serial: ifx6x60: The IFX requires SPI
[linux-2.6-block.git] / drivers / serial / ifx6x60.c
CommitLineData
af3b8881
RG
1/****************************************************************************
2 *
3 * Driver for the IFX 6x60 spi modem.
4 *
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 * Denis Joseph Barrow <d.barow@option.com>
8 * Jan Dumon <j.dumon@option.com>
9 *
10 * Copyright (C) 2009, 2010 Intel Corp
11 * Russ Gorby <richardx.r.gorby@intel.com>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 * USA
26 *
27 * Driver modified by Intel from Option gtm501l_spi.c
28 *
29 * Notes
30 * o The driver currently assumes a single device only. If you need to
31 * change this then look for saved_ifx_dev and add a device lookup
32 * o The driver is intended to be big-endian safe but has never been
33 * tested that way (no suitable hardware). There are a couple of FIXME
34 * notes by areas that may need addressing
35 * o Some of the GPIO naming/setup assumptions may need revisiting if
36 * you need to use this driver for another platform.
37 *
38 *****************************************************************************/
39#include <linux/module.h>
40#include <linux/termios.h>
41#include <linux/tty.h>
42#include <linux/device.h>
43#include <linux/spi/spi.h>
44#include <linux/tty.h>
45#include <linux/kfifo.h>
46#include <linux/tty_flip.h>
47#include <linux/timer.h>
48#include <linux/serial.h>
49#include <linux/interrupt.h>
50#include <linux/irq.h>
51#include <linux/rfkill.h>
52#include <linux/fs.h>
53#include <linux/ip.h>
54#include <linux/dmapool.h>
55#include <linux/gpio.h>
56#include <linux/sched.h>
57#include <linux/time.h>
58#include <linux/wait.h>
59#include <linux/tty.h>
60#include <linux/pm.h>
61#include <linux/pm_runtime.h>
62#include <linux/spi/ifx_modem.h>
63
64#include "ifx6x60.h"
65
66#define IFX_SPI_MORE_MASK 0x10
67#define IFX_SPI_MORE_BIT 12 /* bit position in u16 */
68#define IFX_SPI_CTS_BIT 13 /* bit position in u16 */
69#define IFX_SPI_TTY_ID 0
70#define IFX_SPI_TIMEOUT_SEC 2
71#define IFX_SPI_HEADER_0 (-1)
72#define IFX_SPI_HEADER_F (-2)
73
74/* forward reference */
75static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
76
77/* local variables */
78static int spi_b16 = 1; /* 8 or 16 bit word length */
79static struct tty_driver *tty_drv;
80static struct ifx_spi_device *saved_ifx_dev;
81static struct lock_class_key ifx_spi_key;
82
83/* GPIO/GPE settings */
84
85/**
86 * mrdy_set_high - set MRDY GPIO
87 * @ifx: device we are controlling
88 *
89 */
90static inline void mrdy_set_high(struct ifx_spi_device *ifx)
91{
92 gpio_set_value(ifx->gpio.mrdy, 1);
93}
94
95/**
96 * mrdy_set_low - clear MRDY GPIO
97 * @ifx: device we are controlling
98 *
99 */
100static inline void mrdy_set_low(struct ifx_spi_device *ifx)
101{
102 gpio_set_value(ifx->gpio.mrdy, 0);
103}
104
105/**
106 * ifx_spi_power_state_set
107 * @ifx_dev: our SPI device
108 * @val: bits to set
109 *
110 * Set bit in power status and signal power system if status becomes non-0
111 */
112static void
113ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
114{
115 unsigned long flags;
116
117 spin_lock_irqsave(&ifx_dev->power_lock, flags);
118
119 /*
120 * if power status is already non-0, just update, else
121 * tell power system
122 */
123 if (!ifx_dev->power_status)
124 pm_runtime_get(&ifx_dev->spi_dev->dev);
125 ifx_dev->power_status |= val;
126
127 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
128}
129
130/**
131 * ifx_spi_power_state_clear - clear power bit
132 * @ifx_dev: our SPI device
133 * @val: bits to clear
134 *
135 * clear bit in power status and signal power system if status becomes 0
136 */
137static void
138ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
139{
140 unsigned long flags;
141
142 spin_lock_irqsave(&ifx_dev->power_lock, flags);
143
144 if (ifx_dev->power_status) {
145 ifx_dev->power_status &= ~val;
146 if (!ifx_dev->power_status)
147 pm_runtime_put(&ifx_dev->spi_dev->dev);
148 }
149
150 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
151}
152
153/**
154 * swap_buf
155 * @buf: our buffer
156 * @len : number of bytes (not words) in the buffer
157 * @end: end of buffer
158 *
159 * Swap the contents of a buffer into big endian format
160 */
161static inline void swap_buf(u16 *buf, int len, void *end)
162{
163 int n;
164
165 len = ((len + 1) >> 1);
166 if ((void *)&buf[len] > end) {
167 pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
168 &buf[len], end);
169 return;
170 }
171 for (n = 0; n < len; n++) {
172 *buf = cpu_to_be16(*buf);
173 buf++;
174 }
175}
176
177/**
178 * mrdy_assert - assert MRDY line
179 * @ifx_dev: our SPI device
180 *
181 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
182 * now.
183 *
184 * FIXME: Can SRDY even go high as we are running this code ?
185 */
186static void mrdy_assert(struct ifx_spi_device *ifx_dev)
187{
188 int val = gpio_get_value(ifx_dev->gpio.srdy);
189 if (!val) {
190 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
191 &ifx_dev->flags)) {
192 ifx_dev->spi_timer.expires =
193 jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
194 add_timer(&ifx_dev->spi_timer);
195
196 }
197 }
198 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
199 mrdy_set_high(ifx_dev);
200}
201
202/**
203 * ifx_spi_hangup - hang up an IFX device
204 * @ifx_dev: our SPI device
205 *
206 * Hang up the tty attached to the IFX device if one is currently
207 * open. If not take no action
208 */
209static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
210{
211 struct tty_port *pport = &ifx_dev->tty_port;
212 struct tty_struct *tty = tty_port_tty_get(pport);
213 if (tty) {
214 tty_hangup(tty);
215 tty_kref_put(tty);
216 }
217}
218
219/**
220 * ifx_spi_timeout - SPI timeout
221 * @arg: our SPI device
222 *
223 * The SPI has timed out: hang up the tty. Users will then see a hangup
224 * and error events.
225 */
226static void ifx_spi_timeout(unsigned long arg)
227{
228 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
229
230 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
231 ifx_spi_ttyhangup(ifx_dev);
232 mrdy_set_low(ifx_dev);
233 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
234}
235
236/* char/tty operations */
237
238/**
239 * ifx_spi_tiocmget - get modem lines
240 * @tty: our tty device
241 * @filp: file handle issuing the request
242 *
243 * Map the signal state into Linux modem flags and report the value
244 * in Linux terms
245 */
246static int ifx_spi_tiocmget(struct tty_struct *tty, struct file *filp)
247{
248 unsigned int value;
249 struct ifx_spi_device *ifx_dev = tty->driver_data;
250
251 value =
252 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
253 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
254 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
255 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
256 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
257 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
258 return value;
259}
260
261/**
262 * ifx_spi_tiocmset - set modem bits
263 * @tty: the tty structure
264 * @filp: file handle issuing the request
265 * @set: bits to set
266 * @clear: bits to clear
267 *
268 * The IFX6x60 only supports DTR and RTS. Set them accordingly
269 * and flag that an update to the modem is needed.
270 *
271 * FIXME: do we need to kick the tranfers when we do this ?
272 */
273static int ifx_spi_tiocmset(struct tty_struct *tty, struct file *filp,
274 unsigned int set, unsigned int clear)
275{
276 struct ifx_spi_device *ifx_dev = tty->driver_data;
277
278 if (set & TIOCM_RTS)
279 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
280 if (set & TIOCM_DTR)
281 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
282 if (clear & TIOCM_RTS)
283 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
284 if (clear & TIOCM_DTR)
285 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
286
287 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
288 return 0;
289}
290
291/**
292 * ifx_spi_open - called on tty open
293 * @tty: our tty device
294 * @filp: file handle being associated with the tty
295 *
296 * Open the tty interface. We let the tty_port layer do all the work
297 * for us.
298 *
299 * FIXME: Remove single device assumption and saved_ifx_dev
300 */
301static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
302{
303 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
304}
305
306/**
307 * ifx_spi_close - called when our tty closes
308 * @tty: the tty being closed
309 * @filp: the file handle being closed
310 *
311 * Perform the close of the tty. We use the tty_port layer to do all
312 * our hard work.
313 */
314static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
315{
316 struct ifx_spi_device *ifx_dev = tty->driver_data;
317 tty_port_close(&ifx_dev->tty_port, tty, filp);
318 /* FIXME: should we do an ifx_spi_reset here ? */
319}
320
321/**
322 * ifx_decode_spi_header - decode received header
323 * @buffer: the received data
324 * @length: decoded length
325 * @more: decoded more flag
326 * @received_cts: status of cts we received
327 *
328 * Note how received_cts is handled -- if header is all F it is left
329 * the same as it was, if header is all 0 it is set to 0 otherwise it is
330 * taken from the incoming header.
331 *
332 * FIXME: endianness
333 */
334static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
335 unsigned char *more, unsigned char *received_cts)
336{
337 u16 h1;
338 u16 h2;
339 u16 *in_buffer = (u16 *)buffer;
340
341 h1 = *in_buffer;
342 h2 = *(in_buffer+1);
343
344 if (h1 == 0 && h2 == 0) {
345 *received_cts = 0;
346 return IFX_SPI_HEADER_0;
347 } else if (h1 == 0xffff && h2 == 0xffff) {
348 /* spi_slave_cts remains as it was */
349 return IFX_SPI_HEADER_F;
350 }
351
352 *length = h1 & 0xfff; /* upper bits of byte are flags */
353 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
354 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
355 return 0;
356}
357
358/**
359 * ifx_setup_spi_header - set header fields
360 * @txbuffer: pointer to start of SPI buffer
361 * @tx_count: bytes
362 * @more: indicate if more to follow
363 *
364 * Format up an SPI header for a transfer
365 *
366 * FIXME: endianness?
367 */
368static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
369 unsigned char more)
370{
371 *(u16 *)(txbuffer) = tx_count;
372 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
373 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
374}
375
376/**
377 * ifx_spi_wakeup_serial - SPI space made
378 * @port_data: our SPI device
379 *
380 * We have emptied the FIFO enough that we want to get more data
381 * queued into it. Poke the line discipline via tty_wakeup so that
382 * it will feed us more bits
383 */
384static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
385{
386 struct tty_struct *tty;
387
388 tty = tty_port_tty_get(&ifx_dev->tty_port);
389 if (!tty)
390 return;
391 tty_wakeup(tty);
392 tty_kref_put(tty);
393}
394
395/**
396 * ifx_spi_prepare_tx_buffer - prepare transmit frame
397 * @ifx_dev: our SPI device
398 *
399 * The transmit buffr needs a header and various other bits of
400 * information followed by as much data as we can pull from the FIFO
401 * and transfer. This function formats up a suitable buffer in the
402 * ifx_dev->tx_buffer
403 *
404 * FIXME: performance - should we wake the tty when the queue is half
405 * empty ?
406 */
407static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
408{
409 int temp_count;
410 int queue_length;
411 int tx_count;
412 unsigned char *tx_buffer;
413
414 tx_buffer = ifx_dev->tx_buffer;
415 memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
416
417 /* make room for required SPI header */
418 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
419 tx_count = IFX_SPI_HEADER_OVERHEAD;
420
421 /* clear to signal no more data if this turns out to be the
422 * last buffer sent in a sequence */
423 ifx_dev->spi_more = 0;
424
425 /* if modem cts is set, just send empty buffer */
426 if (!ifx_dev->spi_slave_cts) {
427 /* see if there's tx data */
428 queue_length = kfifo_len(&ifx_dev->tx_fifo);
429 if (queue_length != 0) {
430 /* data to mux -- see if there's room for it */
431 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
432 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
433 tx_buffer, temp_count,
434 &ifx_dev->fifo_lock);
435
436 /* update buffer pointer and data count in message */
437 tx_buffer += temp_count;
438 tx_count += temp_count;
439 if (temp_count == queue_length)
440 /* poke port to get more data */
441 ifx_spi_wakeup_serial(ifx_dev);
442 else /* more data in port, use next SPI message */
443 ifx_dev->spi_more = 1;
444 }
445 }
446 /* have data and info for header -- set up SPI header in buffer */
447 /* spi header needs payload size, not entire buffer size */
448 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
449 tx_count-IFX_SPI_HEADER_OVERHEAD,
450 ifx_dev->spi_more);
451 /* swap actual data in the buffer */
452 swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
453 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
454 return tx_count;
455}
456
457/**
458 * ifx_spi_write - line discipline write
459 * @tty: our tty device
460 * @buf: pointer to buffer to write (kernel space)
461 * @count: size of buffer
462 *
463 * Write the characters we have been given into the FIFO. If the device
464 * is not active then activate it, when the SRDY line is asserted back
465 * this will commence I/O
466 */
467static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
468 int count)
469{
470 struct ifx_spi_device *ifx_dev = tty->driver_data;
471 unsigned char *tmp_buf = (unsigned char *)buf;
472 int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
473 &ifx_dev->fifo_lock);
474 mrdy_assert(ifx_dev);
475 return tx_count;
476}
477
478/**
479 * ifx_spi_chars_in_buffer - line discipline helper
480 * @tty: our tty device
481 *
482 * Report how much data we can accept before we drop bytes. As we use
483 * a simple FIFO this is nice and easy.
484 */
485static int ifx_spi_write_room(struct tty_struct *tty)
486{
487 struct ifx_spi_device *ifx_dev = tty->driver_data;
488 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
489}
490
491/**
492 * ifx_spi_chars_in_buffer - line discipline helper
493 * @tty: our tty device
494 *
495 * Report how many characters we have buffered. In our case this is the
496 * number of bytes sitting in our transmit FIFO.
497 */
498static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
499{
500 struct ifx_spi_device *ifx_dev = tty->driver_data;
501 return kfifo_len(&ifx_dev->tx_fifo);
502}
503
504/**
505 * ifx_port_hangup
506 * @port: our tty port
507 *
508 * tty port hang up. Called when tty_hangup processing is invoked either
509 * by loss of carrier, or by software (eg vhangup). Serialized against
510 * activate/shutdown by the tty layer.
511 */
512static void ifx_spi_hangup(struct tty_struct *tty)
513{
514 struct ifx_spi_device *ifx_dev = tty->driver_data;
515 tty_port_hangup(&ifx_dev->tty_port);
516}
517
518/**
519 * ifx_port_activate
520 * @port: our tty port
521 *
522 * tty port activate method - called for first open. Serialized
523 * with hangup and shutdown by the tty layer.
524 */
525static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
526{
527 struct ifx_spi_device *ifx_dev =
528 container_of(port, struct ifx_spi_device, tty_port);
529
530 /* clear any old data; can't do this in 'close' */
531 kfifo_reset(&ifx_dev->tx_fifo);
532
533 /* put port data into this tty */
534 tty->driver_data = ifx_dev;
535
536 /* allows flip string push from int context */
537 tty->low_latency = 1;
538
539 return 0;
540}
541
542/**
543 * ifx_port_shutdown
544 * @port: our tty port
545 *
546 * tty port shutdown method - called for last port close. Serialized
547 * with hangup and activate by the tty layer.
548 */
549static void ifx_port_shutdown(struct tty_port *port)
550{
551 struct ifx_spi_device *ifx_dev =
552 container_of(port, struct ifx_spi_device, tty_port);
553
554 mrdy_set_low(ifx_dev);
555 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
556 tasklet_kill(&ifx_dev->io_work_tasklet);
557}
558
559static const struct tty_port_operations ifx_tty_port_ops = {
560 .activate = ifx_port_activate,
561 .shutdown = ifx_port_shutdown,
562};
563
564static const struct tty_operations ifx_spi_serial_ops = {
565 .open = ifx_spi_open,
566 .close = ifx_spi_close,
567 .write = ifx_spi_write,
568 .hangup = ifx_spi_hangup,
569 .write_room = ifx_spi_write_room,
570 .chars_in_buffer = ifx_spi_chars_in_buffer,
571 .tiocmget = ifx_spi_tiocmget,
572 .tiocmset = ifx_spi_tiocmset,
573};
574
575/**
576 * ifx_spi_insert_fip_string - queue received data
577 * @ifx_ser: our SPI device
578 * @chars: buffer we have received
579 * @size: number of chars reeived
580 *
581 * Queue bytes to the tty assuming the tty side is currently open. If
582 * not the discard the data.
583 */
584static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
585 unsigned char *chars, size_t size)
586{
587 struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
588 if (!tty)
589 return;
590 tty_insert_flip_string(tty, chars, size);
591 tty_flip_buffer_push(tty);
592 tty_kref_put(tty);
593}
594
595/**
596 * ifx_spi_complete - SPI transfer completed
597 * @ctx: our SPI device
598 *
599 * An SPI transfer has completed. Process any received data and kick off
600 * any further transmits we can commence.
601 */
602static void ifx_spi_complete(void *ctx)
603{
604 struct ifx_spi_device *ifx_dev = ctx;
605 struct tty_struct *tty;
606 struct tty_ldisc *ldisc = NULL;
607 int length;
608 int actual_length;
609 unsigned char more;
610 unsigned char cts;
611 int local_write_pending = 0;
612 int queue_length;
613 int srdy;
614 int decode_result;
615
616 mrdy_set_low(ifx_dev);
617
618 if (!ifx_dev->spi_msg.status) {
619 /* check header validity, get comm flags */
620 swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
621 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
622 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
623 &length, &more, &cts);
624 if (decode_result == IFX_SPI_HEADER_0) {
625 dev_dbg(&ifx_dev->spi_dev->dev,
626 "ignore input: invalid header 0");
627 ifx_dev->spi_slave_cts = 0;
628 goto complete_exit;
629 } else if (decode_result == IFX_SPI_HEADER_F) {
630 dev_dbg(&ifx_dev->spi_dev->dev,
631 "ignore input: invalid header F");
632 goto complete_exit;
633 }
634
635 ifx_dev->spi_slave_cts = cts;
636
637 actual_length = min((unsigned int)length,
638 ifx_dev->spi_msg.actual_length);
639 swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
640 actual_length,
641 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
642 ifx_spi_insert_flip_string(
643 ifx_dev,
644 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
645 (size_t)actual_length);
646 } else {
647 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
648 ifx_dev->spi_msg.status);
649 }
650
651complete_exit:
652 if (ifx_dev->write_pending) {
653 ifx_dev->write_pending = 0;
654 local_write_pending = 1;
655 }
656
657 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
658
659 queue_length = kfifo_len(&ifx_dev->tx_fifo);
660 srdy = gpio_get_value(ifx_dev->gpio.srdy);
661 if (!srdy)
662 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
663
664 /* schedule output if there is more to do */
665 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
666 tasklet_schedule(&ifx_dev->io_work_tasklet);
667 else {
668 if (more || ifx_dev->spi_more || queue_length > 0 ||
669 local_write_pending) {
670 if (ifx_dev->spi_slave_cts) {
671 if (more)
672 mrdy_assert(ifx_dev);
673 } else
674 mrdy_assert(ifx_dev);
675 } else {
676 /*
677 * poke line discipline driver if any for more data
678 * may or may not get more data to write
679 * for now, say not busy
680 */
681 ifx_spi_power_state_clear(ifx_dev,
682 IFX_SPI_POWER_DATA_PENDING);
683 tty = tty_port_tty_get(&ifx_dev->tty_port);
684 if (tty) {
685 ldisc = tty_ldisc_ref(tty);
686 if (ldisc) {
687 ldisc->ops->write_wakeup(tty);
688 tty_ldisc_deref(ldisc);
689 }
690 tty_kref_put(tty);
691 }
692 }
693 }
694}
695
696/**
697 * ifx_spio_io - I/O tasklet
698 * @data: our SPI device
699 *
700 * Queue data for transmission if possible and then kick off the
701 * transfer.
702 */
703static void ifx_spi_io(unsigned long data)
704{
705 int retval;
706 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
707
708 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
709 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
710 ifx_dev->gpio.unack_srdy_int_nb--;
711
712 ifx_spi_prepare_tx_buffer(ifx_dev);
713
714 spi_message_init(&ifx_dev->spi_msg);
715 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
716
717 ifx_dev->spi_msg.context = ifx_dev;
718 ifx_dev->spi_msg.complete = ifx_spi_complete;
719
720 /* set up our spi transfer */
721 /* note len is BYTES, not transfers */
722 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
723 ifx_dev->spi_xfer.cs_change = 0;
724 ifx_dev->spi_xfer.speed_hz = 12500000;
725 /* ifx_dev->spi_xfer.speed_hz = 390625; */
726 ifx_dev->spi_xfer.bits_per_word = spi_b16 ? 16 : 8;
727
728 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
729 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
730
731 /*
732 * setup dma pointers
733 */
734 if (ifx_dev->is_6160) {
735 ifx_dev->spi_msg.is_dma_mapped = 1;
736 ifx_dev->tx_dma = ifx_dev->tx_bus;
737 ifx_dev->rx_dma = ifx_dev->rx_bus;
738 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
739 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
740 } else {
741 ifx_dev->spi_msg.is_dma_mapped = 0;
742 ifx_dev->tx_dma = (dma_addr_t)0;
743 ifx_dev->rx_dma = (dma_addr_t)0;
744 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
745 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
746 }
747
748 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
749
750 /* Assert MRDY. This may have already been done by the write
751 * routine.
752 */
753 mrdy_assert(ifx_dev);
754
755 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
756 if (retval) {
757 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
758 &ifx_dev->flags);
759 tasklet_schedule(&ifx_dev->io_work_tasklet);
760 return;
761 }
762 } else
763 ifx_dev->write_pending = 1;
764}
765
766/**
767 * ifx_spi_free_port - free up the tty side
768 * @ifx_dev: IFX device going away
769 *
770 * Unregister and free up a port when the device goes away
771 */
772static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
773{
774 if (ifx_dev->tty_dev)
775 tty_unregister_device(tty_drv, ifx_dev->minor);
776 kfifo_free(&ifx_dev->tx_fifo);
777}
778
779/**
780 * ifx_spi_create_port - create a new port
781 * @ifx_dev: our spi device
782 *
783 * Allocate and initialise the tty port that goes with this interface
784 * and add it to the tty layer so that it can be opened.
785 */
786static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
787{
788 int ret = 0;
789 struct tty_port *pport = &ifx_dev->tty_port;
790
791 spin_lock_init(&ifx_dev->fifo_lock);
792 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
793 &ifx_spi_key, 0);
794
795 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
796 ret = -ENOMEM;
797 goto error_ret;
798 }
799
800 pport->ops = &ifx_tty_port_ops;
801 tty_port_init(pport);
802 ifx_dev->minor = IFX_SPI_TTY_ID;
803 ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
804 &ifx_dev->spi_dev->dev);
805 if (IS_ERR(ifx_dev->tty_dev)) {
806 dev_dbg(&ifx_dev->spi_dev->dev,
807 "%s: registering tty device failed", __func__);
808 ret = PTR_ERR(ifx_dev->tty_dev);
809 goto error_ret;
810 }
811 return 0;
812
813error_ret:
814 ifx_spi_free_port(ifx_dev);
815 return ret;
816}
817
818/**
819 * ifx_spi_handle_srdy - handle SRDY
820 * @ifx_dev: device asserting SRDY
821 *
822 * Check our device state and see what we need to kick off when SRDY
823 * is asserted. This usually means killing the timer and firing off the
824 * I/O processing.
825 */
826static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
827{
828 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
829 del_timer_sync(&ifx_dev->spi_timer);
830 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
831 }
832
833 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
834
835 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
836 tasklet_schedule(&ifx_dev->io_work_tasklet);
837 else
838 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
839}
840
841/**
842 * ifx_spi_srdy_interrupt - SRDY asserted
843 * @irq: our IRQ number
844 * @dev: our ifx device
845 *
846 * The modem asserted SRDY. Handle the srdy event
847 */
848static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
849{
850 struct ifx_spi_device *ifx_dev = dev;
851 ifx_dev->gpio.unack_srdy_int_nb++;
852 ifx_spi_handle_srdy(ifx_dev);
853 return IRQ_HANDLED;
854}
855
856/**
857 * ifx_spi_reset_interrupt - Modem has changed reset state
858 * @irq: interrupt number
859 * @dev: our device pointer
860 *
861 * The modem has either entered or left reset state. Check the GPIO
862 * line to see which.
863 *
864 * FIXME: review locking on MR_INPROGRESS versus
865 * parallel unsolicited reset/solicited reset
866 */
867static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
868{
869 struct ifx_spi_device *ifx_dev = dev;
870 int val = gpio_get_value(ifx_dev->gpio.reset_out);
871 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
872
873 if (val == 0) {
874 /* entered reset */
875 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
876 if (!solreset) {
877 /* unsolicited reset */
878 ifx_spi_ttyhangup(ifx_dev);
879 }
880 } else {
881 /* exited reset */
882 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
883 if (solreset) {
884 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
885 wake_up(&ifx_dev->mdm_reset_wait);
886 }
887 }
888 return IRQ_HANDLED;
889}
890
891/**
892 * ifx_spi_free_device - free device
893 * @ifx_dev: device to free
894 *
895 * Free the IFX device
896 */
897static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
898{
899 ifx_spi_free_port(ifx_dev);
900 dma_free_coherent(&ifx_dev->spi_dev->dev,
901 IFX_SPI_TRANSFER_SIZE,
902 ifx_dev->tx_buffer,
903 ifx_dev->tx_bus);
904 dma_free_coherent(&ifx_dev->spi_dev->dev,
905 IFX_SPI_TRANSFER_SIZE,
906 ifx_dev->rx_buffer,
907 ifx_dev->rx_bus);
908}
909
910/**
911 * ifx_spi_reset - reset modem
912 * @ifx_dev: modem to reset
913 *
914 * Perform a reset on the modem
915 */
916static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
917{
918 int ret;
919 /*
920 * set up modem power, reset
921 *
922 * delays are required on some platforms for the modem
923 * to reset properly
924 */
925 set_bit(MR_START, &ifx_dev->mdm_reset_state);
926 gpio_set_value(ifx_dev->gpio.po, 0);
927 gpio_set_value(ifx_dev->gpio.reset, 0);
928 msleep(25);
929 gpio_set_value(ifx_dev->gpio.reset, 1);
930 msleep(1);
931 gpio_set_value(ifx_dev->gpio.po, 1);
932 msleep(1);
933 gpio_set_value(ifx_dev->gpio.po, 0);
934 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
935 test_bit(MR_COMPLETE,
936 &ifx_dev->mdm_reset_state),
937 IFX_RESET_TIMEOUT);
938 if (!ret)
939 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
940 ifx_dev->mdm_reset_state);
941
942 ifx_dev->mdm_reset_state = 0;
943 return ret;
944}
945
946/**
947 * ifx_spi_spi_probe - probe callback
948 * @spi: our possible matching SPI device
949 *
950 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
951 * GPIO setup.
952 *
953 * FIXME:
954 * - Support for multiple devices
955 * - Split out MID specific GPIO handling eventually
956 */
957
958static int ifx_spi_spi_probe(struct spi_device *spi)
959{
960 int ret;
961 int srdy;
962 struct ifx_modem_platform_data *pl_data = NULL;
963 struct ifx_spi_device *ifx_dev;
964
965 if (saved_ifx_dev) {
966 dev_dbg(&spi->dev, "ignoring subsequent detection");
967 return -ENODEV;
968 }
969
970 /* initialize structure to hold our device variables */
971 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
972 if (!ifx_dev) {
973 dev_err(&spi->dev, "spi device allocation failed");
974 return -ENOMEM;
975 }
976 saved_ifx_dev = ifx_dev;
977 ifx_dev->spi_dev = spi;
978 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
979 spin_lock_init(&ifx_dev->write_lock);
980 spin_lock_init(&ifx_dev->power_lock);
981 ifx_dev->power_status = 0;
982 init_timer(&ifx_dev->spi_timer);
983 ifx_dev->spi_timer.function = ifx_spi_timeout;
984 ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
985 ifx_dev->is_6160 = pl_data->is_6160;
986
987 /* ensure SPI protocol flags are initialized to enable transfer */
988 ifx_dev->spi_more = 0;
989 ifx_dev->spi_slave_cts = 0;
990
991 /*initialize transfer and dma buffers */
992 ifx_dev->tx_buffer = dma_alloc_coherent(&ifx_dev->spi_dev->dev,
993 IFX_SPI_TRANSFER_SIZE,
994 &ifx_dev->tx_bus,
995 GFP_KERNEL);
996 if (!ifx_dev->tx_buffer) {
997 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
998 ret = -ENOMEM;
999 goto error_ret;
1000 }
1001 ifx_dev->rx_buffer = dma_alloc_coherent(&ifx_dev->spi_dev->dev,
1002 IFX_SPI_TRANSFER_SIZE,
1003 &ifx_dev->rx_bus,
1004 GFP_KERNEL);
1005 if (!ifx_dev->rx_buffer) {
1006 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1007 ret = -ENOMEM;
1008 goto error_ret;
1009 }
1010
1011 /* initialize waitq for modem reset */
1012 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1013
1014 spi_set_drvdata(spi, ifx_dev);
1015 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1016 (unsigned long)ifx_dev);
1017
1018 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1019
1020 /* create our tty port */
1021 ret = ifx_spi_create_port(ifx_dev);
1022 if (ret != 0) {
1023 dev_err(&spi->dev, "create default tty port failed");
1024 goto error_ret;
1025 }
1026
1027 pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
1028 if (pl_data) {
1029 ifx_dev->gpio.reset = pl_data->rst_pmu;
1030 ifx_dev->gpio.po = pl_data->pwr_on;
1031 ifx_dev->gpio.mrdy = pl_data->mrdy;
1032 ifx_dev->gpio.srdy = pl_data->srdy;
1033 ifx_dev->gpio.reset_out = pl_data->rst_out;
1034 } else {
1035 dev_err(&spi->dev, "missing platform data!");
1036 ret = -ENODEV;
1037 goto error_ret;
1038 }
1039
1040 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1041 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1042 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1043
1044 /* Configure gpios */
1045 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1046 if (ret < 0) {
1047 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1048 ifx_dev->gpio.reset);
1049 goto error_ret;
1050 }
1051 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1052 ret += gpio_export(ifx_dev->gpio.reset, 1);
1053 if (ret) {
1054 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1055 ifx_dev->gpio.reset);
1056 ret = -EBUSY;
1057 goto error_ret2;
1058 }
1059
1060 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1061 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1062 ret += gpio_export(ifx_dev->gpio.po, 1);
1063 if (ret) {
1064 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1065 ifx_dev->gpio.po);
1066 ret = -EBUSY;
1067 goto error_ret3;
1068 }
1069
1070 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1071 if (ret < 0) {
1072 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1073 ifx_dev->gpio.mrdy);
1074 goto error_ret3;
1075 }
1076 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1077 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1078 if (ret) {
1079 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1080 ifx_dev->gpio.mrdy);
1081 ret = -EBUSY;
1082 goto error_ret4;
1083 }
1084
1085 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1086 if (ret < 0) {
1087 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1088 ifx_dev->gpio.srdy);
1089 ret = -EBUSY;
1090 goto error_ret4;
1091 }
1092 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1093 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1094 if (ret) {
1095 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1096 ifx_dev->gpio.srdy);
1097 ret = -EBUSY;
1098 goto error_ret5;
1099 }
1100
1101 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1102 if (ret < 0) {
1103 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1104 ifx_dev->gpio.reset_out);
1105 goto error_ret5;
1106 }
1107 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1108 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1109 if (ret) {
1110 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1111 ifx_dev->gpio.reset_out);
1112 ret = -EBUSY;
1113 goto error_ret6;
1114 }
1115
1116 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1117 ifx_spi_reset_interrupt,
1118 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1119 (void *)ifx_dev);
1120 if (ret) {
1121 dev_err(&spi->dev, "Unable to get irq %x\n",
1122 gpio_to_irq(ifx_dev->gpio.reset_out));
1123 goto error_ret6;
1124 }
1125
1126 ret = ifx_spi_reset(ifx_dev);
1127
1128 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1129 ifx_spi_srdy_interrupt,
1130 IRQF_TRIGGER_RISING, DRVNAME,
1131 (void *)ifx_dev);
1132 if (ret) {
1133 dev_err(&spi->dev, "Unable to get irq %x",
1134 gpio_to_irq(ifx_dev->gpio.srdy));
1135 goto error_ret6;
1136 }
1137
1138 /* set pm runtime power state and register with power system */
1139 pm_runtime_set_active(&spi->dev);
1140 pm_runtime_enable(&spi->dev);
1141
1142 /* handle case that modem is already signaling SRDY */
1143 /* no outgoing tty open at this point, this just satisfies the
1144 * modem's read and should reset communication properly
1145 */
1146 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1147
1148 if (srdy) {
1149 mrdy_assert(ifx_dev);
1150 ifx_spi_handle_srdy(ifx_dev);
1151 } else
1152 mrdy_set_low(ifx_dev);
1153 return 0;
1154
1155error_ret6:
1156 gpio_free(ifx_dev->gpio.srdy);
1157error_ret5:
1158 gpio_free(ifx_dev->gpio.mrdy);
1159error_ret4:
1160 gpio_free(ifx_dev->gpio.reset);
1161error_ret3:
1162 gpio_free(ifx_dev->gpio.po);
1163error_ret2:
1164 gpio_free(ifx_dev->gpio.reset_out);
1165error_ret:
1166 ifx_spi_free_device(ifx_dev);
1167 saved_ifx_dev = NULL;
1168 return ret;
1169}
1170
1171/**
1172 * ifx_spi_spi_remove - SPI device was removed
1173 * @spi: SPI device
1174 *
1175 * FIXME: We should be shutting the device down here not in
1176 * the module unload path.
1177 */
1178
1179static int ifx_spi_spi_remove(struct spi_device *spi)
1180{
1181 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1182 /* stop activity */
1183 tasklet_kill(&ifx_dev->io_work_tasklet);
1184 /* free irq */
1185 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1186 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1187
1188 gpio_free(ifx_dev->gpio.srdy);
1189 gpio_free(ifx_dev->gpio.mrdy);
1190 gpio_free(ifx_dev->gpio.reset);
1191 gpio_free(ifx_dev->gpio.po);
1192 gpio_free(ifx_dev->gpio.reset_out);
1193
1194 /* free allocations */
1195 ifx_spi_free_device(ifx_dev);
1196
1197 saved_ifx_dev = NULL;
1198 return 0;
1199}
1200
1201/**
1202 * ifx_spi_spi_shutdown - called on SPI shutdown
1203 * @spi: SPI device
1204 *
1205 * No action needs to be taken here
1206 */
1207
1208static void ifx_spi_spi_shutdown(struct spi_device *spi)
1209{
1210}
1211
1212/*
1213 * various suspends and resumes have nothing to do
1214 * no hardware to save state for
1215 */
1216
1217/**
1218 * ifx_spi_spi_suspend - suspend SPI on system suspend
1219 * @dev: device being suspended
1220 *
1221 * Suspend the SPI side. No action needed on Intel MID platforms, may
1222 * need extending for other systems.
1223 */
1224static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1225{
1226 return 0;
1227}
1228
1229/**
1230 * ifx_spi_spi_resume - resume SPI side on system resume
1231 * @dev: device being suspended
1232 *
1233 * Suspend the SPI side. No action needed on Intel MID platforms, may
1234 * need extending for other systems.
1235 */
1236static int ifx_spi_spi_resume(struct spi_device *spi)
1237{
1238 return 0;
1239}
1240
1241/**
1242 * ifx_spi_pm_suspend - suspend modem on system suspend
1243 * @dev: device being suspended
1244 *
1245 * Suspend the modem. No action needed on Intel MID platforms, may
1246 * need extending for other systems.
1247 */
1248static int ifx_spi_pm_suspend(struct device *dev)
1249{
1250 return 0;
1251}
1252
1253/**
1254 * ifx_spi_pm_resume - resume modem on system resume
1255 * @dev: device being suspended
1256 *
1257 * Allow the modem to resume. No action needed.
1258 *
1259 * FIXME: do we need to reset anything here ?
1260 */
1261static int ifx_spi_pm_resume(struct device *dev)
1262{
1263 return 0;
1264}
1265
1266/**
1267 * ifx_spi_pm_runtime_resume - suspend modem
1268 * @dev: device being suspended
1269 *
1270 * Allow the modem to resume. No action needed.
1271 */
1272static int ifx_spi_pm_runtime_resume(struct device *dev)
1273{
1274 return 0;
1275}
1276
1277/**
1278 * ifx_spi_pm_runtime_suspend - suspend modem
1279 * @dev: device being suspended
1280 *
1281 * Allow the modem to suspend and thus suspend to continue up the
1282 * device tree.
1283 */
1284static int ifx_spi_pm_runtime_suspend(struct device *dev)
1285{
1286 return 0;
1287}
1288
1289/**
1290 * ifx_spi_pm_runtime_idle - check if modem idle
1291 * @dev: our device
1292 *
1293 * Check conditions and queue runtime suspend if idle.
1294 */
1295static int ifx_spi_pm_runtime_idle(struct device *dev)
1296{
1297 struct spi_device *spi = to_spi_device(dev);
1298 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1299
1300 if (!ifx_dev->power_status)
1301 pm_runtime_suspend(dev);
1302
1303 return 0;
1304}
1305
1306static const struct dev_pm_ops ifx_spi_pm = {
1307 .resume = ifx_spi_pm_resume,
1308 .suspend = ifx_spi_pm_suspend,
1309 .runtime_resume = ifx_spi_pm_runtime_resume,
1310 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1311 .runtime_idle = ifx_spi_pm_runtime_idle
1312};
1313
1314static const struct spi_device_id ifx_id_table[] = {
1315 {"ifx6160", 0},
1316 {"ifx6260", 0},
1317 { }
1318};
1319MODULE_DEVICE_TABLE(spi, ifx_id_table);
1320
1321/* spi operations */
1322static const struct spi_driver ifx_spi_driver_6160 = {
1323 .driver = {
1324 .name = "ifx6160",
1325 .bus = &spi_bus_type,
1326 .pm = &ifx_spi_pm,
1327 .owner = THIS_MODULE},
1328 .probe = ifx_spi_spi_probe,
1329 .shutdown = ifx_spi_spi_shutdown,
1330 .remove = __devexit_p(ifx_spi_spi_remove),
1331 .suspend = ifx_spi_spi_suspend,
1332 .resume = ifx_spi_spi_resume,
1333 .id_table = ifx_id_table
1334};
1335
1336/**
1337 * ifx_spi_exit - module exit
1338 *
1339 * Unload the module.
1340 */
1341
1342static void __exit ifx_spi_exit(void)
1343{
1344 /* unregister */
1345 tty_unregister_driver(tty_drv);
1346 spi_unregister_driver((void *)&ifx_spi_driver_6160);
1347}
1348
1349/**
1350 * ifx_spi_init - module entry point
1351 *
1352 * Initialise the SPI and tty interfaces for the IFX SPI driver
1353 * We need to initialize upper-edge spi driver after the tty
1354 * driver because otherwise the spi probe will race
1355 */
1356
1357static int __init ifx_spi_init(void)
1358{
1359 int result;
1360
1361 tty_drv = alloc_tty_driver(1);
1362 if (!tty_drv) {
1363 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1364 return -ENOMEM;
1365 }
1366
1367 tty_drv->magic = TTY_DRIVER_MAGIC;
1368 tty_drv->owner = THIS_MODULE;
1369 tty_drv->driver_name = DRVNAME;
1370 tty_drv->name = TTYNAME;
1371 tty_drv->minor_start = IFX_SPI_TTY_ID;
1372 tty_drv->num = 1;
1373 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1374 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1375 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1376 tty_drv->init_termios = tty_std_termios;
1377
1378 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1379
1380 result = tty_register_driver(tty_drv);
1381 if (result) {
1382 pr_err("%s: tty_register_driver failed(%d)",
1383 DRVNAME, result);
1384 return result;
1385 }
1386
1387 result = spi_register_driver((void *)&ifx_spi_driver_6160);
1388 if (result) {
1389 pr_err("%s: spi_register_driver failed(%d)",
1390 DRVNAME, result);
1391 tty_unregister_driver(tty_drv);
1392 }
1393 return result;
1394}
1395
1396module_init(ifx_spi_init);
1397module_exit(ifx_spi_exit);
1398
1399MODULE_AUTHOR("Intel");
1400MODULE_DESCRIPTION("IFX6x60 spi driver");
1401MODULE_LICENSE("GPL");
1402MODULE_INFO(Version, "0.1-IFX6x60");