treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[linux-2.6-block.git] / drivers / spi / spi-atmel.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
754ce4f2
HS
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
754ce4f2
HS
6 */
7
8#include <linux/kernel.h>
754ce4f2
HS
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
1ccc404a 14#include <linux/dmaengine.h>
754ce4f2
HS
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
5a0e3ad6 18#include <linux/slab.h>
1ccc404a 19#include <linux/platform_data/dma-atmel.h>
850a5b67 20#include <linux/of.h>
754ce4f2 21
d4820b74 22#include <linux/io.h>
efc92fbb 23#include <linux/gpio/consumer.h>
5bdfd491 24#include <linux/pinctrl/consumer.h>
ce0c4caf 25#include <linux/pm_runtime.h>
bb2d1c36 26
ca632f55
GL
27/* SPI register offsets */
28#define SPI_CR 0x0000
29#define SPI_MR 0x0004
30#define SPI_RDR 0x0008
31#define SPI_TDR 0x000c
32#define SPI_SR 0x0010
33#define SPI_IER 0x0014
34#define SPI_IDR 0x0018
35#define SPI_IMR 0x001c
36#define SPI_CSR0 0x0030
37#define SPI_CSR1 0x0034
38#define SPI_CSR2 0x0038
39#define SPI_CSR3 0x003c
11f2764f
CP
40#define SPI_FMR 0x0040
41#define SPI_FLR 0x0044
d4820b74 42#define SPI_VERSION 0x00fc
ca632f55
GL
43#define SPI_RPR 0x0100
44#define SPI_RCR 0x0104
45#define SPI_TPR 0x0108
46#define SPI_TCR 0x010c
47#define SPI_RNPR 0x0110
48#define SPI_RNCR 0x0114
49#define SPI_TNPR 0x0118
50#define SPI_TNCR 0x011c
51#define SPI_PTCR 0x0120
52#define SPI_PTSR 0x0124
53
54/* Bitfields in CR */
55#define SPI_SPIEN_OFFSET 0
56#define SPI_SPIEN_SIZE 1
57#define SPI_SPIDIS_OFFSET 1
58#define SPI_SPIDIS_SIZE 1
59#define SPI_SWRST_OFFSET 7
60#define SPI_SWRST_SIZE 1
61#define SPI_LASTXFER_OFFSET 24
62#define SPI_LASTXFER_SIZE 1
11f2764f
CP
63#define SPI_TXFCLR_OFFSET 16
64#define SPI_TXFCLR_SIZE 1
65#define SPI_RXFCLR_OFFSET 17
66#define SPI_RXFCLR_SIZE 1
67#define SPI_FIFOEN_OFFSET 30
68#define SPI_FIFOEN_SIZE 1
69#define SPI_FIFODIS_OFFSET 31
70#define SPI_FIFODIS_SIZE 1
ca632f55
GL
71
72/* Bitfields in MR */
73#define SPI_MSTR_OFFSET 0
74#define SPI_MSTR_SIZE 1
75#define SPI_PS_OFFSET 1
76#define SPI_PS_SIZE 1
77#define SPI_PCSDEC_OFFSET 2
78#define SPI_PCSDEC_SIZE 1
79#define SPI_FDIV_OFFSET 3
80#define SPI_FDIV_SIZE 1
81#define SPI_MODFDIS_OFFSET 4
82#define SPI_MODFDIS_SIZE 1
d4820b74
WY
83#define SPI_WDRBT_OFFSET 5
84#define SPI_WDRBT_SIZE 1
ca632f55
GL
85#define SPI_LLB_OFFSET 7
86#define SPI_LLB_SIZE 1
87#define SPI_PCS_OFFSET 16
88#define SPI_PCS_SIZE 4
89#define SPI_DLYBCS_OFFSET 24
90#define SPI_DLYBCS_SIZE 8
91
92/* Bitfields in RDR */
93#define SPI_RD_OFFSET 0
94#define SPI_RD_SIZE 16
95
96/* Bitfields in TDR */
97#define SPI_TD_OFFSET 0
98#define SPI_TD_SIZE 16
99
100/* Bitfields in SR */
101#define SPI_RDRF_OFFSET 0
102#define SPI_RDRF_SIZE 1
103#define SPI_TDRE_OFFSET 1
104#define SPI_TDRE_SIZE 1
105#define SPI_MODF_OFFSET 2
106#define SPI_MODF_SIZE 1
107#define SPI_OVRES_OFFSET 3
108#define SPI_OVRES_SIZE 1
109#define SPI_ENDRX_OFFSET 4
110#define SPI_ENDRX_SIZE 1
111#define SPI_ENDTX_OFFSET 5
112#define SPI_ENDTX_SIZE 1
113#define SPI_RXBUFF_OFFSET 6
114#define SPI_RXBUFF_SIZE 1
115#define SPI_TXBUFE_OFFSET 7
116#define SPI_TXBUFE_SIZE 1
117#define SPI_NSSR_OFFSET 8
118#define SPI_NSSR_SIZE 1
119#define SPI_TXEMPTY_OFFSET 9
120#define SPI_TXEMPTY_SIZE 1
121#define SPI_SPIENS_OFFSET 16
122#define SPI_SPIENS_SIZE 1
11f2764f
CP
123#define SPI_TXFEF_OFFSET 24
124#define SPI_TXFEF_SIZE 1
125#define SPI_TXFFF_OFFSET 25
126#define SPI_TXFFF_SIZE 1
127#define SPI_TXFTHF_OFFSET 26
128#define SPI_TXFTHF_SIZE 1
129#define SPI_RXFEF_OFFSET 27
130#define SPI_RXFEF_SIZE 1
131#define SPI_RXFFF_OFFSET 28
132#define SPI_RXFFF_SIZE 1
133#define SPI_RXFTHF_OFFSET 29
134#define SPI_RXFTHF_SIZE 1
135#define SPI_TXFPTEF_OFFSET 30
136#define SPI_TXFPTEF_SIZE 1
137#define SPI_RXFPTEF_OFFSET 31
138#define SPI_RXFPTEF_SIZE 1
ca632f55
GL
139
140/* Bitfields in CSR0 */
141#define SPI_CPOL_OFFSET 0
142#define SPI_CPOL_SIZE 1
143#define SPI_NCPHA_OFFSET 1
144#define SPI_NCPHA_SIZE 1
145#define SPI_CSAAT_OFFSET 3
146#define SPI_CSAAT_SIZE 1
147#define SPI_BITS_OFFSET 4
148#define SPI_BITS_SIZE 4
149#define SPI_SCBR_OFFSET 8
150#define SPI_SCBR_SIZE 8
151#define SPI_DLYBS_OFFSET 16
152#define SPI_DLYBS_SIZE 8
153#define SPI_DLYBCT_OFFSET 24
154#define SPI_DLYBCT_SIZE 8
155
156/* Bitfields in RCR */
157#define SPI_RXCTR_OFFSET 0
158#define SPI_RXCTR_SIZE 16
159
160/* Bitfields in TCR */
161#define SPI_TXCTR_OFFSET 0
162#define SPI_TXCTR_SIZE 16
163
164/* Bitfields in RNCR */
165#define SPI_RXNCR_OFFSET 0
166#define SPI_RXNCR_SIZE 16
167
168/* Bitfields in TNCR */
169#define SPI_TXNCR_OFFSET 0
170#define SPI_TXNCR_SIZE 16
171
172/* Bitfields in PTCR */
173#define SPI_RXTEN_OFFSET 0
174#define SPI_RXTEN_SIZE 1
175#define SPI_RXTDIS_OFFSET 1
176#define SPI_RXTDIS_SIZE 1
177#define SPI_TXTEN_OFFSET 8
178#define SPI_TXTEN_SIZE 1
179#define SPI_TXTDIS_OFFSET 9
180#define SPI_TXTDIS_SIZE 1
181
11f2764f
CP
182/* Bitfields in FMR */
183#define SPI_TXRDYM_OFFSET 0
184#define SPI_TXRDYM_SIZE 2
185#define SPI_RXRDYM_OFFSET 4
186#define SPI_RXRDYM_SIZE 2
187#define SPI_TXFTHRES_OFFSET 16
188#define SPI_TXFTHRES_SIZE 6
189#define SPI_RXFTHRES_OFFSET 24
190#define SPI_RXFTHRES_SIZE 6
191
192/* Bitfields in FLR */
193#define SPI_TXFL_OFFSET 0
194#define SPI_TXFL_SIZE 6
195#define SPI_RXFL_OFFSET 16
196#define SPI_RXFL_SIZE 6
197
ca632f55
GL
198/* Constants for BITS */
199#define SPI_BITS_8_BPT 0
200#define SPI_BITS_9_BPT 1
201#define SPI_BITS_10_BPT 2
202#define SPI_BITS_11_BPT 3
203#define SPI_BITS_12_BPT 4
204#define SPI_BITS_13_BPT 5
205#define SPI_BITS_14_BPT 6
206#define SPI_BITS_15_BPT 7
207#define SPI_BITS_16_BPT 8
11f2764f
CP
208#define SPI_ONE_DATA 0
209#define SPI_TWO_DATA 1
210#define SPI_FOUR_DATA 2
ca632f55
GL
211
212/* Bit manipulation macros */
213#define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
a536d765 215#define SPI_BF(name, value) \
ca632f55 216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
a536d765 217#define SPI_BFEXT(name, value) \
ca632f55 218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
a536d765
SK
219#define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
ca632f55
GL
222
223/* Register access macros */
ea467326 224#ifdef CONFIG_AVR32
a536d765 225#define spi_readl(port, reg) \
ca632f55 226 __raw_readl((port)->regs + SPI_##reg)
a536d765 227#define spi_writel(port, reg, value) \
ca632f55 228 __raw_writel((value), (port)->regs + SPI_##reg)
11f2764f
CP
229
230#define spi_readw(port, reg) \
231 __raw_readw((port)->regs + SPI_##reg)
232#define spi_writew(port, reg, value) \
233 __raw_writew((value), (port)->regs + SPI_##reg)
234
235#define spi_readb(port, reg) \
236 __raw_readb((port)->regs + SPI_##reg)
237#define spi_writeb(port, reg, value) \
238 __raw_writeb((value), (port)->regs + SPI_##reg)
ea467326
BD
239#else
240#define spi_readl(port, reg) \
241 readl_relaxed((port)->regs + SPI_##reg)
242#define spi_writel(port, reg, value) \
243 writel_relaxed((value), (port)->regs + SPI_##reg)
11f2764f
CP
244
245#define spi_readw(port, reg) \
246 readw_relaxed((port)->regs + SPI_##reg)
247#define spi_writew(port, reg, value) \
248 writew_relaxed((value), (port)->regs + SPI_##reg)
249
250#define spi_readb(port, reg) \
251 readb_relaxed((port)->regs + SPI_##reg)
252#define spi_writeb(port, reg, value) \
253 writeb_relaxed((value), (port)->regs + SPI_##reg)
ea467326 254#endif
1ccc404a
NF
255/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
256 * cache operations; better heuristics consider wordsize and bitrate.
257 */
258#define DMA_MIN_BYTES 16
259
8090d6d1
WY
260#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
261
ce0c4caf
WY
262#define AUTOSUSPEND_TIMEOUT 2000
263
d4820b74
WY
264struct atmel_spi_caps {
265 bool is_spi2;
266 bool has_wdrbt;
267 bool has_dma_support;
7094576c 268 bool has_pdc_support;
d4820b74 269};
754ce4f2
HS
270
271/*
272 * The core SPI transfer engine just talks to a register bank to set up
273 * DMA transfers; transfer queue progress is driven by IRQs. The clock
274 * framework provides the base clock, subdivided for each spi_device.
754ce4f2
HS
275 */
276struct atmel_spi {
277 spinlock_t lock;
8aad7924 278 unsigned long flags;
754ce4f2 279
dfab30ee 280 phys_addr_t phybase;
754ce4f2
HS
281 void __iomem *regs;
282 int irq;
283 struct clk *clk;
284 struct platform_device *pdev;
39fe33f9 285 unsigned long spi_clk;
754ce4f2 286
754ce4f2 287 struct spi_transfer *current_transfer;
0c3b9748 288 int current_remaining_bytes;
823cd045 289 int done_status;
a9889ed6
RP
290 dma_addr_t dma_addr_rx_bbuf;
291 dma_addr_t dma_addr_tx_bbuf;
292 void *addr_rx_bbuf;
293 void *addr_tx_bbuf;
754ce4f2 294
8090d6d1
WY
295 struct completion xfer_completion;
296
d4820b74 297 struct atmel_spi_caps caps;
1ccc404a
NF
298
299 bool use_dma;
300 bool use_pdc;
48203034 301 bool use_cs_gpios;
8090d6d1
WY
302
303 bool keep_cs;
304 bool cs_active;
11f2764f
CP
305
306 u32 fifo_size;
754ce4f2
HS
307};
308
5ee36c98
HS
309/* Controller-specific per-slave state */
310struct atmel_spi_device {
efc92fbb 311 struct gpio_desc *npcs_pin;
5ee36c98
HS
312 u32 csr;
313};
314
7910d9af 315#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
754ce4f2
HS
316#define INVALID_DMA_ADDRESS 0xffffffff
317
5bfa26ca
HS
318/*
319 * Version 2 of the SPI controller has
320 * - CR.LASTXFER
321 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
322 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
323 * - SPI_CSRx.CSAAT
324 * - SPI_CSRx.SBCR allows faster clocking
5bfa26ca 325 */
d4820b74 326static bool atmel_spi_is_v2(struct atmel_spi *as)
5bfa26ca 327{
d4820b74 328 return as->caps.is_spi2;
5bfa26ca
HS
329}
330
754ce4f2
HS
331/*
332 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
333 * they assume that spi slave device state will not change on deselect, so
defbd3b4
DB
334 * that automagic deselection is OK. ("NPCSx rises if no data is to be
335 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
336 * controllers have CSAAT and friends.
754ce4f2 337 *
defbd3b4
DB
338 * Since the CSAAT functionality is a bit weird on newer controllers as
339 * well, we use GPIO to control nCSx pins on all controllers, updating
340 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
341 * support active-high chipselects despite the controller's belief that
342 * only active-low devices/systems exists.
343 *
344 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
345 * right when driven with GPIO. ("Mode Fault does not allow more than one
346 * Master on Chip Select 0.") No workaround exists for that ... so for
347 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
348 * and (c) will trigger that first erratum in some cases.
754ce4f2
HS
349 */
350
defbd3b4 351static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 352{
5ee36c98 353 struct atmel_spi_device *asd = spi->controller_state;
defbd3b4
DB
354 u32 mr;
355
d4820b74 356 if (atmel_spi_is_v2(as)) {
97ed465b
WY
357 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
358 /* For the low SPI version, there is a issue that PDC transfer
359 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
5ee36c98
HS
360 */
361 spi_writel(as, CSR0, asd->csr);
d4820b74 362 if (as->caps.has_wdrbt) {
97ed465b
WY
363 spi_writel(as, MR,
364 SPI_BF(PCS, ~(0x01 << spi->chip_select))
365 | SPI_BIT(WDRBT)
366 | SPI_BIT(MODFDIS)
367 | SPI_BIT(MSTR));
d4820b74 368 } else {
97ed465b
WY
369 spi_writel(as, MR,
370 SPI_BF(PCS, ~(0x01 << spi->chip_select))
371 | SPI_BIT(MODFDIS)
372 | SPI_BIT(MSTR));
d4820b74 373 }
1ccc404a 374
5ee36c98 375 mr = spi_readl(as, MR);
48203034 376 if (as->use_cs_gpios)
efc92fbb 377 gpiod_set_value(asd->npcs_pin, 1);
5ee36c98
HS
378 } else {
379 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
380 int i;
381 u32 csr;
382
383 /* Make sure clock polarity is correct */
384 for (i = 0; i < spi->master->num_chipselect; i++) {
385 csr = spi_readl(as, CSR0 + 4 * i);
386 if ((csr ^ cpol) & SPI_BIT(CPOL))
387 spi_writel(as, CSR0 + 4 * i,
388 csr ^ SPI_BIT(CPOL));
389 }
390
391 mr = spi_readl(as, MR);
392 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
48203034 393 if (as->use_cs_gpios && spi->chip_select != 0)
efc92fbb 394 gpiod_set_value(asd->npcs_pin, 1);
5ee36c98
HS
395 spi_writel(as, MR, mr);
396 }
defbd3b4 397
efc92fbb 398 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
754ce4f2
HS
399}
400
defbd3b4 401static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 402{
5ee36c98 403 struct atmel_spi_device *asd = spi->controller_state;
defbd3b4
DB
404 u32 mr;
405
406 /* only deactivate *this* device; sometimes transfers to
407 * another device may be active when this routine is called.
408 */
409 mr = spi_readl(as, MR);
410 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
411 mr = SPI_BFINS(PCS, 0xf, mr);
412 spi_writel(as, MR, mr);
413 }
754ce4f2 414
efc92fbb 415 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
defbd3b4 416
48203034
CP
417 if (!as->use_cs_gpios)
418 spi_writel(as, CR, SPI_BIT(LASTXFER));
419 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
efc92fbb 420 gpiod_set_value(asd->npcs_pin, 0);
754ce4f2
HS
421}
422
6c07ef29 423static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
8aad7924
NF
424{
425 spin_lock_irqsave(&as->lock, as->flags);
426}
427
6c07ef29 428static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
8aad7924
NF
429{
430 spin_unlock_irqrestore(&as->lock, as->flags);
431}
432
a9889ed6
RP
433static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
434{
435 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
436}
437
1ccc404a
NF
438static inline bool atmel_spi_use_dma(struct atmel_spi *as,
439 struct spi_transfer *xfer)
440{
441 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
442}
443
04242ca4
CP
444static bool atmel_spi_can_dma(struct spi_master *master,
445 struct spi_device *spi,
446 struct spi_transfer *xfer)
447{
448 struct atmel_spi *as = spi_master_get_devdata(master);
449
a9889ed6
RP
450 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
451 return atmel_spi_use_dma(as, xfer) &&
452 !atmel_spi_is_vmalloc_xfer(xfer);
453 else
454 return atmel_spi_use_dma(as, xfer);
455
04242ca4
CP
456}
457
1ccc404a
NF
458static int atmel_spi_dma_slave_config(struct atmel_spi *as,
459 struct dma_slave_config *slave_config,
460 u8 bits_per_word)
461{
768f3d9d 462 struct spi_master *master = platform_get_drvdata(as->pdev);
1ccc404a
NF
463 int err = 0;
464
465 if (bits_per_word > 8) {
466 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
467 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 } else {
469 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
470 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 }
472
473 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
474 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
475 slave_config->src_maxburst = 1;
476 slave_config->dst_maxburst = 1;
477 slave_config->device_fc = false;
478
11f2764f
CP
479 /*
480 * This driver uses fixed peripheral select mode (PS bit set to '0' in
481 * the Mode Register).
482 * So according to the datasheet, when FIFOs are available (and
483 * enabled), the Transmit FIFO operates in Multiple Data Mode.
484 * In this mode, up to 2 data, not 4, can be written into the Transmit
485 * Data Register in a single access.
486 * However, the first data has to be written into the lowest 16 bits and
487 * the second data into the highest 16 bits of the Transmit
488 * Data Register. For 8bit data (the most frequent case), it would
489 * require to rework tx_buf so each data would actualy fit 16 bits.
490 * So we'd rather write only one data at the time. Hence the transmit
491 * path works the same whether FIFOs are available (and enabled) or not.
492 */
1ccc404a 493 slave_config->direction = DMA_MEM_TO_DEV;
768f3d9d 494 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
1ccc404a
NF
495 dev_err(&as->pdev->dev,
496 "failed to configure tx dma channel\n");
497 err = -EINVAL;
498 }
499
11f2764f
CP
500 /*
501 * This driver configures the spi controller for master mode (MSTR bit
502 * set to '1' in the Mode Register).
503 * So according to the datasheet, when FIFOs are available (and
504 * enabled), the Receive FIFO operates in Single Data Mode.
505 * So the receive path works the same whether FIFOs are available (and
506 * enabled) or not.
507 */
1ccc404a 508 slave_config->direction = DMA_DEV_TO_MEM;
768f3d9d 509 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
1ccc404a
NF
510 dev_err(&as->pdev->dev,
511 "failed to configure rx dma channel\n");
512 err = -EINVAL;
513 }
514
515 return err;
516}
517
768f3d9d
NF
518static int atmel_spi_configure_dma(struct spi_master *master,
519 struct atmel_spi *as)
1ccc404a 520{
1ccc404a 521 struct dma_slave_config slave_config;
2f767a9f 522 struct device *dev = &as->pdev->dev;
1ccc404a
NF
523 int err;
524
2f767a9f
RG
525 dma_cap_mask_t mask;
526 dma_cap_zero(mask);
527 dma_cap_set(DMA_SLAVE, mask);
1ccc404a 528
768f3d9d
NF
529 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
530 if (IS_ERR(master->dma_tx)) {
531 err = PTR_ERR(master->dma_tx);
5e9af37e
LD
532 if (err == -EPROBE_DEFER) {
533 dev_warn(dev, "no DMA channel available at the moment\n");
768f3d9d 534 goto error_clear;
5e9af37e 535 }
2f767a9f
RG
536 dev_err(dev,
537 "DMA TX channel not available, SPI unable to use DMA\n");
538 err = -EBUSY;
768f3d9d 539 goto error_clear;
1ccc404a 540 }
2f767a9f 541
5e9af37e
LD
542 /*
543 * No reason to check EPROBE_DEFER here since we have already requested
544 * tx channel. If it fails here, it's for another reason.
545 */
768f3d9d 546 master->dma_rx = dma_request_slave_channel(dev, "rx");
2f767a9f 547
768f3d9d 548 if (!master->dma_rx) {
2f767a9f
RG
549 dev_err(dev,
550 "DMA RX channel not available, SPI unable to use DMA\n");
1ccc404a
NF
551 err = -EBUSY;
552 goto error;
553 }
554
555 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
556 if (err)
557 goto error;
558
559 dev_info(&as->pdev->dev,
560 "Using %s (tx) and %s (rx) for DMA transfers\n",
768f3d9d
NF
561 dma_chan_name(master->dma_tx),
562 dma_chan_name(master->dma_rx));
563
1ccc404a
NF
564 return 0;
565error:
768f3d9d
NF
566 if (master->dma_rx)
567 dma_release_channel(master->dma_rx);
568 if (!IS_ERR(master->dma_tx))
569 dma_release_channel(master->dma_tx);
570error_clear:
571 master->dma_tx = master->dma_rx = NULL;
1ccc404a
NF
572 return err;
573}
574
768f3d9d 575static void atmel_spi_stop_dma(struct spi_master *master)
1ccc404a 576{
768f3d9d
NF
577 if (master->dma_rx)
578 dmaengine_terminate_all(master->dma_rx);
579 if (master->dma_tx)
580 dmaengine_terminate_all(master->dma_tx);
1ccc404a
NF
581}
582
768f3d9d 583static void atmel_spi_release_dma(struct spi_master *master)
1ccc404a 584{
768f3d9d
NF
585 if (master->dma_rx) {
586 dma_release_channel(master->dma_rx);
587 master->dma_rx = NULL;
588 }
589 if (master->dma_tx) {
590 dma_release_channel(master->dma_tx);
591 master->dma_tx = NULL;
592 }
1ccc404a
NF
593}
594
595/* This function is called by the DMA driver from tasklet context */
596static void dma_callback(void *data)
597{
598 struct spi_master *master = data;
599 struct atmel_spi *as = spi_master_get_devdata(master);
600
a9889ed6
RP
601 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
602 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
603 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
604 as->current_transfer->len);
605 }
8090d6d1 606 complete(&as->xfer_completion);
1ccc404a
NF
607}
608
609/*
11f2764f 610 * Next transfer using PIO without FIFO.
1ccc404a 611 */
11f2764f
CP
612static void atmel_spi_next_xfer_single(struct spi_master *master,
613 struct spi_transfer *xfer)
1ccc404a
NF
614{
615 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 616 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1ccc404a
NF
617
618 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
619
1ccc404a
NF
620 /* Make sure data is not remaining in RDR */
621 spi_readl(as, RDR);
622 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
623 spi_readl(as, RDR);
624 cpu_relax();
625 }
626
7910d9af
NF
627 if (xfer->bits_per_word > 8)
628 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
629 else
630 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
1ccc404a
NF
631
632 dev_dbg(master->dev.parent,
f557c98b
RG
633 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
634 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
635 xfer->bits_per_word);
1ccc404a
NF
636
637 /* Enable relevant interrupts */
638 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
639}
640
11f2764f
CP
641/*
642 * Next transfer using PIO with FIFO.
643 */
644static void atmel_spi_next_xfer_fifo(struct spi_master *master,
645 struct spi_transfer *xfer)
646{
647 struct atmel_spi *as = spi_master_get_devdata(master);
648 u32 current_remaining_data, num_data;
649 u32 offset = xfer->len - as->current_remaining_bytes;
650 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
651 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
652 u16 td0, td1;
653 u32 fifomr;
654
655 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
656
657 /* Compute the number of data to transfer in the current iteration */
658 current_remaining_data = ((xfer->bits_per_word > 8) ?
659 ((u32)as->current_remaining_bytes >> 1) :
660 (u32)as->current_remaining_bytes);
661 num_data = min(current_remaining_data, as->fifo_size);
662
663 /* Flush RX and TX FIFOs */
664 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
665 while (spi_readl(as, FLR))
666 cpu_relax();
667
668 /* Set RX FIFO Threshold to the number of data to transfer */
669 fifomr = spi_readl(as, FMR);
670 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
671
672 /* Clear FIFO flags in the Status Register, especially RXFTHF */
673 (void)spi_readl(as, SR);
674
675 /* Fill TX FIFO */
676 while (num_data >= 2) {
7910d9af
NF
677 if (xfer->bits_per_word > 8) {
678 td0 = *words++;
679 td1 = *words++;
11f2764f 680 } else {
7910d9af
NF
681 td0 = *bytes++;
682 td1 = *bytes++;
11f2764f
CP
683 }
684
685 spi_writel(as, TDR, (td1 << 16) | td0);
686 num_data -= 2;
687 }
688
689 if (num_data) {
7910d9af
NF
690 if (xfer->bits_per_word > 8)
691 td0 = *words++;
692 else
693 td0 = *bytes++;
11f2764f
CP
694
695 spi_writew(as, TDR, td0);
696 num_data--;
697 }
698
699 dev_dbg(master->dev.parent,
700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
702 xfer->bits_per_word);
703
704 /*
705 * Enable RX FIFO Threshold Flag interrupt to be notified about
706 * transfer completion.
707 */
708 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
709}
710
711/*
712 * Next transfer using PIO.
713 */
714static void atmel_spi_next_xfer_pio(struct spi_master *master,
715 struct spi_transfer *xfer)
716{
717 struct atmel_spi *as = spi_master_get_devdata(master);
718
719 if (as->fifo_size)
720 atmel_spi_next_xfer_fifo(master, xfer);
721 else
722 atmel_spi_next_xfer_single(master, xfer);
723}
724
1ccc404a
NF
725/*
726 * Submit next transfer for DMA.
1ccc404a
NF
727 */
728static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
729 struct spi_transfer *xfer,
730 u32 *plen)
731{
732 struct atmel_spi *as = spi_master_get_devdata(master);
768f3d9d
NF
733 struct dma_chan *rxchan = master->dma_rx;
734 struct dma_chan *txchan = master->dma_tx;
1ccc404a
NF
735 struct dma_async_tx_descriptor *rxdesc;
736 struct dma_async_tx_descriptor *txdesc;
737 struct dma_slave_config slave_config;
738 dma_cookie_t cookie;
1ccc404a
NF
739
740 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
741
742 /* Check that the channels are available */
743 if (!rxchan || !txchan)
744 return -ENODEV;
745
746 /* release lock for DMA operations */
747 atmel_spi_unlock(as);
748
04242ca4 749 *plen = xfer->len;
1ccc404a 750
06515f83
DMT
751 if (atmel_spi_dma_slave_config(as, &slave_config,
752 xfer->bits_per_word))
1ccc404a
NF
753 goto err_exit;
754
755 /* Send both scatterlists */
a9889ed6
RP
756 if (atmel_spi_is_vmalloc_xfer(xfer) &&
757 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
758 rxdesc = dmaengine_prep_slave_single(rxchan,
759 as->dma_addr_rx_bbuf,
760 xfer->len,
35732576 761 DMA_DEV_TO_MEM,
a9889ed6
RP
762 DMA_PREP_INTERRUPT |
763 DMA_CTRL_ACK);
764 } else {
765 rxdesc = dmaengine_prep_slave_sg(rxchan,
766 xfer->rx_sg.sgl,
767 xfer->rx_sg.nents,
35732576 768 DMA_DEV_TO_MEM,
a9889ed6
RP
769 DMA_PREP_INTERRUPT |
770 DMA_CTRL_ACK);
771 }
1ccc404a
NF
772 if (!rxdesc)
773 goto err_dma;
774
a9889ed6
RP
775 if (atmel_spi_is_vmalloc_xfer(xfer) &&
776 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
777 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
778 txdesc = dmaengine_prep_slave_single(txchan,
779 as->dma_addr_tx_bbuf,
35732576 780 xfer->len, DMA_MEM_TO_DEV,
a9889ed6
RP
781 DMA_PREP_INTERRUPT |
782 DMA_CTRL_ACK);
783 } else {
784 txdesc = dmaengine_prep_slave_sg(txchan,
785 xfer->tx_sg.sgl,
786 xfer->tx_sg.nents,
35732576 787 DMA_MEM_TO_DEV,
a9889ed6
RP
788 DMA_PREP_INTERRUPT |
789 DMA_CTRL_ACK);
790 }
1ccc404a
NF
791 if (!txdesc)
792 goto err_dma;
793
794 dev_dbg(master->dev.parent,
2de024b7
EG
795 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
796 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
797 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
1ccc404a
NF
798
799 /* Enable relevant interrupts */
800 spi_writel(as, IER, SPI_BIT(OVRES));
801
802 /* Put the callback on the RX transfer only, that should finish last */
803 rxdesc->callback = dma_callback;
804 rxdesc->callback_param = master;
805
806 /* Submit and fire RX and TX with TX last so we're ready to read! */
807 cookie = rxdesc->tx_submit(rxdesc);
808 if (dma_submit_error(cookie))
809 goto err_dma;
810 cookie = txdesc->tx_submit(txdesc);
811 if (dma_submit_error(cookie))
812 goto err_dma;
813 rxchan->device->device_issue_pending(rxchan);
814 txchan->device->device_issue_pending(txchan);
815
816 /* take back lock */
817 atmel_spi_lock(as);
818 return 0;
819
820err_dma:
821 spi_writel(as, IDR, SPI_BIT(OVRES));
768f3d9d 822 atmel_spi_stop_dma(master);
1ccc404a
NF
823err_exit:
824 atmel_spi_lock(as);
825 return -ENOMEM;
826}
827
154443c7
SE
828static void atmel_spi_next_xfer_data(struct spi_master *master,
829 struct spi_transfer *xfer,
830 dma_addr_t *tx_dma,
831 dma_addr_t *rx_dma,
832 u32 *plen)
833{
7910d9af
NF
834 *rx_dma = xfer->rx_dma + xfer->len - *plen;
835 *tx_dma = xfer->tx_dma + xfer->len - *plen;
04242ca4
CP
836 if (*plen > master->max_dma_len)
837 *plen = master->max_dma_len;
154443c7
SE
838}
839
d3b72c7e
RG
840static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
841 struct spi_device *spi,
842 struct spi_transfer *xfer)
843{
844 u32 scbr, csr;
845 unsigned long bus_hz;
846
847 /* v1 chips start out at half the peripheral bus speed. */
39fe33f9 848 bus_hz = as->spi_clk;
d3b72c7e
RG
849 if (!atmel_spi_is_v2(as))
850 bus_hz /= 2;
851
852 /*
853 * Calculate the lowest divider that satisfies the
854 * constraint, assuming div32/fdiv/mbz == 0.
855 */
e8646580 856 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
d3b72c7e
RG
857
858 /*
859 * If the resulting divider doesn't fit into the
860 * register bitfield, we can't satisfy the constraint.
861 */
862 if (scbr >= (1 << SPI_SCBR_SIZE)) {
863 dev_err(&spi->dev,
864 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
865 xfer->speed_hz, scbr, bus_hz/255);
866 return -EINVAL;
867 }
868 if (scbr == 0) {
869 dev_err(&spi->dev,
870 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
871 xfer->speed_hz, scbr, bus_hz);
872 return -EINVAL;
873 }
874 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
875 csr = SPI_BFINS(SCBR, scbr, csr);
876 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
877
878 return 0;
879}
880
754ce4f2 881/*
1ccc404a 882 * Submit next transfer for PDC.
754ce4f2
HS
883 * lock is held, spi irq is blocked
884 */
1ccc404a 885static void atmel_spi_pdc_next_xfer(struct spi_master *master,
8090d6d1
WY
886 struct spi_message *msg,
887 struct spi_transfer *xfer)
754ce4f2
HS
888{
889 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 890 u32 len;
754ce4f2
HS
891 dma_addr_t tx_dma, rx_dma;
892
8090d6d1 893 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2 894
8090d6d1
WY
895 len = as->current_remaining_bytes;
896 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
897 as->current_remaining_bytes -= len;
754ce4f2 898
8090d6d1
WY
899 spi_writel(as, RPR, rx_dma);
900 spi_writel(as, TPR, tx_dma);
754ce4f2 901
8090d6d1
WY
902 if (msg->spi->bits_per_word > 8)
903 len >>= 1;
904 spi_writel(as, RCR, len);
905 spi_writel(as, TCR, len);
754ce4f2 906
8090d6d1
WY
907 dev_dbg(&msg->spi->dev,
908 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
909 xfer, xfer->len, xfer->tx_buf,
910 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
911 (unsigned long long)xfer->rx_dma);
dc329442 912
8090d6d1
WY
913 if (as->current_remaining_bytes) {
914 len = as->current_remaining_bytes;
154443c7 915 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
8090d6d1 916 as->current_remaining_bytes -= len;
754ce4f2 917
154443c7
SE
918 spi_writel(as, RNPR, rx_dma);
919 spi_writel(as, TNPR, tx_dma);
754ce4f2 920
154443c7
SE
921 if (msg->spi->bits_per_word > 8)
922 len >>= 1;
923 spi_writel(as, RNCR, len);
924 spi_writel(as, TNCR, len);
8bacb219
HS
925
926 dev_dbg(&msg->spi->dev,
2de024b7
EG
927 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
928 xfer, xfer->len, xfer->tx_buf,
929 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
930 (unsigned long long)xfer->rx_dma);
154443c7
SE
931 }
932
76e1d14b 933 /* REVISIT: We're waiting for RXBUFF before we start the next
754ce4f2 934 * transfer because we need to handle some difficult timing
76e1d14b
TF
935 * issues otherwise. If we wait for TXBUFE in one transfer and
936 * then starts waiting for RXBUFF in the next, it's difficult
937 * to tell the difference between the RXBUFF interrupt we're
938 * actually waiting for and the RXBUFF interrupt of the
754ce4f2
HS
939 * previous transfer.
940 *
941 * It should be doable, though. Just not now...
942 */
76e1d14b 943 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
754ce4f2
HS
944 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
945}
946
8da0859a
DB
947/*
948 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
949 * - The buffer is either valid for CPU access, else NULL
b595076a 950 * - If the buffer is valid, so is its DMA address
8da0859a 951 *
b595076a 952 * This driver manages the dma address unless message->is_dma_mapped.
8da0859a
DB
953 */
954static int
754ce4f2
HS
955atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
956{
8da0859a
DB
957 struct device *dev = &as->pdev->dev;
958
754ce4f2 959 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
8da0859a 960 if (xfer->tx_buf) {
214b574a
JCPV
961 /* tx_buf is a const void* where we need a void * for the dma
962 * mapping */
963 void *nonconst_tx = (void *)xfer->tx_buf;
964
8da0859a 965 xfer->tx_dma = dma_map_single(dev,
214b574a 966 nonconst_tx, xfer->len,
754ce4f2 967 DMA_TO_DEVICE);
8d8bb39b 968 if (dma_mapping_error(dev, xfer->tx_dma))
8da0859a
DB
969 return -ENOMEM;
970 }
971 if (xfer->rx_buf) {
972 xfer->rx_dma = dma_map_single(dev,
754ce4f2
HS
973 xfer->rx_buf, xfer->len,
974 DMA_FROM_DEVICE);
8d8bb39b 975 if (dma_mapping_error(dev, xfer->rx_dma)) {
8da0859a
DB
976 if (xfer->tx_buf)
977 dma_unmap_single(dev,
978 xfer->tx_dma, xfer->len,
979 DMA_TO_DEVICE);
980 return -ENOMEM;
981 }
982 }
983 return 0;
754ce4f2
HS
984}
985
986static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
987 struct spi_transfer *xfer)
988{
989 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
49dce689 990 dma_unmap_single(master->dev.parent, xfer->tx_dma,
754ce4f2
HS
991 xfer->len, DMA_TO_DEVICE);
992 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
49dce689 993 dma_unmap_single(master->dev.parent, xfer->rx_dma,
754ce4f2
HS
994 xfer->len, DMA_FROM_DEVICE);
995}
996
1ccc404a
NF
997static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
998{
999 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1000}
1001
1ccc404a 1002static void
11f2764f 1003atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1ccc404a 1004{
1ccc404a 1005 u8 *rxp;
f557c98b 1006 u16 *rxp16;
1ccc404a
NF
1007 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1008
7910d9af
NF
1009 if (xfer->bits_per_word > 8) {
1010 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1011 *rxp16 = spi_readl(as, RDR);
1ccc404a 1012 } else {
7910d9af
NF
1013 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1014 *rxp = spi_readl(as, RDR);
1ccc404a 1015 }
f557c98b 1016 if (xfer->bits_per_word > 8) {
b112f058
AB
1017 if (as->current_remaining_bytes > 2)
1018 as->current_remaining_bytes -= 2;
1019 else
f557c98b
RG
1020 as->current_remaining_bytes = 0;
1021 } else {
1022 as->current_remaining_bytes--;
1023 }
1ccc404a
NF
1024}
1025
11f2764f
CP
1026static void
1027atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1028{
1029 u32 fifolr = spi_readl(as, FLR);
1030 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1031 u32 offset = xfer->len - as->current_remaining_bytes;
1032 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1033 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1034 u16 rd; /* RD field is the lowest 16 bits of RDR */
1035
1036 /* Update the number of remaining bytes to transfer */
1037 num_bytes = ((xfer->bits_per_word > 8) ?
1038 (num_data << 1) :
1039 num_data);
1040
1041 if (as->current_remaining_bytes > num_bytes)
1042 as->current_remaining_bytes -= num_bytes;
1043 else
1044 as->current_remaining_bytes = 0;
1045
1046 /* Handle odd number of bytes when data are more than 8bit width */
1047 if (xfer->bits_per_word > 8)
1048 as->current_remaining_bytes &= ~0x1;
1049
1050 /* Read data */
1051 while (num_data) {
1052 rd = spi_readl(as, RDR);
7910d9af
NF
1053 if (xfer->bits_per_word > 8)
1054 *words++ = rd;
1055 else
1056 *bytes++ = rd;
11f2764f
CP
1057 num_data--;
1058 }
1059}
1060
1061/* Called from IRQ
1062 *
1063 * Must update "current_remaining_bytes" to keep track of data
1064 * to transfer.
1065 */
1066static void
1067atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1068{
1069 if (as->fifo_size)
1070 atmel_spi_pump_fifo_data(as, xfer);
1071 else
1072 atmel_spi_pump_single_data(as, xfer);
1073}
1074
1ccc404a
NF
1075/* Interrupt
1076 *
1077 * No need for locking in this Interrupt handler: done_status is the
8090d6d1 1078 * only information modified.
1ccc404a
NF
1079 */
1080static irqreturn_t
1081atmel_spi_pio_interrupt(int irq, void *dev_id)
1082{
1083 struct spi_master *master = dev_id;
1084 struct atmel_spi *as = spi_master_get_devdata(master);
1085 u32 status, pending, imr;
1086 struct spi_transfer *xfer;
1087 int ret = IRQ_NONE;
1088
1089 imr = spi_readl(as, IMR);
1090 status = spi_readl(as, SR);
1091 pending = status & imr;
1092
1093 if (pending & SPI_BIT(OVRES)) {
1094 ret = IRQ_HANDLED;
1095 spi_writel(as, IDR, SPI_BIT(OVRES));
1096 dev_warn(master->dev.parent, "overrun\n");
1097
1098 /*
1099 * When we get an overrun, we disregard the current
1100 * transfer. Data will not be copied back from any
1101 * bounce buffer and msg->actual_len will not be
1102 * updated with the last xfer.
1103 *
1104 * We will also not process any remaning transfers in
1105 * the message.
1ccc404a
NF
1106 */
1107 as->done_status = -EIO;
1108 smp_wmb();
1109
1110 /* Clear any overrun happening while cleaning up */
1111 spi_readl(as, SR);
1112
8090d6d1 1113 complete(&as->xfer_completion);
1ccc404a 1114
11f2764f 1115 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1ccc404a
NF
1116 atmel_spi_lock(as);
1117
1118 if (as->current_remaining_bytes) {
1119 ret = IRQ_HANDLED;
1120 xfer = as->current_transfer;
1121 atmel_spi_pump_pio_data(as, xfer);
8090d6d1 1122 if (!as->current_remaining_bytes)
1ccc404a 1123 spi_writel(as, IDR, pending);
8090d6d1
WY
1124
1125 complete(&as->xfer_completion);
1ccc404a
NF
1126 }
1127
1128 atmel_spi_unlock(as);
1129 } else {
1130 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1131 ret = IRQ_HANDLED;
1132 spi_writel(as, IDR, pending);
1133 }
1134
1135 return ret;
754ce4f2
HS
1136}
1137
1138static irqreturn_t
1ccc404a 1139atmel_spi_pdc_interrupt(int irq, void *dev_id)
754ce4f2
HS
1140{
1141 struct spi_master *master = dev_id;
1142 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2
HS
1143 u32 status, pending, imr;
1144 int ret = IRQ_NONE;
1145
754ce4f2
HS
1146 imr = spi_readl(as, IMR);
1147 status = spi_readl(as, SR);
1148 pending = status & imr;
1149
1150 if (pending & SPI_BIT(OVRES)) {
754ce4f2
HS
1151
1152 ret = IRQ_HANDLED;
1153
dc329442 1154 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
754ce4f2
HS
1155 | SPI_BIT(OVRES)));
1156
754ce4f2
HS
1157 /* Clear any overrun happening while cleaning up */
1158 spi_readl(as, SR);
1159
823cd045 1160 as->done_status = -EIO;
8090d6d1
WY
1161
1162 complete(&as->xfer_completion);
1163
dc329442 1164 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
754ce4f2
HS
1165 ret = IRQ_HANDLED;
1166
1167 spi_writel(as, IDR, pending);
1168
8090d6d1 1169 complete(&as->xfer_completion);
754ce4f2
HS
1170 }
1171
754ce4f2
HS
1172 return ret;
1173}
1174
754ce4f2
HS
1175static int atmel_spi_setup(struct spi_device *spi)
1176{
1177 struct atmel_spi *as;
5ee36c98 1178 struct atmel_spi_device *asd;
d3b72c7e 1179 u32 csr;
754ce4f2 1180 unsigned int bits = spi->bits_per_word;
754ce4f2
HS
1181
1182 as = spi_master_get_devdata(spi->master);
1183
defbd3b4 1184 /* see notes above re chipselect */
d4820b74 1185 if (!atmel_spi_is_v2(as)
defbd3b4
DB
1186 && spi->chip_select == 0
1187 && (spi->mode & SPI_CS_HIGH)) {
1188 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1189 return -EINVAL;
1190 }
1191
d3b72c7e 1192 csr = SPI_BF(BITS, bits - 8);
754ce4f2
HS
1193 if (spi->mode & SPI_CPOL)
1194 csr |= SPI_BIT(CPOL);
1195 if (!(spi->mode & SPI_CPHA))
1196 csr |= SPI_BIT(NCPHA);
48203034
CP
1197 if (!as->use_cs_gpios)
1198 csr |= SPI_BIT(CSAAT);
754ce4f2 1199
1eed29df 1200 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1eed29df
HS
1201 */
1202 csr |= SPI_BF(DLYBS, 0);
473a78a7
JB
1203
1204 /* DLYBCT adds delays between words. This is useful for slow devices
1205 * that need a bit of time to setup the next transfer.
1206 */
1207 csr |= SPI_BF(DLYBCT,
1208 (as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
754ce4f2 1209
5ee36c98
HS
1210 asd = spi->controller_state;
1211 if (!asd) {
1212 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1213 if (!asd)
1214 return -ENOMEM;
1215
efc92fbb
LW
1216 /*
1217 * If use_cs_gpios is true this means that we have "cs-gpios"
1218 * defined in the device tree node so we should have
1219 * gotten the GPIO lines from the device tree inside the
1220 * SPI core. Warn if this is not the case but continue since
1221 * CS GPIOs are after all optional.
1222 */
1223 if (as->use_cs_gpios) {
1224 if (!spi->cs_gpiod) {
1225 dev_err(&spi->dev,
1226 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1227 }
1228 asd->npcs_pin = spi->cs_gpiod;
1229 }
5ee36c98 1230
5ee36c98 1231 spi->controller_state = asd;
754ce4f2
HS
1232 }
1233
5ee36c98
HS
1234 asd->csr = csr;
1235
754ce4f2 1236 dev_dbg(&spi->dev,
d3b72c7e
RG
1237 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1238 bits, spi->mode, spi->chip_select, csr);
754ce4f2 1239
d4820b74 1240 if (!atmel_spi_is_v2(as))
5ee36c98 1241 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
754ce4f2
HS
1242
1243 return 0;
1244}
1245
8090d6d1
WY
1246static int atmel_spi_one_transfer(struct spi_master *master,
1247 struct spi_message *msg,
1248 struct spi_transfer *xfer)
754ce4f2
HS
1249{
1250 struct atmel_spi *as;
8090d6d1 1251 struct spi_device *spi = msg->spi;
b9d228f9 1252 u8 bits;
8090d6d1 1253 u32 len;
b9d228f9 1254 struct atmel_spi_device *asd;
8090d6d1
WY
1255 int timeout;
1256 int ret;
1369dea6 1257 unsigned long dma_timeout;
754ce4f2 1258
8090d6d1 1259 as = spi_master_get_devdata(master);
754ce4f2 1260
8090d6d1
WY
1261 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1262 dev_dbg(&spi->dev, "missing rx or tx buf\n");
754ce4f2 1263 return -EINVAL;
8090d6d1 1264 }
754ce4f2 1265
e8646580
JN
1266 asd = spi->controller_state;
1267 bits = (asd->csr >> 4) & 0xf;
1268 if (bits != xfer->bits_per_word - 8) {
1269 dev_dbg(&spi->dev,
8090d6d1 1270 "you can't yet change bits_per_word in transfers\n");
e8646580 1271 return -ENOPROTOOPT;
8090d6d1 1272 }
754ce4f2 1273
8090d6d1
WY
1274 /*
1275 * DMA map early, for performance (empties dcache ASAP) and
1276 * better fault reporting.
1277 */
1278 if ((!msg->is_dma_mapped)
04242ca4 1279 && as->use_pdc) {
8090d6d1
WY
1280 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1281 return -ENOMEM;
1282 }
1283
1284 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
754ce4f2 1285
8090d6d1
WY
1286 as->done_status = 0;
1287 as->current_transfer = xfer;
1288 as->current_remaining_bytes = xfer->len;
1289 while (as->current_remaining_bytes) {
1290 reinit_completion(&as->xfer_completion);
1291
1292 if (as->use_pdc) {
1293 atmel_spi_pdc_next_xfer(master, msg, xfer);
1294 } else if (atmel_spi_use_dma(as, xfer)) {
1295 len = as->current_remaining_bytes;
1296 ret = atmel_spi_next_xfer_dma_submit(master,
1297 xfer, &len);
1298 if (ret) {
1299 dev_err(&spi->dev,
1300 "unable to use DMA, fallback to PIO\n");
1301 atmel_spi_next_xfer_pio(master, xfer);
1302 } else {
1303 as->current_remaining_bytes -= len;
0c3b9748
AL
1304 if (as->current_remaining_bytes < 0)
1305 as->current_remaining_bytes = 0;
b9d228f9 1306 }
8090d6d1
WY
1307 } else {
1308 atmel_spi_next_xfer_pio(master, xfer);
b9d228f9
MB
1309 }
1310
1676014e
AS
1311 /* interrupts are disabled, so free the lock for schedule */
1312 atmel_spi_unlock(as);
1369dea6
NMG
1313 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1314 SPI_DMA_TIMEOUT);
1676014e 1315 atmel_spi_lock(as);
1369dea6
NMG
1316 if (WARN_ON(dma_timeout == 0)) {
1317 dev_err(&spi->dev, "spi transfer timeout\n");
8090d6d1 1318 as->done_status = -EIO;
f557c98b
RG
1319 }
1320
8090d6d1
WY
1321 if (as->done_status)
1322 break;
1323 }
1324
1325 if (as->done_status) {
1326 if (as->use_pdc) {
1327 dev_warn(master->dev.parent,
1328 "overrun (%u/%u remaining)\n",
1329 spi_readl(as, TCR), spi_readl(as, RCR));
1330
1331 /*
1332 * Clean up DMA registers and make sure the data
1333 * registers are empty.
1334 */
1335 spi_writel(as, RNCR, 0);
1336 spi_writel(as, TNCR, 0);
1337 spi_writel(as, RCR, 0);
1338 spi_writel(as, TCR, 0);
1339 for (timeout = 1000; timeout; timeout--)
1340 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1341 break;
1342 if (!timeout)
1343 dev_warn(master->dev.parent,
1344 "timeout waiting for TXEMPTY");
1345 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1346 spi_readl(as, RDR);
1347
1348 /* Clear any overrun happening while cleaning up */
1349 spi_readl(as, SR);
1350
1351 } else if (atmel_spi_use_dma(as, xfer)) {
768f3d9d 1352 atmel_spi_stop_dma(master);
8090d6d1
WY
1353 }
1354
1355 if (!msg->is_dma_mapped
04242ca4 1356 && as->use_pdc)
8090d6d1
WY
1357 atmel_spi_dma_unmap_xfer(master, xfer);
1358
1359 return 0;
1360
1361 } else {
1362 /* only update length if no error */
1363 msg->actual_length += xfer->len;
1364 }
1365
1366 if (!msg->is_dma_mapped
04242ca4 1367 && as->use_pdc)
8090d6d1
WY
1368 atmel_spi_dma_unmap_xfer(master, xfer);
1369
1370 if (xfer->delay_usecs)
1371 udelay(xfer->delay_usecs);
1372
1373 if (xfer->cs_change) {
1374 if (list_is_last(&xfer->transfer_list,
1375 &msg->transfers)) {
1376 as->keep_cs = true;
1377 } else {
1378 as->cs_active = !as->cs_active;
1379 if (as->cs_active)
1380 cs_activate(as, msg->spi);
1381 else
1382 cs_deactivate(as, msg->spi);
8da0859a 1383 }
754ce4f2
HS
1384 }
1385
8090d6d1
WY
1386 return 0;
1387}
1388
1389static int atmel_spi_transfer_one_message(struct spi_master *master,
1390 struct spi_message *msg)
1391{
1392 struct atmel_spi *as;
1393 struct spi_transfer *xfer;
1394 struct spi_device *spi = msg->spi;
1395 int ret = 0;
1396
1397 as = spi_master_get_devdata(master);
1398
1399 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1400 msg, dev_name(&spi->dev));
1401
8090d6d1
WY
1402 atmel_spi_lock(as);
1403 cs_activate(as, spi);
1404
1405 as->cs_active = true;
1406 as->keep_cs = false;
1407
1408 msg->status = 0;
1409 msg->actual_length = 0;
1410
1411 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1412 ret = atmel_spi_one_transfer(master, msg, xfer);
1413 if (ret)
1414 goto msg_done;
1415 }
1416
1417 if (as->use_pdc)
1418 atmel_spi_disable_pdc_transfer(as);
1419
754ce4f2 1420 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8090d6d1 1421 dev_dbg(&spi->dev,
54f4c51c 1422 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
754ce4f2 1423 xfer, xfer->len,
54f4c51c
RD
1424 xfer->tx_buf, &xfer->tx_dma,
1425 xfer->rx_buf, &xfer->rx_dma);
754ce4f2
HS
1426 }
1427
8090d6d1
WY
1428msg_done:
1429 if (!as->keep_cs)
1430 cs_deactivate(as, msg->spi);
754ce4f2 1431
8aad7924 1432 atmel_spi_unlock(as);
754ce4f2 1433
8090d6d1
WY
1434 msg->status = as->done_status;
1435 spi_finalize_current_message(spi->master);
1436
1437 return ret;
754ce4f2
HS
1438}
1439
bb2d1c36 1440static void atmel_spi_cleanup(struct spi_device *spi)
754ce4f2 1441{
5ee36c98 1442 struct atmel_spi_device *asd = spi->controller_state;
defbd3b4 1443
5ee36c98 1444 if (!asd)
defbd3b4
DB
1445 return;
1446
5ee36c98 1447 spi->controller_state = NULL;
5ee36c98 1448 kfree(asd);
754ce4f2
HS
1449}
1450
d4820b74
WY
1451static inline unsigned int atmel_get_version(struct atmel_spi *as)
1452{
1453 return spi_readl(as, VERSION) & 0x00000fff;
1454}
1455
1456static void atmel_get_caps(struct atmel_spi *as)
1457{
1458 unsigned int version;
1459
1460 version = atmel_get_version(as);
d4820b74
WY
1461
1462 as->caps.is_spi2 = version > 0x121;
1463 as->caps.has_wdrbt = version >= 0x210;
1464 as->caps.has_dma_support = version >= 0x212;
7094576c 1465 as->caps.has_pdc_support = version < 0x212;
d4820b74
WY
1466}
1467
05514c86
QS
1468static void atmel_spi_init(struct atmel_spi *as)
1469{
1470 spi_writel(as, CR, SPI_BIT(SWRST));
1471 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
9581329e
EH
1472
1473 /* It is recommended to enable FIFOs first thing after reset */
1474 if (as->fifo_size)
1475 spi_writel(as, CR, SPI_BIT(FIFOEN));
1476
05514c86
QS
1477 if (as->caps.has_wdrbt) {
1478 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1479 | SPI_BIT(MSTR));
1480 } else {
1481 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1482 }
1483
1484 if (as->use_pdc)
1485 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1486 spi_writel(as, CR, SPI_BIT(SPIEN));
05514c86
QS
1487}
1488
fd4a319b 1489static int atmel_spi_probe(struct platform_device *pdev)
754ce4f2
HS
1490{
1491 struct resource *regs;
1492 int irq;
1493 struct clk *clk;
1494 int ret;
1495 struct spi_master *master;
1496 struct atmel_spi *as;
1497
5bdfd491
WY
1498 /* Select default pin state */
1499 pinctrl_pm_select_default_state(&pdev->dev);
1500
754ce4f2
HS
1501 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502 if (!regs)
1503 return -ENXIO;
1504
1505 irq = platform_get_irq(pdev, 0);
1506 if (irq < 0)
1507 return irq;
1508
9f87d6f2 1509 clk = devm_clk_get(&pdev->dev, "spi_clk");
754ce4f2
HS
1510 if (IS_ERR(clk))
1511 return PTR_ERR(clk);
1512
1513 /* setup spi core then atmel-specific driver state */
1514 ret = -ENOMEM;
a536d765 1515 master = spi_alloc_master(&pdev->dev, sizeof(*as));
754ce4f2
HS
1516 if (!master)
1517 goto out_free;
1518
e7db06b5 1519 /* the spi->mode bits understood by this driver: */
efc92fbb 1520 master->use_gpio_descriptors = true;
e7db06b5 1521 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 1522 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
850a5b67 1523 master->dev.of_node = pdev->dev.of_node;
754ce4f2 1524 master->bus_num = pdev->id;
850a5b67 1525 master->num_chipselect = master->dev.of_node ? 0 : 4;
754ce4f2 1526 master->setup = atmel_spi_setup;
7910d9af 1527 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
8090d6d1 1528 master->transfer_one_message = atmel_spi_transfer_one_message;
754ce4f2 1529 master->cleanup = atmel_spi_cleanup;
ce0c4caf 1530 master->auto_runtime_pm = true;
7910d9af 1531 master->max_dma_len = SPI_MAX_DMA_XFER;
04242ca4 1532 master->can_dma = atmel_spi_can_dma;
754ce4f2
HS
1533 platform_set_drvdata(pdev, master);
1534
1535 as = spi_master_get_devdata(master);
1536
754ce4f2 1537 spin_lock_init(&as->lock);
1ccc404a 1538
754ce4f2 1539 as->pdev = pdev;
31407478 1540 as->regs = devm_ioremap_resource(&pdev->dev, regs);
543c954d
WY
1541 if (IS_ERR(as->regs)) {
1542 ret = PTR_ERR(as->regs);
7910d9af 1543 goto out_unmap_regs;
543c954d 1544 }
dfab30ee 1545 as->phybase = regs->start;
754ce4f2
HS
1546 as->irq = irq;
1547 as->clk = clk;
754ce4f2 1548
8090d6d1
WY
1549 init_completion(&as->xfer_completion);
1550
d4820b74
WY
1551 atmel_get_caps(as);
1552
efc92fbb
LW
1553 /*
1554 * If there are chip selects in the device tree, those will be
1555 * discovered by the SPI core when registering the SPI master
1556 * and assigned to each SPI device.
1557 */
48203034
CP
1558 as->use_cs_gpios = true;
1559 if (atmel_spi_is_v2(as) &&
70f340df 1560 pdev->dev.of_node &&
48203034
CP
1561 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1562 as->use_cs_gpios = false;
1563 master->num_chipselect = 4;
1564 }
1565
1ccc404a
NF
1566 as->use_dma = false;
1567 as->use_pdc = false;
1568 if (as->caps.has_dma_support) {
768f3d9d 1569 ret = atmel_spi_configure_dma(master, as);
04242ca4 1570 if (ret == 0) {
1ccc404a 1571 as->use_dma = true;
04242ca4 1572 } else if (ret == -EPROBE_DEFER) {
5e9af37e 1573 return ret;
04242ca4 1574 }
7094576c 1575 } else if (as->caps.has_pdc_support) {
1ccc404a
NF
1576 as->use_pdc = true;
1577 }
1578
a9889ed6
RP
1579 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1580 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1581 SPI_MAX_DMA_XFER,
1582 &as->dma_addr_rx_bbuf,
1583 GFP_KERNEL | GFP_DMA);
1584 if (!as->addr_rx_bbuf) {
1585 as->use_dma = false;
1586 } else {
1587 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1588 SPI_MAX_DMA_XFER,
1589 &as->dma_addr_tx_bbuf,
1590 GFP_KERNEL | GFP_DMA);
1591 if (!as->addr_tx_bbuf) {
1592 as->use_dma = false;
1593 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1594 as->addr_rx_bbuf,
1595 as->dma_addr_rx_bbuf);
1596 }
1597 }
1598 if (!as->use_dma)
1599 dev_info(master->dev.parent,
1600 " can not allocate dma coherent memory\n");
1601 }
1602
1ccc404a
NF
1603 if (as->caps.has_dma_support && !as->use_dma)
1604 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1605
1606 if (as->use_pdc) {
9f87d6f2
JH
1607 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1608 0, dev_name(&pdev->dev), master);
1ccc404a 1609 } else {
9f87d6f2
JH
1610 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1611 0, dev_name(&pdev->dev), master);
1ccc404a 1612 }
754ce4f2
HS
1613 if (ret)
1614 goto out_unmap_regs;
1615
1616 /* Initialize the hardware */
dfec4a6e
BB
1617 ret = clk_prepare_enable(clk);
1618 if (ret)
de8cc234 1619 goto out_free_irq;
39fe33f9
BW
1620
1621 as->spi_clk = clk_get_rate(clk);
1622
11f2764f
CP
1623 as->fifo_size = 0;
1624 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1625 &as->fifo_size)) {
1626 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
11f2764f
CP
1627 }
1628
05514c86
QS
1629 atmel_spi_init(as);
1630
ce0c4caf
WY
1631 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1632 pm_runtime_use_autosuspend(&pdev->dev);
1633 pm_runtime_set_active(&pdev->dev);
1634 pm_runtime_enable(&pdev->dev);
1635
9f87d6f2 1636 ret = devm_spi_register_master(&pdev->dev, master);
754ce4f2 1637 if (ret)
1ccc404a 1638 goto out_free_dma;
754ce4f2 1639
ce24a513 1640 /* go! */
6aba9c65
BS
1641 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1642 atmel_get_version(as), (unsigned long)regs->start,
1643 irq);
ce24a513 1644
754ce4f2
HS
1645 return 0;
1646
1ccc404a 1647out_free_dma:
ce0c4caf
WY
1648 pm_runtime_disable(&pdev->dev);
1649 pm_runtime_set_suspended(&pdev->dev);
1650
1ccc404a 1651 if (as->use_dma)
768f3d9d 1652 atmel_spi_release_dma(master);
1ccc404a 1653
754ce4f2 1654 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1655 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
dfec4a6e 1656 clk_disable_unprepare(clk);
de8cc234 1657out_free_irq:
754ce4f2 1658out_unmap_regs:
754ce4f2 1659out_free:
754ce4f2
HS
1660 spi_master_put(master);
1661 return ret;
1662}
1663
fd4a319b 1664static int atmel_spi_remove(struct platform_device *pdev)
754ce4f2
HS
1665{
1666 struct spi_master *master = platform_get_drvdata(pdev);
1667 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2 1668
ce0c4caf
WY
1669 pm_runtime_get_sync(&pdev->dev);
1670
754ce4f2 1671 /* reset the hardware and block queue progress */
1ccc404a 1672 if (as->use_dma) {
768f3d9d
NF
1673 atmel_spi_stop_dma(master);
1674 atmel_spi_release_dma(master);
a9889ed6
RP
1675 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1676 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1677 as->addr_tx_bbuf,
1678 as->dma_addr_tx_bbuf);
1679 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1680 as->addr_rx_bbuf,
1681 as->dma_addr_rx_bbuf);
1682 }
1ccc404a
NF
1683 }
1684
66e900a3 1685 spin_lock_irq(&as->lock);
754ce4f2 1686 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1687 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
754ce4f2
HS
1688 spi_readl(as, SR);
1689 spin_unlock_irq(&as->lock);
1690
dfec4a6e 1691 clk_disable_unprepare(as->clk);
754ce4f2 1692
ce0c4caf
WY
1693 pm_runtime_put_noidle(&pdev->dev);
1694 pm_runtime_disable(&pdev->dev);
1695
754ce4f2
HS
1696 return 0;
1697}
1698
ce0c4caf 1699#ifdef CONFIG_PM
c1ee8f3f
WY
1700static int atmel_spi_runtime_suspend(struct device *dev)
1701{
1702 struct spi_master *master = dev_get_drvdata(dev);
1703 struct atmel_spi *as = spi_master_get_devdata(master);
1704
1705 clk_disable_unprepare(as->clk);
1706 pinctrl_pm_select_sleep_state(dev);
1707
1708 return 0;
1709}
1710
1711static int atmel_spi_runtime_resume(struct device *dev)
1712{
1713 struct spi_master *master = dev_get_drvdata(dev);
1714 struct atmel_spi *as = spi_master_get_devdata(master);
1715
1716 pinctrl_pm_select_default_state(dev);
1717
1718 return clk_prepare_enable(as->clk);
1719}
1720
d630526d 1721#ifdef CONFIG_PM_SLEEP
ec60dd37 1722static int atmel_spi_suspend(struct device *dev)
754ce4f2 1723{
c1ee8f3f 1724 struct spi_master *master = dev_get_drvdata(dev);
ba938f3a
WY
1725 int ret;
1726
1727 /* Stop the queue running */
1728 ret = spi_master_suspend(master);
7c5d8a24 1729 if (ret)
ba938f3a 1730 return ret;
754ce4f2 1731
c1ee8f3f
WY
1732 if (!pm_runtime_suspended(dev))
1733 atmel_spi_runtime_suspend(dev);
5bdfd491 1734
754ce4f2
HS
1735 return 0;
1736}
1737
ec60dd37 1738static int atmel_spi_resume(struct device *dev)
754ce4f2 1739{
c1ee8f3f 1740 struct spi_master *master = dev_get_drvdata(dev);
e5380078 1741 struct atmel_spi *as = spi_master_get_devdata(master);
ba938f3a 1742 int ret;
754ce4f2 1743
e5380078
QS
1744 ret = clk_prepare_enable(as->clk);
1745 if (ret)
1746 return ret;
1747
1748 atmel_spi_init(as);
1749
1750 clk_disable_unprepare(as->clk);
1751
ce0c4caf 1752 if (!pm_runtime_suspended(dev)) {
c1ee8f3f 1753 ret = atmel_spi_runtime_resume(dev);
ce0c4caf
WY
1754 if (ret)
1755 return ret;
1756 }
ba938f3a
WY
1757
1758 /* Start the queue running */
7c5d8a24 1759 return spi_master_resume(master);
754ce4f2 1760}
d630526d 1761#endif
ce0c4caf
WY
1762
1763static const struct dev_pm_ops atmel_spi_pm_ops = {
1764 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1765 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1766 atmel_spi_runtime_resume, NULL)
1767};
ec60dd37 1768#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
754ce4f2 1769#else
ec60dd37 1770#define ATMEL_SPI_PM_OPS NULL
754ce4f2
HS
1771#endif
1772
850a5b67
JCPV
1773#if defined(CONFIG_OF)
1774static const struct of_device_id atmel_spi_dt_ids[] = {
1775 { .compatible = "atmel,at91rm9200-spi" },
1776 { /* sentinel */ }
1777};
1778
1779MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1780#endif
754ce4f2
HS
1781
1782static struct platform_driver atmel_spi_driver = {
1783 .driver = {
1784 .name = "atmel_spi",
ec60dd37 1785 .pm = ATMEL_SPI_PM_OPS,
850a5b67 1786 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
754ce4f2 1787 },
1cb201af 1788 .probe = atmel_spi_probe,
2deff8d6 1789 .remove = atmel_spi_remove,
754ce4f2 1790};
940ab889 1791module_platform_driver(atmel_spi_driver);
754ce4f2
HS
1792
1793MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
e05503ef 1794MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
754ce4f2 1795MODULE_LICENSE("GPL");
7e38c3c4 1796MODULE_ALIAS("platform:atmel_spi");