include <linux/platform_device.h>
31#include <linux/slab.h>
32#include <linux/spi/spi.h>
33#include <linux/sysfs.h>
34#include <linux/types.h>
35#include "spi-bcm-qspi.h"
36
37#define DRIVER_NAME "bcm_qspi"
38
4e3b2d23
KD
39
40/* BSPI register offsets */
41#define BSPI_REVISION_ID 0x000
42#define BSPI_SCRATCH 0x004
43#define BSPI_MAST_N_BOOT_CTRL 0x008
44#define BSPI_BUSY_STATUS 0x00c
45#define BSPI_INTR_STATUS 0x010
46#define BSPI_B0_STATUS 0x014
47#define BSPI_B0_CTRL 0x018
48#define BSPI_B1_STATUS 0x01c
49#define BSPI_B1_CTRL 0x020
50#define BSPI_STRAP_OVERRIDE_CTRL 0x024
51#define BSPI_FLEX_MODE_ENABLE 0x028
52#define BSPI_BITS_PER_CYCLE 0x02c
53#define BSPI_BITS_PER_PHASE 0x030
54#define BSPI_CMD_AND_MODE_BYTE 0x034
55#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
56#define BSPI_BSPI_XOR_VALUE 0x03c
57#define BSPI_BSPI_XOR_ENABLE 0x040
58#define BSPI_BSPI_PIO_MODE_ENABLE 0x044
59#define BSPI_BSPI_PIO_IODIR 0x048
60#define BSPI_BSPI_PIO_DATA 0x04c
61
62/* RAF register offsets */
63#define BSPI_RAF_START_ADDR 0x100
64#define BSPI_RAF_NUM_WORDS 0x104
65#define BSPI_RAF_CTRL 0x108
66#define BSPI_RAF_FULLNESS 0x10c
67#define BSPI_RAF_WATERMARK 0x110
68#define BSPI_RAF_STATUS 0x114
69#define BSPI_RAF_READ_DATA 0x118
70#define BSPI_RAF_WORD_CNT 0x11c
71#define BSPI_RAF_CURR_ADDR 0x120
72
73/* Override mode masks */
74#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
75#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
76#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
77#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
78#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
79
80#define BSPI_ADDRLEN_3BYTES 3
81#define BSPI_ADDRLEN_4BYTES 4
82
83#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
84
85#define BSPI_RAF_CTRL_START_MASK BIT(0)
86#define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
87
88#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
89#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
90
345309fa 91#define BSPI_READ_LENGTH 512
4e3b2d23 92
fa236a7e
KD
93/* MSPI register offsets */
94#define MSPI_SPCR0_LSB 0x000
95#define MSPI_SPCR0_MSB 0x004
96#define MSPI_SPCR1_LSB 0x008
97#define MSPI_SPCR1_MSB 0x00c
98#define MSPI_NEWQP 0x010
99#define MSPI_ENDQP 0x014
100#define MSPI_SPCR2 0x018
101#define MSPI_MSPI_STATUS 0x020
102#define MSPI_CPTQP 0x024
103#define MSPI_SPCR3 0x028
104#define MSPI_TXRAM 0x040
105#define MSPI_RXRAM 0x0c0
106#define MSPI_CDRAM 0x140
107#define MSPI_WRITE_LOCK 0x180
108
109#define MSPI_MASTER_BIT BIT(7)
110
111#define MSPI_NUM_CDRAM 16
112#define MSPI_CDRAM_CONT_BIT BIT(7)
113#define MSPI_CDRAM_BITSE_BIT BIT(6)
114#define MSPI_CDRAM_PCS 0xf
115
116#define MSPI_SPCR2_SPE BIT(6)
117#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
118
119#define MSPI_MSPI_STATUS_SPIF BIT(0)
120
121#define INTR_BASE_BIT_SHIFT 0x02
122#define INTR_COUNT 0x07
123
124#define NUM_CHIPSELECT 4
125#define QSPI_SPBR_MIN 8U
126#define QSPI_SPBR_MAX 255U
127
128#define OPCODE_DIOR 0xBB
129#define OPCODE_QIOR 0xEB
130#define OPCODE_DIOR_4B 0xBC
131#define OPCODE_QIOR_4B 0xEC
132
133#define MAX_CMD_SIZE 6
134
135#define ADDR_4MB_MASK GENMASK(22, 0)
136
137/* stop at end of transfer, no other reason */
138#define TRANS_STATUS_BREAK_NONE 0
139/* stop at end of spi_message */
140#define TRANS_STATUS_BREAK_EOM 1
141/* stop at end of spi_transfer if delay */
142#define TRANS_STATUS_BREAK_DELAY 2
143/* stop at end of spi_transfer if cs_change */
144#define TRANS_STATUS_BREAK_CS_CHANGE 4
145/* stop if we run out of bytes */
146#define TRANS_STATUS_BREAK_NO_BYTES 8
147
148/* events that make us stop filling TX slots */
149#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
150 TRANS_STATUS_BREAK_DELAY | \
151 TRANS_STATUS_BREAK_CS_CHANGE)
152
153/* events that make us deassert CS */
154#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
155 TRANS_STATUS_BREAK_CS_CHANGE)
156
157struct bcm_qspi_parms {
158 u32 speed_hz;
159 u8 mode;
160 u8 bits_per_word;
161};
162
4e3b2d23
KD
163struct bcm_xfer_mode {
164 bool flex_mode;
165 unsigned int width;
166 unsigned int addrlen;
167 unsigned int hp;
168};
169
fa236a7e
KD
170enum base_type {
171 MSPI,
4e3b2d23 172 BSPI,
fa236a7e
KD
173 CHIP_SELECT,
174 BASEMAX,
175};
176
cc20a386
KD
177enum irq_source {
178 SINGLE_L2,
179 MUXED_L1,
180};
181
fa236a7e
KD
182struct bcm_qspi_irq {
183 const char *irq_name;
184 const irq_handler_t irq_handler;
cc20a386 185 int irq_source;
fa236a7e
KD
186 u32 mask;
187};
188
189struct bcm_qspi_dev_id {
190 const struct bcm_qspi_irq *irqp;
191 void *dev;
192};
193
81ab52fd 194
fa236a7e
KD
195struct qspi_trans {
196 struct spi_transfer *trans;
197 int byte;
81ab52fd 198 bool mspi_last_trans;
fa236a7e
KD
199};
200
201struct bcm_qspi {
202 struct platform_device *pdev;
203 struct spi_master *master;
204 struct clk *clk;
205 u32 base_clk;
206 u32 max_speed_hz;
207 void __iomem *base[BASEMAX];
cc20a386
KD
208
209 /* Some SoCs provide custom interrupt status register(s) */
210 struct bcm_qspi_soc_intc *soc_intc;
211
fa236a7e
KD
212 struct bcm_qspi_parms last_parms;
213 struct qspi_trans trans_pos;
214 int curr_cs;
4e3b2d23
KD
215 int bspi_maj_rev;
216 int bspi_min_rev;
217 int bspi_enabled;
218 struct spi_flash_read_message *bspi_rf_msg;
219 u32 bspi_rf_msg_idx;
220 u32 bspi_rf_msg_len;
221 u32 bspi_rf_msg_status;
222 struct bcm_xfer_mode xfer_mode;
fa236a7e 223 u32 s3_strap_override_ctrl;
4e3b2d23 224 bool bspi_mode;
fa236a7e
KD
225 bool big_endian;
226 int num_irqs;
227 struct bcm_qspi_dev_id *dev_ids;
228 struct completion mspi_done;
4e3b2d23 229 struct completion bspi_done;
fa236a7e
KD
230};
231
4e3b2d23
KD
232static inline bool has_bspi(struct bcm_qspi *qspi)
233{
234 return qspi->bspi_mode;
235}
236
fa236a7e
KD
237/* Read qspi controller register*/
238static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
239 unsigned int offset)
240{
241 return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
242}
243
244/* Write qspi controller register*/
245static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
246 unsigned int offset, unsigned int data)
247{
248 bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
249}
250
4e3b2d23
KD
251/* BSPI helpers */
252static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
253{
254 int i;
255
256 /* this should normally finish within 10us */
257 for (i = 0; i < 1000; i++) {
258 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
259 return 0;
260 udelay(1);
261 }
262 dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
263 return -EIO;
264}
265
266static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
267{
268 if (qspi->bspi_maj_rev < 4)
269 return true;
270 return false;
271}
272
273static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
274{
275 bcm_qspi_bspi_busy_poll(qspi);
276 /* Force rising edge for the b0/b1 'flush' field */
277 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
278 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
279 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
280 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
281}
282
283static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
284{
285 return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
286 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
287}
288
289static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
290{
291 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
292
293 /* BSPI v3 LR is LE only, convert data to host endianness */
294 if (bcm_qspi_bspi_ver_three(qspi))
295 data = le32_to_cpu(data);
296
297 return data;
298}
299
300static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
301{
302 bcm_qspi_bspi_busy_poll(qspi);
303 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
304 BSPI_RAF_CTRL_START_MASK);
305}
306
307static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
308{
309 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
310 BSPI_RAF_CTRL_CLEAR_MASK);
311 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
312}
313
314static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
315{
316 u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
317 u32 data = 0;
318
319 dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
320 qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
321 while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
322 data = bcm_qspi_bspi_lr_read_fifo(qspi);
323 if (likely(qspi->bspi_rf_msg_len >= 4) &&
324 IS_ALIGNED((uintptr_t)buf, 4)) {
325 buf[qspi->bspi_rf_msg_idx++] = data;
326 qspi->bspi_rf_msg_len -= 4;
327 } else {
328 /* Read out remaining bytes, make sure*/
329 u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
330
331 data = cpu_to_le32(data);
332 while (qspi->bspi_rf_msg_len) {
333 *cbuf++ = (u8)data;
334 data >>= 8;
335 qspi->bspi_rf_msg_len--;
336 }
337 }
338 }
339}
340
341static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
342 int bpp, int bpc, int flex_mode)
343{
344 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
345 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
346 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
347 bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
348 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
349}
350
054e532f
KD
351static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
352 struct spi_flash_read_message *msg,
353 int hp)
4e3b2d23
KD
354{
355 int bpc = 0, bpp = 0;
054e532f
KD
356 u8 command = msg->read_opcode;
357 int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
358 int addrlen = msg->addr_width;
359 int addr_nbits = msg->addr_nbits ? msg->addr_nbits : SPI_NBITS_SINGLE;
360 int flex_mode = 1;
4e3b2d23
KD
361
362 dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
363 width, addrlen, hp);
364
054e532f 365 if (addrlen == BSPI_ADDRLEN_4BYTES)
4e3b2d23 366 bpp = BSPI_BPP_ADDR_SELECT_MASK;
4e3b2d23 367
054e532f 368 bpp |= msg->dummy_bytes * (8/addr_nbits);
4e3b2d23
KD
369
370 switch (width) {
371 case SPI_NBITS_SINGLE:
372 if (addrlen == BSPI_ADDRLEN_3BYTES)
373 /* default mode, does not need flex_cmd */
374 flex_mode = 0;
4e3b2d23
KD
375 break;
376 case SPI_NBITS_DUAL:
377 bpc = 0x00000001;
378 if (hp) {
379 bpc |= 0x00010100; /* address and mode are 2-bit */
380 bpp = BSPI_BPP_MODE_SELECT_MASK;
4e3b2d23
KD
381 }
382 break;
383 case SPI_NBITS_QUAD:
384 bpc = 0x00000002;
385 if (hp) {
386 bpc |= 0x00020200; /* address and mode are 4-bit */
054e532f 387 bpp |= BSPI_BPP_MODE_SELECT_MASK;
4e3b2d23
KD
388 }
389 break;
390 default:
054e532f 391 return -EINVAL;
4e3b2d23
KD
392 }
393
054e532f 394 bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
4e3b2d23 395
054e532f 396 return 0;
4e3b2d23
KD
397}
398
054e532f
KD
399static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
400 struct spi_flash_read_message *msg,
401 int hp)
4e3b2d23 402{
054e532f
KD
403 int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
404 int addrlen = msg->addr_width;
4e3b2d23
KD
405 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
406
407 dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
408 width, addrlen, hp);
409
410 switch (width) {
411 case SPI_NBITS_SINGLE:
412 /* clear quad/dual mode */
413 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
414 BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
415 break;
4e3b2d23
KD
416 case SPI_NBITS_QUAD:
417 /* clear dual mode and set quad mode */
418 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
419 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
420 break;
421 case SPI_NBITS_DUAL:
422 /* clear quad mode set dual mode */
423 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
424 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
425 break;
426 default:
427 return -EINVAL;
428 }
429
430 if (addrlen == BSPI_ADDRLEN_4BYTES)
431 /* set 4byte mode*/
432 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
433 else
434 /* clear 4 byte mode */
435 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
436
437 /* set the override mode */
438 data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
439 bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
054e532f 440 bcm_qspi_bspi_set_xfer_params(qspi, msg->read_opcode, 0, 0, 0);
4e3b2d23
KD
441
442 return 0;
443}
444
445static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
054e532f 446 struct spi_flash_read_message *msg, int hp)
4e3b2d23
KD
447{
448 int error = 0;
054e532f
KD
449 int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
450 int addrlen = msg->addr_width;
4e3b2d23
KD
451
452 /* default mode */
453 qspi->xfer_mode.flex_mode = true;
454
455 if (!bcm_qspi_bspi_ver_three(qspi)) {
456 u32 val, mask;
457
458 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
459 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
460 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
461 qspi->xfer_mode.flex_mode = false;
054e532f
KD
462 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
463 error = bcm_qspi_bspi_set_override(qspi, msg, hp);
4e3b2d23
KD
464 }
465 }
466
467 if (qspi->xfer_mode.flex_mode)
054e532f 468 error = bcm_qspi_bspi_set_flex_mode(qspi, msg, hp);
4e3b2d23
KD
469
470 if (error) {
471 dev_warn(&qspi->pdev->dev,
472 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
473 width, addrlen, hp);
474 } else if (qspi->xfer_mode.width != width ||
475 qspi->xfer_mode.addrlen != addrlen ||
476 qspi->xfer_mode.hp != hp) {
477 qspi->xfer_mode.width = width;
478 qspi->xfer_mode.addrlen = addrlen;
479 qspi->xfer_mode.hp = hp;
480 dev_dbg(&qspi->pdev->dev,
481 "cs:%d %d-lane output, %d-byte address%s\n",
482 qspi->curr_cs,
483 qspi->xfer_mode.width,
484 qspi->xfer_mode.addrlen,
485 qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
486 }
487
488 return error;
489}
490
491static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
492{
493 if (!has_bspi(qspi) || (qspi->bspi_enabled))
494 return;
495
496 qspi->bspi_enabled = 1;
497 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
498 return;
499
500 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
501 udelay(1);
502 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
503 udelay(1);
504}
505
506static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
507{
508 if (!has_bspi(qspi) || (!qspi->bspi_enabled))
509 return;
510
511 qspi->bspi_enabled = 0;
512 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
513 return;
514
515 bcm_qspi_bspi_busy_poll(qspi);
516 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
517 udelay(1);
518}
519
fa236a7e
KD
520static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
521{
522 u32 data = 0;
523
524 if (qspi->curr_cs == cs)
525 return;
526 if (qspi->base[CHIP_SELECT]) {
527 data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
528 data = (data & ~0xff) | (1 << cs);
529 bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
530 usleep_range(10, 20);
531 }
532 qspi->curr_cs = cs;
533}
534
535/* MSPI helpers */
536static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
537 const struct bcm_qspi_parms *xp)
538{
539 u32 spcr, spbr = 0;
540
541 if (xp->speed_hz)
542 spbr = qspi->base_clk / (2 * xp->speed_hz);
543
544 spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
545 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
546
547 spcr = MSPI_MASTER_BIT;
548 /* for 16 bit the data should be zero */
549 if (xp->bits_per_word != 16)
550 spcr |= xp->bits_per_word << 2;
551 spcr |= xp->mode & 3;
552 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
553
554 qspi->last_parms = *xp;
555}
556
557static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
558 struct spi_device *spi,
559 struct spi_transfer *trans)
560{
561 struct bcm_qspi_parms xp;
562
563 xp.speed_hz = trans->speed_hz;
564 xp.bits_per_word = trans->bits_per_word;
565 xp.mode = spi->mode;
566
567 bcm_qspi_hw_set_parms(qspi, &xp);
568}
569
570static int bcm_qspi_setup(struct spi_device *spi)
571{
572 struct bcm_qspi_parms *xp;
573
574 if (spi->bits_per_word > 16)
575 return -EINVAL;
576
577 xp = spi_get_ctldata(spi);
578 if (!xp) {
579 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
580 if (!xp)
581 return -ENOMEM;
582 spi_set_ctldata(spi, xp);
583 }
584 xp->speed_hz = spi->max_speed_hz;
585 xp->mode = spi->mode;
586
587 if (spi->bits_per_word)
588 xp->bits_per_word = spi->bits_per_word;
589 else
590 xp->bits_per_word = 8;
591
592 return 0;
593}
594
81ab52fd
KD
595static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
596 struct qspi_trans *qt)
597{
598 if (qt->mspi_last_trans &&
599 spi_transfer_is_last(qspi->master, qt->trans))
600 return true;
601 else
602 return false;
603}
604
fa236a7e
KD
605static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
606 struct qspi_trans *qt, int flags)
607{
608 int ret = TRANS_STATUS_BREAK_NONE;
609
610 /* count the last transferred bytes */
611 if (qt->trans->bits_per_word <= 8)
612 qt->byte++;
613 else
614 qt->byte += 2;
615
616 if (qt->byte >= qt->trans->len) {
617 /* we're at the end of the spi_transfer */
fa236a7e
KD
618 /* in TX mode, need to pause for a delay or CS change */
619 if (qt->trans->delay_usecs &&
620 (flags & TRANS_STATUS_BREAK_DELAY))
621 ret |= TRANS_STATUS_BREAK_DELAY;
622 if (qt->trans->cs_change &&
623 (flags & TRANS_STATUS_BREAK_CS_CHANGE))
624 ret |= TRANS_STATUS_BREAK_CS_CHANGE;
625 if (ret)
626 goto done;
627
628 dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
81ab52fd 629 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
fa236a7e
KD
630 ret = TRANS_STATUS_BREAK_EOM;
631 else
632 ret = TRANS_STATUS_BREAK_NO_BYTES;
633
634 qt->trans = NULL;
635 }
636
637done:
638 dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
639 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
640 return ret;
641}
642
643static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
644{
645 u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
646
647 /* mask out reserved bits */
648 return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
649}
650
651static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
652{
653 u32 reg_offset = MSPI_RXRAM;
654 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
655 u32 msb_offset = reg_offset + (slot << 3);
656
657 return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
658 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
659}
660
661static void read_from_hw(struct bcm_qspi *qspi, int slots)
662{
663 struct qspi_trans tp;
664 int slot;
665
4e3b2d23
KD
666 bcm_qspi_disable_bspi(qspi);
667
fa236a7e
KD
668 if (slots > MSPI_NUM_CDRAM) {
669 /* should never happen */
670 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
671 return;
672 }
673
674 tp = qspi->trans_pos;
675
676 for (slot = 0; slot < slots; slot++) {
677 if (tp.trans->bits_per_word <= 8) {
678 u8 *buf = tp.trans->rx_buf;
679
680 if (buf)
681 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
682 dev_dbg(&qspi->pdev->dev, "RD %02x\n",
683 buf ? buf[tp.byte] : 0xff);
684 } else {
685 u16 *buf = tp.trans->rx_buf;
686
687 if (buf)
688 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
689 slot);
690 dev_dbg(&qspi->pdev->dev, "RD %04x\n",
691 buf ? buf[tp.byte] : 0xffff);
692 }
693
694 update_qspi_trans_byte_count(qspi, &tp,
695 TRANS_STATUS_BREAK_NONE);
696 }
697
698 qspi->trans_pos = tp;
699}
700
701static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
702 u8 val)
703{
704 u32 reg_offset = MSPI_TXRAM + (slot << 3);
705
706 /* mask out reserved bits */
707 bcm_qspi_write(qspi, MSPI, reg_offset, val);
708}
709
710static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
711 u16 val)
712{
713 u32 reg_offset = MSPI_TXRAM;
714 u32 msb_offset = reg_offset + (slot << 3);
715 u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
716
717 bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
718 bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
719}
720
721static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
722{
723 return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
724}
725
726static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
727{
728 bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
729}
730
731/* Return number of slots written */
732static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
733{
734 struct qspi_trans tp;
735 int slot = 0, tstatus = 0;
736 u32 mspi_cdram = 0;
737
4e3b2d23 738 bcm_qspi_disable_bspi(qspi);
fa236a7e
KD
739 tp = qspi->trans_pos;
740 bcm_qspi_update_parms(qspi, spi, tp.trans);
741
742 /* Run until end of transfer or reached the max data */
743 while (!tstatus && slot < MSPI_NUM_CDRAM) {
744 if (tp.trans->bits_per_word <= 8) {
745 const u8 *buf = tp.trans->tx_buf;
746 u8 val = buf ? buf[tp.byte] : 0xff;
747
748 write_txram_slot_u8(qspi, slot, val);
749 dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
750 } else {
751 const u16 *buf = tp.trans->tx_buf;
752 u16 val = buf ? buf[tp.byte / 2] : 0xffff;
753
754 write_txram_slot_u16(qspi, slot, val);
755 dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
756 }
757 mspi_cdram = MSPI_CDRAM_CONT_BIT;
758 mspi_cdram |= (~(1 << spi->chip_select) &
759 MSPI_CDRAM_PCS);
760 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
761 MSPI_CDRAM_BITSE_BIT);
762
763 write_cdram_slot(qspi, slot, mspi_cdram);
764
765 tstatus = update_qspi_trans_byte_count(qspi, &tp,
766 TRANS_STATUS_BREAK_TX);
767 slot++;
768 }
769
770 if (!slot) {
771 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
772 goto done;
773 }
774
775 dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
776 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
777 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
778
779 if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
780 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
781 ~MSPI_CDRAM_CONT_BIT;
782 write_cdram_slot(qspi, slot - 1, mspi_cdram);
783 }
784
4e3b2d23
KD
785 if (has_bspi(qspi))
786 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
787
fa236a7e
KD
788 /* Must flush previous writes before starting MSPI operation */
789 mb();
790 /* Set cont | spe | spifie */
791 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
792
793done:
794 return slot;
795}
796
4e3b2d23
KD
797static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
798 struct spi_flash_read_message *msg)
799{
800 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
345309fa 801 u32 addr = 0, len, rdlen, len_words;
4e3b2d23
KD
802 int ret = 0;
803 unsigned long timeo = msecs_to_jiffies(100);
cc20a386 804 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
4e3b2d23
KD
805
806 if (bcm_qspi_bspi_ver_three(qspi))
807 if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
808 return -EIO;
809
810 bcm_qspi_chip_select(qspi, spi->chip_select);
811 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
812
813 /*
345309fa 814 * when using flex mode we need to send
4e3b2d23
KD
815 * the upper address byte to bspi
816 */
817 if (bcm_qspi_bspi_ver_three(qspi) == false) {
818 addr = msg->from & 0xff000000;
819 bcm_qspi_write(qspi, BSPI,
820 BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
821 }
822
823 if (!qspi->xfer_mode.flex_mode)
824 addr = msg->from;
825 else
826 addr = msg->from & 0x00ffffff;
827
4e3b2d23
KD
828 if (bcm_qspi_bspi_ver_three(qspi) == true)
829 addr = (addr + 0xc00000) & 0xffffff;
830
345309fa
KD
831 /*
832 * read into the entire buffer by breaking the reads
833 * into RAF buffer read lengths
834 */
835 len = msg->len;
4e3b2d23 836 qspi->bspi_rf_msg_idx = 0;
4e3b2d23 837
345309fa
KD
838 do {
839 if (len > BSPI_READ_LENGTH)
840 rdlen = BSPI_READ_LENGTH;
841 else
842 rdlen = len;
843
844 reinit_completion(&qspi->bspi_done);
845 bcm_qspi_enable_bspi(qspi);
846 len_words = (rdlen + 3) >> 2;
847 qspi->bspi_rf_msg = msg;
848 qspi->bspi_rf_msg_status = 0;
849 qspi->bspi_rf_msg_len = rdlen;
850 dev_dbg(&qspi->pdev->dev,
851 "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
852 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
853 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
854 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
855 if (qspi->soc_intc) {
856 /*
857 * clear soc MSPI and BSPI interrupts and enable
858 * BSPI interrupts.
859 */
860 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
861 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
862 }
4e3b2d23 863
345309fa
KD
864 /* Must flush previous writes before starting BSPI operation */
865 mb();
866 bcm_qspi_bspi_lr_start(qspi);
867 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
868 dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
869 ret = -ETIMEDOUT;
870 break;
871 }
872
873 /* set msg return length */
874 msg->retlen += rdlen;
875 addr += rdlen;
876 len -= rdlen;
877 } while (len);
4e3b2d23
KD
878
879 return ret;
880}
881
81ab52fd
KD
882static int bcm_qspi_transfer_one(struct spi_master *master,
883 struct spi_device *spi,
884 struct spi_transfer *trans)
885{
886 struct bcm_qspi *qspi = spi_master_get_devdata(master);
887 int slots;
888 unsigned long timeo = msecs_to_jiffies(100);
889
890 bcm_qspi_chip_select(qspi, spi->chip_select);
891 qspi->trans_pos.trans = trans;
892 qspi->trans_pos.byte = 0;
893
894 while (qspi->trans_pos.byte < trans->len) {
895 reinit_completion(&qspi->mspi_done);
896
897 slots = write_to_hw(qspi, spi);
898 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
899 dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
900 return -ETIMEDOUT;
901 }
902
903 read_from_hw(qspi, slots);
cc20a386
KD
904 }
905
81ab52fd
KD
906 return 0;
907}
4e3b2d23 908
81ab52fd
KD
909static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
910 struct spi_flash_read_message *msg)
911{
912 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
913 struct spi_transfer t[2];
914 u8 cmd[6];
915 int ret;
916
917 memset(cmd, 0, sizeof(cmd));
918 memset(t, 0, sizeof(t));
919
920 /* tx */
921 /* opcode is in cmd[0] */
922 cmd[0] = msg->read_opcode;
923 cmd[1] = msg->from >> (msg->addr_width * 8 - 8);
924 cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
925 cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
926 cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
927 t[0].tx_buf = cmd;
928 t[0].len = msg->addr_width + msg->dummy_bytes + 1;
929 t[0].bits_per_word = spi->bits_per_word;
930 t[0].tx_nbits = msg->opcode_nbits;
931 /* lets mspi know that this is not last transfer */
932 qspi->trans_pos.mspi_last_trans = false;
933 ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
934
935 /* rx */
936 qspi->trans_pos.mspi_last_trans = true;
937 if (!ret) {
938 /* rx */
939 t[1].rx_buf = msg->buf;
940 t[1].len = msg->len;
941 t[1].rx_nbits = msg->data_nbits;
942 t[1].bits_per_word = spi->bits_per_word;
943 ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
4e3b2d23
KD
944 }
945
81ab52fd
KD
946 if (!ret)
947 msg->retlen = msg->len;
948
4e3b2d23
KD
949 return ret;
950}
951
952static int bcm_qspi_flash_read(struct spi_device *spi,
953 struct spi_flash_read_message *msg)
954{
955 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
956 int ret = 0;
957 bool mspi_read = false;
054e532f 958 u32 addr, len;
4e3b2d23
KD
959 u_char *buf;
960
961 buf = msg->buf;
962 addr = msg->from;
963 len = msg->len;
964
965 if (bcm_qspi_bspi_ver_three(qspi) == true) {
966 /*
967 * The address coming into this function is a raw flash offset.
968 * But for BSPI <= V3, we need to convert it to a remapped BSPI
969 * address. If it crosses a 4MB boundary, just revert back to
970 * using MSPI.
971 */
972 addr = (addr + 0xc00000) & 0xffffff;
973
974 if ((~ADDR_4MB_MASK & addr) ^
975 (~ADDR_4MB_MASK & (addr + len - 1)))
976 mspi_read = true;
977 }
978
979 /* non-aligned and very short transfers are handled by MSPI */
980 if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
981 len < 4)
982 mspi_read = true;
983
984 if (mspi_read)
81ab52fd 985 return bcm_qspi_mspi_flash_read(spi, msg);
4e3b2d23 986
054e532f 987 ret = bcm_qspi_bspi_set_mode(qspi, msg, -1);
4e3b2d23
KD
988
989 if (!ret)
990 ret = bcm_qspi_bspi_flash_read(spi, msg);
991
992 return ret;
993}
994
fa236a7e
KD
995static void bcm_qspi_cleanup(struct spi_device *spi)
996{
997 struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
998
999 kfree(xp);
1000}
1001
1002static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1003{
1004 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1005 struct bcm_qspi *qspi = qspi_dev_id->dev;
1006 u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1007
1008 if (status & MSPI_MSPI_STATUS_SPIF) {
cc20a386 1009 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
fa236a7e
KD
1010 /* clear interrupt */
1011 status &= ~MSPI_MSPI_STATUS_SPIF;
1012 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
cc20a386
KD
1013 if (qspi->soc_intc)
1014 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
fa236a7e
KD
1015 complete(&qspi->mspi_done);
1016 return IRQ_HANDLED;
fa236a7e 1017 }
4e3b2d23
KD
1018
1019 return IRQ_NONE;
1020}
1021
1022static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1023{
1024 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1025 struct bcm_qspi *qspi = qspi_dev_id->dev;
cc20a386
KD
1026 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1027 u32 status = qspi_dev_id->irqp->mask;
4e3b2d23
KD
1028
1029 if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
1030 bcm_qspi_bspi_lr_data_read(qspi);
1031 if (qspi->bspi_rf_msg_len == 0) {
1032 qspi->bspi_rf_msg = NULL;
cc20a386
KD
1033 if (qspi->soc_intc) {
1034 /* disable soc BSPI interrupt */
1035 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1036 false);
1037 /* indicate done */
1038 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1039 }
1040
4e3b2d23
KD
1041 if (qspi->bspi_rf_msg_status)
1042 bcm_qspi_bspi_lr_clear(qspi);
1043 else
1044 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1045 }
cc20a386
KD
1046
1047 if (qspi->soc_intc)
1048 /* clear soc BSPI interrupt */
1049 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
4e3b2d23
KD
1050 }
1051
cc20a386 1052 status &= INTR_BSPI_LR_SESSION_DONE_MASK;
4e3b2d23
KD
1053 if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1054 complete(&qspi->bspi_done);
1055
1056 return IRQ_HANDLED;
1057}
1058
1059static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1060{
1061 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1062 struct bcm_qspi *qspi = qspi_dev_id->dev;
cc20a386 1063 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
4e3b2d23
KD
1064
1065 dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1066 qspi->bspi_rf_msg_status = -EIO;
cc20a386
KD
1067 if (qspi->soc_intc)
1068 /* clear soc interrupt */
1069 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1070
4e3b2d23
KD
1071 complete(&qspi->bspi_done);
1072 return IRQ_HANDLED;
fa236a7e
KD
1073}
1074
cc20a386
KD
1075static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1076{
1077 struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1078 struct bcm_qspi *qspi = qspi_dev_id->dev;
1079 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1080 irqreturn_t ret = IRQ_NONE;
1081
1082 if (soc_intc) {
1083 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1084
1085 if (status & MSPI_DONE)
1086 ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1087 else if (status & BSPI_DONE)
1088 ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1089 else if (status & BSPI_ERR)
1090 ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1091 }
1092
1093 return ret;
1094}
1095
fa236a7e 1096static const struct bcm_qspi_irq qspi_irq_tab[] = {
4e3b2d23
KD
1097 {
1098 .irq_name = "spi_lr_fullness_reached",
1099 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1100 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1101 },
1102 {
1103 .irq_name = "spi_lr_session_aborted",
1104 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1105 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1106 },
1107 {
1108 .irq_name = "spi_lr_impatient",
1109 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1110 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1111 },
1112 {
1113 .irq_name = "spi_lr_session_done",
1114 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1115 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1116 },
1117#ifdef QSPI_INT_DEBUG
1118 /* this interrupt is for debug purposes only, dont request irq */
1119 {
1120 .irq_name = "spi_lr_overread",
1121 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1122 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1123 },
1124#endif
fa236a7e
KD
1125 {
1126 .irq_name = "mspi_done",
1127 .irq_handler = bcm_qspi_mspi_l2_isr,
1128 .mask = INTR_MSPI_DONE_MASK,
1129 },
1130 {
1131 .irq_name = "mspi_halted",
1132 .irq_handler = bcm_qspi_mspi_l2_isr,
1133 .mask = INTR_MSPI_HALTED_MASK,
1134 },
cc20a386
KD
1135 {
1136 /* single muxed L1 interrupt source */
1137 .irq_name = "spi_l1_intr",
1138 .irq_handler = bcm_qspi_l1_isr,
1139 .irq_source = MUXED_L1,
1140 .mask = QSPI_INTERRUPTS_ALL,
1141 },
fa236a7e
KD
1142};
1143
4e3b2d23
KD
1144static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1145{
1146 u32 val = 0;
1147
1148 val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1149 qspi->bspi_maj_rev = (val >> 8) & 0xff;
1150 qspi->bspi_min_rev = val & 0xff;
1151 if (!(bcm_qspi_bspi_ver_three(qspi))) {
1152 /* Force mapping of BSPI address -> flash offset */
1153 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1154 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1155 }
1156 qspi->bspi_enabled = 1;
1157 bcm_qspi_disable_bspi(qspi);
1158 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1159 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1160}
1161
fa236a7e
KD
1162static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1163{
1164 struct bcm_qspi_parms parms;
1165
1166 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1167 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1168 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1169 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1170 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1171
1172 parms.mode = SPI_MODE_3;
1173 parms.bits_per_word = 8;
1174 parms.speed_hz = qspi->max_speed_hz;
1175 bcm_qspi_hw_set_parms(qspi, &parms);
4e3b2d23
KD
1176
1177 if (has_bspi(qspi))
1178 bcm_qspi_bspi_init(qspi);
fa236a7e
KD
1179}
1180
1181static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1182{
1183 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
4e3b2d23
KD
1184 if (has_bspi(qspi))
1185 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1186
fa236a7e
KD
1187}
1188
1189static const struct of_device_id bcm_qspi_of_match[] = {
1190 { .compatible = "brcm,spi-bcm-qspi" },
1191 {},
1192};
1193MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1194
1195int bcm_qspi_probe(struct platform_device *pdev,
4e3b2d23 1196 struct bcm_qspi_soc_intc *soc_intc)
fa236a7e
KD
1197{
1198 struct device *dev = &pdev->dev;
1199 struct bcm_qspi *qspi;
1200 struct spi_master *master;
1201 struct resource *res;
1202 int irq, ret = 0, num_ints = 0;
1203 u32 val;
1204 const char *name = NULL;
1205 int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1206
1207 /* We only support device-tree instantiation */
1208 if (!dev->of_node)
1209 return -ENODEV;
1210
1211 if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1212 return -ENODEV;
1213
1214 master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1215 if (!master) {
1216 dev_err(dev, "error allocating spi_master\n");
1217 return -ENOMEM;
1218 }
1219
1220 qspi = spi_master_get_devdata(master);
1221 qspi->pdev = pdev;
1222 qspi->trans_pos.trans = NULL;
1223 qspi->trans_pos.byte = 0;
81ab52fd 1224 qspi->trans_pos.mspi_last_trans = true;
fa236a7e
KD
1225 qspi->master = master;
1226
1227 master->bus_num = -1;
1228 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1229 master->setup = bcm_qspi_setup;
1230 master->transfer_one = bcm_qspi_transfer_one;
4e3b2d23 1231 master->spi_flash_read = bcm_qspi_flash_read;
fa236a7e
KD
1232 master->cleanup = bcm_qspi_cleanup;
1233 master->dev.of_node = dev->of_node;
1234 master->num_chipselect = NUM_CHIPSELECT;
1235
1236 qspi->big_endian = of_device_is_big_endian(dev->of_node);
1237
1238 if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1239 master->num_chipselect = val;
1240
1241 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1242 if (!res)
1243 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1244 "mspi");
1245
1246 if (res) {
1247 qspi->base[MSPI] = devm_ioremap_resource(dev, res);
1248 if (IS_ERR(qspi->base[MSPI])) {
1249 ret = PTR_ERR(qspi->base[MSPI]);
1250 goto qspi_probe_err;
1251 }
1252 } else {
1253 goto qspi_probe_err;
1254 }
1255
4e3b2d23
KD
1256 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1257 if (res) {
1258 qspi->base[BSPI] = devm_ioremap_resource(dev, res);
1259 if (IS_ERR(qspi->base[BSPI])) {
1260 ret = PTR_ERR(qspi->base[BSPI]);
1261 goto qspi_probe_err;
1262 }
1263 qspi->bspi_mode = true;
1264 } else {
1265 qspi->bspi_mode = false;
1266 }
1267
1268 dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1269
fa236a7e
KD
1270 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1271 if (res) {
1272 qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
1273 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1274 ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1275 goto qspi_probe_err;
1276 }
1277 }
1278
1279 qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1280 GFP_KERNEL);
3bf3eb2b
WY
1281 if (!qspi->dev_ids) {
1282 ret = -ENOMEM;
fa236a7e
KD
1283 goto qspi_probe_err;
1284 }
1285
1286 for (val = 0; val < num_irqs; val++) {
1287 irq = -1;
1288 name = qspi_irq_tab[val].irq_name;
cc20a386
KD
1289 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1290 /* get the l2 interrupts */
1291 irq = platform_get_irq_byname(pdev, name);
1292 } else if (!num_ints && soc_intc) {
1293 /* all mspi, bspi intrs muxed to one L1 intr */
1294 irq = platform_get_irq(pdev, 0);
1295 }
fa236a7e
KD
1296
1297 if (irq >= 0) {
1298 ret = devm_request_irq(&pdev->dev, irq,
1299 qspi_irq_tab[val].irq_handler, 0,
1300 name,
1301 &qspi->dev_ids[val]);
1302 if (ret < 0) {
1303 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1304 goto qspi_probe_err;
1305 }
1306
1307 qspi->dev_ids[val].dev = qspi;
1308 qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1309 num_ints++;
1310 dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1311 qspi_irq_tab[val].irq_name,
1312 irq);
1313 }
1314 }
1315
1316 if (!num_ints) {
1317 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
71b8f350 1318 ret = -EINVAL;
fa236a7e
KD
1319 goto qspi_probe_err;
1320 }
1321
cc20a386
KD
1322 /*
1323 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1324 * in specific ways
1325 */
1326 if (soc_intc) {
1327 qspi->soc_intc = soc_intc;
1328 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1329 } else {
1330 qspi->soc_intc = NULL;
1331 }
1332
fa236a7e
KD
1333 qspi->clk = devm_clk_get(&pdev->dev, NULL);
1334 if (IS_ERR(qspi->clk)) {
1335 dev_warn(dev, "unable to get clock\n");
71b8f350 1336 ret = PTR_ERR(qspi->clk);
fa236a7e
KD
1337 goto qspi_probe_err;
1338 }
1339
1340 ret = clk_prepare_enable(qspi->clk);
1341 if (ret) {
1342 dev_err(dev, "failed to prepare clock\n");
1343 goto qspi_probe_err;
1344 }
1345
1346 qspi->base_clk = clk_get_rate(qspi->clk);
1347 qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1348
1349 bcm_qspi_hw_init(qspi);
1350 init_completion(&qspi->mspi_done);
4e3b2d23 1351 init_completion(&qspi->bspi_done);
fa236a7e
KD
1352 qspi->curr_cs = -1;
1353
1354 platform_set_drvdata(pdev, qspi);
4e3b2d23
KD
1355
1356 qspi->xfer_mode.width = -1;
1357 qspi->xfer_mode.addrlen = -1;
1358 qspi->xfer_mode.hp = -1;
1359
fa236a7e
KD
1360 ret = devm_spi_register_master(&pdev->dev, master);
1361 if (ret < 0) {
1362 dev_err(dev, "can't register master\n");
1363 goto qspi_reg_err;
1364 }
1365
1366 return 0;
1367
1368qspi_reg_err:
1369 bcm_qspi_hw_uninit(qspi);
1370 clk_disable_unprepare(qspi->clk);
1371qspi_probe_err:
1372 spi_master_put(master);
1373 kfree(qspi->dev_ids);
1374 return ret;
1375}
1376/* probe function to be called by SoC specific platform driver probe */
1377EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1378
1379int bcm_qspi_remove(struct platform_device *pdev)
1380{
1381 struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1382
fa236a7e
KD
1383 bcm_qspi_hw_uninit(qspi);
1384 clk_disable_unprepare(qspi->clk);
1385 kfree(qspi->dev_ids);
1386 spi_unregister_master(qspi->master);
1387
1388 return 0;
1389}
1390/* function to be called by SoC specific platform driver remove() */
1391EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1392
a0319f8b 1393static int __maybe_unused bcm_qspi_suspend(struct device *dev)
fa236a7e
KD
1394{
1395 struct bcm_qspi *qspi = dev_get_drvdata(dev);
1396
054e532f
KD
1397 /* store the override strap value */
1398 if (!bcm_qspi_bspi_ver_three(qspi))
1399 qspi->s3_strap_override_ctrl =
1400 bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1401
fa236a7e
KD
1402 spi_master_suspend(qspi->master);
1403 clk_disable(qspi->clk);
1404 bcm_qspi_hw_uninit(qspi);
1405
1406 return 0;
1407};
1408
a0319f8b 1409static int __maybe_unused bcm_qspi_resume(struct device *dev)
fa236a7e
KD
1410{
1411 struct bcm_qspi *qspi = dev_get_drvdata(dev);
1412 int ret = 0;
1413
1414 bcm_qspi_hw_init(qspi);
1415 bcm_qspi_chip_select(qspi, qspi->curr_cs);
cc20a386
KD
1416 if (qspi->soc_intc)
1417 /* enable MSPI interrupt */
1418 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1419 true);
1420
fa236a7e
KD
1421 ret = clk_enable(qspi->clk);
1422 if (!ret)
1423 spi_master_resume(qspi->master);
1424
1425 return ret;
1426}
fa236a7e 1427
a0319f8b
AB
1428SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1429
fa236a7e
KD
1430/* pm_ops to be called by SoC specific platform driver */
1431EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1432
1433MODULE_AUTHOR("Kamal Dasu");
1434MODULE_DESCRIPTION("Broadcom QSPI driver");
1435MODULE_LICENSE("GPL v2");
1436MODULE_ALIAS("platform:" DRIVER_NAME);