Merge tag 'gfs2-v6.3-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[linux-block.git] / drivers / soundwire / bus.c
CommitLineData
7c3cd189
VK
1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2// Copyright(c) 2015-17 Intel Corporation.
3
4#include <linux/acpi.h>
0231453b 5#include <linux/delay.h>
7c3cd189 6#include <linux/mod_devicetable.h>
9d715fa0
VK
7#include <linux/pm_runtime.h>
8#include <linux/soundwire/sdw_registers.h>
7c3cd189 9#include <linux/soundwire/sdw.h>
bd29c00e 10#include <linux/soundwire/sdw_type.h>
7c3cd189 11#include "bus.h"
bcac5902 12#include "sysfs_local.h"
7c3cd189 13
88de0a8f 14static DEFINE_IDA(sdw_bus_ida);
c6056101 15static DEFINE_IDA(sdw_peripheral_ida);
dbb50c7a
BL
16
17static int sdw_get_id(struct sdw_bus *bus)
18{
88de0a8f 19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
dbb50c7a
BL
20
21 if (rc < 0)
22 return rc;
23
24 bus->id = rc;
25 return 0;
26}
27
7c3cd189 28/**
5cab3ff2 29 * sdw_bus_master_add() - add a bus Master instance
7c3cd189 30 * @bus: bus instance
5cab3ff2
PLB
31 * @parent: parent device
32 * @fwnode: firmware node handle
7c3cd189
VK
33 *
34 * Initializes the bus instance, read properties and create child
35 * devices.
36 */
5cab3ff2
PLB
37int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38 struct fwnode_handle *fwnode)
7c3cd189 39{
5c3eb9f7 40 struct sdw_master_prop *prop = NULL;
7c3cd189
VK
41 int ret;
42
7ceaa40b
PLB
43 if (!parent) {
44 pr_err("SoundWire parent device is not set\n");
7c3cd189
VK
45 return -ENODEV;
46 }
47
dbb50c7a 48 ret = sdw_get_id(bus);
a5759f19 49 if (ret < 0) {
7ceaa40b
PLB
50 dev_err(parent, "Failed to get bus id\n");
51 return ret;
52 }
53
54 ret = sdw_master_device_add(bus, parent, fwnode);
a5759f19 55 if (ret < 0) {
7ceaa40b
PLB
56 dev_err(parent, "Failed to add master device at link %d\n",
57 bus->link_id);
dbb50c7a
BL
58 return ret;
59 }
60
9d715fa0 61 if (!bus->ops) {
17ed5bef 62 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
9d715fa0
VK
63 return -EINVAL;
64 }
65
9026118f
BL
66 if (!bus->compute_params) {
67 dev_err(bus->dev,
68 "Bandwidth allocation not configured, compute_params no set\n");
69 return -EINVAL;
70 }
71
9d715fa0 72 mutex_init(&bus->msg_lock);
7c3cd189
VK
73 mutex_init(&bus->bus_lock);
74 INIT_LIST_HEAD(&bus->slaves);
89e59053 75 INIT_LIST_HEAD(&bus->m_rt_list);
7c3cd189 76
ce6e74d0
SN
77 /*
78 * Initialize multi_link flag
ce6e74d0
SN
79 */
80 bus->multi_link = false;
56d4fe31
VK
81 if (bus->ops->read_prop) {
82 ret = bus->ops->read_prop(bus);
83 if (ret < 0) {
62f0cec3
VK
84 dev_err(bus->dev,
85 "Bus read properties failed:%d\n", ret);
56d4fe31
VK
86 return ret;
87 }
88 }
89
bf03473d
PLB
90 sdw_bus_debugfs_init(bus);
91
7c3cd189 92 /*
21c2de29 93 * Device numbers in SoundWire are 0 through 15. Enumeration device
7c3cd189
VK
94 * number (0), Broadcast device number (15), Group numbers (12 and
95 * 13) and Master device number (14) are not used for assignment so
96 * mask these and other higher bits.
97 */
98
99 /* Set higher order bits */
100 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101
102 /* Set enumuration device number and broadcast device number */
103 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105
106 /* Set group device numbers and master device number */
107 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
110
111 /*
112 * SDW is an enumerable bus, but devices can be powered off. So,
113 * they won't be able to report as present.
114 *
115 * Create Slave devices based on Slaves described in
116 * the respective firmware (ACPI/DT)
117 */
118 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119 ret = sdw_acpi_find_slaves(bus);
a2e48458
SK
120 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121 ret = sdw_of_find_slaves(bus);
7c3cd189
VK
122 else
123 ret = -ENOTSUPP; /* No ACPI/DT so error out */
124
a5759f19 125 if (ret < 0) {
7c3cd189
VK
126 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
127 return ret;
128 }
129
99b8a5d6 130 /*
5c3eb9f7 131 * Initialize clock values based on Master properties. The max
3424305b 132 * frequency is read from max_clk_freq property. Current assumption
5c3eb9f7
SK
133 * is that the bus will start at highest clock frequency when
134 * powered on.
135 *
99b8a5d6
SK
136 * Default active bank will be 0 as out of reset the Slaves have
137 * to start with bank 0 (Table 40 of Spec)
138 */
5c3eb9f7 139 prop = &bus->prop;
3424305b 140 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
5c3eb9f7 141 bus->params.curr_dr_freq = bus->params.max_dr_freq;
99b8a5d6
SK
142 bus->params.curr_bank = SDW_BANK0;
143 bus->params.next_bank = SDW_BANK1;
144
7c3cd189
VK
145 return 0;
146}
5cab3ff2 147EXPORT_SYMBOL(sdw_bus_master_add);
7c3cd189
VK
148
149static int sdw_delete_slave(struct device *dev, void *data)
150{
151 struct sdw_slave *slave = dev_to_sdw_dev(dev);
152 struct sdw_bus *bus = slave->bus;
153
dff70572
PLB
154 pm_runtime_disable(dev);
155
bf03473d
PLB
156 sdw_slave_debugfs_exit(slave);
157
7c3cd189
VK
158 mutex_lock(&bus->bus_lock);
159
c6056101 160 if (slave->dev_num) { /* clear dev_num if assigned */
7c3cd189 161 clear_bit(slave->dev_num, bus->assigned);
c6056101
PLB
162 if (bus->dev_num_ida_min)
163 ida_free(&sdw_peripheral_ida, slave->dev_num);
164 }
7c3cd189
VK
165 list_del_init(&slave->node);
166 mutex_unlock(&bus->bus_lock);
167
168 device_unregister(dev);
169 return 0;
170}
171
172/**
5cab3ff2 173 * sdw_bus_master_delete() - delete the bus master instance
7c3cd189
VK
174 * @bus: bus to be deleted
175 *
176 * Remove the instance, delete the child devices.
177 */
5cab3ff2 178void sdw_bus_master_delete(struct sdw_bus *bus)
7c3cd189
VK
179{
180 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
7ceaa40b 181 sdw_master_device_del(bus);
bf03473d
PLB
182
183 sdw_bus_debugfs_exit(bus);
88de0a8f 184 ida_free(&sdw_bus_ida, bus->id);
7c3cd189 185}
5cab3ff2 186EXPORT_SYMBOL(sdw_bus_master_delete);
7c3cd189 187
9d715fa0
VK
188/*
189 * SDW IO Calls
190 */
191
192static inline int find_response_code(enum sdw_command_response resp)
193{
194 switch (resp) {
195 case SDW_CMD_OK:
196 return 0;
197
198 case SDW_CMD_IGNORED:
199 return -ENODATA;
200
201 case SDW_CMD_TIMEOUT:
202 return -ETIMEDOUT;
203
204 default:
205 return -EIO;
206 }
207}
208
209static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
210{
211 int retry = bus->prop.err_threshold;
212 enum sdw_command_response resp;
213 int ret = 0, i;
214
215 for (i = 0; i <= retry; i++) {
216 resp = bus->ops->xfer_msg(bus, msg);
217 ret = find_response_code(resp);
218
219 /* if cmd is ok or ignored return */
220 if (ret == 0 || ret == -ENODATA)
221 return ret;
222 }
223
224 return ret;
225}
226
227static inline int do_transfer_defer(struct sdw_bus *bus,
45cb70f9 228 struct sdw_msg *msg)
9d715fa0 229{
45cb70f9 230 struct sdw_defer *defer = &bus->defer_msg;
9d715fa0
VK
231 int retry = bus->prop.err_threshold;
232 enum sdw_command_response resp;
233 int ret = 0, i;
234
235 defer->msg = msg;
236 defer->length = msg->len;
a306a0e4 237 init_completion(&defer->complete);
9d715fa0
VK
238
239 for (i = 0; i <= retry; i++) {
66f95de7 240 resp = bus->ops->xfer_msg_defer(bus);
9d715fa0
VK
241 ret = find_response_code(resp);
242 /* if cmd is ok or ignored return */
243 if (ret == 0 || ret == -ENODATA)
244 return ret;
245 }
246
247 return ret;
248}
249
a350aff4
PLB
250static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
251{
252 int ret;
253
254 ret = do_transfer(bus, msg);
255 if (ret != 0 && ret != -ENODATA)
ec475187
BL
256 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
257 msg->dev_num, ret,
258 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
259 msg->addr, msg->len);
a350aff4 260
a350aff4
PLB
261 return ret;
262}
263
9d715fa0
VK
264/**
265 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
266 * @bus: SDW bus
267 * @msg: SDW message to be xfered
268 */
269int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
270{
271 int ret;
272
273 mutex_lock(&bus->msg_lock);
274
a350aff4 275 ret = sdw_transfer_unlocked(bus, msg);
9d715fa0
VK
276
277 mutex_unlock(&bus->msg_lock);
278
279 return ret;
280}
281
79fe02cb
PLB
282/**
283 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
284 * @bus: SDW bus
285 * @sync_delay: Delay before reading status
286 */
287void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
288{
289 u32 status;
290
291 if (!bus->ops->read_ping_status)
292 return;
293
294 /*
295 * wait for peripheral to sync if desired. 10-15ms should be more than
296 * enough in most cases.
297 */
298 if (sync_delay)
299 usleep_range(10000, 15000);
300
301 mutex_lock(&bus->msg_lock);
302
303 status = bus->ops->read_ping_status(bus);
304
305 mutex_unlock(&bus->msg_lock);
306
307 if (!status)
308 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
309 else
310 dev_dbg(bus->dev, "PING status: %#x\n", status);
311}
312EXPORT_SYMBOL(sdw_show_ping_status);
313
9d715fa0
VK
314/**
315 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
316 * @bus: SDW bus
317 * @msg: SDW message to be xfered
9d715fa0
VK
318 *
319 * Caller needs to hold the msg_lock lock while calling this
320 */
45cb70f9 321int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
9d715fa0
VK
322{
323 int ret;
324
325 if (!bus->ops->xfer_msg_defer)
326 return -ENOTSUPP;
327
45cb70f9 328 ret = do_transfer_defer(bus, msg);
9d715fa0
VK
329 if (ret != 0 && ret != -ENODATA)
330 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
73ede046 331 msg->dev_num, ret);
9d715fa0 332
9d715fa0
VK
333 return ret;
334}
335
9d715fa0 336int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
73ede046 337 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
9d715fa0
VK
338{
339 memset(msg, 0, sizeof(*msg));
340 msg->addr = addr; /* addr is 16 bit and truncated here */
341 msg->len = count;
342 msg->dev_num = dev_num;
343 msg->flags = flags;
344 msg->buf = buf;
9d715fa0 345
f779ad09 346 if (addr < SDW_REG_NO_PAGE) /* no paging area */
9d715fa0 347 return 0;
f779ad09
GL
348
349 if (addr >= SDW_REG_MAX) { /* illegal addr */
9d715fa0
VK
350 pr_err("SDW: Invalid address %x passed\n", addr);
351 return -EINVAL;
352 }
353
354 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
355 if (slave && !slave->prop.paging_support)
356 return 0;
21c2de29 357 /* no need for else as that will fall-through to paging */
9d715fa0
VK
358 }
359
360 /* paging mandatory */
361 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
362 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
363 return -EINVAL;
364 }
365
366 if (!slave) {
367 pr_err("SDW: No slave for paging addr\n");
368 return -EINVAL;
f779ad09
GL
369 }
370
371 if (!slave->prop.paging_support) {
9d715fa0 372 dev_err(&slave->dev,
17ed5bef 373 "address %x needs paging but no support\n", addr);
9d715fa0
VK
374 return -EINVAL;
375 }
376
d5826a4b
VK
377 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
378 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
9d715fa0
VK
379 msg->addr |= BIT(15);
380 msg->page = true;
381
382 return 0;
383}
384
60ee9be2
PLB
385/*
386 * Read/Write IO functions.
60ee9be2
PLB
387 */
388
d005ea71
CK
389static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
390 size_t count, u8 *val)
391{
392 struct sdw_msg msg;
393 size_t size;
394 int ret;
395
396 while (count) {
397 // Only handle bytes up to next page boundary
398 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
399
400 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
401 if (ret < 0)
402 return ret;
403
404 ret = sdw_transfer(slave->bus, &msg);
405 if (ret < 0 && !slave->is_mockup_device)
406 return ret;
407
408 addr += size;
409 val += size;
410 count -= size;
411 }
412
413 return 0;
414}
415
d94e1e01
CK
416/**
417 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
418 * @slave: SDW Slave
419 * @addr: Register address
420 * @count: length
421 * @val: Buffer for values to be read
d005ea71
CK
422 *
423 * Note that if the message crosses a page boundary each page will be
424 * transferred under a separate invocation of the msg_lock.
d94e1e01 425 */
62dc9f3f 426int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
60ee9be2 427{
d005ea71 428 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
60ee9be2 429}
62dc9f3f 430EXPORT_SYMBOL(sdw_nread_no_pm);
60ee9be2 431
d94e1e01
CK
432/**
433 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
434 * @slave: SDW Slave
435 * @addr: Register address
436 * @count: length
437 * @val: Buffer for values to be written
d005ea71
CK
438 *
439 * Note that if the message crosses a page boundary each page will be
440 * transferred under a separate invocation of the msg_lock.
d94e1e01 441 */
62dc9f3f 442int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
60ee9be2 443{
d005ea71 444 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
60ee9be2 445}
62dc9f3f 446EXPORT_SYMBOL(sdw_nwrite_no_pm);
60ee9be2 447
d94e1e01
CK
448/**
449 * sdw_write_no_pm() - Write a SDW Slave register with no PM
450 * @slave: SDW Slave
451 * @addr: Register address
452 * @value: Register value
453 */
167790ab 454int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
60ee9be2
PLB
455{
456 return sdw_nwrite_no_pm(slave, addr, 1, &value);
457}
167790ab 458EXPORT_SYMBOL(sdw_write_no_pm);
60ee9be2 459
0231453b
RW
460static int
461sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
462{
463 struct sdw_msg msg;
464 u8 buf;
465 int ret;
466
467 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
468 SDW_MSG_FLAG_READ, &buf);
a5759f19 469 if (ret < 0)
0231453b
RW
470 return ret;
471
472 ret = sdw_transfer(bus, &msg);
473 if (ret < 0)
474 return ret;
f779ad09
GL
475
476 return buf;
0231453b
RW
477}
478
479static int
480sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
481{
482 struct sdw_msg msg;
483 int ret;
484
485 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
486 SDW_MSG_FLAG_WRITE, &value);
a5759f19 487 if (ret < 0)
0231453b
RW
488 return ret;
489
490 return sdw_transfer(bus, &msg);
491}
492
a350aff4
PLB
493int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
494{
495 struct sdw_msg msg;
496 u8 buf;
497 int ret;
498
499 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
500 SDW_MSG_FLAG_READ, &buf);
a5759f19 501 if (ret < 0)
a350aff4
PLB
502 return ret;
503
504 ret = sdw_transfer_unlocked(bus, &msg);
505 if (ret < 0)
506 return ret;
507
508 return buf;
509}
510EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
511
512int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
513{
514 struct sdw_msg msg;
515 int ret;
516
517 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
518 SDW_MSG_FLAG_WRITE, &value);
a5759f19 519 if (ret < 0)
a350aff4
PLB
520 return ret;
521
522 return sdw_transfer_unlocked(bus, &msg);
523}
524EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
525
d94e1e01
CK
526/**
527 * sdw_read_no_pm() - Read a SDW Slave register with no PM
528 * @slave: SDW Slave
529 * @addr: Register address
530 */
167790ab 531int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
0231453b
RW
532{
533 u8 buf;
534 int ret;
535
536 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
537 if (ret < 0)
538 return ret;
539 else
540 return buf;
541}
167790ab 542EXPORT_SYMBOL(sdw_read_no_pm);
0231453b 543
d38ebaf2 544int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
b04c975e
PLB
545{
546 int tmp;
547
548 tmp = sdw_read_no_pm(slave, addr);
549 if (tmp < 0)
550 return tmp;
551
552 tmp = (tmp & ~mask) | val;
553 return sdw_write_no_pm(slave, addr, tmp);
554}
d38ebaf2
PLB
555EXPORT_SYMBOL(sdw_update_no_pm);
556
557/* Read-Modify-Write Slave register */
558int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
559{
560 int tmp;
561
562 tmp = sdw_read(slave, addr);
563 if (tmp < 0)
564 return tmp;
565
566 tmp = (tmp & ~mask) | val;
567 return sdw_write(slave, addr, tmp);
568}
569EXPORT_SYMBOL(sdw_update);
b04c975e 570
9d715fa0
VK
571/**
572 * sdw_nread() - Read "n" contiguous SDW Slave registers
573 * @slave: SDW Slave
574 * @addr: Register address
575 * @count: length
576 * @val: Buffer for values to be read
d94e1e01
CK
577 *
578 * This version of the function will take a PM reference to the slave
579 * device.
d005ea71
CK
580 * Note that if the message crosses a page boundary each page will be
581 * transferred under a separate invocation of the msg_lock.
9d715fa0
VK
582 */
583int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
584{
9d715fa0
VK
585 int ret;
586
e9537962
RF
587 ret = pm_runtime_get_sync(&slave->dev);
588 if (ret < 0 && ret != -EACCES) {
589 pm_runtime_put_noidle(&slave->dev);
9d715fa0 590 return ret;
e9537962 591 }
60ee9be2
PLB
592
593 ret = sdw_nread_no_pm(slave, addr, count, val);
9d715fa0 594
973794e8
PLB
595 pm_runtime_mark_last_busy(&slave->dev);
596 pm_runtime_put(&slave->dev);
9d715fa0
VK
597
598 return ret;
599}
600EXPORT_SYMBOL(sdw_nread);
601
602/**
603 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
604 * @slave: SDW Slave
605 * @addr: Register address
606 * @count: length
031e668b 607 * @val: Buffer for values to be written
d94e1e01
CK
608 *
609 * This version of the function will take a PM reference to the slave
610 * device.
d005ea71
CK
611 * Note that if the message crosses a page boundary each page will be
612 * transferred under a separate invocation of the msg_lock.
9d715fa0 613 */
031e668b 614int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
9d715fa0 615{
9d715fa0
VK
616 int ret;
617
e9537962
RF
618 ret = pm_runtime_get_sync(&slave->dev);
619 if (ret < 0 && ret != -EACCES) {
620 pm_runtime_put_noidle(&slave->dev);
9d715fa0 621 return ret;
e9537962 622 }
60ee9be2
PLB
623
624 ret = sdw_nwrite_no_pm(slave, addr, count, val);
9d715fa0 625
973794e8
PLB
626 pm_runtime_mark_last_busy(&slave->dev);
627 pm_runtime_put(&slave->dev);
9d715fa0
VK
628
629 return ret;
630}
631EXPORT_SYMBOL(sdw_nwrite);
632
633/**
634 * sdw_read() - Read a SDW Slave register
635 * @slave: SDW Slave
636 * @addr: Register address
d94e1e01
CK
637 *
638 * This version of the function will take a PM reference to the slave
639 * device.
9d715fa0
VK
640 */
641int sdw_read(struct sdw_slave *slave, u32 addr)
642{
643 u8 buf;
644 int ret;
645
646 ret = sdw_nread(slave, addr, 1, &buf);
647 if (ret < 0)
648 return ret;
f779ad09
GL
649
650 return buf;
9d715fa0
VK
651}
652EXPORT_SYMBOL(sdw_read);
653
654/**
655 * sdw_write() - Write a SDW Slave register
656 * @slave: SDW Slave
657 * @addr: Register address
658 * @value: Register value
d94e1e01
CK
659 *
660 * This version of the function will take a PM reference to the slave
661 * device.
9d715fa0
VK
662 */
663int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
664{
665 return sdw_nwrite(slave, addr, 1, &value);
9d715fa0
VK
666}
667EXPORT_SYMBOL(sdw_write);
668
d52d7a1b
SK
669/*
670 * SDW alert handling
671 */
672
673/* called with bus_lock held */
674static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
675{
1429cc26 676 struct sdw_slave *slave;
d52d7a1b
SK
677
678 list_for_each_entry(slave, &bus->slaves, node) {
679 if (slave->dev_num == i)
680 return slave;
681 }
682
683 return NULL;
684}
685
01ad444e 686int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
d52d7a1b 687{
2e8c4ad1 688 if (slave->id.mfg_id != id.mfg_id ||
09830d5e 689 slave->id.part_id != id.part_id ||
2e8c4ad1
PLB
690 slave->id.class_id != id.class_id ||
691 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
692 slave->id.unique_id != id.unique_id))
d52d7a1b
SK
693 return -ENODEV;
694
695 return 0;
696}
01ad444e 697EXPORT_SYMBOL(sdw_compare_devid);
d52d7a1b
SK
698
699/* called with bus_lock held */
700static int sdw_get_device_num(struct sdw_slave *slave)
701{
702 int bit;
703
c6056101
PLB
704 if (slave->bus->dev_num_ida_min) {
705 bit = ida_alloc_range(&sdw_peripheral_ida,
706 slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
707 GFP_KERNEL);
708 if (bit < 0)
709 goto err;
710 } else {
711 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
712 if (bit == SDW_MAX_DEVICES) {
713 bit = -ENODEV;
714 goto err;
715 }
d52d7a1b
SK
716 }
717
718 /*
719 * Do not update dev_num in Slave data structure here,
720 * Update once program dev_num is successful
721 */
722 set_bit(bit, slave->bus->assigned);
723
724err:
725 return bit;
726}
727
728static int sdw_assign_device_num(struct sdw_slave *slave)
729{
6d7a1ff7 730 struct sdw_bus *bus = slave->bus;
d52d7a1b 731 int ret, dev_num;
fd6a3ac8 732 bool new_device = false;
d52d7a1b
SK
733
734 /* check first if device number is assigned, if so reuse that */
735 if (!slave->dev_num) {
fd6a3ac8
PLB
736 if (!slave->dev_num_sticky) {
737 mutex_lock(&slave->bus->bus_lock);
738 dev_num = sdw_get_device_num(slave);
739 mutex_unlock(&slave->bus->bus_lock);
740 if (dev_num < 0) {
6d7a1ff7 741 dev_err(bus->dev, "Get dev_num failed: %d\n",
fd6a3ac8
PLB
742 dev_num);
743 return dev_num;
744 }
745 slave->dev_num = dev_num;
746 slave->dev_num_sticky = dev_num;
747 new_device = true;
748 } else {
749 slave->dev_num = slave->dev_num_sticky;
d52d7a1b 750 }
fd6a3ac8
PLB
751 }
752
753 if (!new_device)
6d7a1ff7 754 dev_dbg(bus->dev,
f48f4fd9
PLB
755 "Slave already registered, reusing dev_num:%d\n",
756 slave->dev_num);
d52d7a1b 757
fd6a3ac8
PLB
758 /* Clear the slave->dev_num to transfer message on device 0 */
759 dev_num = slave->dev_num;
760 slave->dev_num = 0;
d52d7a1b 761
d300de4f 762 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
d52d7a1b 763 if (ret < 0) {
6d7a1ff7 764 dev_err(bus->dev, "Program device_num %d failed: %d\n",
6e0ac6a6 765 dev_num, ret);
d52d7a1b
SK
766 return ret;
767 }
768
769 /* After xfer of msg, restore dev_num */
fd6a3ac8 770 slave->dev_num = slave->dev_num_sticky;
d52d7a1b
SK
771
772 return 0;
773}
774
7c3cd189 775void sdw_extract_slave_id(struct sdw_bus *bus,
73ede046 776 u64 addr, struct sdw_slave_id *id)
7c3cd189 777{
17ed5bef 778 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
7c3cd189 779
2c6cff68
PLB
780 id->sdw_version = SDW_VERSION(addr);
781 id->unique_id = SDW_UNIQUE_ID(addr);
782 id->mfg_id = SDW_MFG_ID(addr);
783 id->part_id = SDW_PART_ID(addr);
784 id->class_id = SDW_CLASS_ID(addr);
7c3cd189
VK
785
786 dev_dbg(bus->dev,
c397efb7
PLB
787 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
788 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
7c3cd189 789}
01ad444e 790EXPORT_SYMBOL(sdw_extract_slave_id);
d52d7a1b 791
72124f07 792static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
d52d7a1b
SK
793{
794 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
795 struct sdw_slave *slave, *_s;
796 struct sdw_slave_id id;
797 struct sdw_msg msg;
f03690f4 798 bool found;
d52d7a1b
SK
799 int count = 0, ret;
800 u64 addr;
801
72124f07
RF
802 *programmed = false;
803
d52d7a1b
SK
804 /* No Slave, so use raw xfer api */
805 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
73ede046 806 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
d52d7a1b
SK
807 if (ret < 0)
808 return ret;
809
810 do {
811 ret = sdw_transfer(bus, &msg);
812 if (ret == -ENODATA) { /* end of device id reads */
6e0ac6a6 813 dev_dbg(bus->dev, "No more devices to enumerate\n");
d52d7a1b
SK
814 ret = 0;
815 break;
816 }
817 if (ret < 0) {
818 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
819 break;
820 }
821
822 /*
823 * Construct the addr and extract. Cast the higher shift
824 * bits to avoid truncation due to size limit.
825 */
826 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
0132af05
CIK
827 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
828 ((u64)buf[0] << 40);
d52d7a1b
SK
829
830 sdw_extract_slave_id(bus, addr, &id);
831
f03690f4 832 found = false;
d52d7a1b
SK
833 /* Now compare with entries */
834 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
835 if (sdw_compare_devid(slave, id) == 0) {
836 found = true;
837
7297f8fa
RF
838 /*
839 * To prevent skipping state-machine stages don't
840 * program a device until we've seen it UNATTACH.
841 * Must return here because no other device on #0
842 * can be detected until this one has been
843 * assigned a device ID.
844 */
845 if (slave->status != SDW_SLAVE_UNATTACHED)
846 return 0;
847
d52d7a1b
SK
848 /*
849 * Assign a new dev_num to this Slave and
850 * not mark it present. It will be marked
851 * present after it reports ATTACHED on new
852 * dev_num
853 */
854 ret = sdw_assign_device_num(slave);
a5759f19 855 if (ret < 0) {
6d7a1ff7 856 dev_err(bus->dev,
17ed5bef 857 "Assign dev_num failed:%d\n",
d52d7a1b
SK
858 ret);
859 return ret;
860 }
861
72124f07
RF
862 *programmed = true;
863
d52d7a1b
SK
864 break;
865 }
866 }
867
d7b956b6 868 if (!found) {
d52d7a1b 869 /* TODO: Park this device in Group 13 */
fcb9d730
SK
870
871 /*
872 * add Slave device even if there is no platform
873 * firmware description. There will be no driver probe
874 * but the user/integration will be able to see the
875 * device, enumeration status and device number in sysfs
876 */
877 sdw_slave_add(bus, &id, NULL);
878
17ed5bef 879 dev_err(bus->dev, "Slave Entry not found\n");
d52d7a1b
SK
880 }
881
882 count++;
883
884 /*
885 * Check till error out or retry (count) exhausts.
886 * Device can drop off and rejoin during enumeration
887 * so count till twice the bound.
888 */
889
890 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
891
892 return ret;
893}
894
895static void sdw_modify_slave_status(struct sdw_slave *slave,
73ede046 896 enum sdw_slave_status status)
d52d7a1b 897{
6d7a1ff7
PLB
898 struct sdw_bus *bus = slave->bus;
899
900 mutex_lock(&bus->bus_lock);
fb9469e5 901
6d7a1ff7 902 dev_vdbg(bus->dev,
9af8c36a
PLB
903 "changing status slave %d status %d new status %d\n",
904 slave->dev_num, slave->status, status);
fb9469e5
PLB
905
906 if (status == SDW_SLAVE_UNATTACHED) {
907 dev_dbg(&slave->dev,
9af8c36a
PLB
908 "initializing enumeration and init completion for Slave %d\n",
909 slave->dev_num);
fb9469e5
PLB
910
911 init_completion(&slave->enumeration_complete);
a90def06 912 init_completion(&slave->initialization_complete);
fb9469e5
PLB
913
914 } else if ((status == SDW_SLAVE_ATTACHED) &&
915 (slave->status == SDW_SLAVE_UNATTACHED)) {
916 dev_dbg(&slave->dev,
9af8c36a
PLB
917 "signaling enumeration completion for Slave %d\n",
918 slave->dev_num);
fb9469e5
PLB
919
920 complete(&slave->enumeration_complete);
921 }
d52d7a1b 922 slave->status = status;
6d7a1ff7 923 mutex_unlock(&bus->bus_lock);
d52d7a1b
SK
924}
925
0231453b
RW
926static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
927 enum sdw_clk_stop_mode mode,
928 enum sdw_clk_stop_type type)
929{
bd29c00e 930 int ret = 0;
0231453b 931
bd29c00e
PLB
932 mutex_lock(&slave->sdw_dev_lock);
933
934 if (slave->probed) {
935 struct device *dev = &slave->dev;
936 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
937
938 if (drv->ops && drv->ops->clk_stop)
939 ret = drv->ops->clk_stop(slave, mode, type);
0231453b
RW
940 }
941
bd29c00e
PLB
942 mutex_unlock(&slave->sdw_dev_lock);
943
944 return ret;
0231453b
RW
945}
946
947static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
948 enum sdw_clk_stop_mode mode,
949 bool prepare)
950{
951 bool wake_en;
952 u32 val = 0;
953 int ret;
954
955 wake_en = slave->prop.wake_capable;
956
957 if (prepare) {
958 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
959
960 if (mode == SDW_CLK_STOP_MODE1)
961 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
962
963 if (wake_en)
964 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
965 } else {
665cf215
PLB
966 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
967 if (ret < 0) {
b50bb8ba
PLB
968 if (ret != -ENODATA)
969 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
665cf215
PLB
970 return ret;
971 }
972 val = ret;
0231453b
RW
973 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
974 }
975
976 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
977
b50bb8ba
PLB
978 if (ret < 0 && ret != -ENODATA)
979 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
0231453b
RW
980
981 return ret;
982}
983
984static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
985{
986 int retry = bus->clk_stop_timeout;
987 int val;
988
989 do {
665cf215
PLB
990 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
991 if (val < 0) {
9f9bc7d5
PLB
992 if (val != -ENODATA)
993 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
665cf215
PLB
994 return val;
995 }
996 val &= SDW_SCP_STAT_CLK_STP_NF;
0231453b 997 if (!val) {
54a6ca4f 998 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
af7254b4 999 dev_num);
0231453b
RW
1000 return 0;
1001 }
1002
1003 usleep_range(1000, 1500);
1004 retry--;
1005 } while (retry);
1006
54a6ca4f 1007 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
0231453b
RW
1008 dev_num);
1009
1010 return -ETIMEDOUT;
1011}
1012
1013/**
1014 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1015 *
1016 * @bus: SDW bus instance
1017 *
1018 * Query Slave for clock stop mode and prepare for that mode.
1019 */
1020int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1021{
0231453b
RW
1022 bool simple_clk_stop = true;
1023 struct sdw_slave *slave;
1024 bool is_slave = false;
1025 int ret = 0;
1026
1027 /*
1028 * In order to save on transition time, prepare
1029 * each Slave and then wait for all Slave(s) to be
1030 * prepared for clock stop.
b50bb8ba
PLB
1031 * If one of the Slave devices has lost sync and
1032 * replies with Command Ignored/-ENODATA, we continue
1033 * the loop
0231453b
RW
1034 */
1035 list_for_each_entry(slave, &bus->slaves, node) {
1036 if (!slave->dev_num)
1037 continue;
1038
0231453b
RW
1039 if (slave->status != SDW_SLAVE_ATTACHED &&
1040 slave->status != SDW_SLAVE_ALERT)
1041 continue;
1042
929cfee3
BL
1043 /* Identify if Slave(s) are available on Bus */
1044 is_slave = true;
1045
345e9f5c
PLB
1046 ret = sdw_slave_clk_stop_callback(slave,
1047 SDW_CLK_STOP_MODE0,
0231453b 1048 SDW_CLK_PRE_PREPARE);
b50bb8ba
PLB
1049 if (ret < 0 && ret != -ENODATA) {
1050 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
0231453b
RW
1051 return ret;
1052 }
1053
345e9f5c
PLB
1054 /* Only prepare a Slave device if needed */
1055 if (!slave->prop.simple_clk_stop_capable) {
0231453b 1056 simple_clk_stop = false;
345e9f5c
PLB
1057
1058 ret = sdw_slave_clk_stop_prepare(slave,
1059 SDW_CLK_STOP_MODE0,
1060 true);
b50bb8ba
PLB
1061 if (ret < 0 && ret != -ENODATA) {
1062 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
345e9f5c
PLB
1063 return ret;
1064 }
1065 }
0231453b
RW
1066 }
1067
18de2f72
CS
1068 /* Skip remaining clock stop preparation if no Slave is attached */
1069 if (!is_slave)
b50bb8ba 1070 return 0;
18de2f72 1071
345e9f5c
PLB
1072 /*
1073 * Don't wait for all Slaves to be ready if they follow the simple
1074 * state machine
1075 */
18de2f72 1076 if (!simple_clk_stop) {
0231453b
RW
1077 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1078 SDW_BROADCAST_DEV_NUM);
b50bb8ba
PLB
1079 /*
1080 * if there are no Slave devices present and the reply is
1081 * Command_Ignored/-ENODATA, we don't need to continue with the
1082 * flow and can just return here. The error code is not modified
1083 * and its handling left as an exercise for the caller.
1084 */
0231453b
RW
1085 if (ret < 0)
1086 return ret;
1087 }
1088
1089 /* Inform slaves that prep is done */
1090 list_for_each_entry(slave, &bus->slaves, node) {
1091 if (!slave->dev_num)
1092 continue;
1093
1094 if (slave->status != SDW_SLAVE_ATTACHED &&
1095 slave->status != SDW_SLAVE_ALERT)
1096 continue;
1097
345e9f5c
PLB
1098 ret = sdw_slave_clk_stop_callback(slave,
1099 SDW_CLK_STOP_MODE0,
1100 SDW_CLK_POST_PREPARE);
0231453b 1101
b50bb8ba
PLB
1102 if (ret < 0 && ret != -ENODATA) {
1103 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1104 return ret;
0231453b
RW
1105 }
1106 }
1107
b50bb8ba 1108 return 0;
0231453b
RW
1109}
1110EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1111
1112/**
1113 * sdw_bus_clk_stop: stop bus clock
1114 *
1115 * @bus: SDW bus instance
1116 *
1117 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1118 * write to SCP_CTRL register.
1119 */
1120int sdw_bus_clk_stop(struct sdw_bus *bus)
1121{
1122 int ret;
1123
1124 /*
1125 * broadcast clock stop now, attached Slaves will ACK this,
1126 * unattached will ignore
1127 */
1128 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1129 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1130 if (ret < 0) {
b50bb8ba
PLB
1131 if (ret != -ENODATA)
1132 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
0231453b
RW
1133 return ret;
1134 }
1135
1136 return 0;
1137}
1138EXPORT_SYMBOL(sdw_bus_clk_stop);
1139
1140/**
1141 * sdw_bus_exit_clk_stop: Exit clock stop mode
1142 *
1143 * @bus: SDW bus instance
1144 *
1145 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1146 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1147 * back.
1148 */
1149int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1150{
0231453b
RW
1151 bool simple_clk_stop = true;
1152 struct sdw_slave *slave;
1153 bool is_slave = false;
1154 int ret;
1155
1156 /*
1157 * In order to save on transition time, de-prepare
1158 * each Slave and then wait for all Slave(s) to be
1159 * de-prepared after clock resume.
1160 */
1161 list_for_each_entry(slave, &bus->slaves, node) {
1162 if (!slave->dev_num)
1163 continue;
1164
0231453b
RW
1165 if (slave->status != SDW_SLAVE_ATTACHED &&
1166 slave->status != SDW_SLAVE_ALERT)
1167 continue;
1168
929cfee3
BL
1169 /* Identify if Slave(s) are available on Bus */
1170 is_slave = true;
1171
345e9f5c 1172 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
0231453b
RW
1173 SDW_CLK_PRE_DEPREPARE);
1174 if (ret < 0)
b50bb8ba 1175 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
0231453b 1176
345e9f5c
PLB
1177 /* Only de-prepare a Slave device if needed */
1178 if (!slave->prop.simple_clk_stop_capable) {
1179 simple_clk_stop = false;
0231453b 1180
345e9f5c
PLB
1181 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1182 false);
0231453b 1183
345e9f5c 1184 if (ret < 0)
b50bb8ba 1185 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
345e9f5c 1186 }
0231453b
RW
1187 }
1188
18de2f72 1189 /* Skip remaining clock stop de-preparation if no Slave is attached */
929cfee3
BL
1190 if (!is_slave)
1191 return 0;
1192
345e9f5c
PLB
1193 /*
1194 * Don't wait for all Slaves to be ready if they follow the simple
1195 * state machine
1196 */
b50bb8ba
PLB
1197 if (!simple_clk_stop) {
1198 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1199 if (ret < 0)
4cbbe74d 1200 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
b50bb8ba 1201 }
18de2f72 1202
0231453b
RW
1203 list_for_each_entry(slave, &bus->slaves, node) {
1204 if (!slave->dev_num)
1205 continue;
1206
1207 if (slave->status != SDW_SLAVE_ATTACHED &&
1208 slave->status != SDW_SLAVE_ALERT)
1209 continue;
1210
b50bb8ba
PLB
1211 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1212 SDW_CLK_POST_DEPREPARE);
1213 if (ret < 0)
1214 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
0231453b
RW
1215 }
1216
1217 return 0;
1218}
1219EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1220
79df15b7 1221int sdw_configure_dpn_intr(struct sdw_slave *slave,
73ede046 1222 int port, bool enable, int mask)
79df15b7
SK
1223{
1224 u32 addr;
1225 int ret;
1226 u8 val = 0;
1227
dd87a72a
PLB
1228 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1229 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1230 enable ? "on" : "off");
1231 mask |= SDW_DPN_INT_TEST_FAIL;
1232 }
1233
79df15b7
SK
1234 addr = SDW_DPN_INTMASK(port);
1235
1236 /* Set/Clear port ready interrupt mask */
1237 if (enable) {
1238 val |= mask;
1239 val |= SDW_DPN_INT_PORT_READY;
1240 } else {
1241 val &= ~(mask);
1242 val &= ~SDW_DPN_INT_PORT_READY;
1243 }
1244
545c3651 1245 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
79df15b7 1246 if (ret < 0)
6d7a1ff7 1247 dev_err(&slave->dev,
17ed5bef 1248 "SDW_DPN_INTMASK write failed:%d\n", val);
79df15b7
SK
1249
1250 return ret;
1251}
1252
29d158f9
PLB
1253static int sdw_slave_set_frequency(struct sdw_slave *slave)
1254{
1255 u32 mclk_freq = slave->bus->prop.mclk_freq;
1256 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1257 unsigned int scale;
1258 u8 scale_index;
1259 u8 base;
1260 int ret;
1261
1262 /*
1263 * frequency base and scale registers are required for SDCA
ffa17265
PLB
1264 * devices. They may also be used for 1.2+/non-SDCA devices.
1265 * Driver can set the property, we will need a DisCo property
1266 * to discover this case from platform firmware.
29d158f9 1267 */
ffa17265 1268 if (!slave->id.class_id && !slave->prop.clock_reg_supported)
29d158f9
PLB
1269 return 0;
1270
1271 if (!mclk_freq) {
1272 dev_err(&slave->dev,
1273 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1274 return -EINVAL;
1275 }
1276
1277 /*
1278 * map base frequency using Table 89 of SoundWire 1.2 spec.
1279 * The order of the tests just follows the specification, this
1280 * is not a selection between possible values or a search for
1281 * the best value but just a mapping. Only one case per platform
1282 * is relevant.
1283 * Some BIOS have inconsistent values for mclk_freq but a
1284 * correct root so we force the mclk_freq to avoid variations.
1285 */
1286 if (!(19200000 % mclk_freq)) {
1287 mclk_freq = 19200000;
1288 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1289 } else if (!(24000000 % mclk_freq)) {
1290 mclk_freq = 24000000;
1291 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1292 } else if (!(24576000 % mclk_freq)) {
1293 mclk_freq = 24576000;
1294 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1295 } else if (!(22579200 % mclk_freq)) {
1296 mclk_freq = 22579200;
1297 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1298 } else if (!(32000000 % mclk_freq)) {
1299 mclk_freq = 32000000;
1300 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1301 } else {
1302 dev_err(&slave->dev,
1303 "Unsupported clock base, mclk %d\n",
1304 mclk_freq);
1305 return -EINVAL;
1306 }
1307
1308 if (mclk_freq % curr_freq) {
1309 dev_err(&slave->dev,
1310 "mclk %d is not multiple of bus curr_freq %d\n",
1311 mclk_freq, curr_freq);
1312 return -EINVAL;
1313 }
1314
1315 scale = mclk_freq / curr_freq;
1316
1317 /*
1318 * map scale to Table 90 of SoundWire 1.2 spec - and check
1319 * that the scale is a power of two and maximum 64
1320 */
1321 scale_index = ilog2(scale);
1322
1323 if (BIT(scale_index) != scale || scale_index > 6) {
1324 dev_err(&slave->dev,
1325 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1326 scale, mclk_freq, curr_freq);
1327 return -EINVAL;
1328 }
1329 scale_index++;
1330
299e9780 1331 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
29d158f9
PLB
1332 if (ret < 0) {
1333 dev_err(&slave->dev,
1334 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1335 return ret;
1336 }
1337
1338 /* initialize scale for both banks */
299e9780 1339 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
29d158f9
PLB
1340 if (ret < 0) {
1341 dev_err(&slave->dev,
1342 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1343 return ret;
1344 }
299e9780 1345 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
29d158f9
PLB
1346 if (ret < 0)
1347 dev_err(&slave->dev,
1348 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1349
1350 dev_dbg(&slave->dev,
1351 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1352 base, scale_index, mclk_freq, curr_freq);
1353
1354 return ret;
1355}
1356
d52d7a1b
SK
1357static int sdw_initialize_slave(struct sdw_slave *slave)
1358{
1359 struct sdw_slave_prop *prop = &slave->prop;
6b8caa6f 1360 int status;
d52d7a1b
SK
1361 int ret;
1362 u8 val;
1363
29d158f9
PLB
1364 ret = sdw_slave_set_frequency(slave);
1365 if (ret < 0)
1366 return ret;
1367
6b8caa6f
BL
1368 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1369 /* Clear bus clash interrupt before enabling interrupt mask */
1370 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1371 if (status < 0) {
1372 dev_err(&slave->dev,
1373 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1374 return status;
1375 }
1376 if (status & SDW_SCP_INT1_BUS_CLASH) {
1377 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1378 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1379 if (ret < 0) {
1380 dev_err(&slave->dev,
1381 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1382 return ret;
1383 }
1384 }
1385 }
1386 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1387 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1388 /* Clear parity interrupt before enabling interrupt mask */
1389 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1390 if (status < 0) {
1391 dev_err(&slave->dev,
1392 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1393 return status;
1394 }
1395 if (status & SDW_SCP_INT1_PARITY) {
1396 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1397 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1398 if (ret < 0) {
1399 dev_err(&slave->dev,
1400 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1401 return ret;
1402 }
1403 }
1404 }
1405
d52d7a1b 1406 /*
2acd30b9
PLB
1407 * Set SCP_INT1_MASK register, typically bus clash and
1408 * implementation-defined interrupt mask. The Parity detection
1409 * may not always be correct on startup so its use is
1410 * device-dependent, it might e.g. only be enabled in
1411 * steady-state after a couple of frames.
d52d7a1b 1412 */
2acd30b9 1413 val = slave->prop.scp_int1_mask;
d52d7a1b
SK
1414
1415 /* Enable SCP interrupts */
b04c975e 1416 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
d52d7a1b 1417 if (ret < 0) {
6d7a1ff7 1418 dev_err(&slave->dev,
17ed5bef 1419 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
d52d7a1b
SK
1420 return ret;
1421 }
1422
1423 /* No need to continue if DP0 is not present */
1424 if (!slave->prop.dp0_prop)
1425 return 0;
1426
1427 /* Enable DP0 interrupts */
8acbbfec 1428 val = prop->dp0_prop->imp_def_interrupts;
d52d7a1b
SK
1429 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1430
b04c975e 1431 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
5de79ba8 1432 if (ret < 0)
6d7a1ff7 1433 dev_err(&slave->dev,
17ed5bef 1434 "SDW_DP0_INTMASK read failed:%d\n", ret);
5de79ba8 1435 return ret;
d52d7a1b 1436}
b0a9c37b
VK
1437
1438static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1439{
b35991de 1440 u8 clear, impl_int_mask;
b0a9c37b
VK
1441 int status, status2, ret, count = 0;
1442
c30b63ef 1443 status = sdw_read_no_pm(slave, SDW_DP0_INT);
b0a9c37b 1444 if (status < 0) {
6d7a1ff7 1445 dev_err(&slave->dev,
17ed5bef 1446 "SDW_DP0_INT read failed:%d\n", status);
b0a9c37b
VK
1447 return status;
1448 }
1449
1450 do {
b35991de
PLB
1451 clear = status & ~SDW_DP0_INTERRUPTS;
1452
b0a9c37b 1453 if (status & SDW_DP0_INT_TEST_FAIL) {
17ed5bef 1454 dev_err(&slave->dev, "Test fail for port 0\n");
b0a9c37b
VK
1455 clear |= SDW_DP0_INT_TEST_FAIL;
1456 }
1457
1458 /*
1459 * Assumption: PORT_READY interrupt will be received only for
1460 * ports implementing Channel Prepare state machine (CP_SM)
1461 */
1462
1463 if (status & SDW_DP0_INT_PORT_READY) {
1464 complete(&slave->port_ready[0]);
1465 clear |= SDW_DP0_INT_PORT_READY;
1466 }
1467
1468 if (status & SDW_DP0_INT_BRA_FAILURE) {
17ed5bef 1469 dev_err(&slave->dev, "BRA failed\n");
b0a9c37b
VK
1470 clear |= SDW_DP0_INT_BRA_FAILURE;
1471 }
1472
1473 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1474 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1475
1476 if (status & impl_int_mask) {
1477 clear |= impl_int_mask;
1478 *slave_status = clear;
1479 }
1480
b35991de 1481 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
c30b63ef 1482 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
b0a9c37b 1483 if (ret < 0) {
6d7a1ff7 1484 dev_err(&slave->dev,
17ed5bef 1485 "SDW_DP0_INT write failed:%d\n", ret);
b0a9c37b
VK
1486 return ret;
1487 }
1488
1489 /* Read DP0 interrupt again */
c30b63ef 1490 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
b0a9c37b 1491 if (status2 < 0) {
6d7a1ff7 1492 dev_err(&slave->dev,
17ed5bef 1493 "SDW_DP0_INT read failed:%d\n", status2);
80cd8f01 1494 return status2;
b0a9c37b 1495 }
6e06a855 1496 /* filter to limit loop to interrupts identified in the first status read */
b0a9c37b
VK
1497 status &= status2;
1498
1499 count++;
1500
1501 /* we can get alerts while processing so keep retrying */
b35991de 1502 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
b0a9c37b
VK
1503
1504 if (count == SDW_READ_INTR_CLEAR_RETRY)
6d7a1ff7 1505 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
b0a9c37b
VK
1506
1507 return ret;
1508}
1509
1510static int sdw_handle_port_interrupt(struct sdw_slave *slave,
73ede046 1511 int port, u8 *slave_status)
b0a9c37b 1512{
47b85209 1513 u8 clear, impl_int_mask;
b0a9c37b
VK
1514 int status, status2, ret, count = 0;
1515 u32 addr;
1516
1517 if (port == 0)
1518 return sdw_handle_dp0_interrupt(slave, slave_status);
1519
1520 addr = SDW_DPN_INT(port);
c30b63ef 1521 status = sdw_read_no_pm(slave, addr);
b0a9c37b 1522 if (status < 0) {
6d7a1ff7 1523 dev_err(&slave->dev,
17ed5bef 1524 "SDW_DPN_INT read failed:%d\n", status);
b0a9c37b
VK
1525
1526 return status;
1527 }
1528
1529 do {
47b85209
PLB
1530 clear = status & ~SDW_DPN_INTERRUPTS;
1531
b0a9c37b 1532 if (status & SDW_DPN_INT_TEST_FAIL) {
17ed5bef 1533 dev_err(&slave->dev, "Test fail for port:%d\n", port);
b0a9c37b
VK
1534 clear |= SDW_DPN_INT_TEST_FAIL;
1535 }
1536
1537 /*
1538 * Assumption: PORT_READY interrupt will be received only
1539 * for ports implementing CP_SM.
1540 */
1541 if (status & SDW_DPN_INT_PORT_READY) {
1542 complete(&slave->port_ready[port]);
1543 clear |= SDW_DPN_INT_PORT_READY;
1544 }
1545
1546 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1547 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1548
b0a9c37b
VK
1549 if (status & impl_int_mask) {
1550 clear |= impl_int_mask;
1551 *slave_status = clear;
1552 }
1553
47b85209 1554 /* clear the interrupt but don't touch reserved fields */
c30b63ef 1555 ret = sdw_write_no_pm(slave, addr, clear);
b0a9c37b 1556 if (ret < 0) {
6d7a1ff7 1557 dev_err(&slave->dev,
17ed5bef 1558 "SDW_DPN_INT write failed:%d\n", ret);
b0a9c37b
VK
1559 return ret;
1560 }
1561
1562 /* Read DPN interrupt again */
c30b63ef 1563 status2 = sdw_read_no_pm(slave, addr);
80cd8f01 1564 if (status2 < 0) {
6d7a1ff7 1565 dev_err(&slave->dev,
17ed5bef 1566 "SDW_DPN_INT read failed:%d\n", status2);
80cd8f01 1567 return status2;
b0a9c37b 1568 }
6e06a855 1569 /* filter to limit loop to interrupts identified in the first status read */
b0a9c37b
VK
1570 status &= status2;
1571
1572 count++;
1573
1574 /* we can get alerts while processing so keep retrying */
47b85209 1575 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
b0a9c37b
VK
1576
1577 if (count == SDW_READ_INTR_CLEAR_RETRY)
6d7a1ff7 1578 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
b0a9c37b
VK
1579
1580 return ret;
1581}
1582
1583static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1584{
1585 struct sdw_slave_intr_status slave_intr;
f1fac63a 1586 u8 clear = 0, bit, port_status[15] = {0};
b0a9c37b
VK
1587 int port_num, stat, ret, count = 0;
1588 unsigned long port;
7ffaba04 1589 bool slave_notify;
b7cab9be 1590 u8 sdca_cascade = 0;
b0a9c37b 1591 u8 buf, buf2[2], _buf, _buf2[2];
4724f12c
PLB
1592 bool parity_check;
1593 bool parity_quirk;
b0a9c37b
VK
1594
1595 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1596
e9537962 1597 ret = pm_runtime_get_sync(&slave->dev);
aa792935
RW
1598 if (ret < 0 && ret != -EACCES) {
1599 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
e9537962 1600 pm_runtime_put_noidle(&slave->dev);
aa792935
RW
1601 return ret;
1602 }
1603
f8d0168e 1604 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
c30b63ef 1605 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
b0a9c37b 1606 if (ret < 0) {
6d7a1ff7 1607 dev_err(&slave->dev,
17ed5bef 1608 "SDW_SCP_INT1 read failed:%d\n", ret);
aa792935 1609 goto io_err;
b0a9c37b 1610 }
72b16d4a 1611 buf = ret;
b0a9c37b 1612
c30b63ef 1613 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
b0a9c37b 1614 if (ret < 0) {
6d7a1ff7 1615 dev_err(&slave->dev,
17ed5bef 1616 "SDW_SCP_INT2/3 read failed:%d\n", ret);
aa792935 1617 goto io_err;
b0a9c37b
VK
1618 }
1619
be505ba8 1620 if (slave->id.class_id) {
c30b63ef 1621 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
b7cab9be 1622 if (ret < 0) {
6d7a1ff7 1623 dev_err(&slave->dev,
b7cab9be
PLB
1624 "SDW_DP0_INT read failed:%d\n", ret);
1625 goto io_err;
1626 }
1627 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1628 }
1629
b0a9c37b 1630 do {
7ffaba04
PLB
1631 slave_notify = false;
1632
b0a9c37b
VK
1633 /*
1634 * Check parity, bus clash and Slave (impl defined)
1635 * interrupt
1636 */
1637 if (buf & SDW_SCP_INT1_PARITY) {
4724f12c
PLB
1638 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1639 parity_quirk = !slave->first_interrupt_done &&
1640 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1641
1642 if (parity_check && !parity_quirk)
310f6dc6 1643 dev_err(&slave->dev, "Parity error detected\n");
b0a9c37b
VK
1644 clear |= SDW_SCP_INT1_PARITY;
1645 }
1646
1647 if (buf & SDW_SCP_INT1_BUS_CLASH) {
310f6dc6
PLB
1648 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1649 dev_err(&slave->dev, "Bus clash detected\n");
b0a9c37b
VK
1650 clear |= SDW_SCP_INT1_BUS_CLASH;
1651 }
1652
1653 /*
1654 * When bus clash or parity errors are detected, such errors
1655 * are unlikely to be recoverable errors.
1656 * TODO: In such scenario, reset bus. Make this configurable
1657 * via sysfs property with bus reset being the default.
1658 */
1659
1660 if (buf & SDW_SCP_INT1_IMPL_DEF) {
310f6dc6
PLB
1661 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1662 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1663 slave_notify = true;
1664 }
b0a9c37b 1665 clear |= SDW_SCP_INT1_IMPL_DEF;
b0a9c37b
VK
1666 }
1667
b7cab9be
PLB
1668 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1669 if (sdca_cascade)
1670 slave_notify = true;
1671
b0a9c37b
VK
1672 /* Check port 0 - 3 interrupts */
1673 port = buf & SDW_SCP_INT1_PORT0_3;
1674
1675 /* To get port number corresponding to bits, shift it */
d5826a4b 1676 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
b0a9c37b
VK
1677 for_each_set_bit(bit, &port, 8) {
1678 sdw_handle_port_interrupt(slave, bit,
73ede046 1679 &port_status[bit]);
b0a9c37b
VK
1680 }
1681
1682 /* Check if cascade 2 interrupt is present */
1683 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1684 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1685 for_each_set_bit(bit, &port, 8) {
1686 /* scp2 ports start from 4 */
560458df 1687 port_num = bit + 4;
b0a9c37b
VK
1688 sdw_handle_port_interrupt(slave,
1689 port_num,
1690 &port_status[port_num]);
1691 }
1692 }
1693
1694 /* now check last cascade */
1695 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1696 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1697 for_each_set_bit(bit, &port, 8) {
1698 /* scp3 ports start from 11 */
560458df 1699 port_num = bit + 11;
b0a9c37b
VK
1700 sdw_handle_port_interrupt(slave,
1701 port_num,
1702 &port_status[port_num]);
1703 }
1704 }
1705
1706 /* Update the Slave driver */
bd29c00e
PLB
1707 if (slave_notify) {
1708 mutex_lock(&slave->sdw_dev_lock);
1709
1710 if (slave->probed) {
1711 struct device *dev = &slave->dev;
1712 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1713
1714 if (drv->ops && drv->ops->interrupt_callback) {
1715 slave_intr.sdca_cascade = sdca_cascade;
1716 slave_intr.control_port = clear;
1717 memcpy(slave_intr.port, &port_status,
1718 sizeof(slave_intr.port));
1719
1720 drv->ops->interrupt_callback(slave, &slave_intr);
1721 }
1722 }
1723
1724 mutex_unlock(&slave->sdw_dev_lock);
b0a9c37b
VK
1725 }
1726
1727 /* Ack interrupt */
c30b63ef 1728 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
b0a9c37b 1729 if (ret < 0) {
6d7a1ff7 1730 dev_err(&slave->dev,
17ed5bef 1731 "SDW_SCP_INT1 write failed:%d\n", ret);
aa792935 1732 goto io_err;
b0a9c37b
VK
1733 }
1734
c2819e19
PLB
1735 /* at this point all initial interrupt sources were handled */
1736 slave->first_interrupt_done = true;
1737
b0a9c37b
VK
1738 /*
1739 * Read status again to ensure no new interrupts arrived
1740 * while servicing interrupts.
1741 */
c30b63ef 1742 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
b0a9c37b 1743 if (ret < 0) {
6d7a1ff7 1744 dev_err(&slave->dev,
b500127e 1745 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
aa792935 1746 goto io_err;
b0a9c37b 1747 }
72b16d4a 1748 _buf = ret;
b0a9c37b 1749
c30b63ef 1750 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
b0a9c37b 1751 if (ret < 0) {
6d7a1ff7 1752 dev_err(&slave->dev,
b500127e 1753 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
aa792935 1754 goto io_err;
b0a9c37b
VK
1755 }
1756
be505ba8 1757 if (slave->id.class_id) {
c30b63ef 1758 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
b7cab9be 1759 if (ret < 0) {
6d7a1ff7 1760 dev_err(&slave->dev,
b500127e 1761 "SDW_DP0_INT recheck read failed:%d\n", ret);
b7cab9be
PLB
1762 goto io_err;
1763 }
1764 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1765 }
1766
6e06a855
PLB
1767 /*
1768 * Make sure no interrupts are pending, but filter to limit loop
1769 * to interrupts identified in the first status read
1770 */
b0a9c37b
VK
1771 buf &= _buf;
1772 buf2[0] &= _buf2[0];
1773 buf2[1] &= _buf2[1];
b7cab9be 1774 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
b0a9c37b
VK
1775
1776 /*
1777 * Exit loop if Slave is continuously in ALERT state even
1778 * after servicing the interrupt multiple times.
1779 */
1780 count++;
1781
1782 /* we can get alerts while processing so keep retrying */
1783 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1784
1785 if (count == SDW_READ_INTR_CLEAR_RETRY)
6d7a1ff7 1786 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
b0a9c37b 1787
aa792935
RW
1788io_err:
1789 pm_runtime_mark_last_busy(&slave->dev);
1790 pm_runtime_put_autosuspend(&slave->dev);
1791
b0a9c37b
VK
1792 return ret;
1793}
1794
1795static int sdw_update_slave_status(struct sdw_slave *slave,
73ede046 1796 enum sdw_slave_status status)
b0a9c37b 1797{
bd29c00e 1798 int ret = 0;
b0a9c37b 1799
bd29c00e
PLB
1800 mutex_lock(&slave->sdw_dev_lock);
1801
1802 if (slave->probed) {
1803 struct device *dev = &slave->dev;
1804 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1805
1806 if (drv->ops && drv->ops->update_status)
1807 ret = drv->ops->update_status(slave, status);
2140b66b
PLB
1808 }
1809
bd29c00e 1810 mutex_unlock(&slave->sdw_dev_lock);
2140b66b 1811
bd29c00e 1812 return ret;
b0a9c37b
VK
1813}
1814
1815/**
1816 * sdw_handle_slave_status() - Handle Slave status
1817 * @bus: SDW bus instance
1818 * @status: Status for all Slave(s)
1819 */
1820int sdw_handle_slave_status(struct sdw_bus *bus,
73ede046 1821 enum sdw_slave_status status[])
b0a9c37b
VK
1822{
1823 enum sdw_slave_status prev_status;
1824 struct sdw_slave *slave;
72124f07 1825 bool attached_initializing, id_programmed;
b0a9c37b
VK
1826 int i, ret = 0;
1827
61061901
PLB
1828 /* first check if any Slaves fell off the bus */
1829 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1830 mutex_lock(&bus->bus_lock);
1831 if (test_bit(i, bus->assigned) == false) {
1832 mutex_unlock(&bus->bus_lock);
1833 continue;
1834 }
1835 mutex_unlock(&bus->bus_lock);
1836
1837 slave = sdw_get_slave(bus, i);
1838 if (!slave)
1839 continue;
1840
1841 if (status[i] == SDW_SLAVE_UNATTACHED &&
d1b32855
PLB
1842 slave->status != SDW_SLAVE_UNATTACHED) {
1843 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1844 i, slave->status);
61061901 1845 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
f605f32e
RF
1846
1847 /* Ensure driver knows that peripheral unattached */
1848 ret = sdw_update_slave_status(slave, status[i]);
1849 if (ret < 0)
1850 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
d1b32855 1851 }
61061901
PLB
1852 }
1853
b0a9c37b 1854 if (status[0] == SDW_SLAVE_ATTACHED) {
6e0ac6a6 1855 dev_dbg(bus->dev, "Slave attached, programming device number\n");
72124f07 1856
15ed3ea2 1857 /*
72124f07
RF
1858 * Programming a device number will have side effects,
1859 * so we deal with other devices at a later time.
1860 * This relies on those devices reporting ATTACHED, which will
1861 * trigger another call to this function. This will only
1862 * happen if at least one device ID was programmed.
1863 * Error returns from sdw_program_device_num() are currently
1864 * ignored because there's no useful recovery that can be done.
1865 * Returning the error here could result in the current status
1866 * of other devices not being handled, because if no device IDs
1867 * were programmed there's nothing to guarantee a status change
1868 * to trigger another call to this function.
15ed3ea2 1869 */
72124f07
RF
1870 sdw_program_device_num(bus, &id_programmed);
1871 if (id_programmed)
1872 return 0;
b0a9c37b
VK
1873 }
1874
1875 /* Continue to check other slave statuses */
1876 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1877 mutex_lock(&bus->bus_lock);
1878 if (test_bit(i, bus->assigned) == false) {
1879 mutex_unlock(&bus->bus_lock);
1880 continue;
1881 }
1882 mutex_unlock(&bus->bus_lock);
1883
1884 slave = sdw_get_slave(bus, i);
1885 if (!slave)
1886 continue;
1887
a90def06
PLB
1888 attached_initializing = false;
1889
b0a9c37b
VK
1890 switch (status[i]) {
1891 case SDW_SLAVE_UNATTACHED:
1892 if (slave->status == SDW_SLAVE_UNATTACHED)
1893 break;
1894
d1b32855
PLB
1895 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1896 i, slave->status);
1897
b0a9c37b
VK
1898 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1899 break;
1900
1901 case SDW_SLAVE_ALERT:
1902 ret = sdw_handle_slave_alerts(slave);
a5759f19 1903 if (ret < 0)
6d7a1ff7 1904 dev_err(&slave->dev,
17ed5bef 1905 "Slave %d alert handling failed: %d\n",
b0a9c37b
VK
1906 i, ret);
1907 break;
1908
1909 case SDW_SLAVE_ATTACHED:
1910 if (slave->status == SDW_SLAVE_ATTACHED)
1911 break;
1912
1913 prev_status = slave->status;
1914 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1915
1916 if (prev_status == SDW_SLAVE_ALERT)
1917 break;
1918
a90def06
PLB
1919 attached_initializing = true;
1920
b0a9c37b 1921 ret = sdw_initialize_slave(slave);
a5759f19 1922 if (ret < 0)
6d7a1ff7 1923 dev_err(&slave->dev,
17ed5bef 1924 "Slave %d initialization failed: %d\n",
b0a9c37b
VK
1925 i, ret);
1926
1927 break;
1928
1929 default:
6d7a1ff7 1930 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
73ede046 1931 i, status[i]);
b0a9c37b
VK
1932 break;
1933 }
1934
1935 ret = sdw_update_slave_status(slave, status[i]);
a5759f19 1936 if (ret < 0)
6d7a1ff7 1937 dev_err(&slave->dev,
17ed5bef 1938 "Update Slave status failed:%d\n", ret);
f1b69026
PLB
1939 if (attached_initializing) {
1940 dev_dbg(&slave->dev,
9af8c36a
PLB
1941 "signaling initialization completion for Slave %d\n",
1942 slave->dev_num);
f1b69026 1943
a90def06 1944 complete(&slave->initialization_complete);
e557bca4
PLB
1945
1946 /*
1947 * If the manager became pm_runtime active, the peripherals will be
1948 * restarted and attach, but their pm_runtime status may remain
1949 * suspended. If the 'update_slave_status' callback initiates
1950 * any sort of deferred processing, this processing would not be
1951 * cancelled on pm_runtime suspend.
1952 * To avoid such zombie states, we queue a request to resume.
1953 * This would be a no-op in case the peripheral was being resumed
1954 * by e.g. the ALSA/ASoC framework.
1955 */
1956 pm_request_resume(&slave->dev);
f1b69026 1957 }
b0a9c37b
VK
1958 }
1959
1960 return ret;
1961}
1962EXPORT_SYMBOL(sdw_handle_slave_status);
3ab2ca40
PLB
1963
1964void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1965{
1966 struct sdw_slave *slave;
1967 int i;
1968
1969 /* Check all non-zero devices */
1970 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1971 mutex_lock(&bus->bus_lock);
1972 if (test_bit(i, bus->assigned) == false) {
1973 mutex_unlock(&bus->bus_lock);
1974 continue;
1975 }
1976 mutex_unlock(&bus->bus_lock);
1977
1978 slave = sdw_get_slave(bus, i);
1979 if (!slave)
1980 continue;
1981
c2819e19 1982 if (slave->status != SDW_SLAVE_UNATTACHED) {
3ab2ca40 1983 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
c2819e19 1984 slave->first_interrupt_done = false;
899a7509 1985 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
c2819e19 1986 }
3ab2ca40
PLB
1987
1988 /* keep track of request, used in pm_runtime resume */
1989 slave->unattach_request = request;
1990 }
1991}
1992EXPORT_SYMBOL(sdw_clear_slave_status);